Filtered RSK and matrix Schubert varieties

Abigail Price, Ada Stelzer, Alexander Yong

University of Illinois Urbana-Champaign

Introduction

Let $GL := GL_m(\mathbb{C}) \times GL_n(\mathbb{C})$. GL acts on the coordinate ring of complex $m \times n$ matrices $\mathbb{C}[\mathsf{Mat}_{m,n}]$ by:

$$(g,h) \cdot f(M) = f(gMh^T), (g,h) \in GL, M \in Mat_{m,n}.$$

Since GL fixes graded components of $\mathbb{C}[\mathsf{Mat}_{m,n}]$, every graded component of $\mathbb{C}[\mathsf{Mat}_{m,n}]$ decomposes into a direct sum of external tensor products $V_\lambda(m) \boxtimes V_\mu(n)$ where $V_\lambda(m)$ is the Weyl module for GL_m corresponding to the partition λ . It can be shown that

$$\mathbb{C}[\mathsf{Mat}_{m,n}] \simeq_{\mathbf{GL}} \bigoplus_{\lambda} V_{\lambda}(m) \boxtimes V_{\lambda}(n),$$

where the sum runs over all partitions λ with length at most $\min(m, n)$. This is the classical Cauchy identity.

Any Levi subgroup $L_{I|I} := L_I \times L_I \le GL$, where

$$\mathbf{L}_{\mathbf{I}} = GL_{i_1 - i_0} \times \ldots \times GL_{i_k - i_{k-1}}, \ \mathbf{I} = \{0 = i_0 < i_1 < \ldots < i_k = m\},\$$

also acts on $\mathbb{C}[\mathrm{Mat}_{m,n}]$ by restriction. As an \mathbf{L}_{IIJ} -representation, $\mathbb{C}[\mathrm{Mat}_{m,n}]$ decomposes into a direct sum of \mathbf{L}_{III} -irreducibles:

$$\mathbb{C}[\mathsf{Mat}_{m,n}] \simeq_{\mathrm{L}_{\mathrm{I}\mathrm{J}}} \bigoplus_{\underline{\lambda} \mid \underline{\mu}} (V_{\underline{\lambda}}(m) \boxtimes V_{\underline{\mu}}(n))^{c_{\underline{\lambda} \mid \underline{\mu}}}$$

Here, $\underline{\lambda},\underline{\mu}$ are tuples of partitions. The multiplicities $c_{\underline{\lambda}\underline{|}\underline{\mu}}$ may be expressed in terms of the Littlewood-Richardson coefficients.

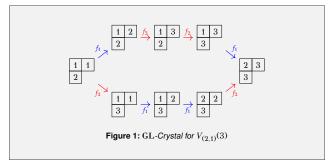
Let $I \subseteq \mathbb{C}[\mathsf{Mat}_{m,n}]$ be an ideal stable under the action of some L_{III} . Then

$$\mathbb{C}[\mathsf{Mat}_{m,n}]/I \simeq_{\bigsqcup_{\underline{\lambda} \mid \underline{\mu}}} (V_{\underline{\lambda}}(m) \boxtimes V_{\underline{\mu}}(n))^{c_{\underline{\lambda} \mid \underline{\mu}}^{l}}.$$

Main Question. What is a combinatorial rule for computing the multiplicities $c_{\lambda l \mu}^{I}$?

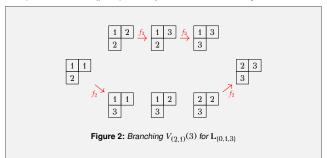
Crystals and filteredRSK

Basis vectors for a Weyl module $V_{\lambda}(m)$ are indexed by semistandard Young tableaux of shape λ with content [m]. The set of all semistandard Young tableaux of shape λ may be arranged into a $crystal\ graph\ \mathfrak{B}_{\lambda}(m)$ using Kashiwara's $crystal\ operators$. Each $\mathfrak{B}_{\lambda}(m)$ has a unique source, the $highest\ weight\ tableau$ of shape λ .



The crystal graph for a direct sum $V_{\lambda}(m) \oplus V_{\mu}(m)$ of irreducible representations is the disjoint union of the crystals $\mathfrak{B}_{\lambda}(m)$ and $\mathfrak{B}_{\mu}(m)$. The crystal graph for a $GL_m \times GL_n$ representation $V_{\lambda}(m) \boxtimes V_{\mu}(n)$ is the Cartesian product $\mathfrak{B}_{\lambda}(m) \square \mathfrak{B}_{\mu}(n)$ of the graphs $\mathfrak{B}_{\lambda}(m)$, $\mathfrak{B}_{\mu}(n)$. We call $\mathfrak{B}_{\lambda}(m) \square \mathfrak{B}_{\mu}(n)$ a bicrystal.

Crystal graphs behave nicely under Levi branching. Given a Weyl module $V_{\lambda}(m)$ and a Levi subgroup $\mathbf{L_I} \leq GL_m$, the crystal graph $\mathfrak{B}^{\mathbf{L_I}}_{\lambda}(m)$ for $V_{\lambda}(m)$ as an $\mathbf{L_I}$ representation is the crystal formed from $\mathfrak{B}_{\lambda}(m)$ by removing all arrows labeled with an f_i for $i \in \mathbf{I}$.



Danilov-Koshevoi [1] and van Leeuwen [3] give the set $\mathfrak B$ of all monomials in $\mathbb C[\mathrm{Mat}_{m,n}]$ a bicrystal structure by "pulling back" bicrystal operators on SSYT through RSK.

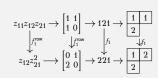


Figure 3: Pulling back tableaux operators to monomials

This bicrystal structure yields a manifestly positive combinatorial rule for the multiplicity of $V_{\underline{\lambda}} \boxtimes V_{\underline{\mu}}$ in the decomposition of $\mathbb{C}[\mathsf{Mat}_{m,n}]$ as an L_{IIJ} -representation; namely, $\mathsf{c}_{\underline{\lambda}\underline{\mu}}$ is the number of highest weight matrices indexing a connected component of the L_{IIJ} -crystal $\mathfrak{B}^{\mathsf{L}_{IIJ}}$ that is isomorphic to the crystal for $V_{\underline{\lambda}} \boxtimes V_{\underline{\mu}}$. The highest weight matrices are those which correspond to tuples of highest weight tableaux $(T_{\lambda}|T_{\mu})$ via filtered RSK.

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{pmatrix} 2331312 | 2313112 \end{pmatrix} \rightarrow \begin{pmatrix} 11, 23332 | 2313112 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} \boxed{1} & \boxed{1}, \boxed{2} & \boxed{2} & \boxed{3} & \boxed{1} & \boxed{1} & \boxed{1} & \boxed{2} \\ \hline & 3 & \boxed{2} & \boxed{3} & \boxed{3} & \boxed{1} & \boxed{1} & \boxed{1} & \boxed{2} \\ \hline \end{pmatrix}$$

Figure 4: Example of Filtered RSK for $L_{\{0,1,3\}|\{0,3\}}$

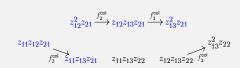


Figure 5: Illustration of bicrystalline condition (Blue: standard monomials)

Now, let $I \subseteq \mathbb{C}[\mathsf{Mat}_{m,n}]$ be an ideal fixed under the action of $L_{I|J}$. For any given term order <. the set of $standard\ monomials$

$$Std_{\checkmark}(I) = \{ \mathbf{m} \in \mathfrak{B} : \mathbf{m} \notin init_{\checkmark}(I) \}$$

forms a basis for $\mathbb{C}[Mat_{m,n}]/I$.

Definition. An ideal I is bicrystalline for $L_{I|J}$ if there exists some term order < under which the set $(\mathfrak{B}^{L_{I|J}} \cap \mathsf{Std}_{<}(I)) \cup \{\emptyset\}$ is closed under the action of every admissible bicrystal operator for $L_{I|J}$.

If I is bicrystalline, we obtain a combinatorial rule for computing $c^I_{\lambda|\mu}$

Main Theorem (P.-Stelzer-Yong '24, arXiv:2403.09938). If I is bicrystalline (as witnessed by a term order <), then

$$c_{\underline{\lambda} | \underline{\mu}}^{I} = \# \left\{ \mathbf{m} \in \mathfrak{B}^{\mathbf{L}_{IJ}} \cap \mathsf{Std}_{<}(\mathsf{I}) : \mathsf{filterRSK}(\mathbf{m}) = (T_{\underline{\lambda}} | T_{\underline{\mu}}) \right\}$$

In principal, it requires infinitely many checks to tell whether an ideal I is bicrystalline; one must apply every bicrystal operator to every one of infinitely many standard monomials and check whether the resulting monomials are standard. However, in upcoming work, we show the following:

Theorem (P-Stelzer-Yong '25+). There exists a finite-time algorithm that determines whether any given ideal I with an action of some Levi group $L_{\rm III}$ is bicrystalline for $L_{\rm III}$.

Main Example: Matrix Schubert Varieties

Our primary examples of bicrystalline ideals are ideals defining matrix Schubert varieties.

Proposition. The matrix Schubert variety \mathfrak{X}_w is $\mathbf{L}_{I|J}$ -stable with respect to the right action $(g,g') \cdot A = g^{-1}A(g'^{-1})^T$ whenever $\mathsf{Desc}_{\mathsf{COM}}(w) \subseteq \mathbf{I}$ and $\mathsf{Desc}_{\mathsf{COI}}(w) \subseteq \mathbf{J}$.

Using the Knutson-Miller Gröbner basis theorem ([2]), we show that the ideals defining matrix Schubert varieties are bicrystalline under antidiagonal term order.

Theorem (P.-Stelzer-Yong '24, arXiv:2403.09938). Let $\mathfrak{X}_w\subseteq \operatorname{Mat}_{m,n}$ be a matrix Schubert variety and let $\operatorname{Desc}_{\operatorname{row}}(w)\subseteq I$, $\operatorname{Desc}_{\operatorname{col}}(w)\subseteq J$. Then the ideal $I(\mathfrak{X}_w)$ is L_{III} -bicrystalline.

References

[1] Danilov, V. I.; Koshevoi, G. A. Arrays and the combinatorics of Young tableaux. Russ. Math. Surv 60 (2005), 269-334.
[2] Knutson, Alleri, Miller, Ezra. Grobner geometry of Schubert polynomials. Ann. of Math. (2) 161 (2005), no. 3, 1245-1318.
[3] van Leeuwen, Marc. Double crystals of binary and integral matrices. Elice. J. of Combinatorics 13 (2006), no. 1, R86.

AS was supported by a Susan C. Morisato IGL graduate student scholarship and an NSF graduate fellowship. AY was supported by a Simons Collaboration grant. The authors were partially supported by an NSF RTG in Combinatorics (DMS 1937241)