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Introduction

Let GL :! GLm(C) → GLn(C). GL acts on the coordinate ring of complex m → n matrices
C[Matm,n] by:

(g, h) · f (M) ! f (gMhT), (g, h) ↑ GL, M ↑ Matm,n.

Since GL fixes graded components of C[Matm,n], every graded component of C[Matm,n]
decomposes into a direct sum of external tensor products Vω(m) ↭Vε(n) where Vω(m) is
the Weyl module for GLm corresponding to the partition ω. It can be shown that

C[Matm,n] ↓GL
⊕

ω

Vω(m) ↭Vω(n),

where the sum runs over all partitions ω with length at most min(m,n). This is the classical
Cauchy identity.
Any Levi subgroup LI|J :! LI →LJ ↔ GL, where

LI ! GLi1↗i0 → . . . → GLik↗ik↗1, I ! {0 ! i0 < i1 < . . . < ik ! m},

also acts on C[Matm,n] by restriction. As an LI|J-representation, C[Matm,n] decomposes
into a direct sum of LI|J-irreducibles:

C[Matm,n] ↓LI|J

⊕

ω|ε
(Vω(m) ↭Vε(n))cω|ε

Here, ω, ε are tuples of partitions. The multiplicities cω|ε may be expressed in terms of the
Littlewood-Richardson coefficients.
Let I ↘ C[Matm,n] be an ideal stable under the action of some LI|J. Then

C[Matm,n]/ I ↓LI|J

⊕

ω|ε
(Vω(m) ↭Vε(n))

cIω|ε.

Main Question. What is a combinatorial rule for computing the multiplicities cIω|ε?

Crystals and filteredRSK

Basis vectors for a Weyl module Vω(m) are indexed by semistandard Young tableaux of
shape ω with content [m]. The set of all semistandard Young tableaux of shape ω may be
arranged into a crystal graph Bω(m) using Kashiwara’s crystal operators. Each Bω(m) has
a unique source, the highest weight tableau of shape ω.
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Figure 1: GL-Crystal for V(2,1)(3)

The crystal graph for a direct sum Vω(m)≃Vε(m) of irreducible representations is the disjoint
union of the crystals Bω(m) and Bε(m). The crystal graph for a GLm → GLn representation
Vω(m)↭Vε(n) is the Cartesian product Bω(m)↫Bε(n) of the graphs Bω(m),Bε(n). We call
Bω(m)↫Bε(n) a bicrystal.
Crystal graphs behave nicely under Levi branching. Given a Weyl module Vω(m) and a
Levi subgroup LI ↔ GLm, the crystal graph BLI

ω (m) for Vω(m) as an LI representation is
the crystal formed from Bω(m) by removing all arrows labeled with an fi for i ↑ I.
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Figure 2: Branching V(2,1)(3) for L{0,1,3}

Danilov-Koshevoi [1] and van Leeuwen [3] give the set B of all monomials in C[Matm,n] a
bicrystal structure by “pulling back” bicrystal operators on SSYT through RSK.
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Figure 3: Pulling back tableaux operators to monomials

This bicrystal structure yields a manifestly positive combinatorial rule for the multiplicity of
Vω ↭ Vε in the decomposition of C[Matm,n] as an LI|J-representation; namely, cω|ε is the
number of highest weight matrices indexing a connected component of the LI|J-crystal
BLI|J that is isomorphic to the crystal for Vω ↭Vε. The highest weight matrices are those
which correspond to tuples of highest weight tableaux (Tω|Tε) via filtered RSK.
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Figure 4: Example of Filtered RSK for L{0,1,3}|{0,3}
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Figure 5: Illustration of bicrystalline condition (Blue: standard monomials)

Now, let I ↘ C[Matm,n] be an ideal fixed under the action of LI|J. For any given term order
<, the set of standard monomials

Std<(I) ! {m ↑ B : m ! init<(I)}

forms a basis for C[Matm,n]/ I.

Definition. An ideal I is bicrystalline for LI|J if there exists some term order < under
which the set (BLI|J ⇒ Std<(I)) ⇑ {⇓} is closed under the action of every admissible
bicrystal operator for LI|J.

If I is bicrystalline, we obtain a combinatorial rule for computing cIω|ε.

Main Theorem (P.-Stelzer-Yong ‘24, arXiv:2403.09938). If I is bicrystalline (as witnessed
by a term order <), then

cIω|ε ! #

m ↑ BLI|J ⇒ Std<(I) : filterRSK(m) ! (Tω|Tε)



In principal, it requires infinitely many checks to tell whether an ideal I is bicrystalline; one
must apply every bicrystal operator to every one of infinitely many standard monomials
and check whether the resulting monomials are standard. However, in upcoming work, we
show the following:

Theorem (P.-Stelzer-Yong ‘25+). There exists a finite-time algorithm that determines
whether any given ideal I with an action of some Levi group LI|J is bicrystalline for LI|J.

Main Example: Matrix Schubert Varieties

Our primary examples of bicrystalline ideals are ideals defining matrix Schubert varieties.

Proposition. The matrix Schubert variety Xw is LI|J-stable with respect to the right
action (g, g⇔) · A ! g↗1A(g⇔↗1)T whenever Descrow(w) ↘ I and Desccol(w) ↘ J.

Using the Knutson-Miller Gro.. bner basis theorem ([2]), we show that the ideals defining
matrix Schubert varieties are bicrystalline under antidiagonal term order.

Theorem (P.-Stelzer-Yong ‘24, arXiv:2403.09938). Let Xw ↘ Matm,n be a matrix Schubert
variety and let Descrow(w) ↘ I, Desccol(w) ↘ J. Then the ideal I(Xw) is LI|J-bicrystalline.
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