Filtered RSK and matrix Schubert varieties

Introduction

Let GL := GL;(C) x GL,(C). GL acts on the coordinate ring of complex m x n matrices
C[Maty;, ] by:

(g.1)-f(M) = f(gMKT), (3.h) € GL, M € Maty .
Since GL fixes graded components of C[Mat,; ,], every graded component of C[Mat,;, ;]
decomposes into a direct sum of external tensor products V() & V(i) where V,(m) is
the Weyl module for GL;, corresponding to the partition A. It can be shown that

CIMaty; ] g1, € Valm) @ Va(o),
A

where the sum runs over all partitions A with length at most min(mn, n). This is the classical
Cauchy identity.
Any Levi subgroup Ly := Ly X Ly < GL, where

Ly=GLj-iyx...XGLj—j ., I={0=iy<iy<...<ig=m),

also acts on C[Mat,;, ;] by restriction. As an LIU-representation, C[Matm,n] decomposes
into a direct sum of Lyjj-irreducibles:

CIMaty ] =1, GV m V()
Ap

Here, A u are tuples of partitions. The multiplicities c,, may be expressed in terms of the
Littlewood-Richardson coefficients. -
Let I ¢ C[Maty,,,] be an ideal stable under the action of some Lyj. Then

CIMat /I 1, Vil @ V) .
Au

‘ Main Question. What is a combinatorial rule for computing the multiplicities cﬁ ? ‘

Crystals and filteredRSK

Basis vectors for a Weyl module V,(m) are indexed by semistandard Young tableaux of
shape A with content [m]. The set of all semistandard Young tableaux of shape A may be
arranged into a crystal graph B,(m) using Kashiwara’s crystal operators. Each 8,(m) has
a unique source, the highest weight tableau of shape A.
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Figure 1: GL-Crystal for V(4 1)(3)
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The crystal graph for a direct sum V,(m)@V,(m) of irreducible representations is the disjoint
union of the crystals 8,() and B,(m). The crystal graph for a GLy, x GLy representation
Vy(m) ® V,(n) is the Cartesian product 8,(m)0%B,,(n) of the graphs 8,(mn), B,,(n). We call
B, (m)oB,(n) a bicrystal.

Crystal graphs behave nicely under Levi branching. Given a Weyl module V;(m) and a
Levi subgroup Ly < GLy, the crystal graph %i“(m) for V(m) as an Ly representation is
the crystal formed from B,(m) by removing all arrows labeled with an f; for i € 1.
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Figure 2: Branching V(4 1)(3) for Ly 1 3y

Danilov-Koshevoi [1] and van Leeuwen [3] give the set B of all monomials in C[Mat,,,,] a
bicrystal structure by “pulling back” bicrystal operators on SSYT through RSK.
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Figure 3: Pulling back tableaux operators to monomials

This bicrystal structure yields a manifestly positive combinatorial rule for the multiplicity of
V/l ® V,, in the decomposition of C[Maty,,,] as an Ll‘]-representation; namely, e is the
number of highest weight matrices indexing a connected component of the Ly-crystal
BLu that is isomorphic to the crystal for V) ® V. The highest weight matrices are those
which correspond to tuples of highest weigﬂt tableaux (TA‘ T,) via filtered RSK.
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Figure 4: Example of Filtered RSK for Lo 1 3)j(0,3)
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Figure 5: lllustration of bicrystalline condition (Blue: standard monomials)

Now, let I € C[Maty, »] be an ideal fixed under the action of Lyj. For any given term order
<, the set of standard monomials

Std.(D = {fm € B: m ¢ init_(D}

forms a basis for C[Maty, /1.

Definition. An ideal I is bicrystalline for Ly if there exists some term order < under

which the set (311 0 Std (1)) U {0} is closed under the action of every admissible
bicrystal operator for Lyjj.

If I'is bicrystalline, we obtain a combinatorial rule for computing E/{\/f

Main Theorem (P-Stelzer-Yong ‘24, arXiv:2403.09938). If I is bicrystalline (as witnessed
by a term order <), then

= #{m € 8L A Std_()) : filterRSK(m) = (TA|TH)}

In principal, it requires infinitely many checks to tell whether an ideal I is bicrystalline; one
must apply every bicrystal operator to every one of infinitely many standard monomials
and check whether the resulting monomials are standard. However, in upcoming work, we
show the following:

Theorem (P-Stelzer-Yong ‘25+). There exists a finite-time algorithm that determines
whether any given ideal I with an action of some Levi group Ly is bicrystalline for Ly.

Main Example: Matrix Schubert Varieties

Our primary examples of bicrystalline ideals are ideals defining matrix Schubert varieties.

Proposition. The matrix Schubert variety X, is Ly-stable with respect to the right
action (g, g") - A = g7 A(¢’~1)T whenever Descrow(w) C I and Descgg(w) C J.

Using the Knutson-Miller Grobner basis theorem ([2]), we show that the ideals defining
matrix Schubert varieties are bicrystalline under antidiagonal term order.

Theorem (P.-Stelzer-Yong ‘24, arXiv:2403.09938). Let X;, C Mat,, » be a matrix Schubert
variety and let Descrow(w) C 1, Desceo(w) C J. Then the ideal I(X,) is Lyj-bicrystalline.
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