ORDER OF A COXETER GROUP

Riccardo Biagioli and Lorenzo Perrone

Dipartimento di Matematica, Università di Bologna, Italy

Coxeter groups background

- Coxeter system $(W, S): W = \langle S \mid R \rangle = \langle s_1, \dots, s_n \mid (s_i s_j)^{m_{ij}} = e \rangle$, where $m_{ij} = 1$ and $m_{ij} = m_{ji} \geq 2$, if $i \neq j$;
- Reflections: $T = \{wsw^{-1} \mid w \in W, s \in S\}, S = \{simple \ reflections\};$
- Length of $w \in W$: $\ell(w) = \min\{k \in \mathbb{N} \mid w = s_{i_1}s_{i_2}\cdots s_{i_k}, s_{i_j} \in S\}$;
- Left-reflection set of $w \in W$: $T_L(w) = \{t \in T \mid \ell(tw) < \ell(w)\};$
- Bruhat graph B(W): the directed graph having W as vertex set and for any $u,v\in W$, an edge $u\stackrel{t}{\longrightarrow} v$ if and only if there is $t\in T$ such that v=tu and $\ell(u)<\ell(v)$;
- Weak order (W, \leq_R) : $u \leq_R v$ if there are $s_{i_1}, s_{i_2}, \ldots, s_{i_k} \in S$ such that $-v = us_{i_1} \cdots s_{i_r}$:
- $-\ell(us_{i_1}\cdots s_{i_k}) < \ell(us_{i_1}\cdots s_{i_k}s_{i_{k+1}}), \text{ for any } j \in \{1,2,\ldots,k-1\}.$

Remark: left-reflection sets characterize the weak order:

$$u \leq_R v \iff T_L(u) \subseteq T_L(v).$$

Type A Coxeter groups

- The Coxeter group of type A_{n-1} is isomorphic to the Symmetric group S_n with generators {s₁,..., s_{n-1}}, where s_i = (i i + 1) and their relations are s_i² = e = (s_is_{i+1})³.
- Reflections of S_n coincide with transpositions:

$$T = \{(a \ b) \mid 1 \le a \le b \le n\}.$$

• The left-reflection set of a permutation $\sigma \in S_n$ is given by

$$T_L(\sigma) = \{(a \ b) \in T \mid a < b, \ \sigma^{-1}(a) > \sigma^{-1}(b)\}.$$

Example

As a Coxeter group S_4 is generated by $S = \{(1\ 2), (2\ 3), (3\ 4)\}$ and its reflections are $T = \{(1\ 2), (2\ 3), (3\ 4), (1\ 3), (2\ 4), (1\ 4)\}$. In Figures 1 and 2 we compare (S_4, \leq_R) and $B(S_4)$.

(u, v)-Bruhat path

Given two elements $u, v \in W$; a (u, v)-Bruhat path is any (directed) path in B(W) starting from the vertex e and whose edges have labels in the set $T_t(u) \cup T_t(v)$.

We denote by $V_W(u, v)$ the set of vertices of all the (u, v)-Bruhat paths in B(W).

The conjecture

Conjecture (Dyer, [2])

Let W be a finite Coxeter group and $u, v \in W$. Then

$$T_L(u \vee_R v) = T \cap V_W(u, v).$$

Remark: this conjecture states that the left-reflection set of the join $u \vee_R v$ in the poset (W, \leq_R) is the set of reflections reached by all possible (u, v)-Bruhat paths.

${\bf Example}$

- Consider $\sigma = 3124, \tau = 1423 \in S_4$;
- $T_L(\sigma) = \{(1\ 3), (2\ 3)\}, \ T_L(\tau) = \{(2\ 4), (3\ 4)\};$
- from the Hasse diagram in Fig. 1, observe that $\sigma \vee_R \tau = 4312;$
- using the labels in $T_L(\sigma) \cup T_L(\tau)$ compute all the (σ, τ) -Bruhat paths in Fig. 3, where reflections are highlighted;
- compute

 $T \cap V_{S_4}(\sigma, \tau) = \{(1\ 3), (1\ 4), (2\ 3), (2\ 4), (3\ 4)\}$ and check that is equal to $T_L(\sigma \vee_R \tau)$.

Fig. 3: All (σ, τ) -Bruhat paths. Colorbind-friendly figure

How did this conjecture arise?

- In [2], Dyer defined the *extended weak order* of a Coxeter group, a bounded poset that generalizes the weak order (W, \leq_R) , and conjectures that:
- 1. the extended weak order is a lattice for any Coxeter group;
- 2. there is a characterization of the join in the extended weak order.
- Conjecture 1 was proven in the affine case by Barkley and Speyer in [1].
- Conjecture 2 is open even in the case of finite Coxeter groups. In these cases, it can be stated with the above formulation that was told to us by Hohlweg [3].

Main result

Theorem

The conjecture holds for Coxeter groups of type I_2 , A, F_4 , H_3 .

We checked the cases F_4 and H_3 with the open-source software SageMath [5]

Idea of proof for type A

Theorem (e.g. [4])

Let $\sigma, \tau \in S_n$ and J^{tc} denote the transitive closure of $J \subseteq T$; then $T_L(\sigma \vee_R \tau) = (T_L(\sigma) \cup T_L(\tau))^{tc}.$

Remark: J is transitively closed if for $(i\ j)\,,(j\ k)\in J\implies (i\ k)\in J.$

• $(T_L(\sigma) \cup T_L(\tau))^{tc} \subseteq T \cap V_{S_n}(\sigma, \tau)$ is proven by showing that for any $(a\ b) \in (T_L(\sigma) \cup T_L(\tau))^{tc}$, there is a $palindromic\ (\sigma, \tau)$ -Bruhat path

$$e \xrightarrow{(a \ i_1)} (a \ i_1) \xrightarrow{(i_1 \ i_2)} \cdots \xrightarrow{(i_1 \ i_2)} (a \ i_1) (a \ b) \xrightarrow{(a \ i_1)} (a \ b)$$
.

• To prove $(T_L(\sigma) \cup T_L(\tau))^{tc} \supseteq T \cap V_{S_n}(\sigma, \tau)$ we use the following

Lemma

All the edges of a Bruhat path from e to $(a\ b)\in T$ are labeled by reflections in $\{(i\ j)\mid a\leq i< j\leq b\}.$

• We argue recursively on the edges of a (σ, τ) -Bruhat path that reaches $(a\ b)$ to show that there is a chain $a=i_0< i_1< \dots < i_{k-1}< i_k=b$, such that $(i_{r-1}\ i_r)\in T_L(\sigma)\cup T_L(\tau)$, for any $r\in [k]$; i.e. $(a\ b)\in (T_L(\sigma)\cup T_L(\tau))^{tc}$.

Concluding remarks

- For other Coxeter groups: in type B, we have made some progress by adapting the combinatorial approach that was successful in type A.
- \bullet Interestingly, the statement of the conjecture is not trivial to prove even in the particular case $u \leq_R v,$ in which it can be reformulated as

Special case

Let $w \in W$, then a reflection given by a length-increasing product of elements of $T_L(w)$ is itself an element of $T_L(w)$.

References

- [1] G. T. Barkley and D. E. Speyer. Affine extended weak order is a lattice. 2023.
- M. Dver. "On the Weak Order of Coxeter Groups". In: C.J.M. 71.2 (2019).
- [3] C. Hohlweg. Problems around inversions and descents sets in Coxeter groups, 2023.
- G. Markowsky. "Permutation lattices revised". In: Math. Soc. Sciences 27.1 (1994).
- [5] The Sage Developers. SageMath. https://www.sagemath.org. 2025.