TUTTE POLYNOMIALS IN SUPERSPACE

Brendon Rhoades, Vasu Tewari, Andy Wilson* – arXiv:2404.01450

Abstract

We associate a **quotient of superspace** to any **hyperplane arrangement** by considering the **differential closure** of a **power ideal** (a particular ideal generated by powers of homogeneous linear forms). This quotient is a superspace analogue of the external **zonotopal algebra** and also contains the central zonotopal algebra. We show that the bigraded **Hilbert series** of this quotient is equal to a transformation of the **Tutte polynomial**. We also construct an explicit basis for the Macaulay inverse. These results generalize work of Ardila–Postnikov and Holtz–Ron.

Objects of study

Power ideals

A (linear) hyperplane H is a codimension one subspace of \mathbb{C}^n . An arrangement \mathcal{A} of hyperplanes is a collection $\{H_1, \ldots, H_m\}$ of hyperplanes where **repeats are allowed**. For any line $L = \mathbb{C} \cdot (\ell_1, \ldots, \ell_n)$ in \mathbb{C}^n , let

$$\lambda_L := \ell_1 x_1 + \dots + \ell_n x_n.$$

For an integer $k \geq -1$, Ardila–Postnikov define the power ideal

$$J_{\mathcal{A},k} := \left(\lambda_L^{\rho_{\mathcal{A}}(L)+k} \mid L \subseteq \mathbb{C}^n \text{ a line}\right)$$

where

$$\rho_{\mathcal{A}}(L) := \#\{1 \le i \le m \mid L \not\subseteq H_i\}.$$

The cases $k \in \{-1,0,1\}$ are of particular interest, as the respective quotients $\mathbb{C}[\mathbf{z}_n]/J_{\mathcal{A},k}$ are the *internal*, *central* and *external zonotopal algebras*. The (singly-graded) Hilbert series of these algebras are obtained as univariate specializations of the corresponding Tutte polynomial. More precisely, if r is the rank of \mathcal{A} ,

$$\operatorname{Hilb}(\mathbb{C}[\boldsymbol{x}_n]/J_{\mathcal{A},0};q) = q^{m-r}T_{\mathcal{A}}(1,q^{-1}),$$

$$\operatorname{Hilb}(\mathbb{C}[\boldsymbol{x}_n]/J_{\mathcal{A},1};q) = q^{m-r}T_{\mathcal{A}}(1+q,q^{-1}).$$

Superspace

Superspace of rank n is the tensor product $\Omega_n := \mathbb{C}[\mathbf{z}_n] \otimes \wedge \{\boldsymbol{\theta}_n\}$, which can also be thought of as the space of regular (polynomial-valued) differential forms on \mathbb{C}^n . This space comes with the exterior derivative $d : \Omega_n \to \Omega_n$ defined by

$$d\omega := \sum_{i=1}^{n} (\partial \omega / \partial x_i) \cdot \theta_i.$$

Superpower ideals

Our main object of study is the superpower ideal

$$\begin{split} I_{\mathcal{A}} &:= J_{\mathcal{A},1} + \{df: f \in J_{\mathcal{A},1}\} \\ &:= \left(\lambda_L^{\rho_{\mathcal{A}}(L)+1}, d\lambda_L^{\rho_{\mathcal{A}}(L)+1} \,:\, L \subseteq \mathbb{C}^n \text{ a line}\right) \subseteq \Omega_n. \end{split}$$

 $I_{\mathcal{A}}$ can be thought of as the closure of the power ideal $J_{\mathcal{A},1}$ with respect to d.

An example

Consider the arrangement $\mathcal{A} = \{x_1 = 0, x_2 = 0, x_2 = 0, x_1 = x_2\} \subseteq \mathbb{R}^2$.

Line L	$x_1 = 0$	$x_2 = 0$	$x_2 = 0$	$x_1 = x_2$	Generator for $J_{A,1}$
$\mathbb{R} \cdot (1,0)$	⊈			⊈	x_1^{2+1}
$\mathbb{R} \cdot (0,1)$		⊈	⊈	⊈	x_2^{3+1}
$\mathbb{R} \cdot (1,1)$	⊈	Z	$\not\subseteq$		$(x_1 + x_2)^{3+1}$

In fact, these terms generate the power ideal $J_{A,1}$:

$$J_{\mathcal{A},1} = (x_1^3, x_2^4, (x_1 + x_2)^4) \qquad \subseteq \mathbb{R}[x_1, x_2]$$

$$I_{\mathcal{A}} = J_{\mathcal{A},1} + (x_1^2 \theta_1, x_2^3 \theta_2, (x_1 + x_2)^3 (\theta_1 + \theta_2)) \subseteq \Omega_2.$$

The Hilbert series of Ω_2/I_A is

	q^0	q^1	q^2	q^3	q^4	row sums
t^0	1	2	3	3	1	10
t^1 t^2	2	4	5	3		14
t^2	1	2	2			5

where q tracks x degree and t tracks θ degree. The Theorem can be used to translate between the Tutte polynomial $T_A(x,y) = x^2 + xy + y^2 + x + y$ and the Hilbert series. Corollary 1 explains the t^0 row, the t^2 row, and the rightmost diagonal, respectively.

The (reversed) f-vector of \mathcal{A}^{gen} gives the row sums of the Hilbert series (Corollary 2). The 29 regions in $2\mathcal{A}^{\text{gen}}$ correspond to the sum of the entire Hilbert series table (Corollary 3). Bounded versions of these quantities conjecturally govern Ω_n/I'_A .

Main theorem

Hilbert series and Tutte polynomial

Theorem. For any rank r arrangement $A \subseteq \mathbb{C}^n$ of m hyperplanes,

$$\operatorname{Hilb}\left(\Omega_{n}/I_{\mathcal{A}};q,t\right) = (1+t)^{r} q^{m-r} T_{\mathcal{A}}\left(\frac{1+q+t}{1+t},\frac{1}{q}\right)$$

where q tracks x degree and t tracks θ degree.

This theorem is proved via an exact sequence analogous to deletion-restriction. We also give an explicit basis for the harmonic space I_{\perp}^{\perp} in terms of activities.

Corollaries and conjectures

External and central zonotopal algebras

Corollary 1. Let $A \subseteq \mathbb{C}^n$ be a rank r arrangement of m hyperplanes.

- $\operatorname{Hilb}(\Omega_n/I_A; q, 0) = \operatorname{Hilb}(\mathbb{C}[\boldsymbol{x}_n]/J_{A,1}; q).$
- The coefficient of t^r in $Hilb(\Omega_n/I_A; q, t)$ is $Hilb(\mathbb{C}[\boldsymbol{x}_n]/J_{A,0}; q)$.
- The summand of maximal total degree in $Hilb(\Omega_n/I_A; q, t)$ is

$$(-1)^r q^{m-r} t^r \chi_A \left(-\frac{q}{t}\right)$$
.

where χ_A is the characteristic polynomial of A.

Real arrangements

Let \mathcal{A}^{gen} be a generic affine deformation of a complexified real arrangement \mathcal{A} and let f_i be the # of *i*-dimensional faces in the polyhedral complex induced by \mathcal{A}^{gen} .

Corollary 2. For any complexified real arrangement A,

$$\operatorname{Hilb}(\mathcal{E}_{\mathcal{A}}; 1, t) = \sum_{i=0}^{n} f_{n-i}(\mathcal{A}^{\operatorname{gen}}) \cdot t^{i}.$$

Corollary 3. For any arrangement $A \subseteq \mathbb{R}^n$,

$$\operatorname{Hilb}(\Omega_n/I_{\mathcal{A}}; q, t)|_{(q,t)=(q^2,q)} = \operatorname{Hilb}(\mathbb{C}[\boldsymbol{x}_n]/J_{2\mathcal{A},1}; q).$$

Thus $\dim(\Omega_n/I_A)$ equals the number of regions in $2A^{\text{gen}}$, the generic deformation of the arrangement in which each hyperplane in A appears twice.

A conjecture for the internal zonotopal algbebra

One could try to extend this work to k = 0 by defining

$$I'_{\mathcal{A}} := J_{\mathcal{A},0} + \{df : f \in J_{\mathcal{A},0}\} \subseteq \Omega_n.$$

One difficulty is that this case contains the k = -1 classical case, for which no basis of the Macaulav inverse is known.

Conjecture. For any rank r arrangement $A \subseteq \mathbb{C}^n$ of m hyperplanes,

$$\operatorname{Hilb}\left(\Omega_{n}/I_{\mathcal{A}}';q,t\right) = (1+t)^{r}q^{m-r}T_{\mathcal{A}}\left(\frac{1}{1+t},\frac{1}{q}\right).$$