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Abstract
On the geometric side, we give degenerations of Lusztig varieties in G/B to unions of Richardson varieties and use this to obtain cohomological
formulas. As a special case of this result, for each Coxeter element c 2 W , we give a degeneration of the permutahedral variety in G/B to a union of
toric Richardson varieties. On the combinatorial side, for each Coxeter element c 2 W , we obtain a finest subdivision of the W -permutahedron into
Bruhat interval polytopes. In types A and BC we additionally show that this subdivision is regular, providing connections to Trop+Fln.

Combinatorial background
Notation. Simple transpositions are si, `(w) is length, and  is Bruhat
order. A product uv is length-additive if `(uv) = `(u) + `(v).

Definition. An element c 2 Sn is a Coxeter element if it has a reduced
word where each si is used exactly once.

There are 2n�2 Coxeter elements in Sn. For n = 4, they are

s1s2s3 s1s3s2 = s3s1s2 s3s2s1 s2s3s1 = s2s1s3.

Definition ([1]). Let ⇢ := (n, n � 1, . . . , 1) 2 Rn. For u  v 2 Sn, the
Bruhat interval polytope (BIP) is

Pv
u := conv(z · ⇢ : u  z  v).

Note Pw0
e is the permutahedron. The right side of the figure below shows

all Bruhat interval polytopes for n = 3.
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These definitions naturally extend to Weyl groups W . The polytope Pv
u is

the moment polytope of Rv
u.

Definition. For P,Qi d-dimensional polytopes, a decomposition

P =
[

i2I

Qi

is a subdivision if for all i, j 2 I , Qi \Qj is a face of both Qi and Qj .

The figure above shows two subdivisions. The figure below shows two
non-subdivisions.
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Combinatorial results
Theorem. Let c 2 W be a Coxeter element. Then the decomposition

Pw0
e =

[

u:uc
length-add.

Puc
u

is a (finest) subdivision of the permutahedron into Bruhat interval polytopes. If
W is type A or BC, this subdivision is regular.

Corollary. Let c 2 Sn be a Coxeter element. The polytopes of the decomposition
above are in bijection with linear extensions of the inversion poset of c.

n 3 4 5 6 7 8 poset
c = s1 . . . sn�1 or
c = sn�1 . . . s1

2 6 24 120 720 5040

c =(odds)(evens) or
c =(evens)(odds) 2 5 16 61 272 1385

Geometric background
Notation. Fix G a semisimple algebraic group, B Borel subgroup, B�
opposite Borel, T = B \B� maximal torus, W Weyl group.

For x 2 G and w 2 W , the Lusztig variety is

Yw(x) := {gB 2 G/B : g�1xg 2 BwB}.

Theorem ([2]). For x 2 G regular semisimple, w 2 W , then Yw(x) is smooth
of pure dimension `(w). The class [Yw(x)] 2 H

⇤(G/B) does not depend on x.

For w 2 W , the Schubert variety and opposite Schubert variety are

X
w := BwB/B and Xw := B�wB/B.

For u  v 2 W , the Richardson variety is the intersection

Rv
u := Xu \X

v
.

Geometric results
Theorem. Let x 2 G be regular semisimple and let w 2 W . There is a flat
embedded degeneration

Yw(x) !
[

u:uw�1

length-add.

Ruw�1

u and we have [Yw(x)] =
X

u:uw�1

length-add.

[Ruw�1

u ]

in H
⇤(G/B).

If c 2 W is a Coxeter element, then Yc(x) = T ·A for some generic
A 2 G/B. That is, Yc(x) is a permutahedral variety, a toric variety whose
moment polytope is the W -permutahedron.

Corollary. Let c 2 W be a Coxeter element, and A 2 G/B be generic. Then in
H

⇤(G/B)

[T ·A] =
X

u:uc
length-add.

[Ruc
u ].

In type A, all regular semisimple Hessenberg varieties are Lusztig vari-
eties, for w a 312-avoiding permutation. So the theorem also gives degen-
erations and cohomological formulas for regular semisimple Hessenberg
varieties.

Relation to Trop+Fln
Theorem ([3, 4]). In type A, (finest) regular subdivisions of Pw0

e into BIPs are
in bijection with (maximal) cones of Trop+Fln.

Trop+Fl4

Corollary. Trop+Fln has at least 2n�2 maximal cones. Finest regular subdivi-
sions of Pw0

e into BIPs do not always use the same number of polytopes.
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