Degenerations, permutahedral subdivisions, and Coxeter

Allen Knutson (Cornell), Mario Sanchez (IAS), Melissa Sherman-Bennett (UC Davis)

Abstract

On the geometric side, we give degenerations of Lusztig varieties in G/B to unions of Richardson varieties and use this to obtain cohomological formulas. As a special case of this result, for each Coxeter element $c \in W$, we give a degeneration of the permutahedral variety in G/B to a union of toric Richardson varieties. On the combinatorial side, for each Coxeter element $c \in W$, we obtain a finest subdivision of the W-permutahedron into Bruhat interval polytopes. In types A and BC we additionally show that this subdivision is regular, providing connections to $\text{Trop}^{+}\text{Fl}_{n}$.

Combinatorial background

Notation. Simple transpositions are s_i , $\ell(w)$ is length, and \leq is Bruhat order. A product uv is **length-additive** if $\ell(uv) = \ell(u) + \ell(v)$.

Definition. An element $c \in S_n$ is a **Coxeter element** if it has a reduced word where each s_i is used exactly once.

There are 2^{n-2} Coxeter elements in S_n . For n=4, they are

$$s_1s_2s_3 \qquad s_1s_3s_2 = s_3s_1s_2 \qquad s_3s_2s_1 \qquad s_2s_3s_1 = s_2s_1s_3.$$

Definition ([1]). Let $\rho := (n, n-1, ..., 1) \in \mathbb{R}^n$. For $u \leq v \in S_n$, the **Bruhat interval polytope** (BIP) is

$$\mathcal{P}_{u}^{v} := \operatorname{conv}(z \cdot \rho : u \leq z \leq v).$$

Note $\mathcal{P}_e^{w_0}$ is the **permutahedron**. The right side of the figure below shows all Bruhat interval polytopes for n = 3.

These definitions naturally extend to Weyl groups W. The polytope \mathcal{P}_{u}^{v} is the moment polytope of \mathcal{R}_{u}^{v} .

Definition. For P, Q_i d-dimensional polytopes, a decomposition

$$P = \bigcup_{i \in I} Q_i$$

is a **subdivision** if for all $i, j \in I$, $Q_i \cap Q_j$ is a face of both Q_i and Q_j .

The figure above shows two subdivisions. The figure below shows two non-subdivisions.

Combinatorial results

Theorem. Let $c \in W$ be a Coxeter element. Then the decomposition

$$\mathcal{P}_e^{w_0} = \bigcup_{\substack{u:uc\\ \textit{length-add.}}} \mathcal{P}_u^{uc}$$

is a (finest) subdivision of the permutahedron into Bruhat interval polytopes. If W is type A or BC, this subdivision is regular.

Corollary. Let $c \in S_n$ be a Coxeter element. The polytopes of the decomposition *above are in bijection with linear extensions of the* inversion poset *of c.*

n	3	4	5	6	7	8	poset
$c = s_1 \dots s_{n-1} \text{ or } $ $c = s_{n-1} \dots s_1$	2	6	24	120	720	5040	MW
c = (odds)(evens) or c = (evens)(odds)	2	5	16	61	272	1385	M M

Geometric background

Notation. Fix G a semisimple algebraic group, B Borel subgroup, $B_$ opposite Borel, $T = B \cap B_{-}$ maximal torus, W Weyl group.

For $x \in G$ and $w \in W$, the **Lusztig variety** is

$$\mathcal{Y}_w(x) := \{ gB \in G/B : g^{-1}xg \in \overline{BwB} \}.$$

Theorem ([2]). For $x \in G$ regular semisimple, $w \in W$, then $\mathcal{Y}_w(x)$ is smooth of pure dimension $\ell(w)$. The class $[\mathcal{Y}_w(x)] \in H^*(G/B)$ does not depend on x.

For $w \in W$, the **Schubert variety** and **opposite Schubert variety** are

$$X^w := \overline{BwB/B}$$
 and $X_w := \overline{B_-wB/B}$.

For $u \leq v \in W$, the **Richardson variety** is the intersection

$$\mathcal{R}_u^v := X_u \cap X^v.$$

Geometric results

Theorem. Let $x \in G$ be regular semisimple and let $w \in W$. There is a flat embedded degeneration

$$\mathcal{Y}_w(x) \to \bigcup_{\substack{u: uw^{-1}\\ length-add.}} \mathcal{R}_u^{uw^{-1}} \quad \text{and we have} \quad [\mathcal{Y}_w(x)] = \sum_{\substack{u: uw^{-1}\\ length-add.}} [\mathcal{R}_u^{uw^{-1}}]$$

in $H^*(G/B)$.

If $c \in W$ is a Coxeter element, then $\mathcal{Y}_c(x) = \overline{T \cdot A}$ for some generic $A \in G/B$. That is, $\mathcal{Y}_c(x)$ is a *permutahedral variety*, a toric variety whose moment polytope is the W-permutahedron.

Corollary. Let $c \in W$ be a Coxeter element, and $A \in G/B$ be generic. Then in $H^*(G/B)$

$$[\overline{T \cdot A}] = \sum_{\substack{u: uc \\ length-add.}} [\mathcal{R}_u^{uc}].$$

In type A, all regular semisimple Hessenberg varieties are Lusztig varieties, for w a 312-avoiding permutation. So the theorem also gives degenerations and cohomological formulas for regular semisimple Hessenberg varieties.

Relation to Trop $^+$ Fl $_n$

Theorem ([3, 4]). In type A, (finest) regular subdivisions of $\mathcal{P}_e^{w_0}$ into BIPs are in bijection with (maximal) cones of $Trop^+Fl_n$.

Corollary. Trop⁺ Fl_n has at least 2^{n-2} maximal cones. Finest regular subdivisions of $\mathcal{P}_e^{w_0}$ into BIPs do not always use the same number of polytopes.

References

- Yuji Kodama and Lauren Williams. The full Kostant-Toda hierarchy on the positive flag variety. Comm. Math. Phys., 335(1):247–283, 2015. Dongkwan Kim. Homology class of a Deligne-Lusztig variety and its analogs. Int. Math. Res. Not. IMRN, (4):1246–1280, 2020. Jonathan Boretsky: Totally nonnegative tropical flags and the totally nonnegative flag Dressian arXiv:2208.09128, 2023. preprint. Michael Joswig. Georg Loho, Dante Luber, and Jorge Alberto Olarte. Generalized permutahedra and positive flag Dressians. Int. Math. Res. Not. IMRN, (4):91648–1677, 2021.