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What is the Cutoff Phenomenon?

For most (discrete time) Markov chains, if we let the chain run forever it converges to a unique
stationary distribution. For example, think about shuffling a deck of cards over and over again.
As you shuffle the deck more and more, it becomes closer and closer to uniform.

Consider a (sequence of) Markov chain(s) (X"(”))»o with transition matrix P("). Let d,(t)
be the distance between the chain at time ¢ from the stationary distribution. We say that the
chain has cut-off if there is some time ¢,, and window w,, = o(t,,) such that

lim limsup d(t, + cwy,) = 0,
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lim liminfd(t, + cwy) = 1.
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If we look at the graph of d,,(t) as a function in time for large n, the cutoff phenomenon can be
thought of as the following behavior for the graph of d(t):
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Thus, the cutoff phenomenon is about the part of the graph outside of the window: it is
equivalent to the outer part convering to a step function. A harder question concerns inside
the window. As n — oo, what is d(t, + cw;,) as a function in ¢? This is the limit profile
problem and is much less understood.

In this project, we study a generalization of the random transpositions shuffle, the first example
of card shuffle studied in [1] using techniques from representation theory. We prove that it
exhibits cutoff and other convergence results about the shuffle.

Theorem. The biased random transposition shuffle exhibits cutoff at time t, = _lel\ log N with window
wy, = N. Explicitly, we have the bounds
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for some C' > 0 and all ¢ > 0.
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Theorem. Let Fix.. be the number of fixed points after %N(log N — c) shuffles. Then, ifa =b =1, then

Fixe L5t Poiss(1 + ¢°)

and when a > b, then
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The limiting behavior for the fixed points gives us a lower bound for the total variation distance. Indeed,
we immediately have
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This gives a reasonable guess for the limit profile. In the random transposition case, the number of fixed

points governs the convergence. It is not a stretch to assume that the same holds in the biased random
transposition case.

Diagonalization of the transition matrix relies on decomposing & modules into irreducible
& 4 x & modules. To this end, we can use the Littlewood-Richardson rule, which gives
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This fact along with Schur's lemma immediately gives us the eigenvalue spectrum. The

quantity Diag()) is related (via Schur-Weyl duality) to characters of the symmetric group via
the equation
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The eigenvalues of the transition matrix give us an upper bound on the cutoff time. Indeed,
from standard bounds in mixing times, we have the bound
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Getting a suitable bound on this quantity requires understanding of the positive cone
{\p,v) Cﬁ_y > 0}. This can be understood, for example, through the theory of hon-
eycombs or hives [2].

The Model: Biased Transposition Shuffle

Consider a deck of distinct cards {1,2,..., N} where N = 2n and half of the cards are colored
red and half of the cards are colored blue. We fix parameters 0 < b < a < 2witha +b = 2.
We can give a weight to the cards such that
a b
wt(red card) = ~ wt(blue card) = ~

Note that wt(-) is a probability distribution on the cards. We shuffle our deck of cards in the
following way:

« Pick cards C,Cy € {1,2,...,2n} independently based off of the weight wt(-).
» Swap the cards labeled C} and C5.

We view the card shuffle as a Markov chain on the symmetric group So,,. A shuffle is akin to
picking a random permutation and then applying that permutation to the current state. For the
random permutation, we get the probabilities:
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Pr{(ij)] = Fiek Pr{(ij)] = Fiek Pr{(ij)] = N
We call this shuffle the biased random transpositions shuffle. When a« = b = 1, we recover

the random transposition shuffle from [1].

Representation Theory of the Shuffle

In general, we can consider the same shuffle but with an arbitrary decomposition [N] = A LI B into red
and blue cards. In this general setting, we require that our parameters 0 < b < a satisfy
alA| +b|B]
N N
The convergence rate is governed by the eigenvalues of the transition matrix. To calculate the eigenvalues
of this N'! x N matrix, we rephrase the problem into representation theory.
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Fact. The eigenvalues of P are the same as the eigenvalues of the linear operator given by left multipli-
cation on C[G y] by the element
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Note that 7 ¢ Z(C[Sy]), but & € Z(C[Sy]) + Z(C[S 4]) + Z(C[S5]). Thus we can diagonalize after
restricting the module structure.

Theorem. The transition matrix P has eigenvalues

A a’|A|+ 7B N 2(a® — ab)

- 20% — a
YRV 1\"2 1\“'2

b 2ab
= ) Ding() + % Diag()),

Diag(p) +

with multiplicities f) f, f'/c;)\z,v for all partitions A\ N, u + |A|, and v & |B|. Here, f) is the number of
standard Young tableaux of shape \ and rf;‘,, is the Littlewood-Richardson coefficient.

For a definition of the quantity Diag()), see the Remarks.

Conjecture for Limit Profile

Conjecture (Limit profile). Leta > b, and let d,,(c) be the total variation distance from uniform
after %N(lng N — ¢) shuffles. Then,
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For a = b = 1, we have the following theorem from [3].

Theorem (Teyssier). Leta = b = 1, and let d,,(c) be the total variation distance from uniform
after %N(l(\g N — c) shuffles. Then,

nlg!olc dp(c) = dpy (Poiss(1), Poiss (1 + €))
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