Project goal

To analyse fundamental polytopes of strict and generic metrics and check compatibility with other classifications, such as via tight spans (and by extension split-decomposability). Furthermore, to connect the results to previous research and analyse the new hyperplane arrangement.

Metric spaces

An *n-metric* is an $n \times n$ matrix d with entries d_{ij} for $1 \leq i,j \leq n$ satisfying

- 1. $d_{ii} = 0$ for all $1 \leq i \leq n$,
- 2. $d_{ij} > 0$ for all $1 \le i \ne j \le n$,
- 3. $d_{ij} = d_{ji}$ for all $1 \le i < j \le n$ and
- 4. $d_{ij} + d_{jk} \ge d_{ik}$ for all $1 \le i, j, k \le n$.

The metric d is called strict if $d_{ij} + d_{jk} > d_{ik}$ for all $j \in [n] \setminus \{i, k\}$.

Fundamental polytopes

The fundamental polytope or Kantorovich-Rubinstein-Wasserstein polytope of an n-metric d is a polytope in \mathbb{R}^n defined as the convex hull:

$$\mathsf{KRW}(d) = \mathsf{conv}\left\{rac{e_i - e_j}{d_{ij}} \;\middle|\; 1 \leq i < j \leq n
ight\}.$$

A strict metric d is called generic if KRW(d) is simplicial.

Define

$$e_{ij}:=rac{e_i-e_j}{d_{ii}} ext{ for } i
eq j.$$

The Lipschitz polytope of d is given as an intersection of half-spaces:

$$\mathsf{LIP}(d) := \{ x \in \mathbb{R}^n \mid \sum_i x_i = 0, x_i - x_j \le d_{ij} \text{ for all } 1 \le i, j \le n \}.$$

LIP(d) and KRW(d) are dual polytopes.

If d is the n-metric with $d_{ij} = 1$ for all $i \neq j$, then KRW(d) is the type A_n root polytope.

Tight span of a metric

Given an metric d on n points, consider the (unbounded) polyhedron

$$P(d) := \{x \in \mathbb{R}^n \mid x_i + x_j \geq d_{ij} \text{ for all } i, j \in [n]\}.$$

The tight span E(d) of d is the set of coordinate-wise minimal elements of P(d).

The metric cone and metric fan

Consider the vector space $\mathbb{R}^{\binom{n}{2}}$ with coordinates x_{ij} indexed by pairs of elements of [n]. The metric cone on n elements is the subset $\mathbf{M}_n \subseteq \mathbb{R}^{\binom{n}{2}}$ defined by

$$x_{ij} > 0$$
, $x_{ij} + x_{jk} \ge x_{ik}$, for all pairwise distinct $i, j, k \in [n]$.

The metric fan MF_n is the secondary fan of the second hypersimplex

$$\Delta(n,2) := \operatorname{conv}\{e_i + e_j : 1 \le i < j \le n\} \subset \mathbb{R}^n.$$

Split-decomposable metrics

Let X be a finite set. A *split* σ of X is a bipartition of X. We write splits as pairs: $\sigma = A|B$. We can associate a function to a split as follows:

$$\delta_{\sigma}(i,j) = egin{cases} 0 & i \sim_{\sigma} j \ 1 & ext{otherwise} \end{cases}.$$

A metric d is called split-decomposable if it can be expressed as

$$d = \sum \lambda_{A,B} \cdot \delta_{A,B}.$$

Combinatorial structure

To each point e_{ij} associate an oriented edge. Given a face α of KRW(d) define a graph $\tilde{D}(\alpha)$ on the vertex set [n] and edges corresponding to e_{ij} lying on α . Denote by $D(\alpha)$ the unoriented version of $\tilde{D}(\alpha)$.

Given a dual pair of polytopes KRW(d), LIP(d), an oriented (resp. unoriented) graph G is called admissible, if there exists a face α , such that all edges of G belong to $\tilde{D}(\alpha)$ (resp. $D(\alpha)$).

The collection of graphs of the form $D(\alpha)$ is called the combinatorial structure of the dual pair. Two metrics are Lipschitz combinatorially equivalent if the combinatorial structures of the respective polytopes coincide.

Tool for determining the combinatorial structure [GP]

The following are equivalent for a metric d on a set X and a directed graph G:

- (i) G is admissible.
- (ii) For any array of oriented edges (x_i, y_i) , $1 \le i \le k$ with all x_i and all y_i distinct:

$$\sum_{i=1}^{k} d(x_i, y_i) \leq \sum_{i=1}^{k} d(x_i, y_{i+1}),$$

where $y_{k+1} = y_1$.

Furthermore, a strict metric is generic if and only if for any 2k distinct points $x_1, ..., x_k, y_1, ..., y_k$ in X the minimum of the terms

$$\sum_{i=1}^k d(x_i, y_{\pi(i)})$$

is attained by a unique permutation π .

Meaning per 2k points, there is only one maximal set of admissible edges.

Main objective (Vershik, 2015)

Combinatorial classification of metrics spaces by means of the fundamental polytopes.

Classification-related Research

- '92 Classification based on split-decomposability and tight span. (Bandelt, Dress)
- '04 Classification of six-point metrics by use of polyhedral subdivisions of the metric fan. (Sturmfels, Yu)
- '17 Bounds for number of possible different f-vectors, given n and computation of face numbers in the generic case (in particular, the f-vector is unique in that case). (Gordon, Petrov)
- '20 Computation of the f-vector for tree-like metric spaces. (Delucchi, Hoessly)

Example: generic metrics on four points

All metrics on four points are split-decomposable. Splits:

Computations:

$$d(1,3) + d(2,4) \le d(1,2) + d(3,4)$$

$$\Leftrightarrow \alpha + \gamma + \nu + \eta + \beta + \delta + \nu + \eta \le \alpha + \beta + \eta + \theta + \gamma + \delta + \eta + \theta$$

$$\Leftrightarrow \nu \le \theta$$

Cycle arrangement on four points:

Analogue:

$$d(1,2) + d(3,4) \le d(1,4) + d(2,3) \Leftrightarrow \eta \le \nu$$

$$d(1,4)+d(2,3)\leq d(4,2)+d(3,1)\Leftrightarrow \theta\leq \eta$$

The Wasserstein arrangement

We define a hyperplane arrangement in $\mathbb{R}^{\binom{n}{2}}$ as follows. Given k>0 and k-tuples $a,b\in[n]^k$ define

$$H_{a,b} := \left\{ x \in \mathbb{R}^{\binom{n}{2}} \middle| \sum_{i=1,...k} x_{a_i b_i} = \sum_{i=1,...,k} x_{a_i b_{i+1}} \right\}, \quad \text{where } b_{k+1} = b_1.$$

The 'positive side' of $H_{a,b}$ is

$$H_{a,b}^{+} := \left\{ x \in \mathbb{R}^{\binom{n}{2}} \middle|_{\substack{i=1,...k}} x_{a_i b_i} \le \sum_{i=1,...,k} x_{a_i b_{i+1}} \right\}$$

The Wasserstein arrangement is then the set of hyperplanes

$$\mathcal{W}_n := \left\{ H_{a,b} \middle| \begin{array}{l} 0 < k \leq n, a, b \in [n]^k \\ a_1, \dots, a_k, b_1, \dots, b_k \text{ mutually distinct} \end{array} \right\}.$$

The hyperplane $H_{a,b}$ depends only on the cycle C of the complete graph K_n determined by the sequence of vertices $a_1, b_1, a_2, \ldots, a_k, b_k$.

Remark: We need only look at these types of graphs because we consider the hyperplane in the metric cone.

Relationship between fans

Let $n \ge 2$ and let \mathcal{W}_n^4 denote the subset of \mathcal{W}_n consisting of all hyperplanes of the form $H_{(i,j),(k,l)}$ for distinct $i,j,k,l \in [n]$.

- 1. For every $H \in \mathcal{W}_n^4$, the set $H \cap \mathbf{M}_n$ is a union of cones of the type fan \mathcal{T}_n .
- 2. For $n \leq 5$, the Wasserstein fan \mathscr{F}_n agrees with the type fan \mathscr{T}_n .
- 3. For $n \ge 6$, the Wasserstein fan \mathscr{F}_n is a strict refinement of the type fan \mathscr{T}_n .

Some computational data (Julia and TOPCOM [R])

The table only considers types of generic metrics. The chambers of the arrangement are not in 1-to-1 correspondence to the labeled types.

n	Unlabeled	Labeled	# Chambers
3	1	1	1
4	1	6	6
5	12	882	882
6	$25,224^{1}$	$17,695,320^1$	6,677,863,200

Another way of computing this for generic metrics is to enumerate the number of possible triangulations of the root polytope.

 $^{\mathrm{1}}$ Computed by J. Rambau via triangulations of the root polytope

Types of four point metrics

References

- [BD] H. Bandelt and A. Dress, A canonical decomposition theory for metrics on a finite set, Advances in Mathematics Vol. 92, 1992.
- [DH] E. Delucchi and L. Hoessly, Fundamental polytopes of metric trees via parallel connections of matroids, European Journal of Combinatorics Vol. 87, 2020.
- GP] J. Gordon and F. Petrov, *Combinatorics of the Lipschitz polytope*, Arnold Mathematical Journal Vol. 3, 2017.
- [R] J. Rambau *TOPCOM: Triangulations of Point Configurations and Oriented Matroids*, Proceedings of the International Congress of Mathematical Software, 2002.
- [SY] B. Sturmfels and J. Yu, *Classification of six-point metrics*, Electronic Journal of Combinatorics Vol. 11, 2004.
- [V] A. Vershik, Classification of finite metric spaces and combinatorics of convex polytopes., Arnold Mathematical Journal Vol. 1, 2015.