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1. Initial modules

Let S = K[x1, . . . , xn] be the polynomial ring in n indeterminates over a field K, F

a free module with basis e1, · · · , em and U ⊂ F a submodule. We say that m ∈ F is a

monomial, if for some i, the element m is of the form uei, where u is a monomial. A

submodule U ⊂ F is called a monomial module, if it is generated by monomials. Then U

is a monomial module if and only if for each j there exist monomial ideals Ij such that

U = I1e1 ⊕ I2e2 ⊕ · · · ⊕ Irer. In particular, U is finitely generated.

A monomial order of the monomials of F is a total order < satisfying the following two

conditions:

(1) m < um for all monomials m ∈ F and all monomials u 6= 1 in S;

(2) if m1 < m2, then um1 < um2 for all monomials m1,m2 ∈ F and all monomials

u ∈ S.

Given a monomial order < on S, there are two standard methods to define monomial

orders on F . For u, v ∈ Mon(S) and i, j ∈ {1, 2, . . . , r}, we define

Position over coefficient: uei > vej , if i < j or i = j and u > v;

Coefficient over position: uei > vej , if u > v or u = v and i < j.

For example, if < is the lexicographic order on S and F = Se1⊕Se2. Then x2e1 > x1e2, if

the position is given more importance than the coefficient, and x1e2 > x2e1 in the opposite

case.

We call the monomial order on F which is the (reverse) lexicographic order on the

coefficients and gives priority to the position, the (reverse) lexicographic order on F (with

respect to the given order).

Let U ⊂ F be a submodule of F , and < a monomial order of F . We let in<(U) be the

submodule of F which is generated by the monomials in(f) for all f ∈ U . The monomial

module in<(U) is called the initial module of U . Since in<(U) is finitely generated, there

exist elements f1, . . . , fm ∈ U such that in<(U) is generated by in<(f1), . . . , in<(fm). Any

such system of elements of U is a called a Gröbner basis of U with respect to <

Proposition 1.1. Any Gröbner basis of U is a system of generators of U .

For f, g ∈ F we construct an element which is obtained as a linear combination of f and

g such that their leading terms cancel. Say, in<(f) = uei and in<(g) = vej . Obviously, if

i 6= j, there is no linear combination of f and g such that the leading terms can cancel.

Thus an analogue to S-polynomials can only be defined if i = j. In that case we set

S(f, g) =
lcm(u, v)

cu
f −

lcm(u, v)

dv
g,(1)
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where c is the coefficient of in<(f) in f and d is the coefficient of in<(g) in g. We call

S(f, g) the S-element of f and g

Suppose that f1, . . . , fm is Gröbner basis of U . Then f1, . . . , fm is a system of generators

of U . We choose a free S-module G with basis g1, . . . , gm, and let ε : G → U be the

epimorphism defined by ε(gi) = fi for i = 1, . . . ,m. The kernel of ε will be denoted

by Syz(f1, . . . , fm). Our task is to compute Syz(f1, . . . , fm), which amounts to compute

a system of generators of Syz(f1, . . . , fm). The elements of Syz(f1, . . . , fm) are called

relations of U (with respect to the presentation G → U). Notice that
∑m

i=1
sigi is a

relation, if and only if
∑m

i=1
sifi = 0.

For each pair fi, fj with i < j, whose initial monomials involve the same basis element

of F , the element S(fi, fj) reduces to zero with respect to f1, . . . , fm. In other words, for

each such pair we have an equation

S(fi, fj) = qij,1f1 + qij,2f2 + · · · + qij,mfm with in<(qij,kfk) < in<(S(fi, fj)),(2)

which is a standard expression for S(fi, fj). Recall that S(fi, fj) = uijfi − ujifj, where

the terms uij and uji are chosen such that the leading terms of uijfi and ujifj are the

same, so that they cancel in S(fi, fj).

Equation (2) gives rise to the following relation:

rij = uijgi − ujigj − qij,1g1 − qij,2g2 − · · · − qij,mgm.(3)

2. Hilbert’s syzygy theorem via Gröbner bases

Our goal is to show that each finitely generated free S-module has a free resolution of

length at most n, where n is the number of variables of the polynomial ring S. This is

the celebrated syzygy theorem of Hilbert. We prove this theorem by using Gröbner bases

following the arguments given by Schreyer in his dissertation, who found this constructive

proof of Hilbert’s syzygy theorem. The essential idea is to choose suitable monomial orders

in the computation of the syzygies.

Let F be a free S-module with basis e1, . . . , er and < a monomial order on F . Let U ⊂ F

be generated by f1, . . . , fm, G a free S-module with basis g1, . . . , gm, and ε : G → U the

epimorphism with ε(gj) = fj for j = 1, . . . ,m. We define a monomial order on G, again

denoted <, as follows. Let ugi and vgj be monomials in G. Then we set

ugi < vgj ⇐⇒ in<(ufi) < in<(vfj), or in<(ufi) = in<(vfj) and j < i.

Let us verify that < is a monomial order on G. In order to see that < is a total order on

the monomials of G, we have to show that either ugi < vgj or ugi ≥ vgj .

Assume that ugi 6< vgj . Then in<(ufi) 6< in<(vfj), and either in<(ufi) 6= in<(vfj) or

j ≥ i. In the first case in<(ufi) > in<(vfj), since < is a total order on F . It follows in

this case that ugi > vgj . In the second case in<(ufi) = in<(vfj) and j ≥ i. In this case

ugi ≥ vgj , by the definition of < on G.

Next we check condition (1) and (2) for monomial orders as defined before:

(1) Let w ∈ Mon(S), w 6= 1. Then in<(ufi) < w in<(ufi) = in<(wufi), therefore

ugi < wugi.
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(2) Let ugi < vgj and w ∈ Mon(S). If in<(ufi) < in<(vfj), then in<(wufi) =

w in<(ufi) < w in<(vfj) = in<(wvfj), and so wugi < wvgj . On the other hand, if

in<(ufi) = in<(vfj), then j < i and in<(wufi) = in<(wvfj). So again, wugi < wvgj .

We call this monomial order defined on G the monomial order induced by f1, . . . , fm

(and the monomial order < on F ).

The crucial result whose proof can be found [2, Theorem 15.10] is now the following:

Theorem 2.1 (Schreyer). Let F be a free S-module with basis e1, . . . , er, and < a mono-

mial order on F . Let U ⊂ F be a submodule of F with Gröbner basis G = {f1, . . . , fm}.

Then the relations rij arising from the S-elements of the fi as described in (3) form

a Gröbner basis of Syz(f1, . . . , fm) ⊂ G with respect to the monomial order induced by

f1, . . . , fm. Moreover, one has

in<(rij) = uijgi,

where uij is defined as in (3).

The monomial order induced by f1, . . . , fm allows some flexibility, since we are free to

relabel the elements of the Gröbner basis as we want. Doing this in a clever way we obtain

Corollary 2.2. With the notation introduced in Theorem 2.1, let the fi be indexed in

such way such that whenever in<(fi) and in<(fj) for some i < j involve the same basis

element, say in<(fi) = uek and in<(fj) = vek, then u > v with respect to the lexicographic

order induced by x1 > x2 > · · · > xn. Then it follows, that if for some t < n the variables

x1, . . . , xt do not appear in the initial forms of the fj, then the variables x1, . . . , xt+1 do

not appear in the initial forms of the rij.

Proof. By Theorem 2.1 we have in<(rij) = (lcm(u, v)/v)ek . Since u > v, and since u and

v are monomials in the variables xt+1, . . . , xn, it follows that the exponent of xt+1 in u is

bigger that of v. Thus lcm(u, v)/v is a monomial in the variables xt+2, . . . , xn, as desired.

As a consequence of Corollary 2.2 we finally obtain

Theorem 2.3 (Hilbert’s syzygy theorem). Let M be a finitely generated S-module over

the polynomial ring S = K[x1, . . . , xn]. Then M admits a free S-resolution

0 → Fp −→ Fp−1 −→ · · · −→ F1 −→ F0 −→ M → 0

of length p ≤ n.

Proof. Let U ⊂ F be a submodule of the free S-module F with basis e1, . . . , er. Let <

be a monomial order on F , and f1, . . . , fm be a Gröbner basis of U . Finally, let t ≤ n be

the largest integer such that the variables x1, . . . , xt do not appear in any of the initial

forms of the fi. We prove by induction on n − t, that U has a free S-resolution of length

≤ max{0, n − t − 1}

If t ≥ n − 1, then in<(U) =
⊕r

j=1
Ijej , where for each j, there exists a monomial ideal

Jj ⊂ K[xn] such that Ij = JjS. Since all monomial ideals in K[xn] are principal, it follows

that U is free.

If t < n, we may assume that the Gröbner basis f1, . . . , fm is labeled as described in

Corollary 2.2. Then Theorem 2.1 together with Corollary 2.2 imply that Syz(f1, . . . , fm)
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has a Gröbner basis with the property that the variables x1, . . . , xt+1 do not appear in

any of the leading monomials of the elements of the Gröbner basis. Thus, by induction,

Syz(f1, . . . , fm) has a free S-resolution of length ≤ n − t − 2. Composing this resolution

with the exact sequence 0 → Syz(f1, . . . , fm) → G → U → 0, we obtain for U a free

S-resolution of length ≤ n − t − 1, as desired.

Now let M be an arbitrary finitely generated S-module. Then M ∼= F/U , where F is

a finitely generated free S-module. We may assume that n > 0. Then by the preceding

arguments U has a free S-resolution of length ≤ n − 1. This implies that M has a free

S-resolution of length ≤ n. �

3. Zn-graded modules

The objective of this section is to present a result for the syzygies of a Zn-graded

modules, due to Fløystad and the author [3], which is of similar nature as that of Schreyer

discussed in the previous section.

Let F be a Zn-graded free S-module with homogeneous basis e1, . . . , em and deg ei = ai

for i = 0, . . . ,m. Then Fa is the K-vector space spanned by all monomials xa−aiei for

which a − ai ∈ Zn
≥0

.

We fix a monomial order on S and let < be the monomial order on F induced by the

monomial order on S which gives priority to the position over the coefficients.

Let M ⊂ F be a Zn-graded submodule. Then in<(M) is generated by all elements

in<(u) where u ∈ M is homogeneous. Let u be homogeneous of degree a, say, u =∑
i ciuiei with ci ∈ K, ui ∈ Mon(S) and deg ui + deg ei = a for all i with ci 6= 0. Then

in<(u) = ujej , where j = min{i : ci 6= 0}. Thus we see that in<(M) depends only on the

basis F = e1, . . . , em of F and not on the given monomial order on S. Hence we denote

the initial module of M by inF (M).

Our considerations so far can be summed up as follows:

Lemma 3.1. With the assumptions and notation introduced we have

inF (M) =

m⊕

i=1

Ijej ,

where Ij
∼= (M ∩

⊕m
k=j Sek)/(M ∩

⊕m
k=j+1

Sek) for j = 1, . . . ,m.

We call the basis F = e1, . . . , em of F lex-refined, if deg(e1) ≥ deg(e2) ≥ . . . ≥ deg(em)

in the lexicographical order.

In the following we present a result which is a sort of analogue to the theorem of

Schreyer. Let M be a Zn-graded S-module, and

F : · · ·
ϕ3

−−−−→ F2

ϕ2

−−−−→ F1

ϕ1

−−−−→ F0

ε
−−−−→ M −−−−→ 0,

a Zn-graded free resolution of M . We set Zp(F) = Im(ϕp) for all p. Then Zp = Zp(F) is

the pth syzygy module of M with respect to the resolution F.

Theorem 3.2. Let 1 ≤ p ≤ n be an integer, and F a lex-refined basis of Fp−1. Then

inF (Zp) =
⊕m

j=1
Ijej , where the minimal set of monomial generators of each Ij belongs to

K[xp, . . . , xn].
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Proof. The statement is trivial for p = 1. We may therefore assume that p ≥ 2. Let n ∈ Zp

be a homogeneous element of Zp with in(n) = uiei and such that ui is a minimal generator

of Ii. Let k be the smallest number such that xk divides in(n) = uiei, and suppose that

k < p. Then x1, . . . , xp−2 is a regular sequence on Zp−2, where we set Zp−2 = M if p = 2.

We denote by ‘overline’ reduction modulo (x1, . . . , xk−1). It follows that the sequence

0 −→ Z̄p −→ F̄p−1

ϕ̄p−1

−−−−→ F̄p−2

is exact. Here ϕ̄p−1 = ε̄, if p = 2. Hence Z̄p may be identified with its image in F̄p−1.

Thus n̄ can be written as

n̄ = ciuiēi + ci+1ui+1ēi+1 + · · · with cj ∈ K and uj ∈ Mon(S) and ci 6= 0.

Since uj ∈ K[xk, . . . , xn] for all j with cj 6= 0 and since n̄ is homogeneous, it follows

degt ēj = degt ēi for all t ≤ k−1 and all j with cj 6= 0. (Here, for any homogeneous element

r, we denote by degt r the tth component of deg r.) Therefore, since xk divides ui, it follows

that xk divides uj 6= 0 for j > i with cj 6= 0, because deg ēi = deg ei ≥ deg ej = deg ēj

for j > i. This implies that xk divides n̄. Thus there exist w ∈ F̄p−1 such that n̄ = xkw.

It follows that xkϕ̄p−1(w) = ϕ̄p−1(n̄) = 0. Since xk is a nonzero divisor on F̄p−2, we see

that ϕ̄p−1(w) = 0. This implies that w ∈ Z̄p. Let m = drvrer + · · · + diviei + · · · be a

homogeneous element in Fp−1 such that m̄ = w with vj ∈ Mon(S) and dj ∈ K for all j,

and dr 6= 0. Then r ≤ i and ui = xkvi.

Suppose that r < i. Since xj ∤ ui for all j < k, and since m is homogeneous it follows

that

degt vrer = degt viei = degt ei for all t < k.(4)

On the other hand, since n̄ = xkm̄ = drxkv̄rēr + · · · , we see that xkv̄r = 0, and this implies

that vr is divisible by some xj with j < k. Let s be the smallest such integer. Then form

(4) we deduce that degj er = degj ei for j < s and degs er < degs ei. Hence deg er < deg ei

(with respect to the lexicographic order), contradicting the choice of our basis. Thus r = i,

and consequently vi ∈ Ii. But this is again a contradiction, since ui = xkvi and since ui is

a minimal generator of Ii. �

Theorem 3.2 has a remarkable consequence for the Stanley depth of syzygies. A Stanley

decomposition of a finitely generated Zn-graded S-module M is a direct sum decomposition

M =
⊕m

i=1
uiK[Zi] of M as a Zn-graded K-vector space, where each ui is a homogeneous

element of M , K[Zi] is a polynomial ring is a set of variables Zi ⊂ {x1, . . . , xn}, and

each uiK[Zi] is a free K[Zi]-submodule of M . The minimum of the numbers |Zi| is called

the Stanley depth of this decomposition. The Stanley depth of M , denoted sdepthM , is

the maximal Stanley depth of a Stanley decomposition of M . In his paper [5] Stanley

conjectured that sdepthM ≥ depth M . This conjecture is widely open.

Here we show (see [3])

Theorem 3.3. Let M be a finitely generated Zn-graded module, and let F
.

be a free

resolution. Then for p ≥ 1 the p’th syzygy module Zp has Stanley depth greater than or

equal to p, or it is a free module.
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Proof. Let F be a lex-refined basis for Fp. If p ≥ n then Zp is free, so suppose p < n.

By Theorem 3.2, inF (Zp) =
⊕m

j=1
Ijej , where the minimal set of monomial generators

of each of the monomial ideals Ij belongs to K[xp, . . . , xn]. But then sdepth Ij ≥ p. In

fact, Cimpoeaş [1, Corollary 1.5] showed that the Stanley depth of any finitely gener-

ated Zn-graded torsionfree S-module is at least 1. Hence the asserted inequality for the

Stanley depth of Ij follows from [4, Lemma 3.6]. Now the desired inequalities for the

Stanley depths of the syzygy modules follow from the simple fact that sdepth(inF (Zp)) ≥

max{sdepth I1, . . . , sdepth Im}. �
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