GRÖBNER BASES OF SYZYGIES

JÜRGEN HERZOG

1. Initial modules

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n indeterminates over a field K, F a free module with basis e_{1}, \cdots, e_{m} and $U \subset F$ a submodule. We say that $m \in F$ is a monomial, if for some i, the element m is of the form $u e_{i}$, where u is a monomial. A submodule $U \subset F$ is called a monomial module, if it is generated by monomials. Then U is a monomial module if and only if for each j there exist monomial ideals I_{j} such that $U=I_{1} e_{1} \oplus I_{2} e_{2} \oplus \cdots \oplus I_{r} e_{r}$. In particular, U is finitely generated.

A monomial order of the monomials of F is a total order < satisfying the following two conditions:
(1) $m<u m$ for all monomials $m \in F$ and all monomials $u \neq 1$ in S;
(2) if $m_{1}<m_{2}$, then $u m_{1}<u m_{2}$ for all monomials $m_{1}, m_{2} \in F$ and all monomials $u \in S$.

Given a monomial order $<$ on S, there are two standard methods to define monomial orders on F. For $u, v \in \operatorname{Mon}(S)$ and $i, j \in\{1,2, \ldots, r\}$, we define

Position over coefficient: $u e_{i}>v e_{j}$, if $i<j$ or $i=j$ and $u>v$;
Coefficient over position: $u e_{i}>v e_{j}$, if $u>v$ or $u=v$ and $i<j$.
For example, if < is the lexicographic order on S and $F=S e_{1} \oplus S e_{2}$. Then $x_{2} e_{1}>x_{1} e_{2}$, if the position is given more importance than the coefficient, and $x_{1} e_{2}>x_{2} e_{1}$ in the opposite case.

We call the monomial order on F which is the (reverse) lexicographic order on the coefficients and gives priority to the position, the (reverse) lexicographic order on F (with respect to the given order).

Let $U \subset F$ be a submodule of F, and $<$ a monomial order of F. We let $\mathrm{in}_{<}(U)$ be the submodule of F which is generated by the monomials $\operatorname{in}(f)$ for all $f \in U$. The monomial module in ${ }_{<}(U)$ is called the initial module of U. Since $\mathrm{in}_{<}(U)$ is finitely generated, there exist elements $f_{1}, \ldots, f_{m} \in U$ such that $\mathrm{in}_{<}(U)$ is generated by $\mathrm{in}_{<}\left(f_{1}\right), \ldots, \mathrm{in}_{<}\left(f_{m}\right)$. Any such system of elements of U is a called a Gröbner basis of U with respect to $<$

Proposition 1.1. Any Gröbner basis of U is a system of generators of U.
For $f, g \in F$ we construct an element which is obtained as a linear combination of f and g such that their leading terms cancel. Say, $\mathrm{in}_{<}(f)=u e_{i}$ and $\mathrm{in}_{<}(g)=v e_{j}$. Obviously, if $i \neq j$, there is no linear combination of f and g such that the leading terms can cancel. Thus an analogue to S-polynomials can only be defined if $i=j$. In that case we set

$$
\begin{equation*}
S(f, g)=\frac{\operatorname{lcm}(u, v)}{c u} f-\frac{\operatorname{lcm}(u, v)}{d v} g \tag{1}
\end{equation*}
$$

where c is the coefficient of $\mathrm{in}_{<}(f)$ in f and d is the coefficient of $\mathrm{in}_{<}(g)$ in g. We call $S(f, g)$ the S-element of f and g

Suppose that f_{1}, \ldots, f_{m} is Gröbner basis of U. Then f_{1}, \ldots, f_{m} is a system of generators of U. We choose a free S-module G with basis g_{1}, \ldots, g_{m}, and let $\varepsilon: G \rightarrow U$ be the epimorphism defined by $\varepsilon\left(g_{i}\right)=f_{i}$ for $i=1, \ldots, m$. The kernel of ε will be denoted by $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right)$. Our task is to compute $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right)$, which amounts to compute a system of generators of $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right)$. The elements of $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right)$ are called relations of U (with respect to the presentation $G \rightarrow U$). Notice that $\sum_{i=1}^{m} s_{i} g_{i}$ is a relation, if and only if $\sum_{i=1}^{m} s_{i} f_{i}=0$.

For each pair f_{i}, f_{j} with $i<j$, whose initial monomials involve the same basis element of F, the element $S\left(f_{i}, f_{j}\right)$ reduces to zero with respect to f_{1}, \ldots, f_{m}. In other words, for each such pair we have an equation
(2) $S\left(f_{i}, f_{j}\right)=q_{i j, 1} f_{1}+q_{i j, 2} f_{2}+\cdots+q_{i j, m} f_{m} \quad$ with $\quad \operatorname{in}_{<}\left(q_{i j, k} f_{k}\right)<\operatorname{in}_{<}\left(S\left(f_{i}, f_{j}\right)\right)$,
which is a standard expression for $S\left(f_{i}, f_{j}\right)$. Recall that $S\left(f_{i}, f_{j}\right)=u_{i j} f_{i}-u_{j i} f_{j}$, where the terms $u_{i j}$ and $u_{j i}$ are chosen such that the leading terms of $u_{i j} f_{i}$ and $u_{j i} f_{j}$ are the same, so that they cancel in $S\left(f_{i}, f_{j}\right)$.

Equation (2) gives rise to the following relation:

$$
\begin{equation*}
r_{i j}=u_{i j} g_{i}-u_{j i} g_{j}-q_{i j, 1} g_{1}-q_{i j, 2} g_{2}-\cdots-q_{i j, m} g_{m} \tag{3}
\end{equation*}
$$

2. Hilbert's syzygy theorem via Gröbner bases

Our goal is to show that each finitely generated free S-module has a free resolution of length at most n, where n is the number of variables of the polynomial ring S. This is the celebrated syzygy theorem of Hilbert. We prove this theorem by using Gröbner bases following the arguments given by Schreyer in his dissertation, who found this constructive proof of Hilbert's syzygy theorem. The essential idea is to choose suitable monomial orders in the computation of the syzygies.

Let F be a free S-module with basis e_{1}, \ldots, e_{r} and $<$ a monomial order on F. Let $U \subset F$ be generated by f_{1}, \ldots, f_{m}, G a free S-module with basis g_{1}, \ldots, g_{m}, and $\varepsilon: G \rightarrow U$ the epimorphism with $\varepsilon\left(g_{j}\right)=f_{j}$ for $j=1, \ldots, m$. We define a monomial order on G, again denoted $<$, as follows. Let $u g_{i}$ and $v g_{j}$ be monomials in G. Then we set

$$
u g_{i}<v g_{j} \Longleftrightarrow \operatorname{in}_{<}\left(u f_{i}\right)<\operatorname{in}_{<}\left(v f_{j}\right), \text { or } \quad \operatorname{in}_{<}\left(u f_{i}\right)=\operatorname{in}_{<}\left(v f_{j}\right) \quad \text { and } \quad j<i .
$$

Let us verify that $<$ is a monomial order on G. In order to see that $<$ is a total order on the monomials of G, we have to show that either $u g_{i}<v g_{j}$ or $u g_{i} \geq v g_{j}$.

Assume that $u g_{i} \nless v g_{j}$. Then $\mathrm{in}_{<}\left(u f_{i}\right) \nless \mathrm{in}_{<}\left(v f_{j}\right)$, and either $\mathrm{in}_{<}\left(u f_{i}\right) \neq \mathrm{in}_{<}\left(v f_{j}\right)$ or $j \geq i$. In the first case in ${ }_{<}\left(u f_{i}\right)>\operatorname{in}_{<}\left(v f_{j}\right)$, since $<$ is a total order on F. It follows in this case that $u g_{i}>v g_{j}$. In the second case $\operatorname{in}_{<}\left(u f_{i}\right)=\operatorname{in}_{<}\left(v f_{j}\right)$ and $j \geq i$. In this case $u g_{i} \geq v g_{j}$, by the definition of $<$ on G.

Next we check condition (1) and (2) for monomial orders as defined before:
(1) Let $w \in \operatorname{Mon}(S), w \neq 1$. Then $\operatorname{in}_{<}\left(u f_{i}\right)<w \operatorname{in}_{<}\left(u f_{i}\right)=\operatorname{in}_{<}\left(w u f_{i}\right)$, therefore $u g_{i}<w u g_{i}$.
(2) Let $u g_{i}<v g_{j}$ and $w \in \operatorname{Mon}(S)$. If $\operatorname{in}_{<}\left(u f_{i}\right)<\operatorname{in}_{<}\left(v f_{j}\right)$, then $\operatorname{in}_{<}\left(w u f_{i}\right)=$ $w \operatorname{in}_{<}\left(u f_{i}\right)<w \operatorname{in}_{<}\left(v f_{j}\right)=\operatorname{in}_{<}\left(w v f_{j}\right)$, and so $w u g_{i}<w v g_{j}$. On the other hand, if $\mathrm{in}_{<}\left(u f_{i}\right)=\operatorname{in}_{<}\left(v f_{j}\right)$, then $j<i$ and $\operatorname{in}_{<}\left(w u f_{i}\right)=\operatorname{in}_{<}\left(w v f_{j}\right)$. So again, $w u g_{i}<w v g_{j}$.

We call this monomial order defined on G the monomial order induced by f_{1}, \ldots, f_{m} (and the monomial order $<$ on F).

The crucial result whose proof can be found [2, Theorem 15.10] is now the following:
Theorem 2.1 (Schreyer). Let F be a free S-module with basis e_{1}, \ldots, e_{r}, and $<$ a monomial order on F. Let $U \subset F$ be a submodule of F with Gröbner basis $\mathcal{G}=\left\{f_{1}, \ldots, f_{m}\right\}$. Then the relations $r_{i j}$ arising from the S-elements of the f_{i} as described in (3) form a Gröbner basis of $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right) \subset G$ with respect to the monomial order induced by f_{1}, \ldots, f_{m}. Moreover, one has

$$
\operatorname{in}_{<}\left(r_{i j}\right)=u_{i j} g_{i},
$$

where $u_{i j}$ is defined as in (3).
The monomial order induced by f_{1}, \ldots, f_{m} allows some flexibility, since we are free to relabel the elements of the Gröbner basis as we want. Doing this in a clever way we obtain

Corollary 2.2. With the notation introduced in Theorem 2.1, let the f_{i} be indexed in such way such that whenever $\mathrm{in}_{<}\left(f_{i}\right)$ and $\mathrm{in}_{<}\left(f_{j}\right)$ for some $i<j$ involve the same basis element, say $\mathrm{in}_{<}\left(f_{i}\right)=u e_{k}$ and $\mathrm{in}_{<}\left(f_{j}\right)=v e_{k}$, then $u>v$ with respect to the lexicographic order induced by $x_{1}>x_{2}>\cdots>x_{n}$. Then it follows, that if for some $t<n$ the variables x_{1}, \ldots, x_{t} do not appear in the initial forms of the f_{j}, then the variables x_{1}, \ldots, x_{t+1} do not appear in the initial forms of the $r_{i j}$.

Proof. By Theorem 2.1 we have $\operatorname{in}_{<}\left(r_{i j}\right)=(\operatorname{lcm}(u, v) / v) e_{k}$. Since $u>v$, and since u and v are monomials in the variables x_{t+1}, \ldots, x_{n}, it follows that the exponent of x_{t+1} in u is bigger that of v. Thus $\operatorname{lcm}(u, v) / v$ is a monomial in the variables x_{t+2}, \ldots, x_{n}, as desired.

As a consequence of Corollary 2.2 we finally obtain
Theorem 2.3 (Hilbert's syzygy theorem). Let M be a finitely generated S-module over the polynomial ring $S=K\left[x_{1}, \ldots, x_{n}\right]$. Then M admits a free S-resolution

$$
0 \rightarrow F_{p} \longrightarrow F_{p-1} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow M \rightarrow 0
$$

of length $p \leq n$.
Proof. Let $U \subset F$ be a submodule of the free S-module F with basis e_{1}, \ldots, e_{r}. Let $<$ be a monomial order on F, and f_{1}, \ldots, f_{m} be a Gröbner basis of U. Finally, let $t \leq n$ be the largest integer such that the variables x_{1}, \ldots, x_{t} do not appear in any of the initial forms of the f_{i}. We prove by induction on $n-t$, that U has a free S-resolution of length $\leq \max \{0, n-t-1\}$

If $t \geq n-1$, then $\operatorname{in}_{<}(U)=\bigoplus_{j=1}^{r} I_{j} e_{j}$, where for each j, there exists a monomial ideal $J_{j} \subset K\left[x_{n}\right]$ such that $I_{j}=J_{j} S$. Since all monomial ideals in $K\left[x_{n}\right]$ are principal, it follows that U is free.

If $t<n$, we may assume that the Gröbner basis f_{1}, \ldots, f_{m} is labeled as described in Corollary 2.2. Then Theorem 2.1 together with Corollary 2.2 imply that $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right)$
has a Gröbner basis with the property that the variables x_{1}, \ldots, x_{t+1} do not appear in any of the leading monomials of the elements of the Gröbner basis. Thus, by induction, $\operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right)$ has a free S-resolution of length $\leq n-t-2$. Composing this resolution with the exact sequence $0 \rightarrow \operatorname{Syz}\left(f_{1}, \ldots, f_{m}\right) \rightarrow G \rightarrow U \rightarrow 0$, we obtain for U a free S-resolution of length $\leq n-t-1$, as desired.

Now let M be an arbitrary finitely generated S-module. Then $M \cong F / U$, where F is a finitely generated free S-module. We may assume that $n>0$. Then by the preceding arguments U has a free S-resolution of length $\leq n-1$. This implies that M has a free S-resolution of length $\leq n$.

3. \mathbb{Z}^{n}-GRADED MODULES

The objective of this section is to present a result for the syzygies of a \mathbb{Z}^{n}-graded modules, due to Fløystad and the author [3], which is of similar nature as that of Schreyer discussed in the previous section.

Let F be a \mathbb{Z}^{n}-graded free S-module with homogeneous basis e_{1}, \ldots, e_{m} and $\operatorname{deg} e_{i}=\mathbf{a}_{i}$ for $i=0, \ldots, m$. Then $F_{\mathbf{a}}$ is the K-vector space spanned by all monomials $\mathbf{x}^{\mathbf{a}-\mathbf{a}_{i}} e_{i}$ for which $\mathbf{a}-\mathbf{a}_{i} \in \mathbb{Z}_{\geq 0}^{n}$.

We fix a monomial order on S and let $<$ be the monomial order on F induced by the monomial order on S which gives priority to the position over the coefficients.

Let $M \subset F$ be a \mathbb{Z}^{n}-graded submodule. Then $\mathrm{in}_{<}(M)$ is generated by all elements $\operatorname{in}_{<}(u)$ where $u \in M$ is homogeneous. Let u be homogeneous of degree a, say, $u=$ $\sum_{i} c_{i} u_{i} e_{i}$ with $c_{i} \in K, u_{i} \in \operatorname{Mon}(S)$ and $\operatorname{deg} u_{i}+\operatorname{deg} e_{i}=\mathbf{a}$ for all i with $c_{i} \neq 0$. Then $\operatorname{in}_{<}(u)=u_{j} e_{j}$, where $j=\min \left\{i: c_{i} \neq 0\right\}$. Thus we see that $\mathrm{in}_{<}(M)$ depends only on the basis $\mathcal{F}=e_{1}, \ldots, e_{m}$ of F and not on the given monomial order on S. Hence we denote the initial module of M by $\operatorname{in}_{\mathcal{F}}(M)$.

Our considerations so far can be summed up as follows:
Lemma 3.1. With the assumptions and notation introduced we have

$$
\operatorname{in}_{\mathcal{F}}(M)=\bigoplus_{i=1}^{m} I_{j} e_{j},
$$

where $I_{j} \cong\left(M \cap \bigoplus_{k=j}^{m} S e_{k}\right) /\left(M \cap \bigoplus_{k=j+1}^{m} S e_{k}\right)$ for $j=1, \ldots, m$.
We call the basis $\mathcal{F}=e_{1}, \ldots, e_{m}$ of F lex-refined, if $\operatorname{deg}\left(e_{1}\right) \geq \operatorname{deg}\left(e_{2}\right) \geq \ldots \geq \operatorname{deg}\left(e_{m}\right)$ in the lexicographical order.

In the following we present a result which is a sort of analogue to the theorem of Schreyer. Let M be a \mathbb{Z}^{n}-graded S-module, and

$$
\mathbb{F}: \quad \cdots \xrightarrow{\varphi_{3}} F_{2} \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varepsilon} M \longrightarrow 0,
$$

a \mathbb{Z}^{n}-graded free resolution of M. We set $Z_{p}(\mathbb{F})=\operatorname{Im}\left(\varphi_{p}\right)$ for all p. Then $Z_{p}=Z_{p}(\mathbb{F})$ is the p th syzygy module of M with respect to the resolution \mathbb{F}.

Theorem 3.2. Let $1 \leq p \leq n$ be an integer, and \mathcal{F} a lex-refined basis of F_{p-1}. Then $\operatorname{in}_{\mathcal{F}}\left(Z_{p}\right)=\bigoplus_{j=1}^{m} I_{j} e_{j}$, where the minimal set of monomial generators of each I_{j} belongs to $K\left[x_{p}, \ldots, x_{n}\right]$.

Proof. The statement is trivial for $p=1$. We may therefore assume that $p \geq 2$. Let $n \in Z_{p}$ be a homogeneous element of Z_{p} with $\operatorname{in}(n)=u_{i} e_{i}$ and such that u_{i} is a minimal generator of I_{i}. Let k be the smallest number such that x_{k} divides $\operatorname{in}(n)=u_{i} e_{i}$, and suppose that $k<p$. Then x_{1}, \ldots, x_{p-2} is a regular sequence on Z_{p-2}, where we set $Z_{p-2}=M$ if $p=2$. We denote by 'overline' reduction modulo $\left(x_{1}, \ldots, x_{k-1}\right)$. It follows that the sequence

$$
0 \longrightarrow \bar{Z}_{p} \longrightarrow \bar{F}_{p-1} \xrightarrow{\bar{\varphi}_{p-1}} \bar{F}_{p-2}
$$

is exact. Here $\bar{\varphi}_{p-1}=\bar{\varepsilon}$, if $p=2$. Hence \bar{Z}_{p} may be identified with its image in \bar{F}_{p-1}.
Thus \bar{n} can be written as

$$
\bar{n}=c_{i} u_{i} \bar{e}_{i}+c_{i+1} u_{i+1} \bar{e}_{i+1}+\cdots \quad \text { with } \quad c_{j} \in K \quad \text { and } \quad u_{j} \in \operatorname{Mon}(S) \quad \text { and } \quad c_{i} \neq 0 .
$$

Since $u_{j} \in K\left[x_{k}, \ldots, x_{n}\right]$ for all j with $c_{j} \neq 0$ and since \bar{n} is homogeneous, it follows $\operatorname{deg}_{t} \bar{e}_{j}=\operatorname{deg}_{t} \bar{e}_{i}$ for all $t \leq k-1$ and all j with $c_{j} \neq 0$. (Here, for any homogeneous element r, we denote by $\operatorname{deg}_{t} r$ the t th component of $\operatorname{deg} r$.) Therefore, since x_{k} divides u_{i}, it follows that x_{k} divides $u_{j} \neq 0$ for $j>i$ with $c_{j} \neq 0$, because $\operatorname{deg} \bar{e}_{i}=\operatorname{deg} e_{i} \geq \operatorname{deg} e_{j}=\operatorname{deg} \bar{e}_{j}$ for $j>i$. This implies that x_{k} divides \bar{n}. Thus there exist $w \in \bar{F}_{p-1}$ such that $\bar{n}=x_{k} w$. It follows that $x_{k} \bar{\varphi}_{p-1}(w)=\bar{\varphi}_{p-1}(\bar{n})=0$. Since x_{k} is a nonzero divisor on \bar{F}_{p-2}, we see that $\bar{\varphi}_{p-1}(w)=0$. This implies that $w \in \bar{Z}_{p}$. Let $m=d_{r} v_{r} e_{r}+\cdots+d_{i} v_{i} e_{i}+\cdots$ be a homogeneous element in F_{p-1} such that $\bar{m}=w$ with $v_{j} \in \operatorname{Mon}(S)$ and $d_{j} \in K$ for all j, and $d_{r} \neq 0$. Then $r \leq i$ and $u_{i}=x_{k} v_{i}$.

Suppose that $r<i$. Since $x_{j} \nmid u_{i}$ for all $j<k$, and since m is homogeneous it follows that

$$
\begin{equation*}
\operatorname{deg}_{t} v_{r} e_{r}=\operatorname{deg}_{t} v_{i} e_{i}=\operatorname{deg}_{t} e_{i} \quad \text { for all } \quad t<k \tag{4}
\end{equation*}
$$

On the other hand, since $\bar{n}=x_{k} \bar{m}=d_{r} x_{k} \bar{v}_{r} \bar{e}_{r}+\cdots$, we see that $x_{k} \bar{v}_{r}=0$, and this implies that v_{r} is divisible by some x_{j} with $j<k$. Let s be the smallest such integer. Then form (4) we deduce that $\operatorname{deg}_{j} e_{r}=\operatorname{deg}_{j} e_{i}$ for $j<s$ and $\operatorname{deg}_{s} e_{r}<\operatorname{deg}_{s} e_{i}$. Hence deg $e_{r}<\operatorname{deg} e_{i}$ (with respect to the lexicographic order), contradicting the choice of our basis. Thus $r=i$, and consequently $v_{i} \in I_{i}$. But this is again a contradiction, since $u_{i}=x_{k} v_{i}$ and since u_{i} is a minimal generator of I_{i}.

Theorem 3.2 has a remarkable consequence for the Stanley depth of syzygies. A Stanley decomposition of a finitely generated \mathbb{Z}^{n}-graded S-module M is a direct sum decomposition $M=\bigoplus_{i=1}^{m} u_{i} K\left[Z_{i}\right]$ of M as a \mathbb{Z}^{n}-graded K-vector space, where each u_{i} is a homogeneous element of $M, K\left[Z_{i}\right]$ is a polynomial ring is a set of variables $Z_{i} \subset\left\{x_{1}, \ldots, x_{n}\right\}$, and each $u_{i} K\left[Z_{i}\right]$ is a free $K\left[Z_{i}\right]$-submodule of M. The minimum of the numbers $\left|Z_{i}\right|$ is called the Stanley depth of this decomposition. The Stanley depth of M, denoted sdepth M, is the maximal Stanley depth of a Stanley decomposition of M. In his paper [5] Stanley conjectured that sdepth $M \geq$ depth M. This conjecture is widely open.

Here we show (see [3])
Theorem 3.3. Let M be a finitely generated \mathbb{Z}^{n}-graded module, and let F. be a free resolution. Then for $p \geq 1$ the p 'th syzygy module Z_{p} has Stanley depth greater than or equal to p, or it is a free module.

Proof. Let \mathcal{F} be a lex-refined basis for F_{p}. If $p \geq n$ then Z_{p} is free, so suppose $p<n$. By Theorem 3.2, $\operatorname{in}_{\mathcal{F}}\left(Z_{p}\right)=\bigoplus_{j=1}^{m} I_{j} e_{j}$, where the minimal set of monomial generators of each of the monomial ideals I_{j} belongs to $K\left[x_{p}, \ldots, x_{n}\right]$. But then sdepth $I_{j} \geq p$. In fact, Cimpoeass [1, Corollary 1.5] showed that the Stanley depth of any finitely generated \mathbb{Z}^{n}-graded torsionfree S-module is at least 1 . Hence the asserted inequality for the Stanley depth of I_{j} follows from [4, Lemma 3.6]. Now the desired inequalities for the Stanley depths of the syzygy modules follow from the simple fact that $\operatorname{sdepth}\left(\operatorname{in}_{\mathcal{F}}\left(Z_{p}\right)\right) \geq$ $\max \left\{\right.$ sdepth I_{1}, \ldots, sdepth $\left.I_{m}\right\}$.

References

[1] M.Cimpoeas, Stanley depth of squarefree Veronese ideals, arXiv:0907.1232.
[2] D.Eisenbud, Commutative algebra with a view towards algebraic geometry, GTM, Springer Verlag 1994.
[3] G.Fløystad, J.Herzog, Gröbner bases of syzygies and Stanley depth, to appear in J. Alg.
[4] J.Herzog, M.Vladiou, X.Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (2009), 3151-3169.
[5] R.Stanley, Linear Diophantine equations and local cohomology, Inventiones Mathematicae 68, (1982), 175-193.

