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These are notes of a survey talk I gave on finite generation questions of
motivic cohomology, translated into English and supplemented by references.

1 Classical results

The first finite generation results on motivic cohomology were proved in the
19th century.

Theorem 1 (Dirichlet’s unit theorem) Let OK be the ring of integers in
a number field K. Then O×

K is finitely generated of rank r1 + r2 − 1.

Here r1 = is the number of real embeddings and r2 = is the number of
pairs of complex embeddings of the numbe field K. For example, one has
Z× = {±1}, O×

Q(i)
∼= {±1,±i} and O×

Q(
√
2)
= {±(1 +

√
2)n, n ∈ Z}.

If K is a number field, then the class group Pic(OK) is defined as the
group of fractional ideals modulo the group of principal ideals. By unique
factorization of ideals in Dedekind rings, we have an exact sequence

0 → O×
K → K× div→

⊕
p

Z → Pic(OK) → 0.

By definition, Pic(OK) = 1 if and only if OK is a principal ideal domain.

Theorem 2 The class group Pic(OK) of a number field is finite.
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We give two generalization of this is from the middle of the 20th century.
Define Milnor K-groups to be

KM
∗ (K) = T ∗K×/⟨a⊗ (1− a)⟩

with T nA := A⊗n the tensor algebra for an abelian group A, and product
given by concatenation. For example, KM

0 (K) = Z, and KM
1 (K) = K×. The

finite generation of the group of units is the case n = 1 of the following

Theorem 3 (Bass-Tate [2]) Let K be a number field, p a prime ideal of
OK and k(p) = Ok/p. Then for n ≥ 2, the kernel of

KM
n (K) →

⊕
p

KM
n−1(Kp)

is finite.

From now on, we always assume that X is a regular scheme, of finite type
over Z. i.e. X has a finite cover by SpecR for R a regular integral domain
of the form Z[X1, · · · , Xn]/(f1, · · · , fm). If K(X) is the function field of X,
then the group of invertible function on X and the Picard group of X fit into
the exact sequence

0 → O(X)× → K(X)×
div→

⊕
p

Z → PicX → 0,

where the sum is over height one prime ideals, i.e. divisors. We have the
following generalization of the finite generation of the group of units and
Picard group of a number field:

Theorem 4 (Mordell-Weil, Roquette [26]) The groups O(X)× and PicX
are finitely generated abelian groups.

2 Bass conjecture

Quillen [24] defined in 1973 higher algebraic K-groups Ki(X) for a scheme
X using the category of finitely generated locally free modules, i.e. vector
bundles. It is a generalization of the Grothendieck group K0(X) of X. This
generalizes many invariants studied before. For example, PicX is a direct
factor of K0(X), and O(X)× direct factor of K1(X). For a local ring R, one
has K0(R) = Z and K1(R) = R×.
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Conjecture 5 (Bass [1]) The groups Ki(X) are finitely generated.

The conjecture is known in the following cases:

Theorem 6 (Quillen [25, 23, 14]) 1. For a finite field Fq, we have

Ki(Fq) =


Z i = 0,

Z/qn − 1 i = 2n− 1,

0 i > 0 even.

2. For a number field K, Ki(OK) is finitely generated.

3. Let X be a (normal) curve over a finite field. Then Ki(X) is finitely
generated.

This completely settles the one-dimensional case. In the second case, the
ranks also have been calculated and are related to the order of zero of the
Dedekind-zeta function ζK(s) at s = 1− i:

Theorem 7 (Borel [5]) For a number field K,

rankKi(OK) =


r1 + r2 − 1 i = 1,

r1 + r2 i = 4n+ 1 > 1,

r2 i = 4n− 1,

0 i > 0 even.

In contrast, we have the following result in characteristic p

Theorem 8 (Harder [15], Soule [27]) For a smooth proper curve over a
finite field, Ki(X) is torsion for i > 0.

Thus the curve case in characteristic 0 and p are very different. The
conjecture of Bass fails for non-regular X. For example, let R = Fp[t, ϵ]/(ϵ

2).
Then K1(R) ⊇ R× contains an infinite Fp-vector space with basis

ei = (1 + ϵti)

because (1 + ϵti)(1− ϵti) = 1.
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3 Motivic cohomology

Motivic cohomology groups H i
M(X,Z(n)) have been conjectured to exist by

Lichtenbaum [20] and Beilinson [3]. Later, definitions have been given by
Bloch [4] and Voevodsky. Motivic cohomology is a finer invariant of X than
K-theory. Indeed, for X smooth over a perfect field, there is a 4th quadrant
spectral sequence

Es,t
2 = Hs

M(X,Z(−t)) ⇒ K−s−t(X)

which allows (in theory) to calculate K-groups from motivic cohomology
groups. We have the following refinement of Bass conjecture:

Conjecture 9 (refined Bass conjecture) The groups H i
M(X,Z(n)) are

finitely generated for X is regular and of finite type over Z.

For example, the following groups are finitely generated (the latter by the
Bass-Tate theorem)

• H1
M(X,Z(1)) ∼= O(X)×

• H2
M(X,Z(1)) ∼= Pic(X)

• H2
M(OK ,Z(2))

Assume X is smooth over a perfect field. Then

H i
M(X,Z(n)) := CHn(X, 2n− i)

is Bloch’s higher Chow group [4]. This is a theorem [30], but we use it as the
definition of motivic cohomology here.

To define CHn(X, j) consider the complex zn(X,−) defined as follows.
Let ∆j = SpecZ[T0, · · · tj]/(

∑
ti = 1) be the algebraic j-simplex. Then

F ⊆ ∆j given by ti1 = · · · = tim = 0 is called a face. Clearly F ∼= ∆j−m.

Definition 10 zn(X, j) is the free abelian group, generated by closed irre-
ducible subvarieties Z ⊆ X ×∆j such that codimF (Z ∩ F ) = n for all faces
(including F = ∆j).
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Differentials zn(X, j) → zn(X, j − 1) are alternating sums of intersection
with faces ∆j−1 ⊆ ∆j (there are j+1 ways of viewing ∆j−1 as a face of ∆j).
We obtain a complex of free abelian groups, and let CHn(X, j) be its jth
homology. For example

H2n
M(X,Z(n)) = coker z1(X, 1) → zn(X, 0)

is the usual Chow group CHn(X), and H i
M(X,Z(n)) = 0 for i > 2n or

i > n+ dimX. These groups satisfy the following important properties:

• they are covariant for proper maps (with a change of n)

• they are contravariant for maps between smooth schemes

• they are homotopy invariant: CHn(X, i) ∼= CHn(X × A1, i)

For a field k, H i
M(k,Z(n)) = 0 for i > n (by dimension of cycles reasons)

and

Theorem 11 (Nesterenko-Suslin [22], Totaro [29])

Hn
M(k,Z(n)) ∼= KM

n (k).

For low values of n, higher Chow groups agree with the invariants men-
tioned before:

Proposition 12 (Bloch [4]) Let X be connected and smooth, then

H i
M(X,Z(0)) ∼=

{
Z i = 0,

0 otherwise.

H i
M(X,Z(1)) ∼=


O(X)× i = 1,

Pic(X) i = 2,

0 otherwise.

In particular, these groups are finitely generated for X over SpecZ. In
general, H i

M(X,Z(2)) and H i
M(X,Z(d)) for d = dimX are understood a

little, all other groups are a complete mystery. We don’t even know that
there is no negative motivic cohomology:
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Conjecture 13 (Beilinson-Soule) The groups H i
M(X,Z(n)) vanish for i <

0.

Over a finite field, this conjecture has the following strengthening:

Conjecture 14 (Parshin) If X is smooth and proper over a finite field,
then H i

M(X,Z(n)) is torsion for i ̸= 2n.

We saw before that for a number field K

rankH1
M(OK ,Z(n)) =

{
r1 + r2 n odd > 1,

r2 n even > 0,

so again the behavior in characteristic p and 0 is very different.

4 Etale motivic cohomology

It is often easier to calculate the etale hypercohomology of a complex of
sheaves. By contravariance, varying U we obtain a complex of presheaves
defined by

U 7→ Z(n)(U) := zn(U,−)[−2n].

This turns out that this is a complex of sheaves for the etale topology, in
particular a complex of sheaves for the Zariski topology. We make the shift
so that H i

M(X,Z(n)) = CHn(X, i − 2n) is the cohomology of Z(n)(X) in
degree i. Bloch’s proposition implies that

Z(0) ∼= Z

Z(1) = Gm[−1], where Gm : U 7→ O(U)×.

With torsion coefficients, this complex of sheaves is well-understood:

Theorem 15 (Suslin-Voevodsky, G.-Levine [13, 12]) Let X be smooth
over a perfect field of characteristic p. Then there are quasi-isomorphisms of
complexes of etale sheaves

Z/m(n) ∼=

{
µ⊗n
m p ̸ |m

νn
r [−n] m = pr

Here µn(U) = mO(U)× and νn
r ⊆ WrΩ

n
X is the logarithmic de Rham Witt

sheaf.
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So etale motivic cohomology with finite coefficients is etale cohomology
considered since the 1960’s!

Taking Zariski-hypercohomology, nothing changes

H i(XZar,Z(n)) ∼= H i
M(X,Z(n)).

But taking etale hypercohomology, things become very interesting: For ex-
ample,

H3(Xet,Z(1)) ∼= H2(Xet,Gm) ∼= Br(X)

is the cohomological Brauer group of X classifying Azumaya algebras. It is a
very deep conjecture that this is finite for X proper over Z. More generally,
one has

Conjecture 16 (Lichtenbaum [20]) Let X be smooth and proper over a
finite field. Then H i(Xet,Z(n)) is

• finite for i ̸= 2n, 2n+ 2

• finitely generated for i = 2n

• cofinitely generated for i = 2n+ 2 (i.e. (finite)⊕ (Q/Z)r)

This conjecture is older than motivic cohomology itself, because Licht-
enbaum was conjecturing the existence of a complex Z(n) with the above
properties (among others). The easiest example that cofinitely generated
groups appear is

H2((Fq)et,Z(0)) ∼= H2(Gal(Fq),Z) ∼= H1(Gal(Fq),Q/Z)
∼= Hom(Gal(Fq),Q/Z) ∼= Q/Z.

It is easy to see thatH i(XZar,Q(n)) ∼= H i(Xet,Q(n)) but what about integral
coefficients? To compare motivic cohomology to its etale version we have

Theorem 17 (Rost-Voevodsky, formerly Bloch-Kato conjecture) For
any field k, and m ∈ k× the map KM

n (k)/m → Hn(ket,Z/m(n)) is surjective.

The analog for m = pr a power of the characteristic had been shown
be Bloch-Kato and Gabber before. This implies the so called Beilinson-
Lichtenbaum conjecture
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Corollary 18 (Suslin-Voevodsky, G.-Levine [13, 12]) The Bloch-Kato
conjecture implies the Beilinson-Lichtenbaum conjecture. In particular, for
any smooth X over a perfect field,

H i
M(X,Z(n)) ∼= H i(Xet,Z(n))

for i ≤ n+ 1.

Another way to related motivic cohomology to etale cohomology is the
cycle map

ci,n : H i
M(X,Z(n)) → H i(Xet,Z(n)) → lim

r
H i(Xet,Z/lr(n)).

Conjecture 19 (Tate [28]) If X is smooth and proper over a finite field,
then

c2n,n : CHn ⊗ Zl
∼= H2n

M(X,Z(n))⊗ Zl → lim
r

H2n(Xet,Z/lr(n)).

has finite cokernel.

One can show that Tate’s conjecture for X and n = 1 is equivalent to the
vanishing of the Tate module Tl Br(X) := limr lr Br(X) of the Brauer group,
and this follows from the above mentioned finiteness conjecture of the Brauer
group. More generally:

Proposition 20 Tate’s conjecture for X and n
⇔ H2n+1(Xet,Z(n)) has no torsion divisible subgroup.

In particular, it is implied by the finite generation conjecture of Lichten-
baum.

5 Weil-etale version

It is a fact that ”etale cohomology over k” is the same as ”etale cohomology
over k̄ followed by Galois cohomology”. More precisely, for X̄ = X ×k k̄ the
base extension to the algebraic closure of k, we have a quasi-isomorphism

RΓ(Xet,F) ∼= RΓ(Gal(k), RΓ(X̄et,F)).

8



Hence there is a spectral sequence

Hs(Gal(k), H t(X̄et,Z(n)) ⇒ Hs+t(Xet,Z(n)).

Over a finite field, we know that etale motivic cohomology is not finitely gen-
erated for i = 2n+ 2, for example H2(Gal(Fq),Z) = Q/Z. But this obstruc-
tion, coming from Galois cohomology, is (conjecturally) the only obstruction!
If we replace Gal(Fq) = Ẑ by the Weil group G := ⟨φ⟩ ∼= Z ⊆ Gal(Fq),
then H1(G,Z) = Z and H2(G,Z) = 0. In fact, H0(G,M) = MG and
H1(G,Z) = MG, and the higher cohomology groups vanish.

Definition 21 (Lichtenbaum [21]) Weil-etale cohomology is defined to be

H i
W (X,Z(n)) := H iRΓ(G,RΓ(X̄et,Z(n))).

The Leray spectral sequence for composition of functors degenerates into
short exact sequences

0 → H i−1(X̄et,Z(n))G → H i
W (X,Z(n)) → H i(X̄et,Z(n))G → 0.

Theorem 22 (G.[8]) There are long exact sequences

· · · → H i(Xet,Z(n)) → H i
W (X,Z(n))
→ H i−1(Xet,Q(n)) → H i+1(Xet,Z(n)) → · · · .

In particular,
H i(Xet,Z/m(n)) ∼= H i

W (X,Z/m(n))

H i
W (X,Q(n)) ∼= H i

M(X,Q(n))⊕H i−1
M (X,Q(n))

A typical example is the case n = 0, i = 1 and X = Fq. In this case the
exact sequence

H1((Fq)et,Z) → H1
W (Fq,Z) → H0

M(Fq,Q) → H2((Fq)et,Z)

is the sequence 0 → Z → Q → Q/Z, and this explains how a Q/Z in etale
cohomology corresponds to a Z in Weil-etale cohomology.

Conjecture 23 (refined Lichtenbaum conjecture) For X smooth and
proper over a finite field, H i

W (X,Z(n)) is finitely generated for all i, n.
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Theorem 24 (G.[8, 9], Kahn [17]) The refined Lichtenbaum conjecture
is equivalent to the conjunction of Tate’s conjecture and Beilinson’s con-
jecture that over a finite field, rational and numerical equivalence of cycles
agree up to torsion.

The refined Lichtenbaum conjecture implies Parshin’s conjecture, the Beilinson-
Soule vanishing conjecture for schemes in characteristic p, and a formula for
special values of zeta-functions for varieties over finite fields.

The author was also able to obtain results by applying the method ”re-
place the Galois group by the Weil-group” to other theories, like higher Chow
groups [10] and Suslin homology [11] of singular schemes. In each case, one
obtains groups which are (conjecturally) finitely generated out of groups
which were not finitely generated due to Galois cohomology.

Recently, there is work by Jannsen, Kerz and Shuji Saito dealing with
the case n = d = dimX. They can show:

Theorem 25 (Jannsen, Kerz, Saito [16, 19]) Letm ∈ F×
q and X smooth

and proper over Fq. Then H i
M(X,Z/m(d)) is finite for all i.

The case m a power of the characteristic holds under resolution of singu-
larities. This can be combined with the rational case:

Proposition 26 (G. [10]) Let X be smooth and proper of dimension d over
Fq. Then Parshin’s conjecture implies that H i

M(X,Z(d)) is finitely generated
for all i.

The converse also holds in the sense that finite generation ofH i
M(X,Z(d))

implies that H i
M(X,Q(d)) vanishes for i ̸= 2d under the hypothesis of the

theorem.
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