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Abstract. We give new viewpoints of Campanato spaces with variable growth con-

dition for applications to the Navier-Stokes equation. Namely, we formulate a blowup

criteria along maximum points of the 3D-Navier-Stokes flow in terms of stationary

Euler flows and show that the properties of Campanato spaces with variable growth

condition are very useful for this formulation, since variable growth condition can con-

trol the continuity and integrability of functions on the neighborhood at each point.

Our criterion is different from the Beale-Kato-Majda type and Constantin-Fefferman

type criterion. If geometric behavior of the velocity vector field near the maximum

point has a kind of stationary Euler flow configuration up to a possible blowup time,

then the solution can be extended to be the strong solution beyond the possible blowup

time. As another application we also mention the Cauchy problem for the Navier-

Stokes equation.

Key words: Campanato spaces with variable growth condition, blowup criterion, 3D

Navier-Stokes equation, stationary 3D Euler flow, Cauchy problem.

1. Introduction

In this paper we consider the properties of Campanato spaces with vari-

able growth condition and give their applications to the Navier-Stokes equa-

tion. More precisely, we construct a blowup criteria along maximum points

of the 3D-Navier-Stokes flow in terms of stationary 3D Euler flows. As an-

other application we also mention existence of a time local solution to the

Cauchy problem for the Navier-Stokes equation.

Campanato spaces was introduced and studied in [3], [4], [28], [29], etc,

and their variant with variable growth condition was introduced in [25] to

characterize pointwise multipliers on BMO. Recently, it turned out that

Campanato spaces with variable growth condition were the dual spaces of

Hardy spaces Hp(·) with variable exponent by [24]. In this paper we recall

properties of Campanato spaces with variable growth condition investigated
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in [18], [20], [21], [23] and give new viewpoints of them for applications to

the Navier-Stokes equation.

The Navier-Stokes equation is expressed as
∂tv + (v · ∇)v −∆v +∇p = 0 in Rn × [0, T ),

∇ · v = 0 in Rn × [0, T ),

v|t=0 = v0 in Rn,

(1.1)

where v = (v1, . . . , vn) is a vector field representing velocity of the fluid, p

is the pressure, and

∇ · v =

n∑
j=1

∂jvj , v · ∇ =

n∑
j=1

vj∂j , ∆ =

n∑
j=1

∂2j .

It is known that the pair of solutions (v, p) satisfies the relation

p =

n∑
i,j=1

RiRj(vivj),

where Rj (j = 1, . . . , n) are the Riesz transforms (see [13], [15], [26] for

example). Therefore, to estimate the solutions in some function space we

need the properties of the Riesz transforms and pointwise multipliers (point-

wise product operators) on the function space. Namely, we investigate the

following norm boundedness:

∥fg∥L♮q,ψ ≤ C∥f∥L♮p,ϕ∥g∥L♮p,ϕ , (1.2)

∥Rjf∥L♮q,ψ ≤ C∥f∥L♮q,ψ , (1.3)

for Campanato spaces L♮p,ϕ and L♮q,ψ with variable growth condition. More-

over, to consider blowup (or non-blowup) criterion we will use the following

estimate on the value of functions at a certain point x0:

|f(x0)| ≤ C∥f∥L♮q,ψ . (1.4)

For this estimate Campanato spaces with variable growth condition are very
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useful, since variable growth condition can control the continuity and inte-

grability of functions on the neighborhood at each point.

In the next section we define Campanato spaces with variable growth

condition and state their several properties. We give the boundedness of the

Riesz transforms, operators of convolution type, and pointwise multipliers

on Campanato spaces with variable growth condition in Sections 3, 4 and

5, respectively. Then we formulate a blowup criteria for the 3D Navier-

Stokes flow in Section 6, which is proved in Section 7. The most significant

blowup criterion must be the Beale-Kato-Majda criterion [1]. On the other

hand, Constantin and Fefferman [7] (see also [8]) took into account geometric

structure of the vortex stretching term in the vorticity equations to get

another kind of blowup condition. These two separate forms of criteria

controlling the blow-up by magnitude and the direction of the vorticity

respectively are interpolated by Chae [5]. In this paper, we give a different

type of blowup criterion from them. We focus on a geometric behavior of

the velocity vector field near the each maximum points. Further, we give

in Section 8 the specific function spaces of Campanato spaces with variable

growth condition as suitable examples for our blowup criteria. Finally, as

another application of Campanato spaces with variable growth condition,

we give an existence theorem on the Cauchy problem for the Navier-Stokes

equation in Section 9.

2. Campanato spaces with variable growth condition

In this section we define Campanato spaces L♮p,ϕ with variable growth

condition. We state basic properties of the function spaces L♮p,ϕ. To do

this we also define Morrey spaces and Hölder spaces with variable growth

condition.

Let Rn be the n-dimensional Euclidean space. We denote by B(x, r)

the open ball centered at x ∈ Rn and of radius r > 0, that is,

B(x, r) = {y ∈ Rn : |y − x| < r}.

For a measurable set G ⊂ Rn, we denote by |G| and χG the Lebesgue

measure of G and the characteristic function of G, respectively.

We consider variable growth functions ϕ : Rn × (0,∞) → (0,∞). For a

ball B = B(x, r), write ϕ(B) in place of ϕ(x, r). For a function f ∈ L1
loc(Rn)



102 E. Nakai and T. Yoneda

and for a ball B, let

fB = |B|−1

∫
B

f(x) dx.

Then we define Campanato spaces Lp,ϕ(Rn) and L♮p,ϕ(Rn), Morrey spaces

Lp,ϕ(Rn), and Hölder spaces Λϕ(Rn) and Λ♮ϕ(Rn) with variable growth func-

tions ϕ as the following:

Definition 2.1 For 1 ≤ p < ∞ and ϕ : Rn × (0,∞) → (0,∞), function

spaces Lp,ϕ(Rn), L♮p,ϕ(Rn), Lp,ϕ(Rn), Λϕ(Rn), Λ
♮
ϕ(Rn) are the sets of all

functions f such that

∥f∥Lp,ϕ = sup
B

1

ϕ(B)

(
1

|B|

∫
B

|f(x)− fB |p dx
)1/p

<∞,

∥f∥L♮p,ϕ = ∥f∥Lp,ϕ + |fB(0,1)| <∞,

∥f∥Lp,ϕ = sup
B

1

ϕ(B)

(
1

|B|

∫
B

|f(x)|p dx
)1/p

<∞,

∥f∥Λϕ = sup
x,y∈Rn, x ̸=y

2|f(x)− f(y)|
ϕ(x, |x− y|) + ϕ(y, |y − x|)

<∞,

∥f∥Λ♮ϕ = ∥f∥Λϕ + |f(0)| <∞,

respectively.

We regard L♮p,ϕ(Rn) and Lp,ϕ(Rn) as spaces of functions modulo null-

functions, Lp,ϕ(Rn) as spaces of functions modulo null-functions and con-

stant functions, Λ♮ϕ(Rn) as a space of functions defined at all x ∈ Rn, and
Λϕ(Rn) as a space of functions defined at all x ∈ Rn modulo constant func-

tions. Then these five functionals are norms and thereby these spaces are

all Banach spaces.

In order to apply the Campanato spaces L♮p,ϕ(Rn) to the blowup crite-

rion (more precisely, in order to find specific function spaces satisfying (1.2),

(1.3) and (1.4)), we state several properties of L♮p,ϕ(Rn) and the relation be-

tween ϕ and L♮p,ϕ(Rn).
For two variable growth functions ϕ1 and ϕ2, we write ϕ1 ∼ ϕ2 if there
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exists a positive constant C such that

C−1ϕ1(B) ≤ ϕ2(B) ≤ Cϕ1(B) for all balls B.

In this case, two spaces defined by ϕ1 and by ϕ2 coincide with equivalent

norms. If p = 1 and ϕ ≡ 1, then Lp,ϕ(Rn) is the usual BMO(Rn). For

ϕ(x, r) = rα, 0 < α ≤ 1, we denote Λrα(Rn) and Λ♮rα(Rn) by Lipα(Rn) and
Lip♮α(Rn), respectively. In this case,

∥f∥Lipα = sup
x,y∈Rn, x ̸=y

|f(x)− f(y)|
|x− y|α

and ∥f∥Lip♮α = ∥f∥Lipα + |f(0)|.

If ϕ(x, r) = min(rα, 1), 0 < α ≤ 1, then

∥f∥Λ♮ϕ ∼ ∥f∥Lipα + ∥f∥L∞ .

From the definition it follows that

∥f∥Lp,ϕ ≤ 2∥f∥Lp,ϕ , ∥f∥L♮p,ϕ ≤ (2 + ϕ(0, 1))∥f∥Lp,ϕ .

If ϕ(B) = |B|−1/p for all balls B, then

∥f∥Lp,ϕ = ∥f∥Lp .

We consider the following conditions on variable growth function ϕ:

1

A1
≤ ϕ(x, s)

ϕ(x, r)
≤ A1,

1

2
≤ s

r
≤ 2, (2.1)

1

A2
≤ ϕ(x, r)

ϕ(y, r)
≤ A2, d(x, y) ≤ r, (2.2)

ϕ(x, r) ≤ A3ϕ(x, s), 0 < r < s <∞, (2.3)

where Ai, i = 1, 2, 3, are positive constants independent of x, y ∈ Rn and

r, s > 0. Note that (2.2) and (2.3) imply that there exists a positive constant

C such that

ϕ(x, r) ≤ Cϕ(y, s) for B(x, r) ⊂ B(y, s),
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where the constant C is independent of balls B(x, r) and B(y, s).

The following three theorems are known:

Theorem 2.1 ([22]) If ϕ satisfies (2.1), (2.2) and (2.3), then, for every

1 ≤ p < ∞, Lp,ϕ(Rn) = L1,ϕ(Rn) and L♮p,ϕ(Rn) = L♮1,ϕ(Rn) with equivalent

norms, respectively.

Theorem 2.2 ([21]) If ϕ satisfies (2.1), (2.2), (2.3), and there exists a

positive constant C such that∫ r

0

ϕ(x, t)

t
dt ≤ Cϕ(x, r), x ∈ Rn, r > 0, (2.4)

then, for every 1 ≤ p < ∞, each element in L♮p,ϕ(Rn) can be regarded as

a continuous function, (that is, each element is equivalent to a continuous

function modulo null-functions) and Lp,ϕ(Rn) = Λϕ(Rn) and L♮p,ϕ(Rn) =

Λ♮ϕ(Rn) with equivalent norms, respectively. In particular, if ϕ(x, r) = rα,

0 < α ≤ 1, then, for every 1 ≤ p < ∞, L♮p,ϕ(Rn) = Lip♮α(Rn) and

Lp,ϕ(Rn) = Lipα(Rn) with equivalent norms, respectively.

Theorem 2.3 ([21]) Let 1 ≤ p <∞. If ϕ satisfies (2.1), (2.2), and there

exists a positive constant C such that∫ ∞

r

ϕ(x, t)

t
dt ≤ Cϕ(x, r), x ∈ Rn, r > 0, (2.5)

then, for f ∈ Lp,ϕ(Rn), the limit σ(f) = lim
r→∞

fB(0,r) exists and

∥f∥Lp,ϕ ∼ ∥f − σ(f)∥Lp,ϕ .

That is, the mapping f 7→ f − σ(f) is bijective and bicontinuous from

Lp,ϕ(Rn) (modulo constants) to Lp,ϕ(Rn).

Remark 2.1 The following inequality is important to prove Theorems 2.2

and 2.3. It is proven by an elementaly calculation, see [21, (3.6) on page 7].

|fB(x,r1)−fB(x,r2)| ≤ C

∫ 2r2

r1

ϕ(x, t)

t
dt ∥f∥Lp,ϕ for x ∈ Rn, r1 < r2. (2.6)
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Remark 2.2 If
∫∞
1
ϕ(0, t)/t dt < ∞, then, for every f ∈ Lp,ϕ(Rn), there

exists a constant σ(f) such that lim
r→∞

fB(x,r) = σ(f) for all x ∈ Rn, see [21,

Lemma 3.2].

Remark 2.3 If
∫∞
1
ϕ(0, t)/t dt < ∞, then ϕ(0, r) → 0 as r → ∞. Hence,

for f ∈ Lp,ϕ(Rn), we have

|σ(f)| = lim
r→∞

|fB(0,r)| ≤ lim
r→∞

ϕ(0, r)∥f∥Lp,ϕ → 0 as r → ∞.

That is, σ(f) = 0.

For a ball B∗ ⊂ Rn and 0 < α ≤ 1, let

∥f∥Lipα(B∗) = sup
x,y∈B∗, x ̸=y

|f(x)− f(y)|
|x− y|α

.

We also conclude the following:

Proposition 2.4 Let 1 ≤ p < ∞ and 0 < α ≤ 1. Assume that, for a ball

B∗,

ϕ(x, r) = rα for all balls B(x, r) ⊂ B∗. (2.7)

Then each element f in L♮p,ϕ(Rn) can be regarded as a continuous function

on the ball B∗, and, there exists a positive constant C such that

∥f∥Lipα(B∗) ≤ C∥f∥Lp,ϕ ,

where C is dependent only on n and α. In particular, if (2.7) holds for

B∗ = B(0, 1), then each f ∈ L♮p,ϕ(Rn) is α-Lipschitz continuous near the

origin and

∥f∥L♮p,ϕ ∼ ∥f∥Lp,ϕ + |f(0)|.

Proof. By (2.6) we have that, if B(x, r), B(y, r) ⊂ B∗, then

|fB(x,r) − fB(y,r)| ≤ C

∫ 2r+|x−y|

r

tα

t
dt ∥f∥Lp,ϕ ≤ C∗(2r+ |x− y|)α ∥f∥Lp,ϕ ,
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since B(x, r), B(y, r) ⊂ B((x+ y)/2, r + |x− y|/2), where C∗ is dependent

only on n and α. Letting r → 0, we have

|f(x)− f(y)| ≤ C∗|x− y|α ∥f∥Lp,ϕ ,

for almost every x, y ∈ B∗. In this case we can regard that f is a continuous

function modulo null-functions and we have

∥f∥Lipα(B∗) ≤ C∗∥f∥Lp,ϕ .

If B∗ = B(0, 1), then

|fB(0,r) − fB(0,1)| ≤ C

∫ 2

r

tα

t
dt ∥f∥Lp,ϕ ≤ C∥f∥Lp,ϕ .

Letting r → 0, we have

|f(0)− fB(0,1)| ≤ C∥f∥Lp,ϕ .

This shows that ∥f∥Lp,ϕ + |fB(0,1)| ∼ ∥f∥Lp,ϕ + |f(0)|. □

Proposition 2.5 Let 1 ≤ p < ∞. Assume that there exists a positive

constant A such that

ϕ(B) ≤ A|B|−1/p for all balls B.

Then there exists a positive constant C such that, if f ∈ Lp,ϕ(Rn) and

σ(f) = lim
r→∞

fB(0,r) = 0, then f ∈ Lp(Rn) and

∥f∥Lp ≤ C∥f∥Lp,ϕ .

Proof. Let ϕ̃(B) = |B|−1/p. Then ϕ̃ satisfies (2.5). Hence, by Theorem 2.3

we have

∥f∥Lp,ϕ̃ = ∥f − σ(f)∥Lp,ϕ̃ ∼ ∥f∥Lp,ϕ̃ .

Since ∥f∥Lp,ϕ̃ = ∥f∥Lp and ∥f∥Lp,ϕ̃ ≤ A∥f∥Lp,ϕ , we have the conclusion. □
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3. Singular integral operators

In this section we consider the singular integral theory to show the

boundedness of Riesz transforms in Campanato spaces with variable growth

condition. We denote by Lpc(Rn) the set of all f ∈ Lp(Rn) with compact

support. Let 0 < κ ≤ 1. We shall consider a singular integral operator T

with measurable kernel K on Rn × Rn satisfying the following properties:

|K(x, y)| ≤ C

|x− y|n
for x ̸= y, (3.1)

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ C

|x− y|n

(
|x− z|
|x− y|

)κ
for |x− y| ≥ 2|x− z|,

(3.2)

∫
r≤|x−y|<R

K(x, y) dy =

∫
r≤|x−y|<R

K(y, x) dy = 0

for 0 < r < R <∞ and x ∈ Rn,
(3.3)

where C is a positive constant independent of x, y, z ∈ Rn. For η > 0, let

Tηf(x) =

∫
|x−y|≥η

K(x, y)f(y) dy.

Then Tηf(x) is well defined for f ∈ Lpc(Rn), 1 < p < ∞. We assume that,

for all 1 < p < ∞, there exists positive constant Cp independently η > 0

such that,

∥Tηf∥Lp ≤ Cp∥f∥Lp for f ∈ Lpc(Rn),

and Tηf converges to Tf in Lp(Rn) as η → 0. By this assumption, the

operator T can be extended as a continuous linear operator on Lp(Rn).
We shall say the operator T satisfying the above conditions is a singular

integral operator of type κ. For example, Riesz transforms are singular

integral operators of type 1.

Now, to define T for functions f ∈ L♮p,ϕ(Rn), we first define the modified

version of Tη by
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T̃ηf(x) =

∫
|x−y|≥η

f(y)
[
K(x, y)−K(0, y)(1− χB(0,1)(y))

]
dy. (3.4)

Then we can show that the integral in the definition above converges abso-

lutely for each x and that T̃ηf converges in Lp(B) as η → 0 for each ball B.

We denote the limit by T̃ f . If both T̃ f and Tf are well defined, then the

difference is a constant.

We can show the following results. Theorem 3.1 is an extension of [23,

Theorem 4.1] and Theorem 3.3 is an extension of [19, Theorem 2]. The

proofs are almost the same.

Theorem 3.1 Let 0 < κ ≤ 1 and 1 < p < ∞. Assume that ϕ and ψ

satisfy (2.1) and that there exists a positive constant A such that, for all

x ∈ Rn and r > 0,

rκ
∫ ∞

r

ϕ(x, t)

t1+κ
dt ≤ Aψ(x, r). (3.5)

If T is a singular integral operator of type κ, then T̃ is bounded from Lp,ϕ(Rn)
to Lp,ψ(Rn) and from L♮p,ϕ(Rn) to L♮p,ψ(Rn), that is, there exists a positive

constants C such that

∥T̃ f∥Lp,ψ ≤ C∥f∥Lp,ϕ , ∥T̃ f∥L♮p,ψ ≤ C∥f∥L♮p,ϕ .

Moreover, if ϕ and ψ satisfy (2.2) and (2.3) also, then T̃ is bounded from

L♮1,ϕ(Rn) to L♮1,ψ(Rn).

Corollary 3.2 Under the assumption in Theorem 3.1, if ϕ and ψ satisfies

(2.2), (2.3) and (2.4), then T̃ is bounded from Λϕ(Rn) to Λψ(Rn) and from

Λ♮ϕ(Rn) to Λ♮ψ(Rn).

For Morrey spaces Lp,ϕ(Rn), we have the following.

Theorem 3.3 Let 0 < κ ≤ 1 and 1 < p < ∞. Assume that ϕ and ψ

satisfy (2.1) and that there exists a positive constant A such that, for all

x ∈ Rn and r > 0, ∫ ∞

r

ϕ(x, t)

t
dt ≤ Aψ(x, r).
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If T is a singular integral operator of type κ, then T is bounded from Lp,ϕ(Rn)
to Lp,ψ(Rn).

Now we state the boundedness of Riesz transforms. For f in Schwartz

class, the Riesz transforms of f are defined by

Rjf(x) = cn lim
ε→0

Rj,εf(x), j = 1, . . . , n,

where

Rj,εf(x) =

∫
Rn\B(x,ε)

xj − yj
|x− y|n+1

f(y) dy, cn = Γ

(
n+ 1

2

)
π−(n+1)/2.

Then it is known that there exists a positive constant Cp independently

ε > 0 such that,

∥Rj,εf∥Lp ≤ Cp∥f∥Lp for f ∈ Lpc(Rn),

and Rj,εf converges to Rjf in Lp(Rn) as ε → 0. That is, the operator Rj
can be extended as a continuous linear operator on Lp(Rn). Hence, we can

define modified Riesz transforms of f as

R̃jf(x) = cn lim
ε→0

R̃j.εf(x), j = 1, . . . , n,

and

R̃j.εf(x) =

∫
Rn\B(x,ε)

(
xj − yj

|x− y|n+1
−

(−yj)(1− χB(0,1)(y))

|y|n+1

)
f(y) dy.

We note that, if both Rjf and R̃jf are well defined on Rn, then Rjf − R̃jf

is a constant function. More precisely,

Rjf(x)− R̃jf(x) = cn

∫
Rn

(−yj)(1− χB(0,1)(y))

|y|n+1
f(y) dy.

Remark 3.1 If f is a constant function, then R̃jf = 0. Actually, for

f ≡ 1,
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R̃j.ε1(x) =

∫
Rn\B(x,ε)

(xj − yj)χB(x,1)

|x− y|n+1
dy

+

∫
Rn\B(x,ε)

(
(xj − yj)(1− χB(x,1))

|x− y|n+1
−

(−yj)(1− χB(0,1)(y))

|y|n+1

)
dy

=

∫
B(x,ε)

(−yj)(1− χB(0,1)(y))

|y|n+1
dy → 0 as ε→ 0,

since ∫
Rn\B(x,ε)

(xj − yj)χB(x,1)

|x− y|n+1
dy =

∫
B(0,1)\B(0,ε)

yj
|y|n+1

dy = 0

and ∫
Rn

(
(xj − yj)(1− χB(x,1))

|x− y|n+1
−

(−yj)(1− χB(0,1)(y))

|y|n+1

)
dy = 0.

Hence R̃j1(x) = 0 for all x ∈ Rn.

Theorem 3.4 Let 1 < p <∞, and let ϕ satisfy (2.1) and

r

∫ ∞

r

ϕ(x, t)

t2
dt ≤ Aϕ(x, r), (3.6)

for all x ∈ Rn and r > 0. Assume that there exists a growth function ϕ̃

such that ϕ ≤ ϕ̃ and that ϕ̃ satisfies (2.1), (2.2) and (2.5). If f ∈ L♮p,ϕ(Rn)
and σ(f) = lim

r→∞
fB(0,r) = 0, then Rjf , j = 1, 2, . . . , n, are well defined,

σ(Rjf) = lim
r→∞

(Rjf)B(0,r) = 0, and

∥Rjf∥L♮p,ϕ ≤ C∥f∥L♮p,ϕ , j = 1, 2, . . . , n,

where C is a positive constant independent of f .

Proof. Let f ∈ L♮p,ϕ(Rn) and σ(f) = 0. Then, by Theorem 2.3,

∥f∥Lp,ϕ̃ = ∥f − σ(f)∥Lp,ϕ̃ ∼ ∥f∥Lp,ϕ̃ ≤ ∥f∥Lp,ϕ ≤ ∥f∥L♮p,ϕ .
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By Theorem 3.3 Rjf is well defined and

∥Rjf∥Lp,ϕ̃ ≤ C∥f∥Lp,ϕ̃ ≤ C∥f∥L♮p,ϕ .

This shows that σ(Rjf) = 0 by Remark 2.3 and

|(Rjf)B(0,1)| ≤

(
1

|B(0, 1)|

∫
B(0,1)

|Rjf(x)|p dx

)1/p

≤ ϕ̃(0, 1)∥Rjf∥Lp,ϕ̃ ≤ C∥f∥L♮p,ϕ .

Since Rjf − R̃jf is a constant, by Theorem 3.1, we have

∥Rjf∥Lp,ϕ = ∥R̃jf∥Lp,ϕ ≤ C∥f∥Lp,ϕ ≤ C∥f∥L♮p,ϕ .

Therefore, we have ∥Rjf∥L♮p,ϕ ≤ C∥f∥L♮p,ϕ . □

Remark 3.2 Under the assumption in Theorem 3.4, for f ∈ L♮p,ϕ(Rn)
with σ(f) = lim

r→∞
fB(0,r) = 0, RiRjf is well defined and

∥RiRjf∥L♮p,ϕ ≤ C∥f∥L♮p,ϕ , i, j = 1, . . . , n.

4. Convolution

In this section we prove the boundedness of operators of convolution

type with nice functions like the heat kernel. For a function g and s > 0,

let gs(x) = g(x/s)/sn.

Theorem 4.1 Let 1 ≤ p1, p2, p3 <∞ and 1+1/p1 = 1/p2+1/p3. Assume

that ϕ satisfies (2.1) and (2.5). Let g ∈ Lp3(Rn) and there exists a positive

constant C0 such that

|g(x)| ≤ C0

|x|n
for x ̸= 0. (4.1)

Then there exists a positive constant C such that, for all s ∈ (0,∞) and

f ∈ Lp2,ϕ(Rn),
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∥gs ∗ f∥Lp1,θ ≤ C(1 + s−(1/p2−1/p1)n)∥f∥Lp2,ϕ .

where θ(x, r) = (1 + r(1/p2−1/p1)n)ϕ(x, r).

Theorem 4.2 Let 1 ≤ p1, p2, p3 <∞ and 1+1/p1 = 1/p2+1/p3. Assume

that ϕ satisfies (2.1) and (3.6). Let g ∈ Lp3(Rn) ∩ C1(Rn) and there exists

a positive constant C0 such that

|g(x)| ≤ C0 min

(
1

|x|n
,

1

|x|n+1

)
, |∇g(x)| ≤ C0

|x|n+1
for x ̸= 0. (4.2)

Then there exists a positive constant C such that, for all s ∈ (0,∞) and

f ∈ Lp2,ϕ(Rn),

∥gs ∗ f∥Lp1,θ ≤ C(1 + s−(1/p2−1/p1)n)∥f∥Lp2,ϕ ,

where θ(x, r) = (1+r(1/p2−1/p1)n)ϕ(x, r). Moreover, assume that there exists

a positive constant Cϕ such that, for all x ∈ Rn,
∫∞
1

(ϕ(x, t)/t)dt ≤ Cϕ.

Then there exists a positive constant C such that, for all s ∈ (0,∞) and

f ∈ L♮p2,ϕ(R
n),

∥gs ∗ f∥L♮p1,θ
≤ C(1 + s−(1/p2−1/p1)n)∥f∥L♮p2,ϕ

.

Further, if lim
r→∞

sup
x∈Rn

∫∞
r

(ϕ(x, t)/t)dt = 0, then σ(f) = lim
r→∞

fB(0,r) = 0

implies σ(gs ∗ f) = lim
r→∞

(gs ∗ f)B(0,r) = 0.

Theorem 4.3 Let 1 ≤ p1, p2, p3 <∞ and 1+1/p1 = 1/p2+1/p3. Assume

that ψ satisfies (2.1) and (3.6) and that there exists a positive constant

Cψ such that, for all x ∈ Rn,
∫∞
0

(ψ(x, t)/t)dt ≤ Cψ. Assume also that

lim
r→∞

sup
x∈Rn

∫∞
r

(ψ(x, t)/t)dt = 0. Let

ϕ(x, r) =

{
ψ(x, r) r < 1,

ψ(x, r)p2/p1 r ≥ 1.

Let g ∈ Lp3(Rn) ∩ C1(Rn) and g satisfy (4.2). Then there exists a positive

constant C such that, for all s ∈ (0,∞), if f ∈ L♮p2,ψ(R
n) and σ(f) =
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lim
r→∞

fB(0,r) = 0, then σ(gs ∗ f) = lim
r→∞

(gs ∗ f)B(0,r) = 0, and

∥gs ∗ f∥L♮p1,ϕ
≤ C(1 + s−(1/p2−1/p1)n)∥f∥L♮p2,ψ

.

Next we apply above theorems to the heat kernel. Then we have the

following corollaries.

Corollary 4.4 Let 1 ≤ p2 ≤ p1 < ∞. Assume that ϕ satisfies (2.1) and

(3.6). Let

ht(x) =
1

(4πt)n/2
e−|x|2/4t for x ∈ Rn, t ∈ (0,∞). (4.3)

Then there exists a positive constant C such that, for all t ∈ (0,∞) and

f ∈ Lp2,ϕ(Rn),

∥ht ∗ f∥Lp1,θ ≤ C(1 + t−(1/p2−1/p1)n/2)∥f∥Lp2,ϕ ,

∥(∇ht) ∗ f∥Lp1,θ ≤ Ct−1/2(1 + t−(1/p2−1/p1)n/2)∥f∥Lp2,ϕ ,

where θ(x, r) = (1+r(1/p2−1/p1)n)ϕ(x, r). Moreover, assume that there exists

a positive constant Cϕ such that, for all x ∈ Rn,
∫∞
1

(ϕ(x, t)/t)dt ≤ Cϕ.

Then there exists a positive constant C such that, for all t ∈ (0,∞) and

f ∈ L♮p2,ϕ(R
n),

∥ht ∗ f∥L♮p1,θ
≤ C(1 + t−(1/p2−1/p1)n/2)∥f∥L♮p2,ϕ

,

∥(∇ht) ∗ f∥L♮p1,θ
≤ Ct−1/2(1 + t−(1/p2−1/p1)n/2)∥f∥L♮p2,ϕ

.

Further, if lim
r→∞

sup
x∈Rn

∫∞
r

(ϕ(x, t)/t)dt = 0, then σ(f) = 0 implies σ(ht ∗f) =

σ((∇ht) ∗ f) = 0.

Corollary 4.5 Let 1 ≤ p2 ≤ p1 < ∞. Assume that ϕ and ψ satisfy the

same conditions in Theorem 4.3. Let ht be the function defined by (4.3).

Then there exists a positive constant C such that, for all t ∈ (0,∞), if

f ∈ L♮p2,ψ(R
n) and σ(f) = 0, then σ(ht ∗ f) = σ((∇ht) ∗ f) = 0 and
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∥ht ∗ f∥L♮p1,ϕ
≤ C(1 + t−(1/p2−1/p1)n/2)∥f∥L♮p2,ψ

,

∥(∇ht) ∗ f∥L♮p1,ϕ
≤ Ct−1/2(1 + t−(1/p2−1/p1)n/2)∥f∥L♮p2,ψ

.

To prove Theorems 4.1, 4.2 and 4.3 we state the following lemma which

is proven by the same way as [23, Lemmas 6.5 and 6.6].

Lemma 4.6 If ϕ satisfies (2.1), then there exists a positive constant C

such that, for all balls B(x, r),∫
Rn\B(x,r)

|f(y)|
|x− y|n

dy ≤ C

∫ ∞

r

ϕ(x, t)

t
∥f∥L1,ϕ

,

and ∫
Rn\B(x,r)

|f(y)− fB(x,r)|
|x− y|n+1

dy ≤ C

∫ ∞

r

ϕ(x, t)

t2
∥f∥L1,ϕ

.

Proof of Theorem 4.1. First note that, from (4.1) it follows that |gs(x)| ≤
C0/|x|n for x ̸= 0.

Let f ∈ Lp2,ϕ(Rn). For any ball B = B(z, r), let f1 = fχ2B and

f2 = f − f1. Then we have(∫
B

|gs ∗ f1(x)|p1 dx
)1/p1

≤ ∥gs ∗ f1(x)∥Lp1 ≤ ∥gs∥Lp3∥f1∥Lp2

= s−(1/p2−1/p1)n∥g∥Lp3
(∫

2B

|f(x)|p2 dx
)1/p2

≤ s−(1/p2−1/p1)n∥g∥Lp3 |2B|1/p2ϕ(2B)∥f∥Lp2,ϕ .

That is, (
1

|B|

∫
B

|gs ∗ f1(x)|p1 dx
)1/p1

≤ Cs−(1/p2−1/p1)n|B|1/p2−1/p1ϕ(B)∥f∥Lp2,ϕ . (4.4)

Next, for x ∈ B, using Lemma 4.6 and (2.5), we have
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|gs ∗ f2(x)| =
∣∣∣∣∫

Rn
gs(x− y)f2(y) dy

∣∣∣∣ ≤ C0

∫
Rn\2B

|f(y)|
|x− y|n

dy

≤ C

∫ ∞

2r

ϕ(z, t)

t
∥f∥L1,ϕ

≤ Cϕ(z, r)∥f∥Lp2,ϕ .

This shows that gs ∗ f is well defined and that(
1

|B|

∫
B

|gs ∗ f2(x)|p1 dx
)1/p1

≤ Cϕ(B)∥f∥Lp2,ϕ . (4.5)

By (4.4) and (4.5) we have the conclusion. □

Proof of Theorem 4.2. First note that, from (4.2) it follows that

|gs(x)| ≤ C0 min

(
1

|x|n
,

s

|x|n+1

)
, for x ̸= 0,

and that

|gs(x− y)− gs(z − y)| ≤ 2n+1C0
|x− z|

|x− y|n+1
for |x− y| ≥ 2|x− z|.

Let f ∈ Lp2,ϕ(Rn). We first show that gs ∗ f is well defined. For any

r > 0, let f1 = fχB(0,2r) and f2 = f − f1. Then gs ∗ f1 is well defined, since

gs ∈ Lp3 and f1 ∈ Lp2(Rn). On the other hand, for x ∈ B(0, r),

|gs ∗ f2(x)| ≤
∫
Rn

|gs(x− y)f2(y)| dy

≤ C0s

∫
Rn\B(0,2r)

|f(y)− fB(0,2r)|+ |fB(0,2r)|
|x− y|n+1

dy.

Using Lemma 4.6 and (3.6), we have

|gs ∗ f2(x)| ≤ Cs

(∫ ∞

2r

ϕ(0, t)

t2
∥f∥L1,ϕ

+
|fB(0,2r)|

r

)
≤ Cs

(
ϕ(0, r)

r
∥f∥Lp2,ϕ +

|fB(0,2r)|
r

)
.
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This shows that gs ∗f is well defined. It is also clear that gt ∗1 is a constant

function.

Next we estimate the norm of gs ∗ f . For any ball B = B(z, r), let

f̃1 = (f − f(2B))χ2B and f̃2 = (f − f(2B))χRn\2B . Then

gs ∗ f(x)− gs ∗ f(z) + gs ∗ f̃1(z)

= gs ∗ (f − f(2B))(x)− gs ∗ (f − f(2B))(z) + gs ∗ f̃1(z)

= gs ∗ f̃1(x) + gs ∗ f̃2(x)− gs ∗ f̃2(z).

For the term gs ∗ f̃1, we have(∫
B

|gs ∗ f̃1(x)|p1 dx
)1/p1

≤ ∥gs ∗ f̃1∥Lp1 ≤ ∥gs∥Lp3 ∥f̃1∥Lp2

= s−(1/p2−1/p1)n∥g∥Lp3
(∫

2B

|f(x)− f(2B)|p2 dx
)1/p2

≤ s−(1/p2−1/p1)n∥g∥Lp3 |2B|1/p2ϕ(2B)∥f∥Lp2,ϕ .

That is, (
1

|B|

∫
B

|gs ∗ f̃1(x)|p1 dx
)1/p1

≤ Cs−(1/p2−1/p1)n|B|1/p2−1/p1ϕ(B)∥f∥Lp2,ϕ . (4.6)

For x ∈ B, using Lemma 4.6 and (3.6), we have

|gs ∗ f̃2(x)− gs ∗ f̃2(z)| =
∣∣∣∣∫

Rn
(gs(x− y)− gs(z − y))f̃2(y) dy

∣∣∣∣
≤
∫
Rn\2B

|gs(x− y)− gs(z − y)||f(y)− f2B | dy

≤ 2n+1C0

∫
Rn\2B

|x− z|
|z − y|n+1

|f(y)− f2B | dy
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≤ Cr

∫ ∞

r

ϕ(z, t)

t2
∥f∥L1,ϕ

≤ Cϕ(z, r)∥f∥Lp2,ϕ .

Then,(
1

|B|

∫
B

|gs ∗ f̃2(x)− gs ∗ f̃2(z)|p1 dx
)1/p1

≤ Cϕ(B)∥f∥Lp2,ϕ . (4.7)

By (4.6) and (4.7) we have

(
1

|B|

∫
B

|gs ∗ f(x)− gs ∗ f(z) + gs ∗ f̃1(z)|p1 dx
)1/p1

≤ C(1 + s−(1/p2−1/p1)n)(1 + |B|1/p2−1/p1)ϕ(B)∥f∥Lp2,ϕ .

That is,

∥gs ∗ f∥Lp1,θ ≤ C(1 + s−(1/p2−1/p1)n)∥f∥Lp2,ϕ .

Next we show that

|(gs ∗ f)B(0,1)| ≤ C∥f∥L♮p2,ϕ
, (4.8)

under the assumption that
∫∞
1

(ϕ(x, t)/t)dt ≤ Cϕ. By Remark 2.1 and an

elementary calculation we have

|fB(y,1) − fB(0,1)| = |fB(y,1) − fB(y,1+|y|)|+ |fB(y,1+|y|) − fB(0,1+2|y|)|

+ |fB(0,1+2|y|) − fB(0,1)|

≤
(
C

∫ ∞

1

ϕ(y, t) + ϕ(0, t)

t
dt+ 2nϕ(0, 1 + 2|y|)

)
∥f∥Lp2,ϕ

≤ CCϕ∥f∥Lp2,ϕ .

Then

|fB(y,1)| ≤ CCϕ∥f∥Lp2,ϕ + |fB(0,1)| ≤ CCϕ∥f∥L♮p2,ϕ
for all y ∈ Rn,
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and∣∣∣∣ 1

|B(0, 1)|

∫
B(0,1)

gs ∗ f(x) dx
∣∣∣∣ = ∣∣∣∣ 1

|B(0, 1)|

∫
B(0,1)

∫
Rn
gs(y)f(x− y) dy dx

∣∣∣∣
=

∣∣∣∣∫
Rn
gs(y)fB(−y,1) dy

∣∣∣∣
≤ CCϕ∥gs∥L1∥f∥L♮p2,ϕ

.

That is, we have (4.8) and

∥gs ∗ f∥L♮p1,θ
≤ C(1 + s−(1/p2−1/p1)n)∥f∥L♮p2,ϕ

.

If supx∈Rn
∫∞
r

(ϕ(x, t)/t)dt → 0 as r → ∞ and σ(f) = 0, then we have by

Remark 2.1

|fB(y,r)| = |fB(y,r) − σ(f)| ≤ C

∫ ∞

r

ϕ(y, t)

t
dt∥f∥Lp2,ϕ ,

and∣∣∣∣ 1

|B(0, r)|

∫
B(0,r)

gs ∗ f(x) dx
∣∣∣∣ = ∣∣∣∣∫

Rn
gs(y)fB(−y,r) dy

∣∣∣∣
≤ ∥gs∥L1 sup

y∈Rn

∫ ∞

r

ϕ(y, t)

t
dt∥f∥Lp2,ϕ → 0

as r → ∞.

The proof is complete. □

Proof of Theorem 4.3. Let f ∈ L♮p2,ψ(R
n). By the same way in the proof

of Theorem 4.2 we see that gs ∗ f is well defined. Next we estimate the

norm of gs ∗ f . As in the proof of Theorem 4.2, for any ball B = B(z, r), let

f̃1 = (f − f(2B))χ2B and f̃2 = (f − f(2B))χRn\2B . Then, by the same way

as (4.6) and (4.7) we have

(
1

|B|

∫
B

|gs ∗ f̃1(x)|p1 dx
)1/p1

≤ Cs−(1/p2−1/p1)n|B|1/p2−1/p1ψ(B)∥f∥Lp2,ψ
(4.9)
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and(
1

|B|

∫
B

|gs ∗ f̃2(x)− gs ∗ f̃2(z)|p1 dx
)1/p1

≤ Cψ(B)∥f∥Lp2,ψ , (4.10)

respectively. On the other hand, by the assumption that
∫∞
0

(ψ(x, t)/t)dt ≤
Cψ we have that f ∈ L∞(Rn) and ∥f∥L∞ ≤ C∥f∥L♮p2,ψ

, see Remark 5.1

below. Hence, we have also(∫
B

|gs ∗ f̃1(x)|p1 dx
)1/p1

≤ ∥gs ∗ f̃1∥Lp1 ≤ ∥gs∥L1∥f̃1∥Lp1

= ∥g∥L1

(∫
2B

|f(x)− f(2B)|p1 dx
)1/p1

≤ C∥f∥1−p2/p1L∞

(∫
2B

|f(x)− f(2B)|p2 dx
)1/p1

≤ C∥f∥1−p2/p1L∞ |2B|1/p1ψ(2B)p2/p1∥f∥p2/p1Lp2,ψ
.

That is,(
1

|B|

∫
B

|gs ∗ f̃1(x)|p1 dx
)1/p1

≤ Cψ(B)p2/p1∥f∥L♮p2,ψ
. (4.11)

Here we note that ψ(z, r) ≤ C
∫ 2r

r
(ψ(z, t)/t)dt ≤ CC0. Then ψ(B) ≤

Cψ(B)p2/p1 and

min(|B|1/p2−1/p1ψ(B), ψ(B)p2/p1) + ψ(B) ≤ Cϕ(B).

Combining (4.9), (4.10) and (4.11), we have

(
1

|B|

∫
B

|gs ∗ f(x)− gs ∗ f(z) + gs ∗ f̃1(z)|p1 dx
)1/p1

≤ C(1 + s−(1/p2−1/p1)n)ϕ(B)∥f∥L♮p2,ψ
.

That is,



120 E. Nakai and T. Yoneda

∥gs ∗ f∥Lp1,ϕ ≤ C(1 + s−(1/p2−1/p1)n)∥f∥L♮p2,ψ
.

Moreover, as in the proof of Theorem 4.2, we also have that

∥gs ∗ f∥L♮p1,ϕ
≤ C(1 + s−(1/p2−1/p1)n)∥f∥L♮p2,ψ

and that σ(f) = lim
r→∞

fB(0,r) = 0 implies σ(gs ∗ f) = lim
r→∞

(gs ∗ f)B(0,r) = 0.

□

5. Pointwise multiplication

Let L0(Rn) be the set of all measurable functions on Rn. Let X1 and X2

be subspaces of L0(Rn) and g ∈ L0(Rn). We say that g is a pointwise multi-

plier from X1 to X2 if fg ∈ X2 for all f ∈ X1. We denote by PWM(X1, X2)

the set of all pointwise multipliers from X1 to X2.

For ϕ : Rn × (0,∞) → (0,∞), we define

Φ∗(x, r) =

∫ max(2,|x|,r)

1

ϕ(0, t)

t
dt, (5.1)

Φ∗∗(x, r) =

∫ max(2,|x|,r)

r

ϕ(x, t)

t
dt. (5.2)

Let 1 ≤ p < ∞ and ϕ satisfy the doubling condition (2.1). Then, for

f ∈ L♮p,ϕ(Rn) and ball B = B(x, r),

|fB | ≤ C∥f∥L♮p,ϕ(Φ
∗(x, r) + Φ∗∗(x, r)),

see [18, Lemma 3.2] or [20, Lemma 3.2]. Using Φ∗ and Φ∗∗, we can charac-

terize pointwise multipliers on L♮p,ϕ(Rn).

Proposition 5.1 ([20, Proposition 4.4]) Suppose that ϕ1 and ϕ2 satisfy

the doubling condition (2.1). For ϕ1, define Φ∗
1 and Φ∗∗

1 by (5.1) and (5.2),

respectively. Let ϕ3 = ϕ2/(Φ
∗
1 + Φ∗∗

1 ). If 1 ≤ p2 < p1 < ∞ and p4 ≥
p1p2/(p1 − p2), then

PWM(L♮p1,ϕ1
(Rn),L♮p2,ϕ2

(Rn)) ⊃ L♮p2,ϕ3
(Rn) ∩ Lp4,ϕ2/ϕ1

(Rn),
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∥g∥Op ≤ C(∥g∥Lp2,ϕ3 + ∥g∥Lp4,ϕ2/ϕ1 ),

where ∥g∥Op is the operator norm of g ∈ PWM(L♮p1,ϕ1
(Rn),L♮p2,ϕ2

(Rn)).

Lemma 5.2 ([20, Lemma 3.5]) Let 1 ≤ p < ∞. Suppose that ϕ satisfies

the doubling condition (2.1). Then

L♮p,ϕ(R
n) ⊂ Lp,Φ∗+Φ∗∗(Rn) and ∥f∥Lp,Φ∗+Φ∗∗ ≤ C∥f∥L♮p,ϕ .

Corollary 5.3 Suppose that ϕ satisfies the doubling condition (2.1). Let

ψ = ϕ(Φ∗ +Φ∗∗). If 1 ≤ p2 < p1 <∞ and p4 ≥ p1p2/(p1 − p2), then

PWM(L♮p1,ϕ(R
n),L♮p2,ψ(R

n)) ⊃ L♮p4,ϕ(R
n),

∥g∥Op ≤ C∥g∥L♮p4,ϕ
,

where ∥g∥Op is the operator norm of g ∈ PWM(L♮p1,ϕ(R
n),L♮p2,ψ(R

n)). This

implies that

∥fg∥L♮p2,ψ
≤ C∥f∥L♮p1,ϕ

∥g∥L♮p4,ϕ
.

For example, we can take p1 = p4 = 4 and p2 = 2.

Proof. By Lemma 5.2 we have the inclusion

L♮p2,ϕ(R
n) ∩ Lp4,Φ∗+Φ∗∗(Rn) ⊃ L♮p4,ϕ(R

n),

∥g∥L♮p2,ϕ
+ ∥g∥Lp4,Φ∗+Φ∗∗ ≤ C∥g∥L♮p4,ϕ

.

Then, using Proposition 5.1, we have the conclusion. □

Corollary 5.4 Suppose that ϕ satisfies the doubling condition (2.1)

and that there exists a positive constant Cϕ such that, for all x ∈ Rn,∫∞
0

(ϕ(x, t)/t)dt ≤ Cϕ. If 1 ≤ p2 < p1 < ∞ and p4 ≥ p1p2/(p1 − p2),

then

PWM(L♮p1,ϕ(R
n),L♮p2,ϕ(R

n)) ⊃ L♮p4,ϕ(R
n),

∥g∥Op ≤ C∥g∥L♮p4,ϕ
,
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where ∥g∥Op is the operator norm of g ∈ PWM(L♮p1,ϕ(R
n),L♮p2,ϕ(R

n)). This

implies that

∥fg∥L♮p2,ϕ
≤ C∥f∥L♮p1,ϕ

∥g∥L♮p4,ϕ
. (5.3)

Proof. From the assumption it follows that Φ∗+Φ∗∗ ∼ 1 and ϕ(Φ∗+Φ∗∗) ∼
ϕ. By Corollary 5.3 we have the conclusion. □

Remark 5.1 If θ ≡ 1, then Lp,θ(Rn) = L∞(Rn) and ∥f∥Lp,θ = ∥f∥L∞ .

Hence, if Φ∗ + Φ∗∗ ∼ 1, then, by Lemma 5.2 we have L♮p,ϕ(Rn) ⊂
Lp,Φ∗+Φ∗∗(Rn) = L∞(Rn) and ∥f∥L∞ ≤ C∥f∥L♮p,ϕ . Therfore, in (5.3), if

σ(f) = 0 or σ(g) = 0, then σ(gf) = 0, where σ(f) = lim
r→∞

fB(0,r).

Corollary 5.5 Let 1 ≤ p2 < p1 < ∞ and 1/p4 = 1/p2 − 1/p1. Suppose

that ϕ satisfies the doubling condition (2.1) and that there exists a positive

constant Cϕ such that∫ ∞

0

ϕ(x, t)

t
dt ≤ Cϕ for all x ∈ Rn, (5.4)∫ ∞

r

ϕ(x, t)

t
dt ≤ Cϕ ϕ(x, r) for all x ∈ Rn and r ≥ 1. (5.5)

Let

ψ(x, r) =

{
ϕ(x, r) r < 1,

ϕ(x, r)2 r ≥ 1.

If f ∈ L♮p1,ϕ(R
n), g ∈ L♮p4,ϕ(R

n) and σ(f) = σ(g) = 0, then fg ∈ L♮p2,ψ(R
n),

σ(fg) = 0 and

∥fg∥L♮p2,ψ
≤ C∥f∥L♮p1,ϕ

∥g∥L♮p4,ϕ
. (5.6)

Remark 5.2 In Corollary 5.5, by (2.1) there exists a positive constant

C ′
ϕ such that

ϕ(x, r) ≤ C ′
ϕ

∫ 2r

r

ϕ(x, t)

t
dt ≤ C ′

ϕCϕ.
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This shows that ϕ(x, r)2 ≤ C ′
ϕCϕ ϕ(x, r). Then ∥fg∥L♮p2,ϕ

≤ ∥fg∥L♮p2,ψ
and

Lp2,ψ(Rn) ⊂ Lp2,ϕ(Rn).

Proof of Corollary 5.5. Let f ∈ L♮p1,ϕ(R
n), g ∈ L♮p4,ϕ(R

n) and σ(f) =

σ(g) = 0. Then from Corollary 5.4 and Remark 5.1 it follows that fg ∈
L♮p2,ϕ(R

n), σ(fg) = 0 and (5.3). Hence, it is enough to prove that

sup
B=B(z,r), r≥1

1

ϕ(B)2

(
1

|B|

∫
B

|(fg)(x)− (fg)B |p2 dx
)1/p2

≤ C∥f∥L♮p1,ϕ
∥g∥L♮p4,ϕ

.

From Remarks 2.1 and 2.2 it follows that

|fB(x,r) − σ(f)| ≤ C

∫ ∞

r

ϕ(x, t)

t
dt ∥f∥Lp1,ϕ .

Combining this inequality and the assumption (5.5), we have that, if B =

B(z, r) and r ≥ 1, then |fB | = |fB − σ(f)| ≤ Cϕ(B)∥f∥Lp1,ϕ and

(
1

|B|

∫
B

|f(x)|p1 dx
)1/p1

≤
(

1

|B|

∫
B

|f(x)− fB |p1 dx
)1/p1

+ |fB |

≤ Cϕ(B)∥f∥Lp1,ϕ .

By the same way we have |gB | ≤ Cϕ(B)∥g∥Lp4,ϕ and

(
1

|B|

∫
B

|g(x)|p4 dx
)1/p4

≤ Cϕ(B)∥g∥Lp4,ϕ .

Using Hölder’s inequality we have(
1

|B|

∫
B

|(fg)(x)|p2 dx
)1/p2

≤ Cϕ(B)2∥f∥Lp1,ϕ∥g∥Lp4,ϕ .

Then, for B = B(z, r) with r ≥ 1,
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(
1

|B|

∫
B

|(fg)(x)− (fg)B |p2 dx
)1/p2

≤ 2

(
1

|B|

∫
B

|(fg)(x)− fBgB |p2 dx
)1/p2

≤ 2

(
1

|B|

∫
B

|(fg)(x)|p2 dx
)1/p2

+ 2|fBgB |

≤ Cϕ(B)2∥f∥Lp1,ϕ∥g∥Lp4,ϕ .

This shows the conclusion. □

6. A blowup criteria for the 3D Navier-Stokes flow

In this section we construct a blowup criteria along maximum points of

the 3D-Navier-Stokes flow in terms of stationary 3D Euler flows and function

spaces with variable growth condition. The most significant blowup crite-

rion must be the Beale-Kato-Majda criterion [1]. The Beale-Kato-Majda

criterion is as follows:

Theorem 6.1 Let s > 1/2, and let v0 be in the Sobolev space Hs(R3) with

div v0 = 0 in distribution sense. Suppose that v is a strong solution of the

Navier-Stokes equation (1.1) with n = 3. If∫ T

0

∥curl v(t) ∥L∞ dt <∞, (6.1)

then v can be extended to the strong solution up to some T ′ with T ′ > T .

This blowup criterion was further improved by Giga [12], Kozono and Tani-

uchi [16], the authors [27], etc. On the other hand, Constantin and Fefferman

[7] (see also [8]) took into account geometric structure of the vortex stretch-

ing term in the vorticity equations to get another kind of blowup condition.

They imposed vortex direction condition to the high vorticity part. This

criterion was also further improved by, for example, Deng, Hou and Yu [9].

These two separate forms of criteria controlling the blow-up by magnitude

and the direction of the vorticity respectively are interpolated by Chae [5].

For the detail of the blowup problem of the Navier-Stokes equation, see

Fefferman [11] for example.
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In this section, we give a different type of blowup criterion from them.

We focus on a geometric behavior of the velocity vector field near the each

maximum points (c.f. [14]). In order to state our blowup criterion, we need

to give several definitions.

Let us denote a maximum point of |v| at a time t as xM = xM(t) ∈
R3 (if there are several maximum points at a time t, then we choose one

maximum point. We sometimes abbreviate the time t). We use rotation and

transformation and bring a maximum point to the origin and its direction

parallel to x3-axis. Moreover, we decompose v into two parts: stationary

3D Euler flow part and its remainder. If the remainder part is small, then

we can prove that the solution never blowup.

Let us explain precisely. We denote the unit tangent vector as

τ(xM ) = τ(xM(t)) = (v/|v|)(xM(t), t),

and we choose unit normal vectors n1(xM ) and n2(xM ) as

τ(xM ) · n1(xM ) = τ(xM ) · n2(xM ) = n1(xM ) · n2(xM ) = 0.

Note that n1 and n2 are not uniquely determined. We now construct a

Cartesian coordinate system with a new y1-axis to be the straight line which

passes through the maximum point and is parallel to n1, and a new y2-axis to

be the straight line which passes through the maximum point and is parallel

to n2. We set y3-axis by τ in the same process. Here we fix the maximum

point xM = xM(t∗) at t = t∗ for some time. Then v can be expressed as

v(x, t) = ũ1(x, t)n1(xM(t∗)) + ũ2(x, t)n2(xM(t∗)) + ũ3(x, t)τ(xM(t∗)), (6.2)

with ũ = (ũ1, ũ2, ũ3), where

ũ1(x, t) = v(x, t) · n1(xM(t∗)),

ũ2(x, t) = v(x, t) · n2(xM(t∗)),

ũ3(x, t) = v(x, t) · τ(xM(t∗)).

Let y = (y1, y2, y3) be the coordinate representation of the point x in the

coordinate system based at the maximum point which is specified by the

orthogonal frame {n1, n2, τ}. That is, the point x ∈ R3 can be realized as
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x = xM + n1(xM )y1 + n2(xM )y2 + τ(xM )y3 with xM = xM(t∗). Then we

can rewrite ũ(x) = ũ(x, t) to u(y) = u(y, t) = uM(t∗)(y, t) as

u1(y) = u1(y, t) = ũ1(xM + n1(xM )y1 + n2(xM )y2 + τ(xM )y3, t),

u2(y) = u2(y, t) = ũ2(xM + n1(xM )y1 + n2(xM )y2 + τ(xM )y3, t),

u3(y) = u3(y, t) = ũ3(xM + n1(xM )y1 + n2(xM )y2 + τ(xM )y3, t).

In this case u1(0, t∗) = u2(0, t∗) = 0 and u3(0, t∗) = |v(xM(t∗), t∗)|.
Since the Navier-Stokes equation is rotation and translation invariant,

u also satisfies the Navier-Stokes equation (1.1) in y-valuable. Then ∇p, in
y-valuable, can be expressed as

∇p =
3∑

i,j=1

RiRj∇(uiuj),

where Rj (j = 1, 2, 3) are the Riesz transforms (see [13], [15], [26] for exam-

ple). We decompose u into two parts; decaying stationary 3D smooth Euler

flow part U and its remainder part r:

u = U + r, p = P + pr and u(0) = U(0).

The stationary 3D Euler flow part (U,P ) can be defined as follows:

Definition 6.1 We say U ∈ Ck(R3) (for sufficiently large k ∈ Z+) is a

decaying stationary smooth Euler flow if U satisfies

(U · ∇)U = −∇P, ∇ · U = 0, U1(0) = U2(0) = 0,

(some decaying condition with β < 0)

1

|B(0, ρ)|

∫
B(0,ρ)

|U(y)|dy = O(ρβ) as ρ→ ∞,

sup
y∈R3

|∂3U(y)| < C <∞,

and |U(0)| = |U3(0)| attains its maximum value, with scalar function P ∈
Ck(R3), where B(0, ρ) is the ball centered at the origin and of radius ρ, and

|B(0, ρ)| is its Lebesgue measure.
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Remark 6.1 Note that we have the following pressure formula:

∇P =

3∑
i,j=1

RiRj∇(UiUj),

and we see that −∂3P (0) = 0, since the maximum value of |U | attains at

y = 0.

Remark 6.2 We easily have the following example of the 3D Euler flow

(but this is essentially 2D-rotating flow):{
U(x1, x2, x3) = f

(
(x2 − x∗)

2 + x23
)
(0, x3,−x2 + x∗),

P (x1, x2, x3) = F ((x2 − x∗)
2 + x23)

with some smooth function f : [0,∞) → R with suitable decay condition,

sup0≤x<∞ |f(x)| = |f(x∗)|, F is a primitive function of f2, namely, F ′ =

f2/2 and f(x) = 0 near x = 0. Clearly, curlU × U ̸= 0, so, this is not the

Beltrami flow (see [10] for example).

Thus we need to see the remainder part r, namely, we have the following

pressure formula:

∂3p = ∂3pr =

3∑
i,j=1

RiRj∂3 (riUj + Uirj + rirj) at y = 0. (6.3)

In this section, using the above formula, we construct a different type (from

Beale-Kato-Majda type and Constantin-Fefferman type) of blowup criterion.

In order to obtain a reasonable blowup condition from (6.3), we need two

function spaces V = (V, ∥ · ∥V ) and W = (W, ∥ · ∥W ) on R3 such that

|f(0)| ≤ ∥f∥W , (6.4)

∥RiRjf∥W ≤ C∥f∥W , (6.5)

∥fg∥W ≤ C∥f∥V ∥g∥V . (6.6)

That is, we need some smoothness condition at the origin for functions in

W , the boundedness of Riesz transforms on W and the boundedness of
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pointwise multiplication operator as V × V → W . Moreover, it is known

that there exist positive constants R and C such that

|v(x, t)| ≤ C/|x| for |x| > R, (6.7)

where R and C are independent of t ∈ [0, T ). This is due to Corollary 1 in

[2] (we use the partial regularity result to the decay). See also Section 1 in

[6]. Thus r also satisfy

1

|B(0, ρ)|

∫
B(0,ρ)

|r(y)|dy → 0 (ρ→ ∞).

In these points of view, Campanato spaces with variable growth condition

are very useful.

The following definition is the key in our result.

Definition 6.2 We say “v has stationary 3D Euler flow profile (near

each maximum points)” with respect to the function space V , if there exist

constants C > 0 and α < 2 such that, for each fixed xM(t∗) at t∗ ∈ [0, T ),

u = uM(t∗) has the following property:

inf
u=U+r

{∑
i,j

(∥∂3ri∥V ∥Uj∥V + ∥ri∥V ∥∂3Uj∥V + ∥ri∥V ∥∂3rj∥V )
∣∣∣∣
t=t∗

}

≤ C
(T − t∗)

−α

u3(0, t∗)
, (6.8)

where the infimum is taken over all decomposition u = U+r with u3(0, t∗) =

U3(0, t∗) and stationary 3D Euler flow U .

Roughly saying, if ∥∂3rj∥V and ∥rj∥V are sufficiently small compare to

∥∂3Uj∥V and ∥Uj∥V , then v is close to stationary Euler flows.

The following is the main theorem.

Theorem 6.2 (Blowup criteria along maximum points) Let function

spaces V and W satisfy (6.4), (6.5) and (6.6). Let v0 be any non zero,

smooth, divergence-free vector field in Schwartz class, that is,

|∂αx v0(x)| ≤ Cα,K(1 + |x|)−K in R3
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for any α ∈ Z3
+ and any K > 0. Suppose that v ∈ C∞([0, T ) × R3) is a

unique smooth solution of (1.1) up to T . If v has stationary 3D Euler flow

profile with respect to V , then v can be extended to the strong solution up to

some T ′ with T ′ > T .

Remark 6.3 In the above blowup criteria, we do not need the well-known

scaling argument to the original flow v anymore. For example, even if

the original flow v is critical (even supercritical) in time, more precisely,

if |v(xM(t), t)| = |U3(0, t)| and

|v(xM(t), t)| > C(T − t)−1/2

for some C > 0, v satisfies Definition 6.2 provided that the remainder part

r is identically zero near maximum points.

Remark 6.4 We need to mention that Grujić [14] proposed local sparse-

ness of a one dimensional trace of the region of intense velocity vector field,

and constructed a geometric measure-type regularity criterion on the super-

level sets (near the maximum points) of solutions to (1.1). Thus it may

be interesting to compare with the local sparseness and the 3D-stationary

Euler flows.

7. Proof of the theorem on the blowup criteria

In this section we give a proof of Theorem 6.2. First we show a lemma.

Lemma 7.1 Under the assumption of Theorem 6.2, there exist constants

C > 0 and α < 2 such that, for each fixed xM(t∗), the following inequalities

hold :

−(v · ∇p)(xM(t∗), t∗) ≤ C(T − t∗)
−α, (7.1)

(v ·∆v)(xM(t∗), t∗) ≤ 0. (7.2)

Proof. Using the derivative ∂3 along τ direction, we have

−(v · ∇p)(xM(t∗), t∗) = −(u3∂3p)(0, t∗),

since u1(0, t∗) = u2(0, t∗) = 0. Then, by (6.3)–(6.6) and the definition of

closeness to stationary Euler flows we get (7.1). To prove (7.2), it suffices
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to show

(u3∆u3)(0, t∗) ≤ 0,

where ∆ is the Laplacian with respect to y = (y1, y2, y3). It directly follows

from the fact that u3 has a positive maximal value at y = 0. □

For given time-dependent smooth vector field v(x, t) in t ∈ [0, T ) with

∇· v = 0, we define “trajectory” γ : [0, T ) → R3 starting at a time t̃ ∈ [0, T )

and a point x̃ ∈ R3:

∂tγ(x̃, t̃; t) = v(γ(x̃, t̃; t), t) with γ(x̃, t̃; t̃) = x̃.

Then γ provides a diffeomorphism and the equation (1.1) can be rewritten

as follows:

∂t
(
v(γ(x̃, t̃; t), t)

)
= (∆v −∇p)(γ(x̃, t̃; t), t) (0 < t < T )

with γ(x̃, t̃; t̃) = x̃ ∈ R3. Since v is bounded for fixed t ∈ [0, T ), we can

define X(t) ⊂ R3 as the set of all maximum points of |v(·, t)| at a time

t ∈ [0, T ), namely,

|v(x, t)| = sup
ξ∈R3

|v(ξ, t)| for x ∈ X(t) and

|v(x, t)| < sup
ξ∈R3

|v(ξ, t)| for x ̸∈ X(t).

By (6.7), X(t) is a bounded set uniformly in t in a possible blowup scenario.

For any r > 0, we see that there is a barrier function β(t) > 0 such that

|v(x, t)|+ β(t) < sup
ξ∈R3

|v(ξ, t)| for x ̸∈
∪

ξ∈X(t)

B(ξ, r).

Then, using Lemma 7.1 and the smoothness of the solution, we get the

following:

Proposition 7.2 Under the assumption of Theorem 6.2, for any δ > 0

and t∗ ∈ [0, T ), there exists a time interval It∗ = (t′′∗ , t
′
∗) ∩ [0, T ) and a

radius r∗ such that t∗ ∈ It∗ and that the following two properties hold for all

t′ ∈ It∗ :
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•
∪
ξ∈X(t∗)

B(ξ, r∗) ⋐ Ω(t′), where

Ω(t′) :=
{
x ∈ R3 : (∆v · v)(γ(x, t∗; t′), t′) ≤ δ,

(−∇p · v)(γ(x, t∗; t′), t′) ≤ δ + C(T − t′)−α
}

(7.3)

and C and α are the constants in Lemma 7.1,

• |v(γ(x, t∗; t′), t′)|2 < supξ∈R3 |v(ξ, t∗)|2 for x ∈
(∪

ξ∈X(t∗)
B(ξ, r∗)

)∁
.

Proof of Theorem 6.2. Note that the interval [0, T ) is covered by the col-

lection {It∗}t∗∈[0,T ) of relatively open intervals such that the interval It∗ is

as in Proposition 7.2 for t∗ ∈ [0, T ). Since [0, T ) is a Lindelöf space, we can

choose a sequence of the time intervals Itj , j = 0, 1, 2, . . . (finite or infinite),

such that [0, T ) =
∪
j Itj , and that Itj = (t′′j , t

′
j) ∩ [0, T ) and rj satisfy the

properties of Proposition 7.2 for tj ∈ [0, T ). We may assume that

0 = t0 < t′0 < t′1 < t′2 < · · · , Itj−1 ∩ Itj ̸= ∅, j = 0, 1, . . .

For t ∈ [t0, t
′
0) and x ∈

∪
ξ∈X(t0)

B(ξ, r0), from the first property in Propo-

sition 7.2 it follows that

|v(γ(x, t0; t), t)|2 =

∫ t

t0

∂t′ |v(γ(x, t0; t′), t′)|2dt′ + |v(x, t0)|2

= 2

∫ t

t0

∂t′v · vdt′ + |v(x, t0)|2

= 2

∫ t

t0

(∆v · v −∇p · v) dt′ + |v(x, t0)|2

≤ 2

(
2δ(t− t0) + C

∫ t

t0

(T − t′)−αdt′
)
+ sup
ξ∈R3

|v(ξ, t0)|2.

The case x ∈ (
∪
ξ∈X(t0)

B(ξ, r0))
∁ is straightforward by the second property

in Proposition 7.2. Then we have

|v(z, t)|2 ≤ 2

(
2δ(t− t0) + C

∫ t

t0

(T − t′)−αdt′
)
+ sup
ξ∈R3

|v(ξ, t0)|2.
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for all t ∈ [t0, t
′
0) and all z ∈ R3 with z = γ(x, t0; t), since γ gives a dif-

feomorphism. Repeating the above argument infinite times, and we finally

have

|v(x, t)|2 ≤ 2

(
2δt+ C

∫ t

0

(T − t′)−αdt′
)
+ sup
ξ∈R3

|v(ξ, 0)|2

for all t ∈ [0, T ) and all x ∈ R3. This implies

∥v∥L2(0,T ;L∞(R3)) <∞.

Due to the classical regularity criterion (see [12] for example), we see that

the solution v can be extended to the strong solution up to some T ′ with

T ′ > T . □

8. Specific function spaces

We now give the specific function spaces V andW satisfying (6.4), (6.5)

and (6.6).

For example, let p > 2, −n/p ≤ α∗ < 0 < α < 1, −n/p ≤ β < 0, and

ϕ(x, r) =


rα, |x| ≤ 2, 0 < r ≤ 2,

rβ , |x| ≤ 2, r > 2,

rα∗ , |x| > 2, 0 < r ≤ 2,

rβ , |x| > 2, r > 2,

ψ(x, r) =


rα, |x| ≤ 2, 0 < r ≤ 2,

rβ , |x| ≤ 2, r > 2,

r2α∗ , |x| > 2, 0 < r ≤ 2,

rβ , |x| > 2, r > 2,

(8.1)

and take

W = L♮p/2,ψ(R
n) and V = L♮p,ϕ(R

n),

then V andW satisfy (6.4), (6.5) and (6.6) when n = 3. We will check these

properties in this section.
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Firstly, we see that ϕ and ψ satisfy (2.1) and

ψ(x, r) = rα for all B(x, r) ⊂ B(0, 2).

Then, by Proposition 2.4, we have

∥f∥Lipα(B(0,2)) ≤ C∥f∥Lp/2,ψ ,

and

∥f∥L♮
p/2,ψ

∼ ∥f∥Lp/2,ψ + |f(0)|.

This shows the property (6.4). Next, the properties (6.5) and (6.6) fol-

lows from Propositions 8.1 and 8.2 below, respectively. Therefore, if

f, g ∈ L♮p,ϕ(Rn) and σ(fg) = lim
r→∞

(fg)B(0,r) = 0, then σ(RjRk(fg)) = 0

and

|(RjRk(fg))(0)| ≤ C∥RjRk(fg)∥L♮
p/2,ψ

≤ C∥fg∥L♮
p/2,ψ

≤ C∥f∥L♮p,ϕ∥g∥L♮p,ϕ .

Further, let f be α-Lipschitz continuous on B(0, 2) and |f(x)| ≤ C/|x|
for |x| ≥ 2. Then σ(f) = 0 and f is in L♮p,ϕ(Rn), if p and β satisfy one of

the following conditions:
2 < p < n and − 1 ≤ β < 0,

p = n and − 1 < β < 0,

n < p and − n/p ≤ β < 0.

Moreover, if α∗ = β/2 = −n/p also, then −n/(p/2) = 2α∗ = β < 0 and

∥RjRk(fg)∥Lipα(B(0,2)) + ∥RjRk(fg)∥Lp/2

≤ C∥RjRk(fg)∥L♮
p/2,ψ

≤ C∥f∥L♮p,ϕ∥g∥L♮p,ϕ ,

for all f, g ∈ L♮p,ϕ(Rn) satisfying σ(fg) = 0, see Proposition 2.5.

It is known that ∇u(t) ∈ L∞(R3) for fixed t, see [13]. Thus ∂3r is

bounded due to the assumption |∂3U | < C. Hence σ(∂3riUj) = σ(ri∂3Uj) =

σ(ri∂3rj) = 0 for all i, j.
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Proposition 8.1 Let p ≥ 2, −n/p ≤ α∗ < 0 < α ≤ 1, −n/p ≤ β < 0,

and let ϕ and ψ be as (8.1). Then there exists a positive constant C such

that, for all f, g ∈ L♮p,ϕ(Rn),

∥fg∥L♮
p/2,ψ

≤ C∥f∥L♮p,ϕ∥g∥L♮p,ϕ . (8.2)

Proof. For ϕ in (8.1), we have

Φ∗(x, r) =

∫ max(2,|x|,r)

1

ϕ(0, t)

t
dt =

∫ 2

1

tα−1 dt+

∫ max(2,|x|,r)

2

tβ−1 dt ∼ 1,

and

1 + Φ∗∗(x, r) = 1 +

∫ max(2,|x|,r)

r

ϕ(x, t)

t
dt

= 1 +



∫ 2

r
tα−1 dt, |x| ≤ 2, 0 < r ≤ 2,

0, |x| ≤ 2, r > 2,∫ 2

r
tα∗−1 dt+

∫ |x|
2

tβ−1 dt, |x| > 2, 0 < r ≤ 2,∫max(|x|,r)
r

tβ−1 dt, |x| > 2, r > 2,

∼


1, |x| ≤ 2, 0 < r ≤ 2,

rα∗ , |x| > 2, 0 < r ≤ 2,

1, r > 2.

Hence

ϕ(x, r)(Φ∗(x, r) + Φ∗∗(x, r)) ∼ ψ(x, r) =


rα, |x| ≤ 2, 0 < r ≤ 2,

r2α∗ , |x| > 2, 0 < r ≤ 2,

rβ , r > 2.

Then, using Corollary 5.3, we have the conclusion. □

Proposition 8.2 Let q > 1, −n/q ≤ δ < 0 < α < 1, −n/q ≤ β < 0, and
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ψ(x, r) =


rα, |x| ≤ 2, 0 < r ≤ 2,

rβ , |x| ≤ 2, r > 2,

rδ, |x| > 2, 0 < r ≤ 2,

rβ , |x| > 2, r > 2.

Then the Riesz transforms R̃j, j = 1, 2, . . . , n, are bounded on Lq,ψ(Rn) and
on L♮q,ψ(Rn). That is, there exists a positive constant C such that, for all

f ∈ Lq,ψ(Rn),

∥R̃jf∥Lq,ψ ≤ C∥f∥Lq,ψ , ∥R̃jf∥L♮q,ψ ≤ C∥f∥L♮q,ψ , j = 1, 2, . . . , n.

Moreover, if f ∈ L♮q,ψ(Rn) and σ(f) = lim
r→∞

fB(0,r) = 0, then the Riesz trans-

forms Rjf , j = 1, 2, . . . , n, are well defined, σ(Rjf) = lim
r→∞

(Rjf)B(0,r) = 0,

and

∥Rjf∥L♮q,ψ ≤ C∥f∥L♮q,ψ , j = 1, 2, . . . , n.

Proof. We see that ψ satisfies (2.1) and

r

∫ ∞

r

ψ(x, t)

t2
dt ≤ Aψ(x, r),

for all x ∈ Rn and r > 0. Then we have the boundedness of R̃j on Lq,ψ(Rn)
and on L♮q,ψ(Rn) by Theorem 3.1. Let

ψ̃(x, r) = ψ̃(r) =

{
rδ, 0 < r ≤ 2,

rβ , r > 2.

Then ψ̃ satisfies (2.1), (2.2), (2.5) and ψ ≤ ψ̃. Therefore, by Theorem 3.4,

we have the conclusion. □

9. Cauchy problem for the Navier-Stokes equation

Finally, we give an existence theorem on the Cauchy problem for the

Navier-Stokes equation.
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Theorem 9.1 Let max(2, n) < p <∞, ϕ : Rn × (0,∞) → (0,∞) and

ψ(x, r) =

{
ϕ(x, r) r < 1,

ϕ(x, r)2 r ≥ 1.

Assume that ϕ and ψ satisfy the doubling condition (2.1) and (3.6) and that

there exists a positive constant Cϕ such that∫ ∞

0

ϕ(x, t)

t
dt ≤ Cϕ for all x ∈ Rn,∫ ∞

r

ϕ(x, t)

t
dt ≤ Cϕ ϕ(x, r) for all x ∈ Rn and r ≥ 1,

lim
r→∞

sup
x∈Rn

ϕ(x, r) = 0.

Assume also that there exists a growth function ψ̃ such that ψ ≤ ψ̃, that ψ̃

satisfies (2.1), (2.2) and (2.5). Then, for all u0 ∈ (L♮p,ϕ(Rn))n such that

∇ · u0 = 0 and σ(u0) = lim
r→∞

(u0)B(0,r) = 0, there exist a positive constant

T (depending only on the norm of initial data) and a unique solution u ∈
C([0, T ); (L♮p,ϕ(Rn))n) to (1.1).

Proof. By Duhamel’s principle we only solve the following equations:

u(t) = et∆u0 +Gu(t),

Gu(t) = −
∫ t

0

e−(t−s)∆P (u · ∇u)(s) ds = −
∫ t

0

∇e−(t−s)∆P (u⊗ u)(s) ds,

where P is the Helmholtz projection; P = (δjk +RjRk)1≤j,k≤n.

Using Corollary 4.4 with p1 = p2 = p, we have

∥et∆u0∥L♮p,ϕ ≤ C∥u0∥L♮p,ϕ .

From Remark 5.2 we see that ψ ≤ Cϕ. Then, combining Theorem 3.4,

Remark 3.2, and Corollaries 4.5 and 5.5 with p1 = p4 = p > 2 and p2 = p/2,

we have that, if u ∈ L♮p,ϕ(Rn) and σ(u) = 0, then σ(∇e−(t−s)∆P (u⊗u)) = 0

and
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∥∇e−(t−s)∆P (u⊗ u)∥L♮p,ϕ
≤ C(t− s)−1/2(1 + (t− s)−n/(2p))∥P (u⊗ u)∥L♮

p/2,ψ

≤ C(t− s)−1/2(1 + (t− s)−n/(2p))∥u⊗ u∥L♮
p/2,ψ

≤ C(t− s)−1/2(1 + (t− s)−n/(2p))∥u∥2L♮p,ϕ .

We take the integral in time t, we have

∥Gu(t)∥L♮p,ϕ ≤ C(t1/2 + t1/2−n/(2p))( sup
0<s<t

∥u(s)∥L♮p,ϕ)
2.

Then we now apply the Picard contraction theorem with the above esti-

mates, we have the desired existence theorem (see [17, Theorem 13.2] for

example). □

For example, let p > max(2, n), α(·) : Rn → (0, 1), β(·) : Rn →
[−n/p, 0), and let

ϕ(x, r) =

{
rα(x), 0 < r ≤ 1,

rβ(x), r > 1,
ψ(x, r) =

{
rα(x), 0 < r ≤ 1,

r2β(x), r > 1,

and ψ̃(x, r) = r2β+ , where α(·), β(·) and β+ satisfy

0 < inf
x∈Rn

α(x) ≤ sup
x∈Rn

α(x) < 1,

−n/p ≤ inf
x∈Rn

β(x) ≤ sup
x∈Rn

β(x) = β+ < 0.

Then ϕ, ψ and ψ̃ satisfy the assumption in Theorem 9.1.
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