Elliptic surfaces and contact conics for a 3-nodal quartic

Khulan Tumenbayar and Hiro-o Tokunaga

(Received September 10, 2015; Revised February 23, 2016)

Abstract

Let \mathcal{Q} be an irreducible 3 -nodal quartic and let \mathcal{C} be a smooth conic such that $\mathcal{C} \cap \mathcal{Q}$ does not contain any node of \mathcal{Q} and the intersection multiplicity at $z \in \mathcal{C} \cap \mathcal{Q}$ is even for each z. In this paper, we study geometry of $\mathcal{C}+\mathcal{Q}$ through that of integral sections of a rational elliptic surface which canonically arises from \mathcal{Q} and $z \in \mathcal{C} \cap \mathcal{Q}$. As an application, we construct Zariski pairs $\left(\mathcal{C}_{1}+\mathcal{Q}, \mathcal{C}_{2}+\mathcal{Q}\right)$, where $\mathcal{C}_{i}(i=1,2)$ are smooth conics tangent to \mathcal{Q} at four distinct points.

Key words: Elliptic surface, section, contact conic, Zariski pair.

Introduction

In this article, all varieties are defined over the field of complex numbers \mathbb{C}. Let $\varphi: S \rightarrow \mathbb{P}^{1}$ be a rational elliptic surface with a section O. Here a section means an irreducible curve on S intersecting a fiber at one point or a morphism $s: \mathbb{P}^{1} \rightarrow S$ such that $\varphi \circ s=\operatorname{id}_{\mathbb{P}^{1}}$ (note that these two notions can be canonically identified). It is known that, if φ has a reducible singular fiber, S coincides with a rational elliptic surface $S_{\mathcal{Q}, z_{o}}$ associated with a reduced plane quartic \mathcal{Q}, which is not 4 distinct lines meeting at one point, in \mathbb{P}^{2} and a smooth point z_{o} on \mathcal{Q} obtained in the following way:
(i) Let S_{o} be the minimal resolution of the double cover of \mathbb{P}^{2} branched along \mathcal{Q}.
(ii) Choose a smooth point z_{o} of \mathcal{Q}. The pencil of lines through z_{o} gives rise to a pencil $\Lambda_{\mathcal{Q}, z_{o}}$ of curves of genus 1 on S_{o}.
(iii) By resolving the base points of $\Lambda_{\mathcal{Q}, z_{o}}$, we have a rational elliptic surface $\varphi: S_{\mathcal{Q}, z_{o}} \rightarrow \mathbb{P}^{1}$. We denote the generically 2 to 1 morphism from $S_{\mathcal{Q}, z_{o}}$ to \mathbb{P}^{2} by $f_{\mathcal{Q}, z_{o}}: S_{\mathcal{Q}, z_{o}} \rightarrow \mathbb{P}^{2}$.

For details, see [3], [15], for example.
Under the above circumstance, O is mapped to z_{o} by $f_{\mathcal{Q}, z_{o}}$. Let $\operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right)$ be the set of sections of $\varphi: S_{\mathcal{Q}, z_{o}} \rightarrow \mathbb{P}^{1} . \operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right)$ is

[^0]identifies with $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$, the set of $\mathbb{C}(t)$-rational points of the generic fiber, $E_{\mathcal{Q}, z_{o}}$, of $\varphi: S_{\mathcal{Q}, z_{o}} \rightarrow \mathbb{P}^{1} . \operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right)$ is endowed with a structure of an abelian group as O is the zero element. We denote its addition and the multiplication-by- m map $(m \in \mathbb{Z})$ by $\dot{+}$ and [m], respectively. For two sections $s_{1}, s_{2} \in \operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right), s_{1} \dot{+} s_{2}$ and $[m] s_{i}(i=1,2)$ give rise to new curves on $S_{\mathcal{Q}, z_{o}}$, and their images $f_{\mathcal{Q}, z_{o}}\left(s_{1}\right), f_{\mathcal{Q}, z_{o}}\left(s_{2}\right), f_{\mathcal{Q}, z_{o}}\left(s_{1}+s_{2}\right)$ and $f_{\mathcal{Q}, z_{o}}\left([m] s_{i}\right)$ in \mathbb{P}^{2} are expected to have interesting geometric properties. In previous articles [3], [13], [14], [15], we study geometry of $f_{\mathcal{Q}, z_{o}}\left(s_{1}\right), f_{\mathcal{Q}, z_{o}}\left(s_{2}\right), f_{\mathcal{Q}, z_{o}}\left(s_{1} \dot{+} s_{2}\right), f_{\mathcal{Q}, z_{o}}\left([m] s_{i}\right)$ and \mathcal{Q}. As an application, we gave Zariski pairs whose irreducible components are those of these curves.

In this article, we continue to study geometry of plane curves along this line. More precisely, we study irreducible 3-nodal quartics and their contact conics. Here we call a smooth conic \mathcal{C} a contact conic to a reduced plane curve \mathcal{B} if the following condition is satisfied:
$(*)$ Let $I_{x}(\mathcal{C}, \mathcal{B})$ denotes the intersection multiplicity at $x \in \mathcal{C} \cap \mathcal{B}$. For $\forall x \in \mathcal{C} \cap \mathcal{B}, I_{x}(\mathcal{C}, \mathcal{B})$ is even and \mathcal{B} is smooth at x.

An arrangement of rational curves consisting of a 3-nodal quartic and its contact conic can be regarded as a special case of rational curve arrangements studied in [2]. In [2], E. Artal Bartolo and the second author studied the topology of reducible curves having two irreducible components \mathcal{C} and \mathcal{D} such that
(i) \mathcal{C} is a smooth conic,
(ii) \mathcal{D} is a nodal rational curve of degree n, i.e., an irreducible curve with $(n-1)(n-2) / 2$ nodes, and
(iii) \mathcal{C} is tangent to \mathcal{D} at n smooth distinct points of \mathcal{D}.

Let us first recall what was done in [2] briefly. Let $f_{\mathcal{C}}: Z_{\mathcal{C}} \rightarrow \mathbb{P}^{2}$ be the double cover of \mathbb{P}^{2} branched along $\mathcal{C} . Z_{\mathcal{C}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and the covering involution σ_{f} is given by switching the coordinate component. Hence $\operatorname{Pic}\left(Z_{\mathcal{C}}\right)=\mathbb{Z} \oplus \mathbb{Z}$ and if we denote an element of $\operatorname{Pic}\left(Z_{\mathcal{C}}\right)$ by a pair of integers (a, b), we have $\sigma_{f}(a, b)=(b, a)$. By the the condition (iii) as above, $f_{\mathcal{C}}^{*} \mathcal{D}$ splits into two irreducible components and we denote them by $f_{\mathcal{C}}^{*} \mathcal{D}=\mathcal{D}^{+}+\mathcal{D}^{-}$. Note that if $\mathcal{D}^{+} \sim(a, b)$, then $\mathcal{D}^{-} \sim(b, a)$. In the following, we may assume that \mathcal{D}^{+}is always chosen so that $\mathcal{D}^{+} \sim(a, b)$, $a \leq b$. We here introduce a terminology.

Definition 1 Let \mathcal{C} be a contact conic to \mathcal{D}. We say that \mathcal{C} is of type (a, b) with respect to \mathcal{D} if $\mathcal{D}^{+} \sim(a, b)$

In [1], [2], we have
Proposition 1 ([1, Section 3.5], [2]) Let $\mathcal{D}_{i}(i=1,2)$ be nodal rational curves of the same degree. Let $\mathcal{C}_{i}(i=1,2)$ be contact conics to $\mathcal{D}_{i}(i=1,2)$, respectively. Put $f_{\mathcal{C}_{i}}^{*} D_{i}=D_{i}^{+}+D_{i}^{-}, \mathcal{D}_{1}^{+} \sim\left(a_{1}, b_{1}\right)$ and $\mathcal{D}_{2}^{+} \sim\left(a_{2}, b_{2}\right)$. If $\left(a_{1}, b_{1}\right) \neq\left(a_{2}, b_{2}\right)$, then $\left(\mathbb{P}^{2}, \mathcal{C}_{1}+\mathcal{D}_{1}\right)$ is not homeomorphic to $\left(\mathbb{P}^{2}, \mathcal{C}_{2}+\mathcal{D}_{2}\right)$. In particular, if $\mathcal{C}_{1}+\mathcal{D}_{1}$ and $\mathcal{C}_{2}+\mathcal{D}_{2}$ have the same combinatorics, $\left(\mathcal{C}_{1}+\right.$ $\mathcal{D}_{1}, \mathcal{C}_{2}+\mathcal{D}_{2}$) is a Zariski pair (see [1] for a Zariski pair and terminologies related with $i t$).

Nodal rational curves \mathcal{D}_{1} and \mathcal{D}_{2} satisfying the condition in Proposition 1 appear from the case of $\operatorname{deg} \mathcal{D}_{i} \geq 4$. Our purpose of this article is to study the case of $\operatorname{deg} \mathcal{D}=4$ in more detail. In [2], we gave an example of a conic \mathcal{C} and irreducible 3 -nodal quartics \mathcal{Q}_{1} and \mathcal{Q}_{2} such that
(i) \mathcal{C} is a contact conic to both of \mathcal{Q}_{1} and \mathcal{Q}_{2}, and
(ii) $\mathcal{Q}_{1}^{+} \sim(2,2), \mathcal{Q}_{2}^{+} \sim(1,3)$.

On the other hand, in this article, we fix one irreducible 3-nodal quartic \mathcal{Q} and several contact conics \mathcal{C} to \mathcal{Q} at one time. In [13], [14], we studied geometry of irreducible quartics \mathcal{Q} and their contact conics \mathcal{C} via rational elliptic surfaces $S_{\mathcal{Q}, z_{o}}$ for $z_{o} \in \mathcal{C} \cap \mathcal{Q}$. In the case when \mathcal{Q} is an irreducible 3 -nodal quartic, by [13], we have the following table:

	$l_{z_{o}} \cap \mathcal{Q}$	$\sharp \mathrm{CC}_{z_{o}}$
(I)	s	4
(II)	b	1
(III)	$s b$	2

Here

- $l_{z_{o}}$ is the tangent line of \mathcal{Q} at z_{o} and $l_{z_{o}} \cap \mathcal{Q}$ shows how $l_{z_{o}}$ meets \mathcal{Q}.

We use the following notation to describe it.
$-s: I_{z_{o}}\left(l_{z_{o}}, \mathcal{Q}\right)=2$ or 3 , and $l_{z_{o}}$ meets \mathcal{Q} transversely at other point(s).
$-b: l_{z_{o}}$ is either bitangent line through z_{o} or $I_{z_{o}}\left(l_{z_{o}}, Q\right)=4$.
$-s b: I_{z_{o}}\left(l_{z_{o}}, \mathcal{Q}\right)=2$ and $l_{z_{o}}$ passes through a double point of \mathcal{Q}.

- $\mathrm{CC}_{z_{o}}$: the set of contact conics passing through $z_{o} . \sharp \mathrm{CC}_{z_{o}}$ denotes its cardinality.

Now our problem in this article can be formulated as follows:
Problem 1 Choose a smooth point z_{o} of \mathcal{Q}. For $\mathcal{C} \in \mathrm{CC}_{z_{o}}$, determine the type of \mathcal{C} with respect to \mathcal{Q}. In particular, in the cases of (I) and (III), do there exist contact conics $\mathcal{C}_{1}, \mathcal{C}_{2} \in \mathrm{CC}_{z_{o}}$ such that \mathcal{C}_{1} (resp. \mathcal{C}_{2}) is of type $(2,2)$ (resp. $(1,3))$ with respect to \mathcal{Q} ?

Since any $\mathcal{C} \in \mathrm{CC}_{z_{o}}$ gives rise to sections $s_{\mathcal{C}}^{ \pm}$in $\operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right)$, we can apply our results of geometry and arithmetic of sections of $S_{\mathcal{Q}, z_{o}}$ to these $s_{\mathcal{C}}^{ \pm}$. This is an essential step to consider Problem 1. Our answer to Problem 1 is the following:

Theorem 1 With the same notation as before, we have the table below:

	$l_{z_{o}} \cap \mathcal{Q}$	$\sharp \mathrm{CC}_{z_{o}}$ of type $(2,2)$	$\sharp \mathrm{CC}_{z_{o}}$ of type $(1,3)$
(I)	s	3	1
(II)	b	0	1
(III)	$s b$	2	0

Moreover, if we choose homogeneous coordinates $[T, X, Z]$ of \mathbb{P}^{2} such that $z_{o}=[0,1,0], l_{z_{o}}: Z=0, \mathcal{Q}: F_{\mathcal{Q}}(T, X, Z)=0$ and $\mathcal{C}: F_{\mathcal{C}}(T, X, Z)=0$, then there exist homogeneous polynomials $F_{i}(T, X, Z), G_{i}(T, X, Z)$ of degree i such that

$$
\begin{aligned}
F_{\mathcal{Q}} & =F_{1}^{2} F_{\mathcal{C}}+G_{2}^{2} \quad \text { if and only if } \mathcal{C} \text { is of type }(2,2) \\
Z^{2} F_{\mathcal{Q}} & =F_{2}^{2} F_{\mathcal{C}}+G_{3}^{2} \quad \text { if and only if } \mathcal{C} \text { is of type }(1,3)
\end{aligned}
$$

Remark 1 The two equations in Theorem 1 give quasi-toric relations for $\mathcal{C}+\mathcal{Q}$ (see [5] for a quasi-toric relation).

Since the type of \mathcal{C} does not depend on the choice of z_{o}, we have
Corollary 1 Let \mathcal{C} be a contact conic as in Theorem 1.
(i) If there exists a point $z_{o} \in C \cap \mathcal{Q}$ such that $l_{z_{o}}$ is bitangent line to \mathcal{Q}, then the type of \mathcal{C} with respect to \mathcal{Q} is $(1,3)$.
(ii) If there exists a point $z_{o} \in C \cap \mathcal{Q}$ such that $l_{z_{o}}$ passes through a node of \mathcal{Q}, then the type of \mathcal{C} with respect to \mathcal{Q} is $(2,2)$.
Also by Proposition 1, we have the following corollary:

Corollary 2 Let z_{o} be a general point of \mathcal{Q}. Then there exist contact conics \mathcal{C}_{1} and \mathcal{C}_{2} to \mathcal{Q} such that (i) $\mathcal{C}_{i} \in \mathrm{CC}_{z_{o}}(i=1,2)$ and (ii) $\left(\mathbb{P}^{2}, \mathcal{C}_{1}+\mathcal{Q}\right)$ is not homeomorphic to $\left(\mathbb{P}^{2}, \mathcal{C}_{2}+\mathcal{Q}\right)$. In particular, if $\mathcal{C}_{1}+\mathcal{Q}$ and $\mathcal{C}_{2}+\mathcal{Q}$ have the same combinatorics, then $\left(\mathcal{C}_{1}+\mathcal{Q}, \mathcal{C}_{2}+\mathcal{Q}\right)$ is a Zariski pair.

Note that the Zariski pair having the combinatorics in that of Corollary 2 can be found in [2]. In [2], we first consider a double cover $f_{\mathcal{C}}: Z_{\mathcal{C}} \rightarrow \mathbb{P}^{2}$ branched along a smooth conic \mathcal{C}. We then construct reduced curves \mathcal{Q}_{1}^{+} and \mathcal{Q}_{2}^{+}of types $(2,2)$ and $(1,3)$ on $Z_{\mathcal{C}}$, respectively. Two 3-nodal quartics $\mathcal{Q}_{i}(i=1,2)$ such that \mathcal{C} is a contact conic to both of $\mathcal{Q}_{i}(i=1,2)$ are obtained as $\mathcal{Q}_{i}=f_{\mathcal{C}}\left(\mathcal{Q}_{i}^{+}\right)(i=1,2)$. On the other hand, in this article, we consider $S_{\mathcal{Q}, z_{o}}$ and contact conics are given by the image of sections of $S_{\mathcal{Q}, z_{o}}$. Thus our construction is different. Also it would be an interesting question to determine whether the examples in Corollary 2 are deformation equivalent to those in [2] or not.

This paper consists of 5 section. In Section 1, we explain how to construct an irreducible 3-nodal quartic and give summary on various results on elliptic surfaces, which we need to prove Theorem 1. In Section 2, we study the structure of $S_{\mathcal{Q}, z_{o}}$ and $\operatorname{MW}\left(S_{\mathcal{Q}, z_{o}}\right) \cong E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$. In Section 3, we consider how we construct contact conics to \mathcal{Q} via elementary arithmetic of $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$. We prove Theorem 1 in Section 4 and give examples in Section 5 for cases (I), (II) and (III) in Theorem 1.

1. Preliminaries

1.1. Construction for irreducible 3-nodal quartics

Let $[T, X, Z]$ be homogeneous coordinates of \mathbb{P}^{2}. Let Q be the standard quadratic transformation or the standard Cremona transformation with respect to $\{T=0\},\{X=0\}$ and $\{Z=0\}$. We call $[0,0,1],[0,1,0]$ and $[1,0,0]$, the fundamental points with respect to Q.

Lemma 1.1 (i) Let C be a conic not tangent to any of three lines: $\{T=0\},\{X=0\}$ and $\{Z=0\}$ in \mathbb{P}^{2} and passing through none of the three fundamental points. Then $Q(C)$ is a quartic whose singularities are only 3 nodes at $[0,0,1],[0,1,0]$ and $[1,0,0]$.
(ii) Let L be the line tangent to C at a point $P=\left[T_{0}, X_{0}, Z_{0}\right] \in C$, where $T_{0} X_{0} Z_{0} \neq 0$. If L does not contain any of the fundamental points, then $Q(L)$ is a conic tangent to $Q(C)$ at $Q(P)=\left[X_{0} Z_{0}, T_{0} Z_{0}, T_{0} X_{0}\right]$
and passes through $[0,0,1],[0,1,0]$ and $[1,0,0]$.
(iii) Let L be the line tangent to C at a point $P=\left[T_{0}, X_{0}, Z_{0}\right] \in C$, where $T_{0} X_{0} Z_{0} \neq 0$. If $[0,0,1] \in L$, then $Q(L)$ is a line passing through [$0,0,1]$.
(iv) Let L be conic, that contains the fundamental points, then $Q(L)$ is a line.
(v) If $x \in \mathbb{P}^{2} \backslash\{$ fundamental points $\}$, then $I_{x}(C, L)=I_{Q(x)}(Q(C)$, $Q(L))$.
Since all of these statements are well-known, we omit their proofs. We make use of Lemma 1.1 when we consider explicit examples in Section 5. Let $L_{Q(P)}$ be the tangent line to $Q(C)$ at $Q(P)$ and let Φ be a coordinate change such that $L_{Q(P)}$ is transformed into the line $Z=0$ and $Q(P)$ is mapped to $[0,1,0]$.

Then $\Phi(Q(C))$ has an affine equation of the form $x^{3}+b_{2}(t) x^{2}+b_{3}(t) x+$ $b_{4}(t)=0$, where $t=T / Z, x=X / Z, b_{i}(t) \in \mathbb{C}[t]$ and $\operatorname{deg}_{t} b_{i}(t) \leq i$. Also $\Phi(Q(L))$ is given by an equation of the form $x-x_{0}(t)=0$, where $x_{0}(t) \in \mathbb{C}[t]$ and $\operatorname{deg} x_{0}(t)=2$.

1.2. Elliptic Surfaces

As for details on various results for elliptic surfaces, we refer to [3], [7], [16], [9], [10], [12], [14] and [15].

Throughout this article, an elliptic surface always means a smooth projective surface S with a fibration $\varphi: S \rightarrow C$ over a smooth projective curve, C, as follows:
(i) There exists non empty finite subset $\operatorname{Sing}(\varphi) \subset C \operatorname{such}$ that $\varphi^{-1}(v)$ is a smooth curve of genus 1 for $v \in C \backslash \operatorname{Sing}(\varphi)$, while $\varphi^{-1}(v)$ is not a smooth curve of genus 1 for $v \in \operatorname{Sing}(\varphi)$.
(ii) There exists a section $O: C \rightarrow S$ (we identify O with its image in S).
(iii) there is no exceptional curve of the first kind in any fiber.

For $v \in \operatorname{Sing}(\varphi)$, we call $F_{v}=\varphi^{-1}(v)$ a singular fiber over v. As for the types of singular fibers, we use notation given by Kodaira ([7]). We denote the irreducible decomposition of F_{v} by

$$
F_{v}=\Theta_{v, 0}+\sum_{i=1}^{m_{v}-1} a_{v, i} \Theta_{v, i}
$$

where m_{v} is the number of irreducible components of F_{v} and $\Theta_{v, 0}$ is the irreducible component with $\Theta_{v, 0} O=1$. We call $\Theta_{v, 0}$ the identity component of F_{v}. We also define a subset $\operatorname{Red}(\varphi)$ of $\operatorname{Sing}(\varphi)$ to $\operatorname{be} \operatorname{Red}(\varphi):=\{v \in$ $\operatorname{Sing}(\varphi) \mid F_{v}$ is reducible $\}$. For a section $s \in \operatorname{MW}(S), s$ is said to be integral if $s O=0$.

Let $\operatorname{MW}(S)$ be the set of sections of $\varphi: S \rightarrow C$. By our assumption, $\operatorname{MW}(S) \neq \emptyset$. On a smooth fiber F of φ, by regarding $F \cap O$ as the zero element, we can consider the abelian group structure on F. Hence for $s_{1}, s_{2} \in \operatorname{MW}(S)$, one can define the addition $s_{1} \dot{+} s_{2}$ on $C \backslash \operatorname{Sing}(\varphi)$. By [7, Theorem 9.1], $s_{1} \dot{+} s_{2}$ can be extended over C, and we can consider MW (S) as an abelian group. $\operatorname{MW}(S)$ is called the Mordell-Weil group. We also denote the multiplication-by- m map $(m \in \mathbb{Z})$ on $\operatorname{MW}(S)$ by $[m] s$ for $s \in \operatorname{MW}(S)$. Note that [2]s is the double of s with respect to the group law on $\operatorname{MW}(S)$. On the other hand, we can regard the generic fiber $E:=S_{\eta}$ of S as a curve of genus 1 over $\mathbb{C}(C)$, the rational function field of C. The restriction of O to E gives rise to a $\mathbb{C}(C)$-rational point of E, and one can regard E as an elliptic curve over $\mathbb{C}(C), O$ being the zero element. By considering the restriction to the generic fiber for each sections, MW (S) can be identified with the set of $\mathbb{C}(C)$-rational points $E(\mathbb{C}(C))$. For $s \in \operatorname{MW}(S)$, we denote the corresponding rational point by P_{s}. Conversely, for an element $P \in E(\mathbb{C}(C))$, we denote the corresponding section by s_{P}.

We also denote the addition and the multiplication-by-m map on $E(\mathbb{C}(C))$ by $P_{1} \dot{+} P_{2}$ and $[m] P_{1}$ for $P_{1}, P_{2} \in E(\mathbb{C}(C))$, respectively. Again, [2] P is the double of P with respect to the group law on $E(\mathbb{C}(C))$.

For each singular fiber F_{v}, we associate it with finite abelian group $G_{F_{v}^{\sharp}}$, which is determined by irreducible components of F_{v} with $a_{v, i}=1$ as follows:

Type of F_{v}	$G_{F_{v}^{\sharp}}$
I_{b}	$\mathbb{Z} / b \mathbb{Z}$
$\mathrm{I}_{b}^{*}(b:$ even $)$	$(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 2}$
$\mathrm{I}_{b}^{*}(b:$ odd $)$	$\mathbb{Z} / 4 \mathbb{Z}$
II, II*	$\{0\}$
III, III*	$\mathbb{Z} / 2 \mathbb{Z}$
IV, IV *	$\mathbb{Z} / 3 \mathbb{Z}$

We put $G_{\text {Sing }(\varphi)}:=\oplus_{v \in \operatorname{Sing}(\varphi)} G_{F_{v}^{\sharp}}$, and $\gamma: \operatorname{MW}(S) \rightarrow G_{\text {Sing }(\varphi)}$ denotes the
homomorphism as in [14, p. 83]. Note that for $s \in \operatorname{MW}(S), \gamma(s)$ describes at which irreducible component s meets on F_{v}. For details, see [7, Section $9]$ or [14, pp. 81-83].

In [12], Shioda introduced a \mathbb{Q}-valued bilinear form on $E(\mathbb{C}(C))$ called the height pairing. We denote it by \langle,$\rangle . It is known that \langle P, P\rangle \geq 0$ for $\forall P \in E(\mathbb{C}(C))$ and the equality holds if and only if P is an element of finite order in $E(\mathbb{C}(C))$. For an explicit formula of $\left\langle P_{1}, P_{2}\right\rangle\left(P_{1}, P_{2} \in E(\mathbb{C}(C))\right)$, see [12, Theorem 8.6].

We also remark double cover construction of an elliptic surface over \mathbb{P}^{1}. Let Σ_{d} be the Hirzebruch surface of degree d (d : even). Let \mathfrak{f} be a fiber of $\Sigma_{d} \rightarrow \mathbb{P}^{1}$ and let Δ_{0} and Δ be sections with self-intersection numbers $-d$ and d, respectively. Note that $\Delta \sim \Delta_{0}+d \mathfrak{f}$ and $\Delta_{0} \cap \Delta=\emptyset$.

Let \mathcal{T} be a reduced divisor on Σ_{d} such that

- $\mathcal{T} \sim 3 \Delta$, i.e., \mathcal{T} is a tri-section with $\Delta_{0} \cap \mathcal{T}=\emptyset$, and
- singularities of \mathcal{T} are at worst simple (see [4] for simple singularities).

Since $\Delta_{0}+\mathcal{T} \sim 2\left(2 \Delta_{0}+3 d / 2 \mathfrak{f}\right)$, we have the double cover $f^{\prime}: S^{\prime} \rightarrow \Sigma_{d}$ with branch locus $\Delta_{f^{\prime}}=\Delta_{0}+\mathcal{T}$ (see [4, III, Section 7], for example). Let

denotes the diagram of the canonical resolution (see [6] for the canonical resolution). Namely, μ is the minimal resolution of singularities and q is a composition of blowing-ups so that the branch locus of f becomes smooth. Then the induced morphism $\varphi: S \rightarrow \Sigma_{d} \rightarrow \mathbb{P}^{1}$ gives rise to an elliptic vibration over \mathbb{P}^{1}, i.e., S is an elliptic surface over \mathbb{P}^{1}. Conversely it is known that any elliptic surface $\varphi: S \rightarrow \mathbb{P}^{1}$ is obtained this way ([9]).

An elliptic surface $\varphi: S \rightarrow \mathbb{P}^{1}$ is said to be rational if S is a rational surface. In the above diagram, we have an rational elliptic surface when $d=2$. For a rational elliptic surface $\varphi: S \rightarrow \mathbb{P}^{1}$, if φ has a reducible singular fiber, $\widehat{\Sigma}_{d}$ in the above diagram can be blown down to \mathbb{P}^{2} in such a way that \mathcal{T} is transformed to a reduced quartic and O is mapped to a smooth point z_{o} on \mathcal{Q}. The induced morphism from $S \rightarrow \mathbb{P}^{2}$ is nothing but $f_{\mathcal{Q}, z_{o}}$ explained in the Introduction.
Σ_{d} can be covered by 4 affine open sets $U_{i}(i=1,2,3,4)$ such that

- their local coordinates are

$$
U_{1}:(t, x), \quad U_{2}:\left(s, x^{\prime}\right), \quad U_{3}:(t, u), \quad U_{4}:\left(s, u^{\prime}\right)
$$

- these coordinates are related by

$$
s=1 / t, \quad x^{\prime}=x / t^{d}, \quad u=1 / x, \quad u^{\prime}=u t^{d} .
$$

With these coordinates, Δ_{0} is given by $u=0$ and $u^{\prime}=0$ on U_{3} and U_{4}, respectively. Also \mathcal{T} is given by

$$
f_{\mathcal{T}}(t, x)=x^{3}+a_{1}(t) x^{2}+a_{2}(t) x+a_{3}(t)=0, \quad a_{i} \in \mathbb{C}[t], \operatorname{deg} a_{i} \leq i d
$$

on U_{1} and $\left.S^{\prime}\right|_{f^{-1}}\left(U_{1}\right)$ is realized by

$$
y^{2}-f_{\mathcal{T}}(t, x)=0 \subset \mathbb{C}^{3}
$$

We see that the covering map f^{\prime} is the restriction of the projection $(t, x, y) \mapsto$ (t, x). The above equation can be regarded as a Weierstrass equation of the generic fiber, E, of $\varphi: S \rightarrow \mathbb{P}^{1}$, where $\mathbb{C}\left(\mathbb{P}^{1}\right)$ is identified with $\mathbb{C}(t), t$ being an inhomogeneous coordinate. Let $s \in \operatorname{MW}(S)$ be an integral section of S. Then we see that the coordinates of the corresponding rational point P_{s} are polynomial of degrees at most d (resp. $3 d / 2$) in the x-coordinate (resp. the y-coordinate). Conversely, for any point $P=(x(t), y(t)) \in E(\mathbb{C}(t))$ such that $x(t), y(t) \in \mathbb{C}[t]$ and $\operatorname{deg} x(t) \leq d, \operatorname{deg} y(t) \leq 3 d / 2, s_{P}$ is an integral section. By an integral point, we mean a rational point corresponding to an integral section as above.

Choose an integral point $P_{o}=\left(x_{o}(t), y_{o}(t)\right)$ of E with $y_{o}(t) \neq 0$ and let

$$
y=l(t, x), \quad l(t, x)=m(t)\left(x-x_{o}(t)\right)+y_{o}(t), \quad m(t)=f_{x}\left(t, x_{o}(t)\right) / 2 y_{o}(t)
$$

be the tangent line at P_{o}.
Lemma 1.2 If $[2] P_{o}$ is also integral, then $m(t) \in \mathbb{C}[t]$.
See [16, Lemma 1.2] or [13, pp. 176-177].
Corollary 1.1 Under the assumption of Lemma 1.2, if we put $[2] P_{o}=$ $\left(x_{1}(t), y_{1}(t)\right)$, then $f(t, x)$ has a decomposition

$$
f_{\mathcal{T}}(t, x)=\left(x-x_{o}(t)\right)^{2}\left(x-x_{1}(t)\right)+\{l(t, x)\}^{2} .
$$

2. Rational elliptic surface $\boldsymbol{S}_{\mathcal{Q}, z_{o}}$

Let \mathcal{Q} be an irreducible 3 -nodal quartic as before and let z_{o} be a smooth point on \mathcal{Q}. As we explain in the Introduction, we associate a rational elliptic surface with \mathcal{Q} and z_{o}, which we denote by $\varphi: S_{\mathcal{Q}, z_{o}} \rightarrow \mathbb{P}^{1}$. We also denote $i t s$ generic fiber by $E_{\mathcal{Q}, z_{o}}$.

The tangent line $l_{z_{o}}$ gives rise to a singular fiber of φ whose type is determined by how $l_{z_{o}}$ intersects with \mathcal{Q} as follows:

(i)	I_{2}	$l_{z_{o}}$ meets \mathcal{Q} with two other distinct points.
(ii)	III	$l_{z_{o}}$ is a 3 -fold tangent point.
(iii)	I_{3}	$l_{z_{o}}$ is a bitangent line.
(iv)	IV	$l_{z_{o}}$ is a 4 -fold tangent point.
(v)	I_{4}	$l_{z_{o}}$ passes through a node of \mathcal{Q}

Other singular fibers are determined by how a line through z_{o} meets with \mathcal{Q}. Thus by taking [10, Table 6.2] into account and the above table, we have the following table for possible configurations of singular fibers of $S_{\mathcal{Q}, z_{o}}$:

	Singular fibers	the position of $l_{z_{o}}$
1	$\left\{4 \mathrm{I}_{2}, 4 \mathrm{I}_{1}\right\},\left\{4 \mathrm{I}_{2}, 2 \mathrm{I}_{1}, \mathrm{II}\right\},\left\{4 \mathrm{I}_{2}, 2 \mathrm{II}\right\}$	(i)
2	$\left\{3 \mathrm{I}_{2}, \mathrm{III}, 2 \mathrm{I}_{1}\right\},\left\{3 \mathrm{I}_{2}, \mathrm{III}, \mathrm{II}\right\}$	(ii)
3	$\left\{\mathrm{I}_{3}, 3 \mathrm{I}_{2} 3 \mathrm{I}_{1}\right\},\left\{\mathrm{I}_{3}, 3 \mathrm{I}_{2}, \mathrm{I}_{1}, \mathrm{II}\right\}$	(iii)
4	$\left\{3 \mathrm{I}_{2}, \mathrm{IV}, 2 \mathrm{I}_{1}\right\},\left\{3 \mathrm{I}_{2}, \mathrm{IV}, \mathrm{II}\right\}$	(iv)
5	$\left\{\mathrm{I}_{4}, 2 \mathrm{I}_{2}, 4 \mathrm{I}_{1}\right\},\left\{\mathrm{I}_{4}, 2 \mathrm{I}_{2}, 2 \mathrm{I}_{1}, \mathrm{II}\right\},\left\{\mathrm{I}_{4}, 2 \mathrm{I}_{2}, 2 \mathrm{II}\right\}$	(v)

Note that cases 1, 2, cases 3, 4 and case 5 correspond to cases (I), (II) and (III) in Theorem 1, respectively. In our later argument, we need to know the structure of $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$. We first note that $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ has no 2-torsion as \mathcal{Q} is irreducible. Hence, by [11], the structure of $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ is as follows:
(I) $\left(A_{1}^{*}\right)^{\oplus 4}$,
(II) $A_{1}^{*} \oplus \frac{1}{6}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$,
(III) $\left(A_{1}^{*}\right)^{\oplus 2} \oplus\langle 1 / 4\rangle$.

Also, since irreducible singular fibers and the difference between III (resp. IV) type and I_{2} (resp. I_{3}) type do not affect the structure of $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ in these above cases, we may assume that the configurations of singular fibers are

$$
\text { (I) } 4 \mathrm{I}_{2}, 4 \mathrm{I}_{1}, \quad \text { (II) } \mathrm{I}_{3}, 3 \mathrm{I}_{2}, 3 \mathrm{I}_{1}, \quad \text { (III) } \mathrm{I}_{4}, 2 \mathrm{I}_{2}, 4 \mathrm{I}_{1} \text {. }
$$

As we have seen in [13], an integral point P of $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ with $\langle P, P\rangle=$ 2 gives rise to a contact conic to \mathcal{Q}. Hence we need to consider an integral element P with $\langle P, P\rangle=2$ for each case. To this purpose, let us introduce some notation.

Let $\mathcal{L}_{i}(i=1,2,3)$ be three lines passing through two of the three nodes of \mathcal{Q}. For the cases (I) and (II), we denote a smooth conic tangent to \mathcal{Q} at z_{o} and passing through the three nodes by $\overline{\mathcal{C}}$. Note that there is no smooth conic such as $\overline{\mathcal{C}}$ for the case (III), as $l_{z_{o}}$ is also tangent to \mathcal{Q} at z_{o} and passes through one of 3 nodes.

Then by our construction of $S_{\mathcal{Q}, z_{o}}, \mathcal{L}_{i}(i=1,2,3)$ and $\overline{\mathcal{C}}$ give rise to sections $s_{\mathcal{L}_{i}}^{ \pm}(i=1,2,3)$ and $s_{\overline{\mathcal{C}}}^{ \pm}$. In the following, we put $s_{i}=s_{\mathcal{L}_{i}}^{+}(i=1,2,3)$ and $s_{0}=s_{\overline{\mathcal{C}}}^{+}$. We denote the corresponding element to s_{i} in $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ by P_{i} for simplicity. We also write $[2] s_{i}(i=0,1,2,3)$ for sections corresponding to $[2] P_{i}(i=0,1,2,3)$, respectively.

Case (I). We label irreducible components of singular fibers of type I_{2} in such a way that $\Theta_{i, 1}(i=1,2,3)$ are those arising from the nodes of \mathcal{Q} and $\Theta_{\infty, 1}$ is the one from $l_{z_{o}}$. By our construction of $S_{\mathcal{Q}, z_{o}}$, we may assume that $s_{i}(i=0,1,2,3)$ meet each singular fiber as in the figure below.

By [12, Theorem 8.6], we have

Case (I)

$$
\left\langle P_{i}, P_{i}\right\rangle=\frac{1}{2}, i=0,1,2,3, \quad\left\langle P_{i}, P_{j}\right\rangle=0(i \neq j)
$$

This means that $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ is generated by $P_{i}(i=0,1,2,3)$. As $\gamma\left([2] s_{i}\right)=0$ and $\left\langle[2] P_{i},[2] P_{i}\right\rangle=2$ for each i, [2] s_{i} is integral with $\left\langle[2] P_{i},[2] P_{i}\right\rangle=2$ and this means that $f_{\mathcal{Q}, z_{o}}\left([2] s_{i}\right)$ is a contact conic to \mathcal{Q} through z_{o} by [13, Lemma 2.1]. Conversely, for any contact conic $\mathcal{C} \in \mathrm{CC}_{z_{o}}$, the closure of $f_{\mathcal{Q}, z_{o}}^{-1}\left(\mathcal{C} \backslash\left\{z_{o}\right\}\right)$ consists of two integral sections $s_{\mathcal{C}}^{ \pm}$which intersect the identity component at each singular fiber, i.e., $\left\langle P_{s_{\mathcal{C}}^{ \pm}}, P_{s_{\mathcal{C}}^{ \pm}}\right\rangle=2$. This means that the set of integral sections with height 2 up to \pm are in one to one correspondence with $\mathrm{CC}_{z_{o}}$. Thus we have four contact conics \mathcal{C}_{i} $(i=0,1,2,3)$ in $\mathrm{CC}_{z_{o}}$ such that $\mathcal{C}_{i}=f_{\mathcal{Q}, z_{o}}\left([2] s_{i}\right)(i=0,1,2,3)$.

Case (II). We label irreducible components of singular fibers of type I_{2} in the same way as in Case (I) and those of type I_{3} such that $\Theta_{\infty, 1}, \Theta_{\infty, 2}$ are irreducible components from $l_{z_{o}}$. By our construction, $s_{i}(i=1,2,3)$ meet two of $\Theta_{1,1}, \Theta_{2,1}$ and $\Theta_{3,1}$ at I_{2} fibers and either $\Theta_{\infty, 1}$ or $\Theta_{\infty, 2}$, while s_{0} meets $\Theta_{i, 1}(i=1,2,3)$ at I_{2} fibers and $\Theta_{\infty, 0}$ at the I_{3} fiber. In the figure below, we only draw s_{1} and s_{3} and assume that s_{1} meets $\Theta_{\infty, 1}$. By [12, Theorem 8.6], this means that

$$
\left\langle P_{i}, P_{i}\right\rangle=\frac{1}{3}, i=1,2,3, \quad\left\langle P_{0}, P_{0}\right\rangle=\frac{1}{2} .
$$

As $\gamma\left([2] s_{0}\right)=0$ and $\left\langle[2] P_{0},[2] P_{0}\right\rangle=2,[2] P_{0}$ is integral and $f_{\mathcal{Q}, z_{o}}\left([2] s_{0}\right)$ is a unique contact conic \mathcal{C}_{0} to \mathcal{Q} through z_{o} by [13, Lemma 2.1]. Hence the contact conic is obtained as $f_{\mathcal{Q}, z_{o}}\left([2] s_{0}\right)$.

Case (III). Let z_{1} be the node on $l_{z_{o}}$, and we may assume that \mathcal{L}_{1} and \mathcal{L}_{2} pass through z_{1}. We label irreducible components of singular fibers

Case (II)
of type I_{2} in the same way as in Case (I) and those of type I_{4} so that $\Theta_{\infty, 1}, \Theta_{\infty, 3}$ are irreducible components from $l_{z_{o}}$ and $\Theta_{\infty, 2}$ is the one from the node z_{1}. Then we see that s_{1} and s_{2} meet one of $\Theta_{1,1}$ and $\Theta_{2,1}$ at I_{2} fibers and $\Theta_{\infty, 2}$ at the I_{4} fiber, while s_{3} meet $\Theta_{1,1}$ and $\Theta_{2,1}$ at I_{2} fibers and either $\Theta_{\infty, 1}$ or $\Theta_{\infty, 3}$. In the figure below, we assume that s_{3} meets $\Theta_{\infty, 1}$. By [12, Theorem 8.6], this means that

$$
\left\langle P_{i}, P_{i}\right\rangle=\frac{1}{2}, i=1,2, \quad\left\langle P_{3}, P_{3}\right\rangle=\frac{1}{4} .
$$

As $\gamma\left([2] s_{i}\right)=0$ and $\left\langle[2] P_{i},[2] P_{i}\right\rangle=2(i=1,2),[2] P_{i}$ is integral and this means that $f_{\mathcal{Q}, z_{o}}\left([2] s_{i}\right)(i=1,2)$ are contact conics to \mathcal{Q} through z_{o} by [13, Lemma 2.1]. Hence we have two contact conics $f_{\mathcal{Q}, z_{o}}\left([2] s_{i}\right)(i=1,2)$.

3. Contact conics to 3 -nodal quartic

Let \mathcal{Q} be a 3 -nodal quartic as before. Let z_{1}, z_{2} and z_{3} be the nodes of \mathcal{Q} and let $\mathcal{L}_{1}, \mathcal{L}_{2}$ and \mathcal{L}_{3} be the lines through $\left\{z_{1}, z_{2}\right\},\left\{z_{1}, z_{3}\right\}$ and $\left\{z_{2}, z_{3}\right\}$, respectively. Let z_{o} be the distinguished smooth point on \mathcal{Q}. For the cases (I) and (II), $\overline{\mathcal{C}}$ is the smooth conic tangent to \mathcal{Q} at z_{o} and passes through z_{1}, z_{2} and z_{3}.

Now we choose homogeneous coordinates $[T, X, Z]$ of \mathbb{P}^{2} such that $z_{o}=$ $[0,1,0]$ and $Z=0$ is the tangent line of \mathcal{Q} at z_{o}. Then we may assume that \mathcal{Q} is given by a homogeneous polynomial $F_{\mathcal{Q}}(T, X, Z)$ of the form

$$
F_{\mathcal{Q}}(T, X, Z)=Z X^{3}+b_{2}(T, Z) X^{2}+b_{3}(T, Z) X+b_{4}(T, Z)
$$

Then the affine part of \mathcal{Q}, i.e., the part with $Z \neq 0$ is given by

$$
F_{\mathcal{Q}}(t, x, 1)=x^{3}+b_{2}(t, 1) x^{2}+b_{3}(t, 1) x+b_{4}(t, 1) .
$$

For simplicity, we denote $b_{i}(t, 1)$ by $b_{i}(t)$. By our choice of coordinates, the affine part of \mathcal{L}_{i} is given by an equation of the form

$$
x-x_{i}(t), \quad x_{i}(t) \in \mathbb{C}[t], \quad \operatorname{deg} x_{i}(t)=1,
$$

and that of $\overline{\mathcal{C}}$ is given by

$$
x-x_{0}(t), \quad x_{0}(t) \in \mathbb{C}[t], \quad \operatorname{deg} x_{0}(t)=2 .
$$

From our observation in Section 2, we have the following facts:
Case (I). There exist four integral points $P_{i}(i=0,1,2,3)$ in $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ as follows:
(i) The x-coordinate of $P_{i}(i=0,1,2,3)$ are $x_{i}(t)(i=0,1,2,3)$ as above, respectively.
(ii) $\left.[2] P_{i}(i=0,1,2,3)\right)$ are also integral.
(iii) Put $[2] P_{i}=\left(\tilde{x}_{i}(t), \tilde{y}_{i}(t)\right)$. Then $\operatorname{deg} \tilde{x}_{i}(t)=2$ and the conics given by $x-\tilde{x}_{i}(t)=0(i=0,1,2,3)$ are contact conics to \mathcal{Q} through z_{o}.

Case (II). There exists an integral point P_{0} in $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ as follows:
(i) The x-coordinate of P_{0} is $x_{0}(t)$ as above.
(ii) $[2] P_{0}$ are also integral.
(iii) Put $[2] P_{0}=\left(\tilde{x}_{0}(t), \tilde{y}_{0}(t)\right)$. Then $\operatorname{deg} \tilde{x}_{0}(t)=2$ and the conics given by $x-\tilde{x}_{0}(t)=0$ is the unique contact conic to \mathcal{Q} through z_{o}.

Case (III). Suppose that the tangent line at $l_{z_{o}}$ passes through z_{1}. There exist two integral points $P_{i}(i=1,2)$ in $E_{\mathcal{Q}, z_{o}}(\mathbb{C}(t))$ as follows:
(i) The x-coordinate of $P_{i}(i=1,2)$ are $x_{i}(t)(i=1,2)$ as above, respectively.
(ii) $[2] P_{i}(i=1,2)$ are also integral.
(iii) Put $[2] P_{i}=\left(\tilde{x}_{i}(t), \tilde{y}_{i}(t)\right)(i=1,2)$. Then $\operatorname{deg} \tilde{x}_{i}(t)=2$ and the conics given by $x-\tilde{x}_{i}(t)=0(i=1,2)$ are contact conics to \mathcal{Q} through z_{o}.

We here introduce another terminology to describe these two kinds of contact conics as above:

Definition 3.1 Let \mathcal{C} be a contact conic appeared in Proposition 3.1, we call \mathcal{C} a duplicated line (resp. a duplicated conic) if $\operatorname{deg}\left(x-x_{i}(t)\right)=1$ (resp. $=2$).

By Corollary 1.1, we have decompositions as follows:
Proposition 3.1 Let \mathcal{Q}, z_{o} and $l_{z_{o}}$ be as in the Introduction, and we choose homogeneous coordinates $[T, X, Z]$ as in the Introduction. Put $t=$ $T / Z, x=X / Z$.

Case (I). There exist 4 contact conics $\mathcal{C}_{i}(i=0,1,2,3)$ to \mathcal{Q} through $z_{0} . W e$ may assume that \mathcal{C}_{0} is a duplicated conic, while $\mathcal{C}_{i}(i=1,2,3)$ are duplicated lines. For each \mathcal{C}_{i}, we have the following decomposition:

$$
F_{\mathcal{Q}}(t, x, 1)=\left(x-x_{i}(t)\right)^{2}\left(x-\tilde{x}_{i}(t)\right)+\left\{l_{i}(t, x)\right\}^{2},(i=0,1,2,3)
$$

Case (II). There exists a unique contact conic \mathcal{C}_{0} to \mathcal{Q} through $z_{o} . \mathcal{C}_{0}$ is a duplicated line and we have the following decomposition:

$$
F_{\mathcal{Q}}(t, x, 1)=\left(x-x_{0}(t)\right)^{2}\left(x-\tilde{x}_{0}(t)\right)+\left\{l_{0}(t, x)\right\}^{2}
$$

Case (III). There exist two contact conics $\mathcal{C}_{i}(i=1,2)$ to \mathcal{Q} through z_{0}. Both of $\mathcal{C}_{i}(i=1,2)$ are duplicated lines and we have the following decompositions:

$$
F_{\mathcal{Q}}(t, x, 1)=\left(x-x_{i}(t)\right)^{2}\left(x-\tilde{x}_{i}(t)\right)+\left\{l_{i}(t, x)\right\}^{2},(i=1,2)
$$

Note that, for each case as above, \mathcal{C}_{i} is given by $x-\tilde{x}_{i}(t)=0$ and $l_{i}(t, x)$ is a polynomial in $\mathbb{C}[t, x]$ such that $y=l_{i}(t, x)$ gives an equation of the tangent line of $E_{\mathcal{Q}, z_{o}}$ at P_{i} as above.

4. Proof of Theorem 1

Let \mathcal{C} be a contact conic to \mathcal{Q} and let $f_{\mathcal{C}}: Z_{\mathcal{C}} \rightarrow \mathbb{P}^{2}$ be the double cover branched along \mathcal{C}. $Z_{\mathcal{C}} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and more explicitly, $Z_{\mathcal{C}}$ is a quadric surface in \mathbb{P}^{3} given by

$$
W^{2}-\left(X Z-Z^{2} \tilde{x}(T / Z)\right)=0
$$

where $x-\tilde{x}(t)$ is a defining equation of the affine part of $\mathcal{C} . f_{\mathcal{C}}$ is given by the restriction of the projection $\mathbb{P}^{3} \backslash\{[0,0,0,1]\} \rightarrow \mathbb{P}^{2}$ and the covering
transformation is given by $[T, X, Z, W] \mapsto[T, X, Z,-W]$. Now we have the following proposition:

Proposition 4.1 Let \mathcal{C} be a contact conic to \mathcal{Q}.

- \mathcal{C} is a duplicated line if and only if \mathcal{C} is $(2,2)$ type with respect to \mathcal{Q}.
- \mathcal{C} is a duplicated conic if and only if \mathcal{C} is $(1,3)$ type with respect to \mathcal{Q}.

Proof. Since any contact conic to \mathcal{Q} is either a duplicated line or a duplicated conic, it is enough to show the following two statements:

- If \mathcal{C} is a duplicated line, then \mathcal{C} is $(2,2)$ type with respect to \mathcal{Q}.
- If \mathcal{C} is a duplicated conic, \mathcal{C} is $(1,3)$ type with respect to \mathcal{Q}.

We write the corresponding decomposition with respect to \mathcal{C} given in Proposition 3.1:

$$
\begin{equation*}
F_{\mathcal{Q}}(t, x, 1)=(x-x(t))^{2}(x-\tilde{x}(t))+\{l(t, x)\}^{2} \tag{1}
\end{equation*}
$$

where the affine part of \mathcal{C} is given by $x-\tilde{x}(t)=0$.
The case when \mathcal{C} is a duplicated line. Since $\operatorname{deg}(x-x(t))=1$ and $\operatorname{deg}(x-$ $\tilde{x}(t))=2, \operatorname{deg}(l(t, x)) \leq 2$. Hence by homogenizing the decomposition (1), we have

$$
F_{\mathcal{Q}}(T, X, Z)=(X-Z x(T / Z))^{2}\left(X Z-Z^{2} \tilde{x}(T / Z)\right)+\left\{Z^{2} l(T / Z, X / Z)\right\}^{2}
$$

Put $f_{\mathcal{C}}^{*} \mathcal{Q}=\mathcal{Q}^{+}+\mathcal{Q}^{-}$. As $Z_{\mathcal{C}}$ is defined by $W^{2}-\left(X Z-Z^{2} \tilde{x}_{i}(T / Z)\right)=0$, we may assume that

$$
\mathcal{Q}^{ \pm}=Z_{\mathcal{C}} \cap\left\{(X-Z x(T / Z)) W \pm \sqrt{-1} Z^{2} l(T / Z, X / Z)=0\right\}
$$

Since a divisor on $Z_{\mathcal{C}}$ cut out by a quadric surface is of type $(2,2)$, we have the assertion.

The case when \mathcal{C} is a duplicated conic. In this case, $\operatorname{deg}(x-x(t))=2$ and $\operatorname{deg}(x-\tilde{x}(t))=2$. By homogenizing the decomposition (1), we have

$$
\begin{align*}
Z^{2} F_{\mathcal{Q}}(T, X, Z)= & \left(X Z-Z^{2} x(T / Z)\right)^{2}\left(X Z-Z^{2} \tilde{x}(T / Z)\right) \\
& +\left\{Z^{3} l(T / Z, X / Z)\right\}^{2} \tag{2}
\end{align*}
$$

Put $x(t)=c_{0} t^{2}+c_{1} t+c_{2}, \tilde{x}(t)=d_{0} t^{2}+d_{1} t+d_{2}, c_{0} d_{0} \neq 0$, and $l(t, x)$ is of the form

$$
\left(a_{0} t+a_{1}\right) x+\left(b_{0} t^{3}+b_{1} t^{2}+b_{2} t+b_{3}\right) \quad a_{i}, b_{j} \in \mathbb{C}, \quad b_{0} \neq 0
$$

by comparing monomials appearing the both hand of (2).
Since $l_{z_{o}}$ is given by $Z=0$ and $W^{2}-\left(X Z-Z^{2} \tilde{x}(T / Z)\right)=0$, we have

$$
f_{\mathcal{C}}^{*} l_{z_{o}}=l^{+} \cup l^{-}, \quad l^{ \pm}=\left\{\left[T, X, 0, \pm \sqrt{-d_{0}} T\right] \in \mathbb{P}^{3}\right\}
$$

Hence from the decomposition (2), we have

$$
2\left(l^{+}+l^{-}\right)+\left(\mathcal{Q}^{+}+\mathcal{Q}^{-}\right)=D^{+}+D^{-}
$$

where $D^{ \pm}$are divisors scheme-theoretically given by

$$
Z_{\mathcal{C}} \cap\left\{\left(X Z-Z^{2} x(T / Z)\right) W \pm \sqrt{-1} Z^{3} l(T / Z, X / Z)=0\right\}
$$

respectively. Since $D^{ \pm} \sim(3,3)$, we may assume either (a) or (b) below holds:
(a) $l^{+}+l^{-}+\mathcal{Q}^{+}=D^{+}$, or
(b) $2 l^{+}+\mathcal{Q}^{+}=D^{+}$,

We show that the case (a) does not occur. Choose a point $\left[T, X, 0, \sqrt{-d_{0}} T\right] \in$ $l^{+} \subset D^{+}, T \neq 0$. If the case (a) happens, $\left[T, X, 0,-\sqrt{-d_{0}} T\right] \in l^{-} \subset D^{+}$. On the other hand, if $\left[T, X, 0, \sqrt{-d_{0}} T\right] \in l^{+}$, as $l^{+} \subset D^{+}$, we have

$$
-c_{0} T^{2}\left(\sqrt{-d_{0}} T\right)+\sqrt{-1} b_{0} T^{3}=\left(-c_{0} \sqrt{-d_{0}}+\sqrt{-1} b_{0}\right) T^{3}=0
$$

Hence we have

$$
c_{0} T^{2}\left(\sqrt{-d_{0}} T\right)+\sqrt{-1} b_{0} T^{3}=\left(c_{0} \sqrt{-d_{0}}+\sqrt{-1} b_{0}\right) T^{3} \neq 0
$$

This means that $\left[T, X, 0,-\sqrt{-d_{0}} T\right] \notin D^{+}$for $T \neq 0$. This leads us to a contradiction.

From Propositions 3.1 and 4.1, Theorem 1 follows.

5. Examples

We end this paper by giving explicit example for an irreducible 3-nodal quartic and its contact conics observed so far, by which we have some examples of Zariski pairs. As for homogeneous coordinates of \mathbb{P}^{2} we keep our previous notation, $[T, X, Z]$. In order to give curves by explicit equations, we make use of our observation in Section 1, 1.1.

We first consider the case (I) of Theorem 1. Let C be a conic given by the equation $X Z-T^{2}=0$. Let Q denote the standard quadratic transformations with respect to three lines: $-3 T+X+2 Z=0,3 T+X+2 Z=0, X-2 Z=0$. Let $l: Z=0$ be the tangent line at $p=[0,1,0]$ to C.

Let us denote $\mathcal{Q}:=Q(C), \overline{\mathcal{C}}:=Q(l)$ and $z_{o}:=Q(p)$. Let $l_{z_{o}}$ be the tangent line to \mathcal{Q} at z_{o}. Then we have the equations of $\mathcal{Q}, \overline{\mathcal{C}}$ and $l_{z_{o}}$ as follows:

$$
\begin{aligned}
F_{\mathcal{Q}} & =36 T^{2} X^{2}-T^{2} Z^{2}-34 T X Z^{2}-X^{2} Z^{2} \\
F_{\overline{\mathcal{C}}} & =2 T X-T Z-X Z \\
z_{o} & =[1,1,1] \\
F_{l_{z_{o}}} & =T+X-2 Z
\end{aligned}
$$

We see that, \mathcal{Q} is a quartic and $\overline{\mathcal{C}}$ is a conic passing through 3 nodes and tangent to \mathcal{Q} at z_{o}. Also $l_{z_{o}}$ meets \mathcal{Q} with two other distinct points.

Let $E:=E_{\mathcal{Q}, z_{o}}$ be a generic fiber of rational elliptic surface $S_{\mathcal{Q}, z_{o}}$ and $E(\mathbb{C}(t))$ be the set of rational points and the point at infinity O. Let Φ be a coordinate change such that $l_{z_{o}}$ is transformed into the line $Z=0$ and z_{o} is mapped to $[0,1,0]$. Then $\Phi(\mathcal{Q})$ and $\Phi(\overline{\mathcal{C}})$ are given by the affine equations as follows:

$$
\begin{aligned}
& F_{\Phi(\mathcal{Q})}=x^{3}+\frac{5}{36}\left(8 t^{2}+8 t-7\right) x^{2}+\left(-2 t^{2}-2 t\right) x-t^{2}(t+1)^{2}=0 \\
& F_{\Phi(\overline{\mathcal{C}})}=x+2 t^{2}+2 t=0
\end{aligned}
$$

where $t=T / Z$ and $x=X / Z$.
Note that $\Phi(\mathcal{Q})$ has 3 nodes at $[0,0,1],[-1 / 2,1 / 2,1]$ and $[-1,0,1]$. Three lines passing through two of the 3 nodes together with $\Phi(\overline{\mathcal{C}})$ correspond to rational points in $E(\mathbb{C}(t))$ as shown in the table below:

Equations Rational points

$$
\begin{array}{ll}
x+2 t^{2}+2 t=0 & P_{0}^{ \pm}=\left(-2 t^{2}-2 t, \pm \frac{2 \sqrt{-2}}{3} t(1+2 t)(1+t)\right) \\
x+t=0 & P_{1}^{ \pm}=\left(-t, \pm \frac{t(1+2 t)}{6}\right) \\
x=0 & P_{2}^{ \pm}=(0, \pm \sqrt{-1}(t+1) t) \\
x-t-1=0 & P_{3}^{ \pm}=\left(t+1, \pm \frac{(2 t+1)(t+1)}{6}\right)
\end{array}
$$

Since we have $\left\langle P_{i}^{+}, P_{j}^{+}\right\rangle=(1 / 2) \delta_{i j}$ for $i, j=0,1,2,3$, we assume that $E(\mathbb{C}(t))$ is generated by $P_{0}^{+}, P_{1}^{+}, P_{2}^{+}$and P_{3}^{+}. Also we have the following table for $[2] P_{i}^{+},(i=0,1,2,3)$:

Duplicated points of $P_{i}^{+},(i=0,1,2,3)$

$$
\begin{aligned}
& {[2] P_{0}^{+}=\left(-\frac{9}{8} t^{2}-\frac{9}{8} t-\frac{1}{32},-\frac{\sqrt{-2}}{768}\left(72 t^{3}+108 t^{2}+70 t+17\right)\right)} \\
& {[2] P_{1}^{+}=\left(10 t^{2}+2 t+1, \frac{100}{3} t^{3}+\frac{34}{3} t^{2}+\frac{11}{3} t+\frac{1}{6}\right)} \\
& {[2] P_{2}^{+}=\left(-\frac{10}{9} t^{2}-\frac{10}{9} t-\frac{1}{36}, \frac{\sqrt{-1}\left(4 t^{2}+4 t+1\right)}{36}\right)} \\
& {[2] P_{3}^{+}=\left(10 t^{2}+18 t+9,-\frac{100}{3} t^{3}-\frac{266}{3} t^{2}-81 t-\frac{51}{2}\right)}
\end{aligned}
$$

Note that, if we denote $\mathcal{C}_{0}: 32 x+36 t^{2}+36 t+1=0, \mathcal{C}_{1}: x-10 t^{2}-2 t-1=0$, $\mathcal{C}_{2}: 36 x+40 t^{2}+40 t-71=0, \mathcal{C}_{3}: x-10 t^{2}-18 t-9=0$, then $\mathcal{C}_{1}, \mathcal{C}_{2}$, \mathcal{C}_{3} are duplicated lines, while $\mathcal{C}_{1,0}$ is a duplicated conic. By Proposition 3.2 $\mathcal{C}_{j},(j=1,2,3)$ are $(2,2)$ type and \mathcal{C}_{0} is $(1,3)$ type with respect to \mathcal{Q}. Also we have for $i=0,1,3$, the number of tangent points of \mathcal{C}_{i} to \mathcal{Q} is equal to 4 , while the number of tangent points of \mathcal{C}_{2} to \mathcal{Q} is equal to 2 . This means that $\mathcal{C}_{j}+\mathcal{Q}(j=1,3)$ and $\mathcal{C}_{0}+\mathcal{Q}$ have the same combinatorics. Hence, by Corollary $2,\left(\mathcal{C}_{j}+\mathcal{Q}, \mathcal{C}_{0}+\mathcal{Q}\right),(j=1,3)$ are Zariski pairs.

Similarly, we have explicit examples for the cases (II) and (III). We end this section by giving explicit equations of \mathcal{Q} and contact conics to \mathcal{Q} for both cases:

Case (II). Let \mathcal{Q} be a quartic and let l be a line as follows:

$$
\begin{aligned}
\mathcal{Q}: & X^{3} Z+\left(6 T^{2}-6 T Z+\frac{7}{6} Z^{2}\right) X^{2}+\left(-24 T^{3}+15 T^{2} Z-\frac{7}{3} T Z^{2}\right) X \\
& \quad+24 T^{4}-16 T^{3} Z+\frac{8}{3} T^{2} Z^{2}=0 \\
l: & Z=0 \\
z_{o}: & {[0,1,0] . }
\end{aligned}
$$

Then l is a bitangent line to \mathcal{Q} at z_{o}. By Theorem 1 we have only one contact conic of $(1,3)$ type which is given by the equation: $48 X Z-36 T^{2}-$ $60 T Z+7 Z^{2}=0$.

Case (III). Let \mathcal{Q} be a quartic, and let l be a line as follows:

$$
\begin{aligned}
\mathcal{Q}: & 2 X^{3} Z+\left(T^{2}+T Z+4 Z^{2}\right) X^{2}+\left(-2 T^{3}-T^{2} Z+3 T Z^{2}\right) X \\
& \quad+T^{4}-2 T^{3} Z+T^{2} Z^{2}=0 \\
l: & Z=0 \\
z_{o}: & {[0,1,0] }
\end{aligned}
$$

Then l is tangent to \mathcal{Q} at z_{o} and pass through one of nodes at $[1,1,0]$. By Theorem 1 we have two contact conics of $(2,2)$ type which are given by the equations: $64 X Z-17 T^{2}+14 T Z+7 Z^{2}=0$ and $16 X Z-17 T^{2}+20 T Z-4 Z^{2}=$ 0 .

Acknowledgement The second author is partly supported by JSPS Grants-in-Aid for Scientific Research 25610007 (Challenging Exploratory Research). The authors thank the referee for his/her valuable comments on the first draft of this paper.

References

[1] Artal Bartolo E., Codgolludo J.-I. and Tokunaga H., A survey on Zariski pairs. Adv. Stud. Pure Math. 50 (2008), 1-100.
[2] Artal Bartolo E. and Tokunaga H., Zariski k-plets of rational curve arrangements and dihedral covers. Topology Appl. 142 (2004), 227-233.
[3] Bannai S. and Tokunaga H., Geometry of bisections of elliptic surfaces and Zariski N-plets for conic arrangements. Geom Dedicata, DOI
10.1007/s10711-015-0054-z.
[4] Barth W., Hulek K., Peters C. A. M. and Van de Ven A., Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, 2nd Enlarged Edition, Springer-Verlag (2004).
[5] Cogolludo-Agustin J.-I. and Libgober A., Mordell-Weil groups of elliptic threefolds and the Alexander module of plane curves. J. reine angew. Math. 697 (2014), 15-55.
[6] Horikawa E., On deformation of quintic surfaces. Invent. Math. 31 (1975), 43-85.
[7] Kodaira K., On compact analytic surfaces II-III. Ann. of Math. 77 (1963), 563-626, 78 (1963), 1-40.
[8] Miranda R., The moduli of Weierstrass fibrations over \mathbb{P}^{1}. Math. Ann. 255 (1981), 379-394.
[9] Miranda R., Basic Theory of Elliptic surfaces, Dottorato di Ricerca in Matematica, ETS Editrice, Pisa, 1989.
[10] Miranda R. and Persson U., On extremal rational elliptic surfaces. Math. Z. 193 (1986), 537-558.
[11] Oguiso K. and Shioda T., The Mordell-Weil lattice of Rational Elliptic surface. Comment. Math. Univ. St. Pauli. 40 (1991), 83-99.
[12] Shioda T., On the Mordell-Weil lattices. Comment. Math. Univ. St. Pauli. 39 (1990), 211-240.
[13] Tokunaga H., Geometry of irreducible plane quartics and their quadratic residue conics. J. of Singularities. 2 (2010), 170-190.
[14] Tokunaga H., Some sections on rational elliptic surfaces and certain special conic-quartic configurations. Kodai Math. J. 35 (2012), 78-104.
[15] Tokunaga H., Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers. J. Math. Soc. of Japan. 66 (2014), 613640.
[16] Tumenbayar K. and Tokunaga H., Integral section of elliptic surfaces and degenerated $(2,3)$ torus decompositions of a 3-cuspidal quartic. SUT J. Math. 51 (2015), 215-226.

Khulan Tumenbayar
Department of Mathematics
School of Arts and Sciences
National University of Mongolia
Ikh surguuliin gudamj-1
P.O.Box-46A/523, 210646
Ulaanbaatar, Mongolia
Hiro-o Tokunaga
Department of Mathematics and Information Sciences
Graduate School of Science and Engineering
Tokyo Metropolitan University
1-1 Minami-Ohsawa, Hachiohji 192-0397 Japan
E-mail: tokunaga@tmu.ac.jp

[^0]: 2010 Mathematics Subject Classification : 14J27, 14H30, 14H50.

