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Elliptic surfaces and contact conics for a 3-nodal quartic
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Abstract. Let Q be an irreducible 3-nodal quartic and let C be a smooth conic such

that C∩Q does not contain any node of Q and the intersection multiplicity at z ∈ C∩Q
is even for each z. In this paper, we study geometry of C +Q through that of integral

sections of a rational elliptic surface which canonically arises from Q and z ∈ C ∩ Q.

As an application, we construct Zariski pairs (C1 +Q, C2 +Q), where Ci (i = 1, 2) are

smooth conics tangent to Q at four distinct points.
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Introduction

In this article, all varieties are defined over the field of complex numbers
C. Let ϕ : S → P1 be a rational elliptic surface with a section O. Here a
section means an irreducible curve on S intersecting a fiber at one point or
a morphism s : P1 → S such that ϕ ◦ s = idP1 (note that these two notions
can be canonically identified). It is known that, if ϕ has a reducible singular
fiber, S coincides with a rational elliptic surface SQ,zo associated with a
reduced plane quartic Q, which is not 4 distinct lines meeting at one point,
in P2 and a smooth point zo on Q obtained in the following way:

(i) Let So be the minimal resolution of the double cover of P2 branched
along Q.

(ii) Choose a smooth point zo of Q. The pencil of lines through zo gives
rise to a pencil ΛQ,zo

of curves of genus 1 on So.
(iii) By resolving the base points of ΛQ,zo

, we have a rational elliptic sur-
face ϕ : SQ,zo → P1. We denote the generically 2 to 1 morphism from
SQ,zo

to P2 by fQ,zo
: SQ,zo

→ P2.

For details, see [3], [15], for example.
Under the above circumstance, O is mapped to zo by fQ,zo . Let

MW(SQ,zo) be the set of sections of ϕ : SQ,zo → P1. MW(SQ,zo) is
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identifies with EQ,zo
(C(t)), the set of C(t)-rational points of the generic

fiber, EQ,zo
, of ϕ : SQ,zo

→ P1. MW(SQ,zo
) is endowed with a struc-

ture of an abelian group as O is the zero element. We denote its addi-
tion and the multiplication-by-m map (m ∈ Z) by +̇ and [m], respectively.
For two sections s1, s2 ∈ MW(SQ,zo

), s1+̇s2 and [m]si(i = 1, 2) give rise
to new curves on SQ,zo

, and their images fQ,zo
(s1), fQ,zo

(s2), fQ,zo
(s1+̇s2)

and fQ,zo([m]si) in P2 are expected to have interesting geometric prop-
erties. In previous articles [3], [13], [14], [15], we study geometry of
fQ,zo

(s1), fQ,zo
(s2), fQ,zo

(s1+̇s2), fQ,zo
([m]si) andQ. As an application, we

gave Zariski pairs whose irreducible components are those of these curves.
In this article, we continue to study geometry of plane curves along this

line. More precisely, we study irreducible 3-nodal quartics and their contact
conics. Here we call a smooth conic C a contact conic to a reduced plane
curve B if the following condition is satisfied:

(∗) Let Ix(C,B) denotes the intersection multiplicity at x ∈ C ∩ B. For
∀x ∈ C ∩ B, Ix(C,B) is even and B is smooth at x.

An arrangement of rational curves consisting of a 3-nodal quartic and
its contact conic can be regarded as a special case of rational curve arrange-
ments studied in [2]. In [2], E. Artal Bartolo and the second author studied
the topology of reducible curves having two irreducible components C and
D such that

(i) C is a smooth conic,
(ii) D is a nodal rational curve of degree n, i.e., an irreducible curve with

(n− 1)(n− 2)/2 nodes, and
(iii) C is tangent to D at n smooth distinct points of D.

Let us first recall what was done in [2] briefly. Let fC : ZC → P2 be
the double cover of P2 branched along C. ZC ∼= P1 × P1 and the cover-
ing involution σf is given by switching the coordinate component. Hence
Pic(ZC) = Z ⊕ Z and if we denote an element of Pic(ZC) by a pair of
integers (a, b), we have σf (a, b) = (b, a). By the the condition (iii) as
above, f∗CD splits into two irreducible components and we denote them
by f∗CD = D+ + D−. Note that if D+ ∼ (a, b), then D− ∼ (b, a). In the
following, we may assume that D+ is always chosen so that D+ ∼ (a, b),
a ≤ b. We here introduce a terminology.

Definition 1 Let C be a contact conic to D. We say that C is of type
(a, b) with respect to D if D+ ∼ (a, b)
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In [1], [2], we have

Proposition 1 ([1, Section 3.5], [2]) Let Di (i = 1, 2) be nodal rational
curves of the same degree. Let Ci (i = 1, 2) be contact conics to Di (i = 1, 2),
respectively. Put f∗Ci

Di = D+
i + D−

i , D+
1 ∼ (a1, b1) and D+

2 ∼ (a2, b2). If
(a1, b1) 6= (a2, b2), then (P2, C1 +D1) is not homeomorphic to (P2, C2 +D2).
In particular, if C1 + D1 and C2 + D2 have the same combinatorics, (C1 +
D1, C2 + D2) is a Zariski pair (see [1] for a Zariski pair and terminologies
related with it).

Nodal rational curves D1 and D2 satisfying the condition in Proposition
1 appear from the case of degDi ≥ 4. Our purpose of this article is to study
the case of degD = 4 in more detail. In [2], we gave an example of a conic
C and irreducible 3-nodal quartics Q1 and Q2 such that

(i) C is a contact conic to both of Q1 and Q2, and
(ii) Q+

1 ∼ (2, 2), Q+
2 ∼ (1, 3).

On the other hand, in this article, we fix one irreducible 3-nodal quartic
Q and several contact conics C to Q at one time. In [13], [14], we studied
geometry of irreducible quartics Q and their contact conics C via rational
elliptic surfaces SQ,zo

for zo ∈ C ∩ Q. In the case when Q is an irreducible
3-nodal quartic, by [13], we have the following table:

lzo
∩Q ]CCzo

(I) s 4

(II) b 1

(III) sb 2

Here

• lzo is the tangent line of Q at zo and lzo ∩Q shows how lzo meets Q.
We use the following notation to describe it.

– s: Izo
(lzo

,Q) = 2 or 3, and lzo
meets Q transversely at other

point(s).
– b: lzo is either bitangent line through zo or Izo(lzo , Q) = 4.
– sb: Izo(lzo ,Q) = 2 and lzo passes through a double point of Q.

• CCzo
: the set of contact conics passing through zo. ]CCzo

denotes its
cardinality.
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Now our problem in this article can be formulated as follows:

Problem 1 Choose a smooth point zo of Q. For C ∈ CCzo
, determine the

type of C with respect to Q. In particular, in the cases of (I) and (III), do
there exist contact conics C1, C2 ∈ CCzo such that C1 (resp. C2) is of type
(2, 2) (resp. (1, 3)) with respect to Q?

Since any C ∈ CCzo
gives rise to sections s±C in MW(SQ,zo

), we can
apply our results of geometry and arithmetic of sections of SQ,zo

to these
s±C . This is an essential step to consider Problem 1. Our answer to Problem
1 is the following:

Theorem 1 With the same notation as before, we have the table below :

lzo ∩Q ]CCzo of type (2, 2) ]CCzo of type (1, 3)

(I) s 3 1

(II) b 0 1

(III) sb 2 0

Moreover, if we choose homogeneous coordinates [T, X, Z] of P2 such that
zo = [0, 1, 0], lzo : Z = 0, Q : FQ(T, X, Z) = 0 and C : FC(T, X, Z) = 0,
then there exist homogeneous polynomials Fi(T, X, Z), Gi(T, X, Z) of degree
i such that

FQ = F 2
1 FC + G2

2 if and only if C is of type (2, 2)

Z2FQ = F 2
2 FC + G2

3 if and only if C is of type (1, 3)

Remark 1 The two equations in Theorem 1 give quasi-toric relations for
C +Q (see [5] for a quasi-toric relation).

Since the type of C does not depend on the choice of zo, we have

Corollary 1 Let C be a contact conic as in Theorem 1.

(i) If there exists a point zo ∈ C ∩Q such that lzo
is bitangent line to Q,

then the type of C with respect to Q is (1, 3).
(ii) If there exists a point zo ∈ C ∩Q such that lzo

passes through a node
of Q, then the type of C with respect to Q is (2, 2).

Also by Proposition 1, we have the following corollary:
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Corollary 2 Let zo be a general point of Q. Then there exist contact
conics C1 and C2 to Q such that (i) Ci ∈ CCzo

(i = 1, 2) and (ii) (P2, C1 +Q)
is not homeomorphic to (P2, C2 + Q). In particular, if C1 + Q and C2 + Q
have the same combinatorics, then (C1 +Q, C2 +Q) is a Zariski pair.

Note that the Zariski pair having the combinatorics in that of Corollary
2 can be found in [2]. In [2], we first consider a double cover fC : ZC → P2

branched along a smooth conic C. We then construct reduced curves Q+
1

and Q+
2 of types (2, 2) and (1, 3) on ZC , respectively. Two 3-nodal quartics

Qi (i = 1, 2) such that C is a contact conic to both of Qi (i = 1, 2) are
obtained as Qi = fC(Q+

i ) (i = 1, 2). On the other hand, in this article,
we consider SQ,zo

and contact conics are given by the image of sections of
SQ,zo

. Thus our construction is different. Also it would be an interesting
question to determine whether the examples in Corollary 2 are deformation
equivalent to those in [2] or not.

This paper consists of 5 section. In Section 1, we explain how to con-
struct an irreducible 3-nodal quartic and give summary on various results
on elliptic surfaces, which we need to prove Theorem 1. In Section 2, we
study the structure of SQ,zo and MW(SQ,zo) ∼= EQ,zo(C(t)). In Section 3,
we consider how we construct contact conics to Q via elementary arithmetic
of EQ,zo

(C(t)). We prove Theorem 1 in Section 4 and give examples in
Section 5 for cases (I), (II) and (III) in Theorem 1.

1. Preliminaries

1.1. Construction for irreducible 3-nodal quartics
Let [T, X, Z] be homogeneous coordinates of P2. Let Q be the standard

quadratic transformation or the standard Cremona transformation with re-
spect to {T = 0}, {X = 0} and {Z = 0}. We call [0, 0, 1], [0, 1, 0] and [1, 0, 0],
the fundamental points with respect to Q.

Lemma 1.1 (i) Let C be a conic not tangent to any of three lines:
{T = 0}, {X = 0} and {Z = 0} in P2 and passing through none of the
three fundamental points. Then Q(C) is a quartic whose singularities
are only 3 nodes at [0, 0, 1], [0, 1, 0] and [1, 0, 0].

(ii) Let L be the line tangent to C at a point P = [T0, X0, Z0] ∈ C, where
T0X0Z0 6= 0. If L does not contain any of the fundamental points,
then Q(L) is a conic tangent to Q(C) at Q(P ) = [X0Z0, T0Z0, T0X0]
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and passes through [0, 0, 1], [0, 1, 0] and [1, 0, 0].
(iii) Let L be the line tangent to C at a point P = [T0, X0, Z0] ∈ C, where

T0X0Z0 6= 0. If [0, 0, 1] ∈ L, then Q(L) is a line passing through
[0, 0, 1].

(iv) Let L be conic, that contains the fundamental points, then Q(L) is a
line.

(v) If x ∈ P2 \ {fundamental points}, then Ix(C, L) = IQ(x)(Q(C),
Q(L)).

Since all of these statements are well-known, we omit their proofs. We
make use of Lemma 1.1 when we consider explicit examples in Section 5.
Let LQ(P ) be the tangent line to Q(C) at Q(P ) and let Φ be a coordinate
change such that LQ(P ) is transformed into the line Z = 0 and Q(P ) is
mapped to [0, 1, 0].

Then Φ(Q(C)) has an affine equation of the form x3 +b2(t)x2 +b3(t)x+
b4(t) = 0, where t = T/Z, x = X/Z, bi(t) ∈ C[t] and degt bi(t) ≤ i. Also
Φ(Q(L)) is given by an equation of the form x−x0(t) = 0, where x0(t) ∈ C[t]
and deg x0(t) = 2.

1.2. Elliptic Surfaces
As for details on various results for elliptic surfaces, we refer to [3], [7],

[16], [9], [10], [12], [14] and [15].
Throughout this article, an elliptic surface always means a smooth pro-

jective surface S with a fibration ϕ : S → C over a smooth projective curve,
C, as follows:

(i) There exists non empty finite subset Sing(ϕ) ⊂ C such that ϕ−1(v)
is a smooth curve of genus 1 for v ∈ C r Sing(ϕ), while ϕ−1(v) is not
a smooth curve of genus 1 for v ∈ Sing(ϕ).

(ii) There exists a section O : C → S (we identify O with its image in S).
(iii) there is no exceptional curve of the first kind in any fiber.

For v ∈ Sing(ϕ), we call Fv = ϕ−1(v) a singular fiber over v. As for the
types of singular fibers, we use notation given by Kodaira ([7]). We denote
the irreducible decomposition of Fv by

Fv = Θv,0 +
mv−1∑

i=1

av,iΘv,i,
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where mv is the number of irreducible components of Fv and Θv,0 is the
irreducible component with Θv,0O = 1. We call Θv,0 the identity component
of Fv. We also define a subset Red(ϕ) of Sing(ϕ) to be Red(ϕ) := {v ∈
Sing(ϕ) | Fv is reducible}. For a section s ∈ MW(S), s is said to be integral
if sO = 0.

Let MW(S) be the set of sections of ϕ : S → C. By our assump-
tion, MW(S) 6= ∅. On a smooth fiber F of ϕ, by regarding F ∩ O as the
zero element, we can consider the abelian group structure on F . Hence for
s1, s2 ∈ MW(S), one can define the addition s1+̇s2 on C \ Sing(ϕ). By [7,
Theorem 9.1], s1+̇s2 can be extended over C, and we can consider MW(S) as
an abelian group. MW(S) is called the Mordell-Weil group. We also denote
the multiplication-by-m map (m ∈ Z) on MW(S) by [m]s for s ∈ MW(S).
Note that [2]s is the double of s with respect to the group law on MW(S).
On the other hand , we can regard the generic fiber E := Sη of S as a
curve of genus 1 over C(C), the rational function field of C. The restriction
of O to E gives rise to a C(C)-rational point of E, and one can regard E

as an elliptic curve over C(C), O being the zero element. By considering
the restriction to the generic fiber for each sections, MW(S) can be iden-
tified with the set of C(C)-rational points E(C(C)). For s ∈ MW(S), we
denote the corresponding rational point by Ps. Conversely, for an element
P ∈ E(C(C)), we denote the corresponding section by sP .

We also denote the addition and the multiplication-by-m map on
E(C(C)) by P1+̇P2 and [m]P1 for P1, P2 ∈ E(C(C)), respectively. Again,
[2]P is the double of P with respect to the group law on E(C(C)).

For each singular fiber Fv, we associate it with finite abelian group GF ]
v
,

which is determined by irreducible components of Fv with av,i = 1 as follows:

Type of Fv GF ]
v

Ib Z/bZ

I∗b (b: even) (Z/2Z)⊕2

I∗b (b: odd) Z/4Z
II, II∗ {0}

III, III∗ Z/2Z
IV, IV∗ Z/3Z

We put GSing(ϕ) := ⊕v∈Sing(ϕ)GF ]
v
, and γ : MW(S) → GSing(ϕ) denotes the
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homomorphism as in [14, p. 83]. Note that for s ∈ MW(S), γ(s) describes
at which irreducible component s meets on Fv. For details, see [7, Section
9] or [14, pp. 81–83].

In [12], Shioda introduced a Q-valued bilinear form on E(C(C)) called
the height pairing. We denote it by 〈 , 〉. It is known that 〈P, P 〉 ≥ 0 for
∀P ∈ E(C(C)) and the equality holds if and only if P is an element of finite
order in E(C(C)). For an explicit formula of 〈P1, P2〉 (P1, P2 ∈ E(C(C))),
see [12, Theorem 8.6].

We also remark double cover construction of an elliptic surface over P1.
Let Σd be the Hirzebruch surface of degree d (d: even). Let f be a fiber of
Σd → P1 and let ∆0 and ∆ be sections with self-intersection numbers −d

and d, respectively. Note that ∆ ∼ ∆0 + df and ∆0 ∩∆ = ∅.
Let T be a reduced divisor on Σd such that

• T ∼ 3∆, i.e., T is a tri-section with ∆0 ∩ T = ∅, and
• singularities of T are at worst simple (see [4] for simple singularities).

Since ∆0 + T ∼ 2(2∆0 + 3d/2f), we have the double cover f ′ : S′ → Σd

with branch locus ∆f ′ = ∆0 + T (see [4, III, Section 7], for example). Let

S′

f ′

²²

S
µoo

f

²²
Σd Σ̂d.q

oo

denotes the diagram of the canonical resolution (see [6] for the canonical
resolution). Namely, µ is the minimal resolution of singularities and q is a
composition of blowing-ups so that the branch locus of f becomes smooth.
Then the induced morphism ϕ : S → Σd → P1 gives rise to an elliptic
vibration over P1, i.e., S is an elliptic surface over P1. Conversely it is
known that any elliptic surface ϕ : S → P1 is obtained this way ([9]).

An elliptic surface ϕ : S → P1 is said to be rational if S is a rational
surface. In the above diagram, we have an rational elliptic surface when
d = 2. For a rational elliptic surface ϕ : S → P1, if ϕ has a reducible
singular fiber, Σ̂d in the above diagram can be blown down to P2 in such
a way that T is transformed to a reduced quartic and O is mapped to a
smooth point zo on Q. The induced morphism from S → P2 is nothing but
fQ,zo

explained in the Introduction.
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Σd can be covered by 4 affine open sets Ui (i = 1, 2, 3, 4) such that

• their local coordinates are

U1 : (t, x), U2 : (s, x′), U3 : (t, u), U4 : (s, u′).

• these coordinates are related by

s = 1/t, x′ = x/td, u = 1/x, u′ = utd.

With these coordinates, ∆0 is given by u = 0 and u′ = 0 on U3 and U4,
respectively. Also T is given by

fT (t, x) = x3 + a1(t)x2 + a2(t)x + a3(t) = 0, ai ∈ C[t],deg ai ≤ id

on U1 and S′|f−1(U1) is realized by

y2 − fT (t, x) = 0 ⊂ C3.

We see that the covering map f ′ is the restriction of the projection (t, x, y) 7→
(t, x). The above equation can be regarded as a Weierstrass equation of the
generic fiber, E, of ϕ : S → P1, where C(P1) is identified with C(t), t being
an inhomogeneous coordinate. Let s ∈ MW(S) be an integral section of S.
Then we see that the coordinates of the corresponding rational point Ps are
polynomial of degrees at most d (resp. 3d/2) in the x-coordinate (resp. the
y-coordinate). Conversely, for any point P = (x(t), y(t)) ∈ E(C(t)) such
that x(t), y(t) ∈ C[t] and deg x(t) ≤ d, deg y(t) ≤ 3d/2, sP is an integral
section. By an integral point, we mean a rational point corresponding to an
integral section as above.

Choose an integral point Po = (xo(t), yo(t)) of E with yo(t) 6= 0 and let

y = l(t, x), l(t, x) = m(t)(x− xo(t)) + yo(t), m(t) = fx(t, xo(t))/2yo(t)

be the tangent line at Po.

Lemma 1.2 If [2]Po is also integral, then m(t) ∈ C[t].

See [16, Lemma 1.2] or [13, pp. 176–177].

Corollary 1.1 Under the assumption of Lemma 1.2, if we put [2]Po =
(x1(t), y1(t)), then f(t, x) has a decomposition
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fT (t, x) = (x− xo(t))2(x− x1(t)) + {l(t, x)}2.

2. Rational elliptic surface SQ,zo

Let Q be an irreducible 3-nodal quartic as before and let zo be a smooth
point onQ. As we explain in the Introduction, we associate a rational elliptic
surface with Q and zo, which we denote by ϕ : SQ,zo

→ P1. We also denote
its generic fiber by EQ,zo

.
The tangent line lzo

gives rise to a singular fiber of ϕ whose type is
determined by how lzo intersects with Q as follows:

(i) I2 lzo
meets Q with two other distinct points.

(ii) III lzo is a 3-fold tangent point.

(iii) I3 lzo
is a bitangent line.

(iv) IV lzo is a 4-fold tangent point.

(v) I4 lzo
passes through a node of Q

Other singular fibers are determined by how a line through zo meets with
Q. Thus by taking [10, Table 6.2] into account and the above table, we have
the following table for possible configurations of singular fibers of SQ,zo

:

Singular fibers the position of lzo

1 {4 I2, 4 I1}, {4 I2, 2 I1, II}, {4 I2, 2 II} (i)

2 {3 I2, III, 2 I1}, {3 I2, III, II} (ii)

3 {I3, 3 I2 3 I1}, {I3, 3 I2, I1, II} (iii)

4 {3 I2, IV, 2 I1}, {3 I2, IV, II} (iv)

5 {I4, 2 I2, 4 I1}, {I4, 2 I2, 2 I1, II}, {I4, 2 I2, 2 II} (v)

Note that cases 1, 2, cases 3, 4 and case 5 correspond to cases (I), (II)
and (III) in Theorem 1, respectively. In our later argument, we need to
know the structure of EQ,zo

(C(t)). We first note that EQ,zo
(C(t)) has no

2-torsion as Q is irreducible. Hence, by [11], the structure of EQ,zo
(C(t)) is

as follows:

(I) (A∗1)
⊕4, (II) A∗1 ⊕

1
6

[
2 1
1 2

]
, (III) (A∗1)

⊕2 ⊕ 〈1/4〉.
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Also, since irreducible singular fibers and the difference between III
(resp. IV) type and I2 (resp. I3) type do not affect the structure of
EQ,zo(C(t)) in these above cases, we may assume that the configurations
of singular fibers are

(I) 4 I2, 4 I1, (II) I3, 3 I2, 3 I1, (III) I4, 2 I2, 4 I1 .

As we have seen in [13], an integral point P of EQ,zo
(C(t)) with 〈P, P 〉 =

2 gives rise to a contact conic to Q. Hence we need to consider an integral
element P with 〈P, P 〉 = 2 for each case. To this purpose, let us introduce
some notation.

Let Li (i = 1, 2, 3) be three lines passing through two of the three nodes
of Q. For the cases (I) and (II), we denote a smooth conic tangent to Q at
zo and passing through the three nodes by C. Note that there is no smooth
conic such as C for the case (III), as lzo

is also tangent to Q at zo and passes
through one of 3 nodes.

Then by our construction of SQ,zo
, Li (i = 1, 2, 3) and C give rise to

sections s±Li
(i = 1, 2, 3) and s±C . In the following, we put si = s+

Li
(i = 1, 2, 3)

and s0 = s+

C . We denote the corresponding element to si in EQ,zo
(C(t)) by

Pi for simplicity. We also write [2]si (i = 0, 1, 2, 3) for sections corresponding
to [2]Pi (i = 0, 1, 2, 3), respectively.

Case (I). We label irreducible components of singular fibers of type I2
in such a way that Θi,1 (i = 1, 2, 3) are those arising from the nodes of Q
and Θ∞,1 is the one from lzo

. By our construction of SQ,zo
, we may assume

that si (i = 0, 1, 2, 3) meet each singular fiber as in the figure below.
By [12, Theorem 8.6], we have

Case (I)
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〈Pi, Pi〉 =
1
2
, i = 0, 1, 2, 3, 〈Pi, Pj〉 = 0 (i 6= j).

This means that EQ,zo(C(t)) is generated by Pi (i = 0, 1, 2, 3). As
γ([2]si) = 0 and 〈[2]Pi, [2]Pi〉 = 2 for each i, [2]si is integral with
〈[2]Pi, [2]Pi〉 = 2 and this means that fQ,zo

([2]si) is a contact conic to Q
through zo by [13, Lemma 2.1]. Conversely, for any contact conic C ∈ CCzo

,
the closure of f−1

Q,zo
(C \ {zo}) consists of two integral sections s±C which in-

tersect the identity component at each singular fiber, i.e., 〈Ps±C
, Ps±C

〉 = 2.
This means that the set of integral sections with height 2 up to ± are in
one to one correspondence with CCzo

. Thus we have four contact conics Ci

(i = 0, 1, 2, 3) in CCzo such that Ci = fQ,zo([2]si) (i = 0, 1, 2, 3).

Case (II). We label irreducible components of singular fibers of type
I2 in the same way as in Case (I) and those of type I3 such that Θ∞,1,Θ∞,2

are irreducible components from lzo . By our construction, si (i = 1, 2, 3)
meet two of Θ1,1,Θ2,1 and Θ3,1 at I2 fibers and either Θ∞,1 or Θ∞,2, while
s0 meets Θi,1 (i = 1, 2, 3) at I2 fibers and Θ∞,0 at the I3 fiber. In the figure
below, we only draw s1 and s3 and assume that s1 meets Θ∞,1. By [12,
Theorem 8.6], this means that

〈Pi, Pi〉 =
1
3
, i = 1, 2, 3, 〈P0, P0〉 =

1
2
.

As γ([2]s0) = 0 and 〈[2]P0, [2]P0〉 = 2, [2]P0 is integral and fQ,zo([2]s0) is
a unique contact conic C0 to Q through zo by [13, Lemma 2.1]. Hence the
contact conic is obtained as fQ,zo

([2]s0).

Case (III). Let z1 be the node on lzo
, and we may assume that L1

and L2 pass through z1. We label irreducible components of singular fibers

Case (II)
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of type I2 in the same way as in Case (I) and those of type I4 so that
Θ∞,1,Θ∞,3 are irreducible components from lzo

and Θ∞,2 is the one from
the node z1. Then we see that s1 and s2 meet one of Θ1,1 and Θ2,1 at I2
fibers and Θ∞,2 at the I4 fiber, while s3 meet Θ1,1 and Θ2,1 at I2 fibers and
either Θ∞,1 or Θ∞,3. In the figure below, we assume that s3 meets Θ∞,1.
By [12, Theorem 8.6], this means that

〈Pi, Pi〉 =
1
2
, i = 1, 2, 〈P3, P3〉 =

1
4
.

As γ([2]si) = 0 and 〈[2]Pi, [2]Pi〉 = 2 (i = 1, 2), [2]Pi is integral and this
means that fQ,zo([2]si) (i = 1, 2) are contact conics to Q through zo by [13,
Lemma 2.1]. Hence we have two contact conics fQ,zo([2]si) (i = 1, 2).

Case (III)

3. Contact conics to 3-nodal quartic

Let Q be a 3-nodal quartic as before. Let z1, z2 and z3 be the nodes of
Q and let L1,L2 and L3 be the lines through {z1, z2}, {z1, z3} and {z2, z3},
respectively. Let zo be the distinguished smooth point on Q. For the cases
(I) and (II), C is the smooth conic tangent to Q at zo and passes through
z1, z2 and z3.

Now we choose homogeneous coordinates [T,X, Z] of P2 such that zo =
[0, 1, 0] and Z = 0 is the tangent line of Q at zo. Then we may assume that
Q is given by a homogeneous polynomial FQ(T,X, Z) of the form

FQ(T, X, Z) = ZX3 + b2(T, Z)X2 + b3(T, Z)X + b4(T, Z).

Then the affine part of Q, i.e., the part with Z 6= 0 is given by
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FQ(t, x, 1) = x3 + b2(t, 1)x2 + b3(t, 1)x + b4(t, 1).

For simplicity, we denote bi(t, 1) by bi(t). By our choice of coordinates, the
affine part of Li is given by an equation of the form

x− xi(t), xi(t) ∈ C[t], deg xi(t) = 1,

and that of C is given by

x− x0(t), x0(t) ∈ C[t], deg x0(t) = 2.

From our observation in Section 2, we have the following facts:

Case (I). There exist four integral points Pi (i = 0, 1, 2, 3) in
EQ,zo(C(t)) as follows:

(i) The x-coordinate of Pi (i = 0, 1, 2, 3) are xi(t) (i = 0, 1, 2, 3) as above,
respectively.

(ii) [2]Pi (i = 0, 1, 2, 3)) are also integral.
(iii) Put [2]Pi = (x̃i(t), ỹi(t)). Then deg x̃i(t) = 2 and the conics given by

x− x̃i(t) = 0 (i = 0, 1, 2, 3) are contact conics to Q through zo.

Case (II). There exists an integral point P0 in EQ,zo(C(t)) as follows:

(i) The x-coordinate of P0 is x0(t) as above.
(ii) [2]P0 are also integral.
(iii) Put [2]P0 = (x̃0(t), ỹ0(t)). Then deg x̃0(t) = 2 and the conics given

by x− x̃0(t) = 0 is the unique contact conic to Q through zo.

Case (III). Suppose that the tangent line at lzo passes through z1.
There exist two integral points Pi (i = 1, 2) in EQ,zo

(C(t)) as follows:

(i) The x-coordinate of Pi (i = 1, 2) are xi(t) (i = 1, 2) as above, respec-
tively.

(ii) [2]Pi (i = 1, 2) are also integral.
(iii) Put [2]Pi = (x̃i(t), ỹi(t)) (i = 1, 2). Then deg x̃i(t) = 2 and the conics

given by x− x̃i(t) = 0 (i = 1, 2) are contact conics to Q through zo.

We here introduce another terminology to describe these two kinds of
contact conics as above:
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Definition 3.1 Let C be a contact conic appeared in Proposition 3.1, we
call C a duplicated line (resp. a duplicated conic) if deg(x−xi(t)) = 1 (resp.
= 2).

By Corollary 1.1, we have decompositions as follows:

Proposition 3.1 Let Q, zo and lzo be as in the Introduction, and we
choose homogeneous coordinates [T,X, Z] as in the Introduction. Put t =
T/Z, x = X/Z.

Case (I). There exist 4 contact conics Ci (i = 0, 1, 2, 3) to Q through
zo. We may assume that C0 is a duplicated conic, while Ci (i = 1, 2, 3) are
duplicated lines. For each Ci, we have the following decomposition:

FQ(t, x, 1) = (x− xi(t))2(x− x̃i(t)) + {li(t, x)}2, (i = 0, 1, 2, 3).

Case (II). There exists a unique contact conic C0 to Q through zo. C0 is
a duplicated line and we have the following decomposition:

FQ(t, x, 1) = (x− x0(t))2(x− x̃0(t)) + {l0(t, x)}2.

Case (III). There exist two contact conics Ci (i = 1, 2) to Q through
zo. Both of Ci (i = 1, 2) are duplicated lines and we have the following
decompositions:

FQ(t, x, 1) = (x− xi(t))2(x− x̃i(t)) + {li(t, x)}2, (i = 1, 2).

Note that, for each case as above, Ci is given by x − x̃i(t) = 0 and
li(t, x) is a polynomial in C[t, x] such that y = li(t, x) gives an equation of
the tangent line of EQ,zo

at Pi as above.

4. Proof of Theorem 1

Let C be a contact conic to Q and let fC : ZC → P2 be the double cover
branched along C. ZC ∼= P1×P1 and more explicitly, ZC is a quadric surface
in P3 given by

W 2 − (XZ − Z2x̃(T/Z)) = 0,

where x − x̃(t) is a defining equation of the affine part of C. fC is given
by the restriction of the projection P3 \ {[0, 0, 0, 1]} → P2 and the covering
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transformation is given by [T, X, Z, W ] 7→ [T, X, Z,−W ]. Now we have the
following proposition:

Proposition 4.1 Let C be a contact conic to Q.

• C is a duplicated line if and only if C is (2, 2) type with respect to Q.
• C is a duplicated conic if and only if C is (1, 3) type with respect to Q.

Proof. Since any contact conic to Q is either a duplicated line or a dupli-
cated conic, it is enough to show the following two statements:

• If C is a duplicated line, then C is (2, 2) type with respect to Q.
• If C is a duplicated conic, C is (1, 3) type with respect to Q.

We write the corresponding decomposition with respect to C given in Propo-
sition 3.1:

FQ(t, x, 1) = (x− x(t))2(x− x̃(t)) + {l(t, x)}2, (1)

where the affine part of C is given by x− x̃(t) = 0.

The case when C is a duplicated line. Since deg(x−x(t)) = 1 and deg(x−
x̃(t)) = 2, deg(l(t, x)) ≤ 2. Hence by homogenizing the decomposition (1),
we have

FQ(T, X, Z) = (X − Zx(T/Z))2(XZ − Z2x̃(T/Z)) + {Z2l(T/Z, X/Z)}2.

Put f∗CQ = Q+ +Q−. As ZC is defined by W 2 − (XZ − Z2x̃i(T/Z)) = 0,
we may assume that

Q± = ZC ∩
{
(X − Zx(T/Z))W ±√−1Z2l(T/Z, X/Z) = 0

}
.

Since a divisor on ZC cut out by a quadric surface is of type (2, 2), we have
the assertion.

The case when C is a duplicated conic. In this case, deg(x − x(t)) = 2
and deg(x− x̃(t)) = 2. By homogenizing the decomposition (1), we have

Z2FQ(T, X, Z) = (XZ − Z2x(T/Z))2(XZ − Z2x̃(T/Z))

+ {Z3l(T/Z, X/Z)}2. (2)
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Put x(t) = c0t
2 + c1t + c2, x̃(t) = d0t

2 + d1t + d2, c0d0 6= 0, and l(t, x) is of
the form

(a0t + a1)x + (b0t
3 + b1t

2 + b2t + b3) ai, bj ∈ C, b0 6= 0

by comparing monomials appearing the both hand of (2).
Since lzo is given by Z = 0 and W 2 − (XZ − Z2x̃(T/Z)) = 0, we have

f∗C lzo
= l+ ∪ l−, l± =

{
[T,X, 0,±

√
−d0T ] ∈ P3

}
.

Hence from the decomposition (2), we have

2(l+ + l−) + (Q+ +Q−) = D+ + D−,

where D± are divisors scheme-theoretically given by

ZC ∩
{
(XZ − Z2x(T/Z))W ±√−1Z3l(T/Z, X/Z) = 0

}
,

respectively. Since D± ∼ (3, 3), we may assume either (a) or (b) below
holds:

(a) l+ + l− +Q+ = D+, or
(b) 2l+ +Q+ = D+,

We show that the case (a) does not occur. Choose a point [T, X, 0,
√−d0T ] ∈

l+ ⊂ D+, T 6= 0. If the case (a) happens, [T,X, 0,−√−d0T ] ∈ l− ⊂ D+.
On the other hand, if [T,X, 0,

√−d0T ] ∈ l+, as l+ ⊂ D+, we have

−c0T
2
(√−d0T

)
+
√−1b0T

3 =
(− c0

√
−d0 +

√−1b0

)
T 3 = 0.

Hence we have

c0T
2
(√−d0T

)
+
√−1b0T

3 =
(
c0

√
−d0 +

√−1b0

)
T 3 6= 0.

This means that [T, X, 0,−√−d0T ] 6∈ D+ for T 6= 0. This leads us to a
contradiction. ¤

From Propositions 3.1 and 4.1, Theorem 1 follows.
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5. Examples

We end this paper by giving explicit example for an irreducible 3-nodal
quartic and its contact conics observed so far, by which we have some ex-
amples of Zariski pairs. As for homogeneous coordinates of P2 we keep our
previous notation, [T, X, Z]. In order to give curves by explicit equations,
we make use of our observation in Section 1, 1.1.

We first consider the case (I) of Theorem 1. Let C be a conic given by the
equation XZ−T 2 = 0. Let Q denote the standard quadratic transformations
with respect to three lines: −3T +X+2Z = 0, 3T +X+2Z = 0, X−2Z = 0.
Let l : Z = 0 be the tangent line at p = [0, 1, 0] to C.

Let us denote Q := Q(C), C := Q(l) and zo := Q(p). Let lzo
be the

tangent line to Q at zo. Then we have the equations of Q, C and lzo
as

follows:

FQ = 36T 2X2 − T 2Z2 − 34TXZ2 −X2Z2

FC = 2TX − TZ −XZ

zo = [1, 1, 1]

Flzo
= T + X − 2Z

We see that, Q is a quartic and C is a conic passing through 3 nodes
and tangent to Q at zo. Also lzo

meets Q with two other distinct points.
Let E := EQ,zo

be a generic fiber of rational elliptic surface SQ,zo
and

E(C(t)) be the set of rational points and the point at infinity O. Let Φ be a
coordinate change such that lzo is transformed into the line Z = 0 and zo is
mapped to [0, 1, 0]. Then Φ(Q) and Φ(C) are given by the affine equations
as follows:

FΦ(Q) = x3 +
5
36

(8t2 + 8t− 7)x2 + (−2t2 − 2t)x− t2(t + 1)2 = 0

FΦ(C) = x + 2t2 + 2t = 0,

where t = T/Z and x = X/Z.
Note that Φ(Q) has 3 nodes at [0, 0, 1], [−1/2, 1/2, 1] and [−1, 0, 1].

Three lines passing through two of the 3 nodes together with Φ(C) cor-
respond to rational points in E(C(t)) as shown in the table below:
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Equations Rational points

x + 2t2 + 2t = 0 P±0 =
(
− 2t2 − 2t,±2

√−2
3

t(1 + 2t)(1 + t)
)

x + t = 0 P±1 =
(
− t,± t(1 + 2t)

6

)

x = 0 P±2 =
(
0,±√−1(t + 1)t

)

x− t− 1 = 0 P±3 =
(

t + 1,± (2t + 1)(t + 1)
6

)

Since we have 〈P+
i , P+

j 〉 = (1/2)δij for i, j = 0, 1, 2, 3, we assume that
E(C(t)) is generated by P+

0 , P+
1 , P+

2 and P+
3 . Also we have the following

table for [2]P+
i , (i = 0, 1, 2, 3):

Duplicated points of P+
i , (i = 0, 1, 2, 3)

[2]P+
0 =

(
− 9

8
t2 − 9

8
t− 1

32
,−
√−2
768

(72t3 + 108t2 + 70t + 17)
)

[2]P+
1 =

(
10t2 + 2t + 1,

100
3

t3 +
34
3

t2 +
11
3

t +
1
6

)

[2]P+
2 =

(
− 10

9
t2 − 10

9
t− 1

36
,

√−1(4t2 + 4t + 1)
36

)

[2]P+
3 =

(
10t2 + 18t + 9,−100

3
t3 − 266

3
t2 − 81t− 51

2

)

Note that, if we denote C0 : 32x+36t2+36t+1 = 0, C1 : x−10t2−2t−1 = 0,
C2 : 36x + 40t2 + 40t − 71 = 0, C3 : x − 10t2 − 18t − 9 = 0, then C1, C2,
C3 are duplicated lines, while C1,0 is a duplicated conic. By Proposition 3.2
Cj , (j = 1, 2, 3) are (2, 2) type and C0 is (1, 3) type with respect to Q. Also
we have for i = 0, 1, 3, the number of tangent points of Ci to Q is equal to
4, while the number of tangent points of C2 to Q is equal to 2. This means
that Cj +Q (j = 1, 3) and C0 +Q have the same combinatorics. Hence, by
Corollary 2, (Cj +Q, C0 +Q), (j = 1, 3) are Zariski pairs.

Similarly, we have explicit examples for the cases (II) and (III). We end
this section by giving explicit equations of Q and contact conics to Q for
both cases:
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Case (II). Let Q be a quartic and let l be a line as follows:

Q : X3Z +
(

6T 2 − 6TZ +
7
6
Z2

)
X2 +

(
− 24T 3 + 15T 2Z − 7

3
TZ2

)
X

+ 24T 4 − 16T 3Z +
8
3
T 2Z2 = 0

l : Z = 0

zo : [0, 1, 0].

Then l is a bitangent line to Q at zo. By Theorem 1 we have only one
contact conic of (1, 3) type which is given by the equation: 48XZ − 36T 2 −
60TZ + 7Z2 = 0.

Case (III). Let Q be a quartic, and let l be a line as follows:

Q : 2X3Z + (T 2 + TZ + 4Z2)X2 + (−2T 3 − T 2Z + 3TZ2)X

+ T 4 − 2T 3Z + T 2Z2 = 0

l : Z = 0

zo : [0, 1, 0].

Then l is tangent to Q at zo and pass through one of nodes at [1, 1, 0]. By
Theorem 1 we have two contact conics of (2, 2) type which are given by the
equations: 64XZ−17T 2+14TZ+7Z2 = 0 and 16XZ−17T 2+20TZ−4Z2 =
0.
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