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Characteristic function of Cayley projective plane

as a harmonic manifold
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Abstract. Any locally rank one Riemannian symmetric space is a harmonic mani-

fold. We give the characteristic function of a Cayley projective plane as a harmonic

manifold. The aim of this work is to show the explicit form of the characteristic

function of the Cayley projective plane.
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1. Introduction

Let M = (M, g) be an m-dimensional Riemannian manifold and θp(q) =√
det(gij(q)) (resp. Θp(q) = rp(q)m−1θp(q)) be the volume density function

(resp. the density function of the geodesic sphere S(p, rp(q))) in a normal
coordinate neighborhood Up(x1, . . . , xm) centered at p ∈ M , where rp(q) =
d(p, q) is the geodesic distance from p to q in Up.

Definition 1 A Riemannian manifold M = (M, g) is said to be locally
harmonic if the volume density function θp is a radial function (correspond-
ingly, the density function Θp of the geodesic sphere S(p, rp(q)) is also a
radial function).

In the sequel, we call a locally harmonic manifold briefly a harmonic
manifold. Let M = (M, g) be a harmonic manifold. Then, it is shown
that the density function Θp does not depend on the choice of p. A rank
one symmetric space is a harmonic manifold. There are several equivalent
definitions for harmonic manifolds ([1, pp. 156]). One of them is as follows:

Theorem 2 A Riemannian manifold M = (M, g) is a harmonic manifold
if and only if the equality

4Ω = fp(Ωp)
(

Ωp =
1
2
r2
p

)
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holds for a certain smooth function fp on [0, ε(p)), where ε(p) is the injec-
tivity radius at p ∈ M .

We note that the function fp in Theorem 2 does not depend on the
choice of p ∈ M ([1, Proposition 6.16]) then the function f = fp (p ∈ M) is
called the characteristic function of a harmonic manifold M = (M, g). The
characteristic function plays an important role in the geometry of harmonic
manifolds and its applications [4], [6], [7], [9]. The characteristic functions of
rank one symmetric spaces have been obtained except for Cayley projective
plane CP2 and its non-compact dual CH2 (Cayley hyperbolic plane) [6], [7],
[9]. So it seems natural to determine the characteristic functions for Cayley
projective plane CP2 and Cayley hyperbolic plane CH2 in order to complete
the table of the characteristic functions of rank one symmetric spaces. In
this article, we shall prove the following theorems 3 and 4.

Theorem 3 Let CP2 be a Cayley projective plane. Then, the characteristic
function as a harmonic manifold is given by

f(Ω) = 1 +

√
Ω
2

{
15 cot

√
Ω
2
− 7 tan

√
Ω
2

}
. (1.1)

Theorem 4 Let CH2 be a Cayley hyperbolic plane. Then, the character-
istic function as a harmonic manifold is given by

∗f(Ω) = 1 +

√
Ω
2

{
15 coth

√
Ω
2

+ 7 tanh

√
Ω
2

}
. (1.2)

Our arguments in this paper are much indebted to the article by R.
Brown and A. Gray [2] and I. Yokota [10]. We aimed our paper to be self-
contained as much as possible. The authors thank to the referee for the kind
suggestions.

2. Preliminaries

In this section, we prepare a brief review on on algebraic background
which plays a basic role in the geometry of Cayley projective plane CP2.
Let C be the Cayley division normed algebra with the multiplicative unity 1
and positive definite bilinear form 〈 , 〉 where associated norm ‖ · ‖ satisfies
‖ ab ‖ = ‖ a ‖·‖ b ‖ for a, b ∈ C. Every element a ∈ C is written as a = α+a0,
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where α is a real number and 〈 a0, 1 〉 = 0, where a0 is said to be purely
imaginary. We denote by ā the conjugate of a = α+a0 defined by ā = α−a0.
we may easily check that aā = āa = 〈 a, a 〉 = 1 = ‖ a ‖2 holds for any a ∈ C

and further, by linearizing the equality aā = 〈 a, a 〉1, we have

ab̄ + bā = āb + b̄a = 2〈a, b〉1 (2.1)

for any a, b ∈ C. A canonical basis of C is defined as a basis of the form
{1, e1, . . . , e7} for which 〈 ei, ej 〉 = δij , e2

i = −1, eiej + ejei = 0 (1 ≤ i 6=
j ≤ 7) satisfying the following multiplicative operations given by the follow-
ing figure:

Figure 1.

We denote by D4 the Lie algebra consisting of linear maps A : C → C

such that 〈Aa, b 〉 = −〈 a,Ab 〉 for a, b ∈ C. It is well-known that D4 is the
compact simple Lie algebra over real number R with an outer automorphism
Aut(D4)/Inn(D4) of order 3. Aut(D4)/Inn(D4) is isomorphic to the sym-
metric group on 3 letters S3. Namely, there exist κ, λ ∈ Aut(D4) which gen-
erate Aut(D4)/Inn(D4) and satisfy the relations λ3 = 1, κ2 = 1, κλκ = λ2.
Here, we may choose κ and λ as follows. Let {ei} = {e0= 1, e1, . . . , e7} be a
canonical orthonormal basis of C = (C, 〈 , 〉) and D4 be the real Lie algebra of
skew-symmetric endomorphisms of C = (C, 〈 , 〉). Now, we define Gij ∈ D4

and Fij ∈ D4 (i 6= j, i, j = 0, 1, . . . , 7) be the linear endomorphisms of C

defined respectively by

Gijej = ei, Gijei = −ej , Gijek = 0 (k 6= i, j) (2.2)

and
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Fijei =
1
2
eiej , Fijej = −1

2
eiej (i ≥ 1, 0 ≤ j ≤ 7), (2.3)

and

Fija =
1
2
ej(eia) (i 6= 0, j 6= 0, i 6= j)

for any a ∈ C. Then, we may easily check that {Gij} (resp. {Fij}) (i < j)
is a basis of D4. We here define linear endomorphisms κ, π and λ on D4

respectively by

κ(Gij) = Gij (i, j ≥ 1), κ(G0i) = −G0i (i ≥ 1),

π(Gij) = Fij (i 6= j) and λ = πκ.
(2.4)

Then, we see that κ and λ satisfy the required relations and further, the
following identity

(λ(A)a)b + a(λ2(A)b) = κ(A)(ab) (2.5)

holds for any A ∈ D4 and any a, b ∈ C [10]. The identity (2.5) is called the
principle of triality of D4.

Now, for a, b, c ∈ C, we define T (a, b), G(a, b), D(a, b) ∈ D4 as follows:

T (a, b)c = 4〈 a, c 〉b− 4〈 b, c 〉a,

G(a, b)c = ā(bc)− b̄(ac),

D(a, b)c = (cb)ā− (ca)b̄.

(2.6)

Then, they satisfy

λ(T (a, b)) = −G(a, b), λ2(T (a, b)) = −D(a, b),

κ(T (a, b)) = T (ā, b̄), κ(G(a, b)) = D(ā, b̄),
(2.7)

and further

〈T (a, b)c, d 〉 = 4
(〈 a, c 〉〈 b, d 〉 − 〈 a, d 〉〈 b, c 〉)

〈G(a, b)c, d 〉 = 〈 ad, bc 〉 − 〈 ac, bd 〉,
〈D(a, b)c, d 〉 = 〈 da, cb 〉 − 〈 ca, db 〉

(2.8)
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for any a, b, c, d ∈ C.
We denote by B4 the real Lie algebra consisting of 9×9 skew-symmetric

matrices. Now we shall define a 16-dimensional representation of the Lie
algebra B4 on the real vector space V = V2 = C⊕ C. First, we regard each
X ∈ B4 as a 9× 9 skew-symmetric matrix and the last column vector as an
element a ∈ C. Further, considering the ordinary inclusion of D4 in B4 we
may write as follows:

X = A + Ma, (2.9)

where A ∈ D4 and Ma =
(

0 2a
−2a 0

)
. Now, we define an action of B4 on V

by

A(b, c) = (λ(A)b, λ2(A)c) (2.10)

for A ∈ D4 and

Ma(b, c) = (ac,−ba) (2.11)

for (b, c) ∈ C⊕C. Then, we may check that the above action of B4 on C⊕C

defines a representation of the real Lie algebra B4 on C⊕C ([2, pp. 46]). The
vector space V = C⊕ C has a positive definite symmetric bilinear form 〈 , 〉
given by 〈(a, c), (b, d)〉 = 〈a, b〉+ 〈c, d〉 for a, b, c, d ∈ C. Then each element
of B4 is skew-symmetric with respect to the bilinear form 〈 , 〉.

3. The curvature tensor of the Cayley projective plane

Let CP2 = (F4/spin(9), g) be Cayley projective plane equipped with a
Riemannian metric g defined by a bi-invariant Riemannian metric on the
compact Lie group F4. Then, it is well known that CP2 is a compact rank
one symmetric space and further the holonomy group is isomorpic to Spin(9)
([2, Examples]). It is easily checked that the corresponding Cartan decom-
position is given by

F4 = B4 ⊕m, (3.1)

where m = {(a, b) ∈ C×C} ∼= C⊕C, which can be identified with the tangent
space To(CP2) at the origin o = Spin(9). Further, we may also see that the
linear isotropy representation of the isotropy group Spin(9) on m ∼= C⊕C is



196 Y. Euh, J.-H. Park and K. Sekigawa

equivalent to the representation of the group Spin(9) on V = C⊕C defined by
(2.10) and (2.11) in §2. From the above observation identifying the tangent
space (To(CP2), go) with (C⊕ C, 〈 , 〉), we see that the curvature tensor R of
the Cayley projective plane CP2 at the origin o is given algebraically by the
following formula:

R( (a, b) ∧ (c, d) ) =
1
4
{D(a, c) + G(b, d) + Mad−cb} (3.2)

for a, b, c, d ∈ C and a positive real number µ ([2, Example 4, pp. 52]). Here,
we assume that the curvature tensor R is defined by

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ] (3.3)

for any smooth vector fields X, Y on CP2 where ∇ denotes the Levi-Civita
connection of the Riemannian metric g. Now, we shall rewrite (3.2) to the
more explicit form. From (3.2) with (3.3), taking account of (2.6)∼(2.8), we
have

R
(
(a, b), (c, d)

)
(u, v)

=
1
4
{
D(a, c)(u, v) + G(b, d)(u, v) + Mad−cb(u, v)

}
(3.4)

for a, b, c, d, u, v ∈ C. Here, from (2.6)∼(2.8), (2.10) and (2.11), we get

D(a, c)(u, v) =
(
λ(D(a, c))u, λ2(D(a, c))v

)

=
(− T (a, c)u,G(a, c)v

)

=
(− 4〈a, u〉c + 4〈c, u〉a, ā(cv)− c̄(av)

)
, (3.5)

G(b, d)(u, v) =
(
λ(G(b, d)u, λ2(G(b, d)v)

)

= (−λ2(T (b, d)u,−T (b, d)v
)

= (D(b, d)u,−T (b, d)v
)

=
(
(ud)b̄− (ub)d̄,−4〈b, v〉d + 4〈d, v〉b )

, (3.6)

Mad−cb(u, v) =
(
(ad− cb)v̄,−ū(ad− cb)

)
. (3.7)

Thus, from (3.4), taking account of (3.5)∼(3.7), we have
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R
(
(a, b), (c, d)

)
(u, v)

=
1
4
(− 4〈a, u〉c + 4〈c, u〉a + (ud)b̄− (ub)d̄ + (ad− cb)v̄,

− 4〈b, v〉d + 4〈d, v〉b + ā(cv)− c̄(av)− ū(ad− cb)
)

(3.8)

for a, b, c, d, u, v ∈ C ([3, (1.7), pp. 269]). Now, let {e0 = 1, e1, e2, e3, e4, e5,

e6, e7} be a canonical basis of C and we set

y0 = (1, 0), y1 = (e1, 0), y2 = (e2, 0), y3 = (e3, 0),

y4 = (e4, 0), y5 = (e5, 0), y6 = (e6, 0), y7 = (e7, 0),

y0̄ = (0, 1), y1̄ = (0, e1), y2̄ = (0, e2), y3̄ = (0, e3),

y4̄ = (0, e4), y5̄ = (0, e5), y6̄ = (0, e6), y7̄ = (0, e7).

(3.9)

Then, {y0, y1, . . . , y7, y0̄, . . . , y7̄} is regarded as an orthonormal basis of
(T0(CP 2), g0) and hence, from the formula (3.8), taking account of (3.9)
and Figure 1, we have

R(yi, yj)yi = −yj , (i 6= j)

R(yi, yj̄)yi = −1
4
yj̄

(3.10)

and further,

R(yi, yj)yk = 0, (k 6= i, j) (3.11)

R(yī, yj)yī = −1
4
yj , (3.12)

R(yī, yj̄)yī = −yj̄ , (3.13)

R(yī, yj̄)yk̄ = 0 (k 6= i, j) (3.14)

for 0 ≤ i, j, k ≤ 7.

4. Proofs of Theorems 3 and 4

First, let {e0 = 1, e1, . . . , e7} be a canonical basis of C and {y0, y1, . . . , y7,

y0̄, y1̄, . . . , y7̄} be the basis of the real vector space To(CP2) of the Cay-
ley projective plane CP2 = (F4/Spin(9), g) at the origin o = Spin(9)
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can be identified with V = C ⊕ C with the canonical positive definite
symmetric bilinear form 〈 , 〉 defined in Section 2. Then, it follows that
{y0, y1, . . . , y7, y0̄, y1̄, . . . , y7̄} is an orthonormal basis of (V, 〈 , 〉). We now
identify (To(CP2), go) with the vector space (V, 〈 , 〉) by the above identifi-
cation.

Now, we denote by γ = γ(s) the normal geodesic in (CP2, g) through
the origin o = γ(0) with the initial direction γ′(0) = y0. Further, we set
y0(s) = γ′(s) and assume that the vector fields, y1(s), . . . , y7(s), y0̄(s), . . . ,
y7̄(s) are parallel along γ satisfying

yi(0) = yi (1 ≤ i ≤ 7) and yk̄(0) = yk̄ (0 ≤ k ≤ 7). (4.1)

Then, we can check that {y0(s), y1(s), . . . , y7(s), y0̄(s), y1̄(s), . . . , y7̄(s)} is
an orthonormal frame field along γ. Now, let Yi(s) (1 ≤ i ≤ 7) and Yk̄(s)
(0 ≤ k ≤ 7) be the Jacobi vector fields along γ satisfying the following
conditions

Yi(0) = 0, Yk̄(0) = 0 and

Y ′
i (0) = (∇γ′Yi)(0) = yi, Y ′̄

k(0) = (∇γ′Yk̄)(0) = yk̄,
(4.2)

for 1 ≤ i ≤ 7, 0 ≤ k ≤ 7. Then, we set as follows along γ:

Yi(s) =
7∑

j=1

aji(s)yj(s) +
7∑

l=0

al̄iyl̄(s),

Yk̄(s) =
7∑

j=1

ajk̄(s)yj(s) +
7∑

l=0

al̄k̄(s)yl̄(s),

(4.3)

for 1 ≤ i ≤ 7, 0 ≤ k ≤ 7 and

R(γ′(s), yi(s))γ′(s) =
7∑

j=1

Kij(s)yj(s) +
7∑

l=0

Kil̄(s)yl̄(s),

R(γ′(s), yk̄(s))γ′(s) =
7∑

j=1

Kk̄j(s)yj(s) +
7∑

l=0

Kk̄l̄(s)yl̄(s),

(4.4)

for 1 ≤ i ≤ 7, 0 ≤ k ≤ 7. Then, since ∇R = 0 and the vector fields
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yi(s), yk̄(s) (1 ≤ i ≤ 7, 0 ≤ k ≤ 7) are parallel along γ, we easily see that
Kij(s)

(
= Kji(s)

)
, Kik̄(s)

(
= Kk̄i(s)

)
, Kk̄l̄(s)

(
= Kl̄k̄(s)

)
are all constant

along γ. Thus, from (4.4) taking account of (3.10), we have

Kij(s) = Kji(s) = −δij ,

Kik̄(s) = Kk̄i(s) = 0,

Kk̄l̄(s) = Kl̄k̄ = −1
4
δkl,

(4.5)

for 1 ≤ i, j ≤ 7, 0 ≤ k, l ≤ 7. Since Yi(s), Yk̄(s) (1 ≤ i ≤ 7, 0 ≤ k ≤ 7) are
Jacobi vector fields along the geodesic, from (4.3), taking account of (4.4)
with (4.5), we have the following system of differential equations along γ:

a′′ij + aij = 0,

a′′̄ik̄ = 0, a′′̄li = 0,

a′′̄kl̄ +
1
4
ak̄l̄ = 0.

(4.6)

Solving (4.6) under the initial conditions (4.2), we have

aij(s) = δij sin s,

aik̄(s) = ak̄i(s) = 0,

ak̄l̄(s) = 2δkl sin
1
2
s,

(4.7)

for 1 ≤ i, j ≤ 7, 0 ≤ k, l ≤ 7.
Now, we define 15× 15−matrix A(s) by

A(s) =
(

aij(s) ail(s)
ak̄j(s) ak̄l̄(s)

)
(4.8)

for 1 ≤ i, j ≤ 7, 0 ≤ k, l ≤ 7. Then, it is well-known that the following
equality

Θo(γ(s)) = s15θo(γ(s)) = det A(s) (4.9)

holds along the geodesic γ. From (4.8) with (4.7), we have
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detA(s) = (sin s)7
(

2 sin
1
2
s

)8

= 162(sin s)7
(

sin
1
2
s

)8

.

(4.10)

Thus, from (4.9) and (4.10), we have

Θo(γ(s)) = 162(sin s)7
(

sin
1
2
s

)8

. (4.11)

Here, since the Cayley projective plane CP2 = (F4/Spin(9), g) is a harmonic
manifold, the volume density function θo (and hence, the function Θo) is a
radial function on a normal neighborhood Uo centered at the origin o. Thus,
Θo is determined by its value along the geodesic γ. Thus, from (4.11), we
easily see the function Θo is given by

Θo(q) = det A(s)

= 162(sin s)7
(

sin
1
2
s

)8

, (4.12)

where q = γ(s) ∈ Uo − {o} ([3, pp. 269]).
Now, let φ(s) be a smooth function of s (0 < s < ε, ε > 0), and consider

the function f(q) on Uo defined by f(q) = φ(s), s = d(0, q), q ∈ Uo. Then,
the following equality holds as in [5] with the sign difference:

4f = φ′′(s) +
(Θo(γ(s)))′

Θo(γ(s))
φ′(s), q = γ(s), (4.13)

where 4 denotes the Laplace-Beltrami operator of CP2 = (F4/Spin(9), g).
Here, from (4.12), we get

(Θo(γ(s)))′

Θo(γ(s))

=
7(sin s)6(sin((1/2)s))8 cos s + 4(sin s)7(sin((1/2)s))7 cos(1/2)s

(sin s)7(sin((1/2)s))8

= 7 cot s + 4 cot
1
2
s
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=
15
2

cot
1
2
s− 7

2
tan

1
2
s. (4.14)

We here consider the special case where φ(s) = (1/2)s2 (s > 0). Then,
from (4.13) and (4.14), by direct calculation, we see that

4Ω = 1 +

√
Ω
2

{
15 cot

√
Ω
2
− 7 tan

√
Ω
2

}
(4.15)

holds on Uo − {o}. This completes the proof of Theorem 3.
Next, we shall give an outline of the proof of Theorem 4. Let

∗CP2 = (∗CP2, ∗g) be the non-compact dual of the Cayley projective plane
CP2 = (F4/Spin(9), g). Then, we see that ∗CP2 is isometric to the Cayley
hyperbolic plane CH2 = (F4(−20)/Spin(9), ∗g) and the corresponding Cartan
decomposition of the Lie algebra F4(−20) of the Lie group F4(−20) is given
by

F4(−20) = D4 ⊕
√−1m (4.16)

in the complexification F4(−20) of the Lie algebra F4. Thus, taking account
of (4.16), we easily check that the curvature tensor of CH2 is only sign
difference of curvature tensor R of CP2 algebraically. Thus, by suitably
modifying the arguments for the case of the Cayley projective plane suitably,
we have Theorem 4.

5. Characteristic functions of rank one symmetric spaces

Summing up the results in [6], [7], [9] and ours of the present paper,
we have the following list of the characteristic functions for the rank one
symmetric spaces.

We here denote by Sm(1), Hm(−1), CPn(1), CHn(−1), HPn(1),
HHn(−1), CP2(1), CH2(−1) the m-dimensional sphere of constant sectional
curvature 1, m-dimensional hyperbolic space of constant sectional curva-
ture −1, 2n-dimensional complex projective space of constant holomorphic
sectional curvature 1, 2n-dimensional complex hyperbolic space of constant
holomorphic sectional curvature −1, 4n-dimensional quaternion projective
space of constant Q-sectional curvature 1, 4n-dimensional quaternion hyper-
bolic space of constant Q-sectional curvature −1, Cayley projective plane
and Cayley hyperbolic plane, respectively.
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Space Characteristic function

Sm(1) f(Ω) = 1 + (m− 1)
√

2Ω cot
(√

2Ω
)

Hm(−1) f(Ω) = 1 + (m− 1)
√

2Ω coth
(√

2Ω
)

CPn(1) f(Ω) = 1 +
√

Ω
2

{
(2n− 1) cot

(√
Ω
2

)
− tan

(√
Ω
2

)}

CHn(−1) f(Ω) = 1 +
√

Ω
2

{
(2n− 1) coth

(√
Ω
2

)
+ tanh

(√
Ω
2

)}

HPn(1) f(Ω) = 1 +
√

Ω
2

{
(4n− 1) cot

(√
Ω
2

)
− 3 tan

(√
Ω
2

)}

HHn(−1) f(Ω) = 1 +
√

Ω
2

{
(4n− 1) coth

(√
Ω
2

)
+ 3 tanh

(√
Ω
2

)}

CP2(1) f(Ω) = 1 +
√

Ω
2

{
15 cot

(√
Ω
2

)
− 7 tan

(√
Ω
2

)}

CH2(−1) f(Ω) = 1 +
√

Ω
2

{
15 coth

(√
Ω
2

)
+ 7 tanh

(√
Ω
2

)}
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