Characteristic function of Cayley projective plane as a harmonic manifold

Yunhee Euh, JeongHyeong Park and Kouei Sekigawa

(Received August 25, 2015; Revised June 5, 2017)

Abstract

Any locally rank one Riemannian symmetric space is a harmonic manifold. We give the characteristic function of a Cayley projective plane as a harmonic manifold. The aim of this work is to show the explicit form of the characteristic function of the Cayley projective plane.

Key words: Cayley projective plane, harmonic manifold, characteristic function.

1. Introduction

Let $M=(M, g)$ be an m-dimensional Riemannian manifold and $\theta_{p}(q)=$ $\sqrt{\operatorname{det}\left(g_{i j}(q)\right)}$ (resp. $\left.\Theta_{p}(q)=r_{p}(q)^{m-1} \theta_{p}(q)\right)$ be the volume density function (resp. the density function of the geodesic sphere $S\left(p, r_{p}(q)\right)$) in a normal coordinate neighborhood $U_{p}\left(x^{1}, \ldots, x^{m}\right)$ centered at $p \in M$, where $r_{p}(q)=$ $d(p, q)$ is the geodesic distance from p to q in U_{p}.

Definition 1 A Riemannian manifold $M=(M, g)$ is said to be locally harmonic if the volume density function θ_{p} is a radial function (correspondingly, the density function Θ_{p} of the geodesic sphere $S\left(p, r_{p}(q)\right)$ is also a radial function).

In the sequel, we call a locally harmonic manifold briefly a harmonic manifold. Let $M=(M, g)$ be a harmonic manifold. Then, it is shown that the density function Θ_{p} does not depend on the choice of p. A rank one symmetric space is a harmonic manifold. There are several equivalent definitions for harmonic manifolds ([1, pp.156]). One of them is as follows:

Theorem 2 A Riemannian manifold $M=(M, g)$ is a harmonic manifold if and only if the equality

$$
\triangle \Omega=f_{p}\left(\Omega_{p}\right) \quad\left(\Omega_{p}=\frac{1}{2} r_{p}^{2}\right)
$$

2010 Mathematics Subject Classification : 53C25, 53C35.
holds for a certain smooth function f_{p} on $[0, \varepsilon(p))$, where $\varepsilon(p)$ is the injectivity radius at $p \in M$.

We note that the function f_{p} in Theorem 2 does not depend on the choice of $p \in M\left(\left[1\right.\right.$, Proposition 6.16]) then the function $f=f_{p}(p \in M)$ is called the characteristic function of a harmonic manifold $M=(M, g)$. The characteristic function plays an important role in the geometry of harmonic manifolds and its applications [4], [6], [7], [9]. The characteristic functions of rank one symmetric spaces have been obtained except for Cayley projective plane $\mathfrak{C} \mathrm{P}^{2}$ and its non-compact dual $\mathfrak{C} H^{2}$ (Cayley hyperbolic plane) [6], [7], [9]. So it seems natural to determine the characteristic functions for Cayley projective plane $\mathfrak{C} \mathrm{P}^{2}$ and Cayley hyperbolic plane $\mathfrak{C} H^{2}$ in order to complete the table of the characteristic functions of rank one symmetric spaces. In this article, we shall prove the following theorems 3 and 4 .

Theorem 3 Let $\mathfrak{C} P^{2}$ be a Cayley projective plane. Then, the characteristic function as a harmonic manifold is given by

$$
\begin{equation*}
f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{15 \cot \sqrt{\frac{\Omega}{2}}-7 \tan \sqrt{\frac{\Omega}{2}}\right\} . \tag{1.1}
\end{equation*}
$$

Theorem 4 Let $\mathfrak{C} H^{2}$ be a Cayley hyperbolic plane. Then, the characteristic function as a harmonic manifold is given by

$$
\begin{equation*}
{ }^{*} f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{15 \operatorname{coth} \sqrt{\frac{\Omega}{2}}+7 \tanh \sqrt{\frac{\Omega}{2}}\right\} . \tag{1.2}
\end{equation*}
$$

Our arguments in this paper are much indebted to the article by R. Brown and A. Gray [2] and I. Yokota [10]. We aimed our paper to be selfcontained as much as possible. The authors thank to the referee for the kind suggestions.

2. Preliminaries

In this section, we prepare a brief review on on algebraic background which plays a basic role in the geometry of Cayley projective plane $\mathfrak{C P}^{2}$. Let \mathfrak{C} be the Cayley division normed algebra with the multiplicative unity 1 and positive definite bilinear form \langle,$\rangle where associated norm \|\cdot\|$ satisfies $\|a b\|=\|a\| \cdot\|b\|$ for $a, b \in \mathfrak{C}$. Every element $a \in \mathfrak{C}$ is written as $a=\alpha+a_{0}$,
where α is a real number and $\left\langle a_{0}, 1\right\rangle=0$, where a_{0} is said to be purely imaginary. We denote by \bar{a} the conjugate of $a=\alpha+a_{0}$ defined by $\bar{a}=\alpha-a_{0}$. we may easily check that $a \bar{a}=\bar{a} a=\langle a, a\rangle=1=\|a\|^{2}$ holds for any $a \in \mathfrak{C}$ and further, by linearizing the equality $a \bar{a}=\langle a, a\rangle 1$, we have

$$
\begin{equation*}
a \bar{b}+b \bar{a}=\bar{a} b+\bar{b} a=2\langle a, b\rangle 1 \tag{2.1}
\end{equation*}
$$

for any $a, b \in \mathfrak{C}$. A canonical basis of \mathfrak{C} is defined as a basis of the form $\left\{1, e_{1}, \ldots, e_{7}\right\}$ for which $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}, e_{i}^{2}=-1, e_{i} e_{j}+e_{j} e_{i}=0(1 \leq i \neq$ $j \leq 7$) satisfying the following multiplicative operations given by the following figure:

Figure 1.

We denote by \mathbf{D}_{4} the Lie algebra consisting of linear maps $A: \mathfrak{C} \rightarrow \mathfrak{C}$ such that $\langle A a, b\rangle=-\langle a, A b\rangle$ for $a, b \in \mathfrak{C}$. It is well-known that \mathbf{D}_{4} is the compact simple Lie algebra over real number \mathbb{R} with an outer automorphism $\operatorname{Aut}\left(\mathbf{D}_{4}\right) / \operatorname{Inn}\left(\mathbf{D}_{4}\right)$ of order 3. $\operatorname{Aut}\left(\mathbf{D}_{4}\right) / \operatorname{Inn}\left(\mathbf{D}_{4}\right)$ is isomorphic to the symmetric group on 3 letters \mathfrak{S}_{3}. Namely, there exist $\kappa, \lambda \in \operatorname{Aut}\left(\mathbf{D}_{4}\right)$ which generate $\operatorname{Aut}\left(\mathbf{D}_{4}\right) / \operatorname{Inn}\left(\mathbf{D}_{4}\right)$ and satisfy the relations $\lambda^{3}=1, \kappa^{2}=1, \kappa \lambda \kappa=\lambda^{2}$. Here, we may choose κ and λ as follows. Let $\left\{e_{i}\right\}=\left\{e_{0}=1, e_{1}, \ldots, e_{7}\right\}$ be a canonical orthonormal basis of $\mathfrak{C}=(\mathfrak{C},\langle\rangle$,$) and \mathbf{D}_{4}$ be the real Lie algebra of skew-symmetric endomorphisms of $\mathfrak{C}=(\mathfrak{C},\langle\rangle$,$) . Now, we define G_{i j} \in \mathbf{D}_{4}$ and $F_{i j} \in \mathbf{D}_{4}(i \neq j, i, j=0,1, \ldots, 7)$ be the linear endomorphisms of \mathfrak{C} defined respectively by

$$
\begin{equation*}
G_{i j} e_{j}=e_{i}, \quad G_{i j} e_{i}=-e_{j}, \quad G_{i j} e_{k}=0 \quad(k \neq i, j) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{i j} e_{i}=\frac{1}{2} e_{i} e_{j}, \quad F_{i j} e_{j}=-\frac{1}{2} e_{i} e_{j} \quad(i \geq 1,0 \leq j \leq 7) \tag{2.3}
\end{equation*}
$$

and

$$
F_{i j} a=\frac{1}{2} e_{j}\left(e_{i} a\right) \quad(i \neq 0, j \neq 0, i \neq j)
$$

for any $a \in \mathfrak{C}$. Then, we may easily check that $\left\{G_{i j}\right\}$ (resp. $\left.\left\{F_{i j}\right\}\right)(i<j)$ is a basis of \mathbf{D}_{4}. We here define linear endomorphisms κ, π and λ on \mathbf{D}_{4} respectively by

$$
\begin{gather*}
\kappa\left(G_{i j}\right)=G_{i j} \quad(i, j \geq 1), \quad \kappa\left(G_{0 i}\right)=-G_{0 i} \quad(i \geq 1), \tag{2.4}\\
\pi\left(G_{i j}\right)=F_{i j} \quad(i \neq j) \quad \text { and } \quad \lambda=\pi \kappa .
\end{gather*}
$$

Then, we see that κ and λ satisfy the required relations and further, the following identity

$$
\begin{equation*}
(\lambda(A) a) b+a\left(\lambda^{2}(A) b\right)=\kappa(A)(a b) \tag{2.5}
\end{equation*}
$$

holds for any $A \in \mathbf{D}_{4}$ and any $a, b \in \mathfrak{C}$ [10]. The identity (2.5) is called the principle of triality of \mathbf{D}_{4}.

Now, for $a, b, c \in \mathfrak{C}$, we define $T(a, b), G(a, b), D(a, b) \in \mathbf{D}_{4}$ as follows:

$$
\begin{align*}
& T(a, b) c=4\langle a, c\rangle b-4\langle b, c\rangle a \\
& G(a, b) c=\bar{a}(b c)-\bar{b}(a c) \tag{2.6}\\
& D(a, b) c=(c b) \bar{a}-(c a) \bar{b}
\end{align*}
$$

Then, they satisfy

$$
\begin{gather*}
\lambda(T(a, b))=-G(a, b), \quad \lambda^{2}(T(a, b))=-D(a, b), \\
\kappa(T(a, b))=T(\bar{a}, \bar{b}), \quad \kappa(G(a, b))=D(\bar{a}, \bar{b}), \tag{2.7}
\end{gather*}
$$

and further

$$
\begin{align*}
& \langle T(a, b) c, d\rangle=4(\langle a, c\rangle\langle b, d\rangle-\langle a, d\rangle\langle b, c\rangle) \\
& \langle G(a, b) c, d\rangle=\langle a d, b c\rangle-\langle a c, b d\rangle \tag{2.8}\\
& \langle D(a, b) c, d\rangle=\langle d a, c b\rangle-\langle c a, d b\rangle
\end{align*}
$$

for any $a, b, c, d \in \mathfrak{C}$.
We denote by \mathbf{B}_{4} the real Lie algebra consisting of 9×9 skew-symmetric matrices. Now we shall define a 16 -dimensional representation of the Lie algebra \mathbf{B}_{4} on the real vector space $V=V_{2}=\mathfrak{C} \oplus \mathfrak{C}$. First, we regard each $X \in \mathbf{B}_{4}$ as a 9×9 skew-symmetric matrix and the last column vector as an element $a \in \mathfrak{C}$. Further, considering the ordinary inclusion of \mathbf{D}_{4} in \mathbf{B}_{4} we may write as follows:

$$
\begin{equation*}
X=A+M_{a} \tag{2.9}
\end{equation*}
$$

where $A \in \mathbf{D}_{4}$ and $M_{a}=\left(\begin{array}{cc}0 & 2 a \\ -2 a & 0\end{array}\right)$. Now, we define an action of \mathbf{B}_{4} on V by

$$
\begin{equation*}
A(b, c)=\left(\lambda(A) b, \lambda^{2}(A) c\right) \tag{2.10}
\end{equation*}
$$

for $A \in \mathbf{D}_{4}$ and

$$
\begin{equation*}
M_{a}(b, c)=(a \bar{c},-\bar{b} a) \tag{2.11}
\end{equation*}
$$

for $(b, c) \in \mathfrak{C} \oplus \mathfrak{C}$. Then, we may check that the above action of \mathbf{B}_{4} on $\mathfrak{C} \oplus \mathfrak{C}$ defines a representation of the real Lie algebra \mathbf{B}_{4} on $\mathfrak{C} \oplus \mathfrak{C}([2, \mathrm{pp} .46])$. The vector space $V=\mathfrak{C} \oplus \mathfrak{C}$ has a positive definite symmetric bilinear form \langle, given by $\langle(a, c),(b, d)\rangle=\langle a, b\rangle+\langle c, d\rangle$ for $a, b, c, d \in \mathfrak{C}$. Then each element of \mathbf{B}_{4} is skew-symmetric with respect to the bilinear form \langle,$\rangle .$

3. The curvature tensor of the Cayley projective plane

Let $C^{C}{ }^{2}=\left(F_{4} / \operatorname{spin}(9), g\right)$ be Cayley projective plane equipped with a Riemannian metric g defined by a bi-invariant Riemannian metric on the compact Lie group F_{4}. Then, it is well known that $\mathfrak{C} \mathrm{P}^{2}$ is a compact rank one symmetric space and further the holonomy group is isomorpic to $\operatorname{Spin}(9)$ ([2, Examples $]$). It is easily checked that the corresponding Cartan decomposition is given by

$$
\begin{equation*}
\mathbf{F}_{4}=\mathbf{B}_{4} \oplus \mathfrak{m} \tag{3.1}
\end{equation*}
$$

where $\mathfrak{m}=\{(a, b) \in \mathfrak{C} \times \mathfrak{C}\} \cong \mathfrak{C} \oplus \mathfrak{C}$, which can be identified with the tangent space $T_{o}\left(\mathfrak{C P}^{2}\right)$ at the origin $o=\operatorname{Spin}(9)$. Further, we may also see that the linear isotropy representation of the isotropy group $\operatorname{Spin}(9)$ on $\mathfrak{m} \cong \mathfrak{C} \oplus \mathfrak{C}$ is
equivalent to the representation of the group $\operatorname{Spin}(9)$ on $V=\mathfrak{C} \oplus \mathfrak{C}$ defined by (2.10) and (2.11) in $\S 2$. From the above observation identifying the tangent space $\left(T_{o}\left(\mathfrak{C P}^{2}\right), g_{o}\right)$ with $(\mathfrak{C} \oplus \mathfrak{C},\langle\rangle$,$) , we see that the curvature tensor R$ of the Cayley projective plane $\mathfrak{C P}^{2}$ at the origin o is given algebraically by the following formula:

$$
\begin{equation*}
R((a, b) \wedge(c, d))=\frac{1}{4}\left\{D(a, c)+G(b, d)+M_{a d-c b}\right\} \tag{3.2}
\end{equation*}
$$

for $a, b, c, d \in \mathfrak{C}$ and a positive real number μ ([2, Example 4, pp. 52]). Here, we assume that the curvature tensor R is defined by

$$
\begin{equation*}
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]} \tag{3.3}
\end{equation*}
$$

for any smooth vector fields X, Y on $\mathfrak{C P}^{2}$ where ∇ denotes the Levi-Civita connection of the Riemannian metric g. Now, we shall rewrite (3.2) to the more explicit form. From (3.2) with (3.3), taking account of (2.6)~(2.8), we have

$$
\begin{align*}
& R((a, b),(c, d))(u, v) \\
& \quad=\frac{1}{4}\left\{D(a, c)(u, v)+G(b, d)(u, v)+M_{a d-c b}(u, v)\right\} \tag{3.4}
\end{align*}
$$

for $a, b, c, d, u, v \in \mathfrak{C}$. Here, from (2.6)~(2.8), (2.10) and (2.11), we get

$$
\begin{align*}
D(a, c)(u, v) & =\left(\lambda(D(a, c)) u, \lambda^{2}(D(a, c)) v\right) \\
& =(-T(a, c) u, G(a, c) v) \\
& =(-4\langle a, u\rangle c+4\langle c, u\rangle a, \bar{a}(c v)-\bar{c}(a v)) \tag{3.5}\\
G(b, d)(u, v) & =\left(\lambda\left(G(b, d) u, \lambda^{2}(G(b, d) v)\right)\right. \\
& =\left(-\lambda^{2}(T(b, d) u,-T(b, d) v)\right. \\
& =(D(b, d) u,-T(b, d) v) \\
& =((u d) \bar{b}-(u b) \bar{d},-4\langle b, v\rangle d+4\langle d, v\rangle b) \tag{3.6}\\
M_{a d-c b}(u, v) & =((a d-c b) \bar{v},-\bar{u}(a d-c b)) . \tag{3.7}
\end{align*}
$$

Thus, from (3.4), taking account of (3.5) $\sim(3.7)$, we have

$$
\begin{align*}
& R((a, b),(c, d))(u, v) \\
& \begin{aligned}
=\frac{1}{4}(& -4\langle a, u\rangle c+4\langle c, u\rangle a+(u d) \bar{b}-(u b) \bar{d}+(a d-c b) \bar{v} \\
& -4\langle b, v\rangle d+4\langle d, v\rangle b+\bar{a}(c v)-\bar{c}(a v)-\bar{u}(a d-c b))
\end{aligned}
\end{align*}
$$

for $a, b, c, d, u, v \in \mathfrak{C}\left([3,(1.7)\right.$, pp. 269] $)$. Now, let $\left\{e_{0}=1, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right.$, $\left.e_{6}, e_{7}\right\}$ be a canonical basis of \mathfrak{C} and we set

$$
\begin{array}{llll}
y_{0}=(1,0), & y_{1}=\left(e_{1}, 0\right), & y_{2}=\left(e_{2}, 0\right), & y_{3}=\left(e_{3}, 0\right), \\
y_{4}=\left(e_{4}, 0\right), & y_{5}=\left(e_{5}, 0\right), & y_{6}=\left(e_{6}, 0\right), & y_{7}=\left(e_{7}, 0\right), \\
y_{\overline{0}}=(0,1), & y_{\overline{1}}=\left(0, e_{1}\right), & y_{\overline{2}}=\left(0, e_{2}\right), & y_{\overline{3}}=\left(0, e_{3}\right), \tag{3.9}\\
y_{\overline{4}}=\left(0, e_{4}\right), & y_{\overline{5}}=\left(0, e_{5}\right), & y_{\overline{6}}=\left(0, e_{6}\right), & y_{\overline{7}}=\left(0, e_{7}\right) .
\end{array}
$$

Then, $\left\{y_{0}, y_{1}, \ldots, y_{7}, y_{\overline{0}}, \ldots, y_{\overline{7}}\right\}$ is regarded as an orthonormal basis of $\left(T_{0}\left(\mathfrak{C} P^{2}\right), g_{0}\right)$ and hence, from the formula (3.8), taking account of (3.9) and Figure 1, we have

$$
\begin{align*}
& R\left(y_{i}, y_{j}\right) y_{i}=-y_{j}, \quad(i \neq j) \\
& R\left(y_{i}, y_{\bar{j}}\right) y_{i}=-\frac{1}{4} y_{\bar{j}} \tag{3.10}
\end{align*}
$$

and further,

$$
\begin{align*}
& R\left(y_{i}, y_{j}\right) y_{k}=0, \quad(k \neq i, j) \tag{3.11}\\
& R\left(y_{\bar{i}}, y_{j}\right) y_{\bar{i}}=-\frac{1}{4} y_{j}, \tag{3.12}\\
& R\left(y_{\bar{i}}, y_{\bar{j}}\right) y_{\bar{i}}=-y_{\overline{\bar{j}}}, \tag{3.13}\\
& R\left(y_{\bar{i}}, y_{\bar{j}}^{\bar{j}}\right) y_{\bar{k}}=0 \quad(k \neq i, j) \tag{3.14}
\end{align*}
$$

for $0 \leq i, j, k \leq 7$.

4. Proofs of Theorems 3 and 4

First, let $\left\{e_{0}=1, e_{1}, \ldots, e_{7}\right\}$ be a canonical basis of \mathfrak{C} and $\left\{y_{0}, y_{1}, \ldots, y_{7}\right.$, $\left.y_{\overline{0}}, y_{\overline{1}}, \ldots, y_{\overline{7}}\right\}$ be the basis of the real vector space $T_{o}\left(C^{2}\right)$ of the Cayley projective plane $\mathfrak{C P}^{2}=\left(F_{4} / \operatorname{Spin}(9), g\right)$ at the origin $o=\operatorname{Spin}(9)$
can be identified with $V=\mathfrak{C} \oplus \mathfrak{C}$ with the canonical positive definite symmetric bilinear form \langle,$\rangle defined in Section 2. Then, it follows that$ $\left\{y_{0}, y_{1}, \ldots, y_{7}, y_{\overline{0}}, y_{\overline{1}}, \ldots, y_{\overline{7}}\right\}$ is an orthonormal basis of $(V,\langle\rangle$,$) . We now$ identify $\left(T_{o}\left(C^{2}\right), g_{o}\right)$ with the vector space $(V,\langle\rangle$,$) by the above identifi-$ cation.

Now, we denote by $\gamma=\gamma(s)$ the normal geodesic in $\left(\mathfrak{C P}^{2}, g\right)$ through the origin $o=\gamma(0)$ with the initial direction $\gamma^{\prime}(0)=y_{0}$. Further, we set $y_{0}(s)=\gamma^{\prime}(s)$ and assume that the vector fields, $y_{1}(s), \ldots, y_{7}(s), y_{\overline{0}}(s), \ldots$, $y_{\overline{7}}(s)$ are parallel along γ satisfying

$$
\begin{equation*}
y_{i}(0)=y_{i} \quad(1 \leq i \leq 7) \text { and } y_{\bar{k}}(0)=y_{\bar{k}} \quad(0 \leq k \leq 7) \tag{4.1}
\end{equation*}
$$

Then, we can check that $\left\{y_{0}(s), y_{1}(s), \ldots, y_{7}(s), y_{\overline{0}}(s), y_{\overline{1}}(s), \ldots, y_{\overline{7}}(s)\right\}$ is an orthonormal frame field along γ. Now, let $Y_{i}(s)(1 \leq i \leq 7)$ and $Y_{\bar{k}}(s)$ $(0 \leq k \leq 7)$ be the Jacobi vector fields along γ satisfying the following conditions

$$
\begin{gather*}
Y_{i}(0)=0, Y_{\bar{k}}(0)=0 \quad \text { and } \\
Y_{i}^{\prime}(0)=\left(\nabla_{\gamma^{\prime}} Y_{i}\right)(0)=y_{i}, \quad Y_{\bar{k}}^{\prime}(0)=\left(\nabla_{\gamma^{\prime}} Y_{\bar{k}}\right)(0)=y_{\bar{k}}, \tag{4.2}
\end{gather*}
$$

for $1 \leq i \leq 7,0 \leq k \leq 7$. Then, we set as follows along γ :

$$
\begin{align*}
& Y_{i}(s)=\sum_{j=1}^{7} a_{j i}(s) y_{j}(s)+\sum_{l=0}^{7} a_{\bar{l}} y_{\bar{l}}(s) \tag{4.3}\\
& Y_{\bar{k}}(s)=\sum_{j=1}^{7} a_{j \bar{k}}(s) y_{j}(s)+\sum_{l=0}^{7} a_{\overline{l k}}(s) y_{\bar{l}}(s),
\end{align*}
$$

for $1 \leq i \leq 7,0 \leq k \leq 7$ and

$$
\begin{align*}
& R\left(\gamma^{\prime}(s), y_{i}(s)\right) \gamma^{\prime}(s)=\sum_{j=1}^{7} K_{i j}(s) y_{j}(s)+\sum_{l=0}^{7} K_{i \bar{l}}(s) y_{\bar{l}}(s), \\
& R\left(\gamma^{\prime}(s), y_{\bar{k}}(s)\right) \gamma^{\prime}(s)=\sum_{j=1}^{7} K_{\bar{k} j}(s) y_{j}(s)+\sum_{l=0}^{7} K_{\bar{k} \bar{l}}(s) y_{\bar{l}}(s), \tag{4.4}
\end{align*}
$$

for $1 \leq i \leq 7,0 \leq k \leq 7$. Then, since $\nabla R=0$ and the vector fields
$y_{i}(s), y_{\bar{k}}(s)(1 \leq i \leq 7,0 \leq k \leq 7)$ are parallel along γ, we easily see that $K_{i j}(s)\left(=K_{j i}(s)\right), K_{i \bar{k}}(s)\left(=K_{\bar{k} i}(s)\right), K_{\bar{k} \bar{l}}(s)\left(=K_{\overline{l k}}(s)\right)$ are all constant along γ. Thus, from (4.4) taking account of (3.10), we have

$$
\begin{align*}
& K_{i j}(s)=K_{j i}(s)=-\delta_{i j}, \\
& K_{i \bar{k}}(s)=K_{\bar{k} i}(s)=0, \tag{4.5}\\
& K_{\bar{k} \bar{l}}(s)=K_{\overline{l k}}=-\frac{1}{4} \delta_{k l},
\end{align*}
$$

for $1 \leq i, j \leq 7,0 \leq k, l \leq 7$. Since $Y_{i}(s), Y_{\bar{k}}(s)(1 \leq i \leq 7,0 \leq k \leq 7)$ are Jacobi vector fields along the geodesic, from (4.3), taking account of (4.4) with (4.5), we have the following system of differential equations along γ :

$$
\begin{gather*}
a_{i j}^{\prime \prime}+a_{i j}=0, \\
a_{\bar{i} \bar{k}}^{\prime \prime}=0, \quad a_{\bar{l} i}^{\prime \prime}=0, \tag{4.6}\\
a_{\bar{k} \bar{l}}^{\prime \prime}+\frac{1}{4} a_{\bar{k} \bar{l}}=0 .
\end{gather*}
$$

Solving (4.6) under the initial conditions (4.2), we have

$$
\begin{align*}
& a_{i j}(s)=\delta_{i j} \sin s, \\
& a_{i \bar{k}}(s)=a_{\bar{k} i}(s)=0, \tag{4.7}\\
& a_{\bar{k} \bar{l}}(s)=2 \delta_{k l} \sin \frac{1}{2} s,
\end{align*}
$$

for $1 \leq i, j \leq 7,0 \leq k, l \leq 7$.
Now, we define $15 \times 15-$ matrix $A(s)$ by

$$
A(s)=\left(\begin{array}{cc}
a_{i j}(s) & a_{i l}(s) \tag{4.8}\\
a_{\bar{k} j}(s) & a_{\bar{k} \bar{l}}(s)
\end{array}\right)
$$

for $1 \leq i, j \leq 7,0 \leq k, l \leq 7$. Then, it is well-known that the following equality

$$
\begin{equation*}
\Theta_{o}(\gamma(s))=s^{15} \theta_{o}(\gamma(s))=\operatorname{det} A(s) \tag{4.9}
\end{equation*}
$$

holds along the geodesic γ. From (4.8) with (4.7), we have

$$
\begin{align*}
\operatorname{det} A(s) & =(\sin s)^{7}\left(2 \sin \frac{1}{2} s\right)^{8} \tag{4.10}\\
& =16^{2}(\sin s)^{7}\left(\sin \frac{1}{2} s\right)^{8}
\end{align*}
$$

Thus, from (4.9) and (4.10), we have

$$
\begin{equation*}
\Theta_{o}(\gamma(s))=16^{2}(\sin s)^{7}\left(\sin \frac{1}{2} s\right)^{8} \tag{4.11}
\end{equation*}
$$

Here, since the Cayley projective plane $\mathfrak{C} \mathrm{P}^{2}=\left(F_{4} / \operatorname{Spin}(9), g\right)$ is a harmonic manifold, the volume density function θ_{o} (and hence, the function Θ_{o}) is a radial function on a normal neighborhood U_{o} centered at the origin o. Thus, Θ_{o} is determined by its value along the geodesic γ. Thus, from (4.11), we easily see the function Θ_{o} is given by

$$
\begin{align*}
\Theta_{o}(q) & =\operatorname{det} A(s) \\
& =16^{2}(\sin s)^{7}\left(\sin \frac{1}{2} s\right)^{8} \tag{4.12}
\end{align*}
$$

where $q=\gamma(s) \in U_{o}-\{o\}([3$, pp. 269]).
Now, let $\phi(s)$ be a smooth function of $s(0<s<\epsilon, \epsilon>0)$, and consider the function $f(q)$ on U_{o} defined by $f(q)=\phi(s), s=d(0, q), q \in U_{o}$. Then, the following equality holds as in [5] with the sign difference:

$$
\begin{equation*}
\triangle f=\phi^{\prime \prime}(s)+\frac{\left(\Theta_{o}(\gamma(s))\right)^{\prime}}{\Theta_{o}(\gamma(s))} \phi^{\prime}(s), \quad q=\gamma(s) \tag{4.13}
\end{equation*}
$$

where \triangle denotes the Laplace-Beltrami operator of $\mathfrak{C P}{ }^{2}=\left(F_{4} / \operatorname{Spin}(9), g\right)$. Here, from (4.12), we get

$$
\begin{aligned}
& \frac{\left(\Theta_{o}(\gamma(s))\right)^{\prime}}{\Theta_{o}(\gamma(s))} \\
& \quad=\frac{7(\sin s)^{6}(\sin ((1 / 2) s))^{8} \cos s+4(\sin s)^{7}(\sin ((1 / 2) s))^{7} \cos (1 / 2) s}{(\sin s)^{7}(\sin ((1 / 2) s))^{8}} \\
& \quad=7 \cot s+4 \cot \frac{1}{2} s
\end{aligned}
$$

$$
\begin{equation*}
=\frac{15}{2} \cot \frac{1}{2} s-\frac{7}{2} \tan \frac{1}{2} s . \tag{4.14}
\end{equation*}
$$

We here consider the special case where $\phi(s)=(1 / 2) s^{2}(s>0)$. Then, from (4.13) and (4.14), by direct calculation, we see that

$$
\begin{equation*}
\Delta \Omega=1+\sqrt{\frac{\Omega}{2}}\left\{15 \cot \sqrt{\frac{\Omega}{2}}-7 \tan \sqrt{\frac{\Omega}{2}}\right\} \tag{4.15}
\end{equation*}
$$

holds on $U_{o}-\{o\}$. This completes the proof of Theorem 3 .
Next, we shall give an outline of the proof of Theorem 4. Let ${ }^{*} \mathfrak{C} \mathrm{P}^{2}=\left({ }^{*} \mathfrak{C} \mathrm{P}^{2},{ }^{*} g\right)$ be the non-compact dual of the Cayley projective plane $\mathfrak{C P}^{2}=\left(F_{4} / \operatorname{Spin}(9), g\right)$. Then, we see that ${ }^{*} C^{C} \mathrm{P}^{2}$ is isometric to the Cayley hyperbolic plane $\mathfrak{C H}^{2}=\left(F_{4(-20)} / \operatorname{Spin}(9),{ }^{*} g\right)$ and the corresponding Cartan decomposition of the Lie algebra $\mathbf{F}_{4(-20)}$ of the Lie group $F_{4(-20)}$ is given by

$$
\begin{equation*}
\mathbf{F}_{4(-20)}=\mathbf{D}_{4} \oplus \sqrt{-1} \mathfrak{m} \tag{4.16}
\end{equation*}
$$

in the complexification $\mathbf{F}_{4(-20)}$ of the Lie algebra \mathbf{F}_{4}. Thus, taking account of (4.16), we easily check that the curvature tensor of CH^{2} is only sign difference of curvature tensor R of $\mathfrak{C P}^{2}$ algebraically. Thus, by suitably modifying the arguments for the case of the Cayley projective plane suitably, we have Theorem 4.

5. Characteristic functions of rank one symmetric spaces

Summing up the results in [6], [7], [9] and ours of the present paper, we have the following list of the characteristic functions for the rank one symmetric spaces.

We here denote by $S^{m}(1), \mathrm{H}^{m}(-1), \mathbb{C P}^{n}(1), \mathbb{C H}^{n}(-1), \mathbb{H P}^{n}(1)$, $\mathbb{H} \mathrm{H}^{n}(-1), \mathfrak{C} \mathrm{P}^{2}(1), \mathfrak{C} \mathrm{H}^{2}(-1)$ the m-dimensional sphere of constant sectional curvature $1, m$-dimensional hyperbolic space of constant sectional curvature $-1,2 n$-dimensional complex projective space of constant holomorphic sectional curvature $1,2 n$-dimensional complex hyperbolic space of constant holomorphic sectional curvature $-1,4 n$-dimensional quaternion projective space of constant Q-sectional curvature 1, $4 n$-dimensional quaternion hyperbolic space of constant Q-sectional curvature -1 , Cayley projective plane and Cayley hyperbolic plane, respectively.

Space	Characteristic function
$S^{m}(1)$	$f(\Omega)=1+(m-1) \sqrt{2 \Omega} \cot (\sqrt{2 \Omega})$
$\mathrm{H}^{m}(-1)$	$f(\Omega)=1+(m-1) \sqrt{2 \Omega} \operatorname{coth}(\sqrt{2 \Omega})$
$\mathbb{C P}^{n}(1)$	$f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{(2 n-1) \cot \left(\sqrt{\frac{\Omega}{2}}\right)-\tan \left(\sqrt{\frac{\Omega}{2}}\right)\right\}$
$\mathbb{C H}^{n}(-1)$	$f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{(2 n-1) \operatorname{coth}\left(\sqrt{\frac{\Omega}{2}}\right)+\tanh \left(\sqrt{\frac{\Omega}{2}}\right)\right\}$
$\mathbb{H P}^{n}(1)$	$f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{(4 n-1) \cot \left(\sqrt{\frac{\Omega}{2}}\right)-3 \tan \left(\sqrt{\frac{\Omega}{2}}\right)\right\}$
$\mathbb{H H}^{n}(-1)$	$f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{(4 n-1) \operatorname{coth}\left(\sqrt{\frac{\Omega}{2}}\right)+3 \tanh \left(\sqrt{\frac{\Omega}{2}}\right)\right\}$
$\mathbb{C P}^{2}(1)$	$f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{15 \cot \left(\sqrt{\frac{\Omega}{2}}\right)-7 \tan \left(\sqrt{\frac{\Omega}{2}}\right)\right\}$
$\mathbb{C H}^{2}(-1)$	$f(\Omega)=1+\sqrt{\frac{\Omega}{2}}\left\{15 \operatorname{coth}\left(\sqrt{\frac{\Omega}{2}}\right)+7 \tanh \left(\sqrt{\frac{\Omega}{2}}\right)\right\}$

Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B0393 0449).

References

[1] Besse A. L., Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93. Springer-Verlag, Berlin-New York, 1978.
[2] Brown R. and Gray A., Riemannian manifolds with holonomy group Spin(9), Differential geometry (in honor of K. Yano), pp. 41-59. Kinokuniya, Tokyo, 1972.
[3] Coulton P. and Glazebrook J., Submanifolds of the Cayley projective plane with bounded second fundamental form. Geom. Dedicata. 33 (1990), 265275.
[4] Euh Y., Park J. H. and Sekigawa K., A curvature identity on a 6dimensional Riemannian Manifold and its applications. Czech Math. J. 67 (2017), 253-270.
[5] Sakai T., Riemannian geometry, Translated from the 1992 Japanese original by the author, Translations of Mathematical Monographs, 149. American

Mathematical Society, Providence, RI, 1996.
[6] Watanabe Y., On the characteristic function of harmonic Kählerian spaces. Tôhoku Math. J. 27 (1975), 13-24.
[7] Watanabe Y., On the characteristic functions of quaterion Kählerian spaces. Kôdai Math. Sem. Rep. 27 (1976), 410-420.
[8] Watanabe Y., The sectional curvature of a 5-dimensional harmonic Riemannian manifold. Kodai Math. J. 6 (1983), 100-109.
[9] Watanabe Y., On the characteristic functions of quaternion Kählerian spaces of constant Q-sectional curvature. Kôdai Math. Sem. Rep. 28 (1977), 284-299.
[10] Yokota I., Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G. I. $G=G_{2}, F_{4}$ and E_{6}. Tsukuba J. Math. 14 (1990), 185-223.

Yunhee EuH
Industrial and Mathematical
Data Analytics Research Center
Room 25-128, Seoul National University
1 Gwanakro, Gwanak-gu, Seoul, 08826, Korea
E-mail: yheuh@snu.ac.kr
JeongHyeong Park
Department of Mathematics
Sungkyunkwan University
2066 Seobu-ro, Jangan-gu
Suwon, 16419, Korea
E-mail: parkj@skku.edu
Kouei Sekigawa
Department of Mathematics
Niigata University
Niigata 950-2181, Japan
E-mail: sekigawa@math.sc.niigata-u.ac.jp

