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Characteristic function of Cayley projective plane

as a harmonic manifold
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Abstract. Any locally rank one Riemannian symmetric space is a harmonic mani-
fold. We give the characteristic function of a Cayley projective plane as a harmonic
manifold. The aim of this work is to show the explicit form of the characteristic
function of the Cayley projective plane.
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1. Introduction

Let M = (M, g) be an m-dimensional Riemannian manifold and 6,(q) =
det(g:(q)) (resp. ©,(q) = rp(q)™ '6,(q)) be the volume density function
(resp. the density function of the geodesic sphere S(p,7,(¢))) in a normal
coordinate neighborhood U, (z?!,...,2™) centered at p € M, where r,(q) =
d(p, q) is the geodesic distance from p to ¢ in U,,.

Definition 1 A Riemannian manifold M = (M, g) is said to be locally
harmonic if the volume density function 6, is a radial function (correspond-
ingly, the density function ©, of the geodesic sphere S(p,r,(q)) is also a
radial function).

In the sequel, we call a locally harmonic manifold briefly a harmonic
manifold. Let M = (M,g) be a harmonic manifold. Then, it is shown
that the density function ©, does not depend on the choice of p. A rank
one symmetric space is a harmonic manifold. There are several equivalent
definitions for harmonic manifolds ([1, pp. 156]). One of them is as follows:

Theorem 2 A Riemannian manifold M = (M, g) is a harmonic manifold
if and only if the equality

AQ = f,() (Qp = ;7";2))
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holds for a certain smooth function f, on [0,e(p)), where £(p) is the injec-
tivity radius at p € M.

We note that the function f, in Theorem 2 does not depend on the
choice of p € M ([1, Proposition 6.16]) then the function f = f, (p € M) is
called the characteristic function of a harmonic manifold M = (M, g). The
characteristic function plays an important role in the geometry of harmonic
manifolds and its applications [4], [6], [7], [9]. The characteristic functions of
rank one symmetric spaces have been obtained except for Cayley projective
plane ¢P? and its non-compact dual €H? (Cayley hyperbolic plane) [6], [7],
[9]. So it seems natural to determine the characteristic functions for Cayley
projective plane €P? and Cayley hyperbolic plane €H? in order to complete
the table of the characteristic functions of rank one symmetric spaces. In
this article, we shall prove the following theorems 3 and 4.

Theorem 3 Let €P2 be a Cayley projective plane. Then, the characteristic
function as a harmonic manifold is given by

f(Q):1+\/§{15cot\/§—7tan\/§}. (1.1)

Theorem 4 Let €H? be a Cayley hyperbolic plane. Then, the character-
istic function as a harmonic manifold is given by

*f(Q):1+\/§{15coth\/§+ 7tanh\/§}. (1.2)

Our arguments in this paper are much indebted to the article by R.
Brown and A. Gray [2] and I. Yokota [10]. We aimed our paper to be self-
contained as much as possible. The authors thank to the referee for the kind
suggestions.

2. Preliminaries

In this section, we prepare a brief review on on algebraic background
which plays a basic role in the geometry of Cayley projective plane €P2.
Let € be the Cayley division normed algebra with the multiplicative unity 1
and positive definite bilinear form (, ) where associated norm || - || satisfies
lab|| = al-||b] for a, b € €. Every element a € € is written as a = a+a,
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where « is a real number and (ag,1) = 0, where ag is said to be purely
imaginary. We denote by a the conjugate of a = a+aq defined by a = a—ag.
we may easily check that aa = @a = (a,a) =1 = ||a|* holds for any a € €
and further, by linearizing the equality aa = (a,a )1, we have

ab + ba = ab + ba = 2(a,b)1 (2.1)

for any a, b € €. A canonical basis of € is defined as a basis of the form
{1,e1,...,e7} for which (e;,e;) = §;;, €2 = —1, e;ej +eje; =0 (1 < i #
J < 7) satisfying the following multiplicative operations given by the follow-
ing figure:

€1

€2 (&

€4

€3 €5 €6

Figure 1.

We denote by D, the Lie algebra consisting of linear maps A : € — €&
such that ( Aa,b) = —(a, Ab) for a, b € €. It is well-known that Dy is the
compact simple Lie algebra over real number R with an outer automorphism
Aut(Dy)/Inn(Dy) of order 3. Aut(Dy4)/Inn(Dy) is isomorphic to the sym-
metric group on 3 letters &3. Namely, there exist x, A € Aut(D,) which gen-
erate Aut(Dy)/Inn(Dy) and satisfy the relations A3 = 1, k2 = 1, kAx = A2,
Here, we may choose x and \ as follows. Let {e;} = {ep=1,e1,...,e7} bea
canonical orthonormal basis of € = (&, (, )) and Dy be the real Lie algebra of
skew-symmetric endomorphisms of € = (&, (, )). Now, we define G;; € Dy
and F;; € Dy (i # j, i, 5 = 0,1,...,7) be the linear endomorphisms of €
defined respectively by

Gijej = €4, Gijei = —¢€j4, Gijek =0 (k 7'é Z,j) (22)

and
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and
1 . . .,
Fija = §ej(eia) (t#0,5 #0,i# j)

for any a € €. Then, we may easily check that {G;;} (resp. {F;;}) (i < j)
is a basis of D4. We here define linear endomorphisms k, 7 and A on Dy

respectively by
m(Gij) =F;; (1#j) and \=7k. '

Then, we see that x and X satisfy the required relations and further, the
following identity
(A(A)a)b + a(\2(A)b) = K(A)(ab) (2.5)

holds for any A € D4 and any a, b € € [10]. The identity (2.5) is called the
principle of triality of Dy.
Now, for a, b, ¢ € €, we define T'(a,b), G(a,b), D(a,b) € Dy as follows:

G(a,b)c = a(be) — b(ac), (2.6)

Then, they satisfy
MT(a,b)) = —=G(a,b), N*(T(a,b)) = —D(a,b),
x(T(a,b)) = T(a,b), k(G(a,b)) = D(a,b),

and further

(T(a,b)c,d) = 4({a,c)(b,d) - (a,d){b,c))
(G(a,b)e,d) = (ad,bc) — (ac,bd), (2.8)
(D(a,b)c,d) = (da,cb) — (ca,db)
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for any a, b, ¢, d € €.

We denote by B4 the real Lie algebra consisting of 9 x 9 skew-symmetric
matrices. Now we shall define a 16-dimensional representation of the Lie
algebra By on the real vector space V =V, = € @ €. First, we regard each
X € By as a 9 x 9 skew-symmetric matrix and the last column vector as an
element a € €. Further, considering the ordinary inclusion of D4 in B4 we
may write as follows:

X =A+M,, (2.9)

where A € Dy and M, = (_%a 20“). Now, we define an action of By on V'
by

A(b, ) = (M(A)b, N2 (A)c) (2.10)
for A € D, and
Mg (b, c) = (ac, —ba) (2.11)

for (b,c¢) € €@ €. Then, we may check that the above action of By on €@ ¢
defines a representation of the real Lie algebra B, on €& € (]2, pp. 46]). The
vector space V = € @ € has a positive definite symmetric bilinear form (, )
given by ((a,c), (b,d)) = (a,b) + (c,d) for a, b, ¢, d € €. Then each element
of By is skew-symmetric with respect to the bilinear form (, ).

3. The curvature tensor of the Cayley projective plane

Let ¢P? = (F,/spin(9), g) be Cayley projective plane equipped with a
Riemannian metric g defined by a bi-invariant Riemannian metric on the
compact Lie group Fjy. Then, it is well known that ¢P? is a compact rank
one symmetric space and further the holonomy group is isomorpic to Spin(9)
([2, Examples]). It is easily checked that the corresponding Cartan decom-
position is given by

F4:B4@m7 (31)

where m = {(a,b) € €x €} 2 €D, which can be identified with the tangent
space T,(€P?) at the origin o = Spin(9). Further, we may also see that the
linear isotropy representation of the isotropy group Spin(9) on m 2 €@ € is
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equivalent to the representation of the group Spin(9) on V' = €®¢€ defined by
(2.10) and (2.11) in §2. From the above observation identifying the tangent
space (T,(€P?), g,) with (€ @ €, (, )), we see that the curvature tensor R of
the Cayley projective plane €P? at the origin o is given algebraically by the
following formula:

R((a,b) A (c,d)) = i{D(a, &)+ G(byd) + Mag_o) (3.2)

for a, b, ¢, d € € and a positive real number p (|2, Example 4, pp. 52]). Here,
we assume that the curvature tensor R is defined by

R(X,Y)=[Vx,Vy] = Vixy] (3.3)

for any smooth vector fields X, Y on €P? where V denotes the Levi-Civita
connection of the Riemannian metric g. Now, we shall rewrite (3.2) to the
more explicit form. From (3.2) with (3.3), taking account of (2.6)~(2.8), we
have

R( (a,b), (c,d) )(u, v)

= E{D(% c)(u,v) + G(b, d)(u,v) + Mag—cb(u, v) } (3.4)

for a, b, ¢, d, u, v € €. Here, from (2.6)~(2.8), (2.10) and (2.11), we get

D(a = (MD(a,c))u, \*(D(a,c))v)

= (- T(a,c)u,G(a,c)v)

= (— 4(a, uyc + 4(c, u)a, a(cv) — é(av)), (3.5)
G(b = (MG, d)u, N*(G(b, d)v))

=( N(T(b, d)u, =T (b, d)v)

= (D(b,d)u, =T(b, d)v)

= ((ud)b — (ub)d, —A(b, v)d + 4(d, v)b), (3.6)

Maa—cb(u,v) = ((ad — cb)v, —u(ad — cb) ). (3.7)

Thus, from (3.4), taking account of (3.5)~(3.7), we have
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R((a, b), (c, d))(u,v)

(— 4(a,u)c + 4{c,upa + (ud)b — (ub)d + (ad — cb)v,
— 4(b,v)d + 4(d, v)b + a(cv) — ¢(av) — u(ad — cb)) (3.8)

| =

for a, b, ¢, d, u, v € € ([3, (1.7), pp. 269]). Now, let {eg = 1,e1, €9, €3, €4, €5,
es, e7} be a canonical basis of € and we set

yo = (1,0), y1 =(e1,0),  y2 = (e2,0), ys = (e3,0),
ya = (e4,0),  ys=1(e5,0),  we=(e60), yr={(er,0), 59)
vo=(0,1),  wyr=(0e1), y3=0(0e2), y3=1(0,e3),
yi=(0es),  y5=1(0,e5), yg=1(0,e5), w7 =(0,er).

Then, {yo,y1,---,Y7,Yg,---,y7} is regarded as an orthonormal basis of

(To(€P?), go) and hence, from the formula (3.8), taking account of (3.9)
and Figure 1, we have

R(yi, yj)vi = —Yjs (i #J)
1 (3.10)
R(yz‘ayi)yi = —13/}

and further,

1
R(y, y7)yi = =y, (3.13)
Ry, y5)yr =0 (k#1,7) (3.14)
for0 <4, 5, k<T.
4. Proofs of Theorems 3 and 4
First, let {eg = 1,€e1,...,e7} be a canonical basis of € and {yo, y1, . .., yr,

Yo, Yi,---,y7+ be the basis of the real vector space T,(€P?) of the Cay-
ley projective plane €P? = (F,/Spin(9),g) at the origin o = Spin(9)
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can be identified with V = € @ € with the canonical positive definite
symmetric bilinear form (, ) defined in Section 2. Then, it follows that
{v0,91,---,Y7,Y5,Yi,- - -, Y7} is an orthonormal basis of (V,(, )). We now
identify (T,(€P?),g,) with the vector space (V,(,)) by the above identifi-
cation.

Now, we denote by 7 = (s) the normal geodesic in (¢P?, g) through
the origin o = (0) with the initial direction 7/(0) = yo. Further, we set
yo(s) = 7/(s) and assume that the vector fields, y1(s), ..., y7(s), y5(s), - ..,
y=(s) are parallel along ~ satisfying

) =y (1<i<7) and y(0) =gz (O<k<T).  (41)

Then, we can check that {yo(s),y1(s),...,y7(s),y5(s),yi(s),...,yz(s)} is
an orthonormal frame field along v. Now, let Y;(s) (1 <1 < 7) and Yi(s)
(0 < k < 7) be the Jacobi vector fields along v satisfying the following
conditions

Y;(0) =0, Y;(0) =0 and

(4.2)
Y/(0) = (V4 Y5)(0) = wi,  Y{(0) = (V4 Y5)(0) =y,
for 1 <i<7,0<k<7. Then, we set as follows along ~:
7 7
Yi(s) = Z a;i(s)y;(s) + Y agyi(s),
o = (4.3)
7 7
Yi(s) = > aji(s)yi(s) + Y ag(s)yils),
j=1 1=0
for 1 <i<7,0<k<7and
7 7
R (s),4i()7' () = Y Kij(s)y;(s) + Y Ki()i(s),
j=1 1=0
(4.4)

7 7
R(Y'(8):ye ()7 (s) = D Ky (s)ys(s) + ) Kgr(s)ils),
j=1 1=0

for 1 <7< 7,0 <k <7 Then, since VR = 0 and the vector fields
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yi(s), yp(s) (1 <i<7,0<k<7) are parallel along 7, we easily see that
K;j(s)( = Kji(s)), Kiz(s)( = Kg(s)), Kzi(s)( = Kgz(s)) are all constant
along 7. Thus, from (4.4) taking account of (3.10), we have

Kij(s) = Kji(s) = —dij,
(4.5)

1
Kii(s) = K = — Okt

for 1 <i4,7 <7,0<k,l <7 SinceY;(s), Yr(s) 1 <i<7,0<k<T7) are
Jacobi vector fields along the geodesic, from (4.3), taking account of (4.4)
with (4.5), we have the following system of differential equations along -:

a;; + aij = O,
a;, =0, ag =0, (4.6)
1 1 o 0
CLE[+ Zakl = U.
Solving (4.6) under the initial conditions (4.2), we have
a;j(s) = d;;sins,
a;i(s) = ag;(s) =0, (4.7)

1
azi(s) = 20y sin 3%

for 1 <4,j <7,0<k,1I<T.
Now, we define 15 x 15—matrix A(s) by

A(s) = <az‘j(8) au(é’)) (4.8)

ar;(s) agi(s)

for 1 <14,57 <7,0<k,l<7. Then, it is well-known that the following
equality

00(7(s)) = 5'°0,(7(s)) = det A(s) (4.9)

holds along the geodesic . From (4.8) with (4.7), we have
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1\8
det A(s) = (sins)” (2 sin 2s>

(4.10)
1\8
= 162(sin s)7<sin 23> .
Thus, from (4.9) and (4.10), we have
1\®
O,(7(s)) = 16%(sin s)7<sin 23) . (4.11)

Here, since the Cayley projective plane €P? = (Fy/Spin(9), g) is a harmonic
manifold, the volume density function 6, (and hence, the function 6,) is a
radial function on a normal neighborhood U, centered at the origin o. Thus,
O, is determined by its value along the geodesic v. Thus, from (4.11), we
easily see the function ©, is given by

©o(g) = det A(s)
8

1
= 16*(sin 5)7(sin 25> : (4.12)

where ¢ = v(s) € U, — {o} ([3, pp. 269]).

Now, let ¢(s) be a smooth function of s (0 < s < €, € > 0), and consider
the function f(q) on U, defined by f(q) = ¢(s), s = d(0,q), g € U,. Then,
the following equality holds as in [5] with the sign difference:

Af=¢"(s)+ ¢'(s), a=(s), (4.13)

where A denotes the Laplace-Beltrami operator of €P? = (F,/Spin(9), g).
Here, from (4.12), we get

7(sin 5)%(sin((1/2)s))® cos s + 4(sin s)7(sin((1/2)s))” cos(1/2)s
(sins)7(sin((1/2)s))8

1
= Tcots + 4cot 53
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1 1 1
= —500‘5 —5— Ztamfs. (4.14)
2 2 2 2
We here consider the special case where ¢(s) = (1/2)s? (s > 0). Then,

from (4.13) and (4.14), by direct calculation, we see that

Q [Q [Q
AQY=1+ \/;{1500t 3 — Ttan 2} (4.15)

holds on U, — {o}. This completes the proof of Theorem 3.

Next, we shall give an outline of the proof of Theorem 4. Let
*¢P? = (*¢P?,*g) be the non-compact dual of the Cayley projective plane
¢P? = (F4/Spin(9), g). Then, we see that *¢P? is isometric to the Cayley
hyperbolic plane ¢H? = (Fa(—20y/Spin(9), *g) and the corresponding Cartan
decomposition of the Lie algebra F4_sp) of the Lie group Fy(_s0) is given
by

F4(_20) = D4 DV —1m (416)

in the complexification F4(_s0) of the Lie algebra F4. Thus, taking account
of (4.16), we easily check that the curvature tensor of ¢H? is only sign
difference of curvature tensor R of ¢P? algebraically. Thus, by suitably
modifying the arguments for the case of the Cayley projective plane suitably,
we have Theorem 4.

5. Characteristic functions of rank one symmetric spaces

Summing up the results in [6], [7], [9] and ours of the present paper,
we have the following list of the characteristic functions for the rank one
symmetric spaces.

We here denote by S™(1), H™(-1), CP"(1), CH"(-1), HP"(1),
HH"(—1), €P?(1), €H*(—1) the m-dimensional sphere of constant sectional
curvature 1, m-dimensional hyperbolic space of constant sectional curva-
ture —1, 2n-dimensional complex projective space of constant holomorphic
sectional curvature 1, 2n-dimensional complex hyperbolic space of constant
holomorphic sectional curvature —1, 4n-dimensional quaternion projective
space of constant ()-sectional curvature 1, 4n-dimensional quaternion hyper-
bolic space of constant Q-sectional curvature —1, Cayley projective plane
and Cayley hyperbolic plane, respectively.



202

Y. Euh, J.-H. Park and K. Sekigawa

Space Characteristic function

Sm(1) | F(Q) =1+ (m— 1)v20 cot (v/20)

H™(=1) || £(Q) =1+ (m — 1)v2Q coth (v20)

CP™(1) .ﬂﬂ)=1*~¢6{@”‘*1Cm(va“mn(Vg)}
CH™(-1) || f() =1+ 9{2”‘1‘30*(\/%)“”}1(\/%)}
) | 001 B (/D) D)}
a0 | 10+ fE{n e () s (/D)
() | £©) =1+ /3 {15cot (/3) - (/3) ]
CH2(-1) || f(Q) =1+ %{15coth<\/§)+7tanh<\/g>}
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