The Fermat septic and the Klein quartic as moduli spaces of hypergeometric Jacobians

Dedicated to the 70th birthday of Professor Hironori Shiga.

Kenji Koike

(Received May 12, 2015; Revised August 12, 2015)

Abstract

We study the Schwarz triangle function with the monodromy group $\Delta(7,7,7)$, and we construct its inverse by theta constants. As consequences, we give uniformizations of the Klein quartic curve and the Fermat septic curve as Shimura curves parametrizing Abelian 6 -folds with endomorphisms $\mathbb{Z}\left[\zeta_{7}\right]$.

Key words: Shimura curves, Hypergeometric functions, Theta functions.

1. Introduction

The Gauss hypergeometric differential equation

$$
E(a, b, c): z(z-1) u^{\prime \prime}+\{(a+b+1) z-c\} u^{\prime}+a b u=0
$$

is regular on $\mathbb{C}-\{0,1\}$ for general parameters a, b and c, and the solution space is spanned by Euler type integrals

$$
\int_{\gamma} x^{a-c}(x-1)^{c-b-1}(x-z)^{-a} d x
$$

that are regarded as period integrals for algebraic curves if $a, b, c \in \mathbb{Q}$. Two independent solutions $f_{0}(z), f_{1}(z)$ define a multi-valued analytic function $\mathfrak{s}(z)=f_{0}(z) / f_{1}(z)$ (Schwarz map), and monodromy transformations for $\mathfrak{s}(z)$ are given by fractional linear transformations.

If parameters satisfy the conditions

$$
|1-c|=\frac{1}{p}, \quad|c-a-b|=\frac{1}{q}, \quad|a-b|=\frac{1}{r}, \quad \frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1
$$

with $p, q, r \in \mathbb{N} \cup\{\infty\}$, the monodromy group is isomorphic to a triangle group

$$
\Delta(p, q, r)=\left\langle M_{0}, M_{1}, M_{\infty} \mid M_{0}^{p}=M_{1}^{q}=M_{\infty}^{r}=M_{0} M_{1} M_{\infty}=1\right\rangle
$$

(the condition $M_{0}^{p}=1$ is omitted if $p=\infty$, and so on). In this case, the upper half plane is mapped by \mathfrak{s} to a triangle with vertices $\mathfrak{s}(0), \mathfrak{s}(1)$ and $\mathfrak{s}(\infty)$, angles $\pi / p, \pi / q$ and π / r, respectively, and so is the lower half plane. Copies of these two triangles give a tessellation of a disk \mathbb{D} by the monodromy action, and we have an isomorphism $\overline{\mathbb{D} / \Delta(p, q, r)} \cong \overline{\mathbb{C}-\{0,1\}}=\mathbb{P}^{1}$. For example, $E(1 / 2,1 / 2,1)$ is known as the Picard-Fuchs equation for the Legendre family of elliptic curves $y^{2}=x(x-1)(x-z)$ and the monodromy group $\Delta(\infty, \infty, \infty)$ is projectively isomorphic to the congruence subgroup $\Gamma(2)$ in $\mathrm{SL}_{2}(\mathbb{Z})$ of level 2. Also a triangle group $\Delta(n, n, n)$ with $n \geq 4$ is interesting, since its commutator subgroup N_{n} gives a uniformization of the Fermat curve \mathcal{F}_{n} of degree n. More precisely, the natural projection $\mathbb{D} / N_{n} \rightarrow \mathbb{D} / \Delta(n, n, n)=\mathbb{P}^{1}$ is an Abelian covering branched at 0,1 and ∞ with the covering group $\Delta(n, n, n) / N_{n} \cong(\mathbb{Z} / n \mathbb{Z})^{2}$ (see [CIW94]).

In [T77], Takeuchi determined all arithmetic triangle groups. According to it, $\Delta(n, n, n)$ is arithmetic (and hence the Fermat curve \mathcal{F}_{n} is a Shimura curve) for $n \in F T=\{4,5,6,7,8,9,12,15\}$. These groups come from the Picard-Fuchs equation for algebraic curves $X_{t}: y^{m}=x(x-1)(x-t)$ with $m=n$ (resp. $m=2 n$) if $n \in F T$ is odd (resp. even). Among them, $n=5$ and 7 are special in the sense that a Jacobian $J\left(X_{t}\right)$ is simple in general, and Picard-Fuchs equations describe variations of Hodge structure on the whole of $H^{1}\left(X_{t}, \mathbb{Q}\right)$, rather than sub Hodge structures. These two families are treated by Shimura as examples of PEL families in [Sm64]. Also de Jong and Noot studied them as counter examples of Coleman's conjecture (which asserts the finiteness of the number of CM Jacobians for a fixed genus $g \geq 4$) for $g=4,6$ in [dJN91] (see also [R09] and [MO13] for this direction).

For $n=5$, we gave \mathfrak{s}^{-1} by theta constants in [K03] as a byproduct of study of the moduli space of ordered five points on \mathbb{P}^{1}. In present paper, we compute the monodromy group, Riemann's period matrices and the Riemann constant with an explicit symplectic basis for $n=7$. Using them, we express the Schwarz inverse map \mathfrak{s}^{-1} by Riemann's theta constants (Theorem 4.1). As a consequence, we give explicit modular interpretations of the Klein quartic curve \mathcal{K}_{4} and the Fermat septic curve \mathcal{F}_{7} as modular varieties
parametrizing Abelian 6 -folds with endomorphisms $\mathbb{Z}\left[\zeta_{7}\right]$. (Corollary 4.1 and Corollary 4.2). The Klein quartic is classically known to be isomorphic to the elliptic modular curve of level 7. In [E99], Elkies studied it as a Shimura curve parametrizing a family of QM Abelian 6-folds. Our interpretation of \mathcal{K}_{4} gives the third face as a modular variety. Our expression of \mathfrak{s}^{-1} is a variant of Thomae's formula. This kind of formula for cyclic coverings was studied in general context by Bershadsky-Radul ([BR87], [BR88]), Nakayashiki ([Na97]) and Enolski-Grava ([EG06]), but our standpoint is more moduli theoretic as a classical work of Picard ([P1883]) which produces modular forms on a 2-dimensional complex ball. In [Sh88], Shiga determined Picard modular forms explicitly, and his results were applied to number theory and cryptography (see [KS07] and [KW04]). We expect that also our concrete results will give a good example to develop a generalization of arithmetic theory of elliptic curves. Here we mention that there are several studies of automorphic forms for triangle groups (e.g. [Mi75], [W81], [H05] and [DGMS13]). However it seems that we have very few explicit constructions of autmorphic forms for co-compact triangle groups in the view point of the Picard's work.

Our Schwarz map is regarded also as a periods map of K3 surfaces. In pioneer work [Sh79,81], Shiga studied families of elliptic K3 surfaces with period maps to complex balls. These K3 surfaces have a non-symplectic automorphism of order 3 , which induces a Hermitian structure on the transcendental lattice. Now K3 surfaces with non-symplectic automorphisms of prime order are classified (see [AST11]), and many of them are known to be quotients of product surfaces ([GP]). In the last section, we give elliptic K3 surfaces S_{t} associated to X_{t} and compute the Neron-Severi group and the Mordell-Weil lattice of S_{t}.

2. Uniformization of Fermat Curves

2.1. Hypergeometric integral

We compute monodromy groups and invariant Hermitian forms for hypergeometric integrals

$$
u(t)=\int \Omega_{\alpha}(x), \quad \Omega_{\alpha}(x)=\{x(x-1)(x-t)\}^{-\alpha} d x
$$

according to [Y97, Chapter IV], for $\alpha=k /(2 k+1)$ and $(2 k-1) / 4 k$ with $k \geq 2$. They satisfy differential equations $E(k /(2 k+1),(k-1) /(2 k+1)$, $2 k /(2 k+1))$ and $E((2 k-1) / 4 k,(2 k-3) / 4 k,(2 k-1) / 2 k)$ with monodromy groups $\Delta(n, n, n), n=2 k+1$ and $2 k$ respectively. Let us consider decompositions

$$
\begin{gathered}
\mathbb{P}^{1}(\mathbb{C})=\mathbb{H}_{+} \cup \mathbb{P}^{1}(\mathbb{R}) \cup \mathbb{H}_{-}, \quad \mathbb{P}^{1}(\mathbb{R})=I_{0} \cup I_{1} \cup I_{2} \cup I_{3}, \\
I_{0}=(-\infty, 0), \quad I_{1}=(0, t), \quad I_{2}=(t, 1), \quad I_{3}=(1, \infty),
\end{gathered}
$$

where \mathbb{H}_{+}and \mathbb{H}_{-}are the upper and lower half planes respectively, and I_{k} are (oriented) real intervals. (As the initial position of t, we assume that $0<t<1$.) Modifying boundaries $\partial \mathbb{H}_{+}$and $\partial \mathbb{H}_{-}$to avoid $0, t, 1$ and ∞ as

Figure 1. oriented interval I_{k}.
in Figure 1, we fix a branch of $\Omega_{\alpha}(x)$ on a simply connected domain \mathbb{H}_{-}and define integrals $u_{k}(t)=\int_{I_{k}} \Omega_{\alpha}(x)$ by this branch. By the Cauchy integral theorem, they satisfy

$$
\begin{aligned}
& 0=\int_{\partial \mathbb{H}_{-}} \Omega_{\alpha}(x)=u_{0}(t)+u_{1}(t)+u_{2}(t)+u_{3}(t) \\
& 0=\int_{\partial \mathbb{H}_{+}} \Omega_{\alpha}(x)=u_{0}(t)+c u_{1}(t)+c^{2} u_{2}(t)+c^{3} u_{3}(t), \quad c=\exp (2 \pi i \alpha),
\end{aligned}
$$

since $\Omega_{\alpha}(x)$ is multiplied by $\exp (2 \pi i \alpha)$ if x travels around $0, t$ or 1 in clockwise direction. Hence we have

$$
u_{2}(t)=-\frac{1}{1+c}\left\{u_{1}(t)+\left(1+c+c^{2}\right) u_{3}(t)\right\} .
$$

Now let δ_{0} and δ_{1} be paths to make a half turn around 0 and 1 respectively in counter clockwise direction, starting from the initial point of

Figure 2. δ_{0} and δ_{1}.
t (Figure 2). Corresponding analytic continuations are represented by connection matrices h_{0} and h_{1} :

$$
\begin{array}{r}
\delta_{0}:\left[\begin{array}{l}
u_{1}(t) \\
u_{3}(t)
\end{array}\right] \rightarrow\left[\begin{array}{c}
-c^{-1} u_{1}\left(t^{\prime}\right) \\
u_{3}\left(t^{\prime}\right)
\end{array}\right]=h_{0}\left[\begin{array}{l}
u_{1}\left(t^{\prime}\right) \\
u_{3}\left(t^{\prime}\right)
\end{array}\right], \quad h_{0}=\left[\begin{array}{cc}
-c^{-1} & 0 \\
0 & 1
\end{array}\right], \\
\delta_{1}:\left[\begin{array}{l}
u_{1}(t) \\
u_{3}(t)
\end{array}\right] \rightarrow\left[\begin{array}{c}
u_{1}\left(t^{\prime}\right)+u_{2}\left(t^{\prime}\right) \\
c^{-1} u_{2}\left(t^{\prime}\right)+u_{3}\left(t^{\prime}\right)
\end{array}\right]=h_{1}\left[\begin{array}{l}
u_{1}\left(t^{\prime}\right) \\
u_{3}\left(t^{\prime}\right)
\end{array}\right], \\
h_{1}=\left[\begin{array}{cc}
\frac{c}{c+1} & -\frac{c^{2}+c+1}{c+1} \\
-\frac{1}{c^{2}+c} & -\frac{1}{c^{2}+c}
\end{array}\right],
\end{array}
$$

where $u_{1}\left(t^{\prime}\right), \ldots, u_{4}\left(t^{\prime}\right)$ are integrals over oriented intervals $I_{1}^{\prime}, \ldots, I_{4}^{\prime}$ defined for new configurations $-\infty<t^{\prime}<0<1<\infty$ and $-\infty<0<1<t^{\prime}<\infty$. The monodromy group Mon is generated by

$$
g_{0}=h_{0}^{2}=\left[\begin{array}{cc}
c^{-2} & 0 \\
0 & 1
\end{array}\right], \quad g_{1}=h_{1}^{2}=\left[\begin{array}{cc}
\frac{c^{2}+1}{c^{2}+c} & \frac{1-c^{3}}{c^{2}+c} \\
\frac{1-c}{c^{3}+c^{2}} & \frac{c^{2}+1}{c^{3}+c^{2}}
\end{array}\right]
$$

It is known that there exists a unique monodromy-invariant Hermitian form up to constant (see e.g. [B07] and [Y97]). In fact, we can easily check that h_{0} and h_{1} belong to a unitary group

$$
U_{H}=\left\{\left.g \in \mathrm{GL}_{2}(\mathbb{C})\right|^{t} \bar{g} H g=H\right\}, \quad H=\left[\begin{array}{cc}
1 & 0 \\
0 & 1+c+c^{-1}
\end{array}\right],
$$

and hence Mon $\subset U_{H}$. The value of $1+c+c^{-1}$ is negative for $c=\exp (2 \pi i \alpha)$ with $\alpha=k /(2 k+1)$ and $(2 k-1) / 4 k(k \geq 2)$, and H is indefinite. Therefore two domains

$$
\mathbb{D}_{H}^{ \pm}=\left\{u \in \mathbb{C}^{2} \mid \pm^{t} \bar{u} H u<0\right\} / \mathbb{C}^{\times} \subset \mathbb{P}^{1}(\mathbb{C})
$$

are disks, and U_{H} acts on each domain. Now the image of the Schwarz map

$$
\mathfrak{s}: \mathbb{C}-\{0,1\} \longrightarrow \mathbb{P}^{1}(\mathbb{C}), \quad t \mapsto\left[u_{1}(t): u_{3}(t)\right]
$$

is contained in either \mathbb{D}_{H}^{+}or \mathbb{D}_{H}^{-}, which is tessellated by Schwarz triangles. Since we have

$$
\mathfrak{s}(0)=\lim _{t \rightarrow 0}\left[u_{1}(u): u_{3}(t)\right]=\left[0: u_{3}(0)\right] \in \mathbb{D}_{H}^{+},
$$

we see that $\mathbb{D}_{H}^{+} / \operatorname{Mon} \cong \mathbb{P}^{1}(\mathbb{C})$ and $\mathbb{D}_{H}^{+} /[$Mon, Mon $] \cong \mathcal{F}_{n}$ (see [CIW94]), where \mathcal{F}_{n} is the Fermat curve of degree n with $n=2 k+1$ (resp. $2 k$) if $\alpha=k /(2 k+1)($ resp. $(2 k-1) / 4 k)$.

Remark 2.1 (1) Putting $\zeta_{d}=\exp (2 \pi i / d)$, we have

$$
1+c+c^{-1}= \begin{cases}1+\left(\zeta_{2 k+1}\right)^{k}+\left(\zeta_{2 k+1}\right)^{k+1} & (n=2 k+1) \\ 1+\left(\zeta_{4 k}\right)^{2 k-1}+\left(\zeta_{4 k}\right)^{2 k+1} & (n=2 k)\end{cases}
$$

(2) In the case of $n=2 k+1$, we have

$$
g_{0}=\left[\begin{array}{ll}
\zeta & 0 \\
0 & 1
\end{array}\right], \quad g_{1}=\frac{1}{1+\zeta^{k}}\left[\begin{array}{cc}
\zeta^{k}+\zeta^{k+1} & \zeta^{k+1}-\zeta^{2 k} \\
\zeta-\zeta^{k+1} & 1+\zeta
\end{array}\right]
$$

where $\zeta=\zeta_{2 k+1}$. Since $1 /\left(1+\zeta^{k}\right)=-\left(\zeta+\zeta^{2}+\cdots+\zeta^{k}\right)$ and $\operatorname{det} g_{1}=\zeta$, the monodromy group Mon is a subgroup of $U_{H} \cap \mathrm{GL}_{2}(\mathbb{Z}[\zeta])$.
(3) In the case of $n=2 k$, we have

$$
g_{0}=\left[\begin{array}{ll}
\zeta^{2} & 0 \\
0 & 1
\end{array}\right], \quad g_{1}=\frac{1}{1+\zeta^{2 k-1}}\left[\begin{array}{cc}
\zeta^{2 k+1}+\zeta^{2 k-1} & \zeta^{2 k+1}-\zeta^{4 k-2} \\
\zeta^{2}-\zeta^{2 k+1} & 1+\zeta^{2}
\end{array}\right]
$$

where $\zeta=\zeta_{4 k}$. Note that the cyclotomic polynomial $\Phi_{4 k}(x)$ satisfies $\Phi_{4 k}(1)=1$ if $4 k \neq 2^{m}$. In this case, $1-\zeta$ is a unit in $\mathbb{Z}[\zeta]$, and so is $1 /\left(1+\zeta^{2 k-1}\right)=\zeta /(\zeta-1)$. Hence Mon is a subgroup of $U_{H} \cap \mathrm{GL}_{2}(\mathbb{Z}[\zeta])$ if $4 k \neq 2^{m}$.

2.2. Fermat curve as a Shimura variety

A triangle group $\Delta(n, n, n)$ is arithmetic for

$$
n \in F T=\{4,5,6,7,8,9,12,15\}
$$

and the Fermat curve \mathcal{F}_{n} is a Shimura curve. Let us see corresponding families of hypergeometric curves

$$
X_{t}: y^{m}=x(x-1)(x-t)
$$

to these case. By the Riemann-Hurwitz formula, the genus of X_{t} is $g=m-1$ if $3 \nmid m$, and $g=m-2$ if $3 \mid m$. Let ρ be the covering automorphism $(x, y) \rightarrow\left(x, \zeta_{m} y\right)$, where $\zeta_{m}=\exp (2 \pi i / m)$. By this action, we can decompose $H^{1}\left(X_{t}, \mathbb{Q}\right)$ into irreducible representations of ρ, and $H^{1}\left(X_{t}, \mathbb{C}\right)$ into eigenspaces of ρ. Let $V(\lambda)$ be the λ-eigenspace of ρ. If m is not prime, the covering $X_{t} \rightarrow \mathbb{P}^{1}$ has intermediate curves Y_{t}, and the pullback of $H^{1}\left(Y_{t}, \mathbb{C}\right)$ consists of $V\left(\zeta_{m}^{k}\right)$ such that $(m, k) \neq 1$. Conversely, such $V\left(\zeta_{m}^{k}\right)$ descends to a quotient curve. From explicit basis of $H^{1,0}\left(X_{t}\right)$, we see that the Prym part

$$
H_{\text {Prym }}^{1}\left(X_{t}, \mathbb{Q}\right)=\left[\bigoplus_{(k, m)=1} V\left(\zeta_{m}^{k}\right)\right] \cap H^{1}\left(X_{t}, \mathbb{Q}\right)
$$

has a Hodge structure of type

$$
\begin{aligned}
& H_{\text {Prym }}^{1}\left(X_{t}, \mathbb{C}\right) \\
& \quad=\underbrace{V\left(\lambda_{1}\right) \oplus \cdots \oplus V\left(\lambda_{d-1}\right)}_{\text {contained in } H^{1,0}} \oplus \underbrace{V\left(\lambda_{d}\right)}_{\text {split }} \oplus \underbrace{V\left(\lambda_{d+1}\right)}_{\text {split }} \underbrace{\oplus V\left(\lambda_{d+2}\right) \oplus \cdots \oplus V\left(\lambda_{2 d}\right)}_{\text {contained in } H^{0,1}},
\end{aligned}
$$

where $2 d=\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right], \lambda_{1}, \ldots, \lambda_{2 d}$ are primitive roots of unity $\zeta_{m}, \ldots, \zeta_{m}^{m-1}$ such that $\bar{\lambda}_{i}=\lambda_{2 d+1-i}$ and $\operatorname{dim} V\left(\lambda_{i}\right)=2$ for $i=1, \ldots, 2 d$ (see Table 1). Therefore the Hodge structure on $H_{\text {Prym }}^{1}\left(X_{t}, \mathbb{Q}\right)$ with the action of ρ is determined by a decomposition $V\left(\lambda_{d}\right)=V\left(\lambda_{d}\right)^{1,0} \oplus V\left(\lambda_{d}\right)^{0,1}$ (the decomposition of $V\left(\lambda_{d+1}\right)$ is automatically determined as the complex conjugate of $V\left(\lambda_{d}\right)$, and vice versa), that is, determined by periods of $\Omega_{\alpha}(x) \in V\left(\lambda_{d}\right)^{1,0}$. In the cases $n=5$ and 7 , the monodromy group has a nice representation. Put

$$
\Gamma=U_{H} \cap \mathrm{GL}_{2}\left(\mathbb{Z}\left[\zeta_{n}\right]\right), \quad \Gamma(\mathfrak{m})=\{g \in \Gamma \mid g \equiv 1 \quad \bmod \mathfrak{m}\} \quad\left(\mathfrak{m} \in \mathbb{Z}\left[\zeta_{n}\right]\right)
$$

The arithmetic quotient $\mathbb{D}_{H}^{+} / \Gamma$ is the moduli space of Jacobians of curves $y^{n}=x^{3}+a x+b(n=5,7)$ as a PEL-family (see [Sm64]). Therefore we have the following diagram

Table 1. $H^{1,0}\left(X_{t}\right)_{\text {Prym }}$.

$\Delta(n, n, n)$	m	g	$\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right]$	$x^{a} d x / y^{b}$ with the following (a, b) give a basis of $H^{1,0}\left(X_{t}\right)_{\text {Prym }}$
$(4,4,4)$	8	7	4	$(0,3),(0,5),(0,7),(1,7)$
$(5,5,5)$	5	4	4	$(0,2),(0,3),(0,4),(1,4)$
$(6,6,6)$	12	10	4	$(0,5),(0,7),(0,11),(1,11)$
$(7,7,7)$	7	6	6	$(0,3),(0,4),(0,5),(1,5),(0,6),(1,6)$
$(8,8,8)$	16	15	8	$\begin{aligned} & (0,7),(0,9),(0,11),(1,11), \\ & (0,13),(1,13),(0,15),(1,15) \end{aligned}$
$(9,9,9)$	9	7	6	$(0,4),(0,5),(0,7),(1,7),(0,8),(1,8)$
$(12,12,12)$	24	22	8	$\begin{gathered} (0,11),(0,13),(0,17),(1,17) \\ (0,19),(1,19),(0,23),(1,23) \end{gathered}$
$(15,15,15)$	15	13	8	$\begin{aligned} & (0,7),(0,8),(0,11),(1,11), \\ & (0,13),(1,13),(0,14),(1,14) \end{aligned}$

where horizontal arrow are isomorphisms, and \sim is the equivalence relation by affine transformations. From this fact, we see that $\Gamma /$ Mon is isomorphic to S_{3} up to the center.

Remark 2.2 For $n=5$, the Hermitian form H is same with one given in [Sm64]:

$$
H=\left[\begin{array}{cc}
1 & 0 \\
0 & 1+\zeta_{5}^{2}+\zeta_{5}^{3}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & (1-\sqrt{5}) / 2
\end{array}\right]
$$

For $n=7$, the Hermitian form given in $[\mathrm{Sm} 64]$ is

$$
S=\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{\sin (3 \pi / 7)}{\sin (2 \pi / 7)}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -\left(\zeta_{7}+\zeta_{7}^{6}\right)
\end{array}\right]={ }^{t} \bar{A} H A
$$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & \zeta_{7}+\zeta_{7}^{6}
\end{array}\right] \in \mathrm{GL}_{2}\left(\mathbb{Z}\left[\zeta_{7}\right]\right)
$$

Proposition 2.1 ([YY84] for $n=5$) Let us denote the image of $G \subset$ $\mathrm{GL}_{2}\left(\mathbb{Z}\left[\zeta_{n}\right]\right)$ in $P \mathrm{GL}_{2}\left(\mathbb{Z}\left[\zeta_{n}\right]\right)$ by \bar{G}. For $n=5$ and 7 ,
(1) the projective modular group $\bar{\Gamma}$ is projectively generated by h_{0} and h_{1}, (2) we have

$$
\overline{\operatorname{Mon}}=\overline{\Gamma\left(1-\zeta_{n}\right)}, \quad \overline{[\text { Mon, Mon }]}=\overline{\Gamma\left(\left(1-\zeta_{n}\right)^{2}\right)}
$$

as automorphisms of \mathbb{D}_{H}^{+}.
Proof. We show these facts only for $n=7$, but the case $n=5$ can be shown by the same way (also see [YY84] and [K03] for $n=5$). The quotient group $\Gamma / \Gamma\left(1-\zeta_{7}\right)$ is isomorphic to a subgroup of the finite orthogonal group
$\mathrm{O}\left(Q, \mathbb{F}_{7}\right)=\left\{\left.g \in \mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)\right|^{t} g Q g=Q\right\}, \quad \mathbb{F}_{7}=\mathbb{Z}\left[\zeta_{7}\right] /\left(1-\zeta_{7}\right), \quad Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$.
The group $\mathrm{O}\left(Q, \mathbb{F}_{7}\right)$ is isomorphic to $S_{3} \times\{ \pm 1\}$, since elements of $\mathrm{O}\left(Q, \mathbb{F}_{7}\right) /\{ \pm 1\}$ are
order 2: $\quad\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], \quad\left[\begin{array}{ll}3 & 2 \\ 3 & 4\end{array}\right], \quad\left[\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right], \quad \operatorname{order} 3: \quad\left[\begin{array}{ll}3 & 2 \\ 4 & 3\end{array}\right], \quad\left[\begin{array}{ll}3 & 5 \\ 3 & 3\end{array}\right]$.
Since we have

$$
h_{0} \equiv\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], \quad h_{1} \equiv\left[\begin{array}{ll}
4 & 2 \\
3 & 3
\end{array}\right] \quad \bmod 1-\zeta_{7},
$$

the group $\Gamma / \Gamma\left(1-\zeta_{7}\right)$ is generated by h_{0}, h_{1} and ± 1, and isomorphic to $S_{3} \times\{ \pm 1\}$. Moreover we see that

$$
g_{0}=h_{0}^{2} \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad g_{1}=h_{1}^{2} \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \bmod 1-\zeta_{7}
$$

and Mon $=\left\langle g_{0}, g_{1}\right\rangle \subset \Gamma(1-\zeta)$. Therefore $\overline{\text { Mon }}$ coincides with $\overline{\Gamma\left(1-\zeta_{7}\right)}$ since we have $\bar{\Gamma} / \overline{\text { Mon }}=S_{3}$ as mentioned earlier. Hence $\bar{\Gamma}$ is generated by h_{0} and h_{1}. A homomorphism

$$
\nu: \Gamma\left(1-\zeta_{7}\right) \longrightarrow \mathrm{M}_{2}\left(\mathbb{F}_{7}\right), \quad \nu(g)=\frac{1}{1-\zeta_{7}}(g-1) \quad \bmod 1-\zeta_{7}
$$

has the kernel $\Gamma\left(\left(1-\zeta_{7}\right)^{2}\right)$, and the image is generated by

$$
\nu\left(g_{0}\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right], \quad \nu\left(g_{1}\right)=\left[\begin{array}{ll}
5 & 1 \\
5 & 1
\end{array}\right]
$$

Therefore we have $\Gamma\left(1-\zeta_{7}\right) / \Gamma\left(\left(1-\zeta_{7}\right)^{2}\right) \cong(\mathbb{Z} / 7 \mathbb{Z})^{2}$. Since we have

$$
\left[\Gamma\left(1-\zeta_{7}\right), \Gamma\left(1-\zeta_{7}\right)\right] \subset \Gamma\left(\left(1-\zeta_{7}\right)^{2}\right), \quad \text { Mon } /[\text { Mon, Mon }] \cong(\mathbb{Z} / 7 \mathbb{Z})^{2}
$$

we conclude that $\overline{[\mathbf{M o n}, \mathbf{M o n}]}=\overline{\Gamma\left(\left(1-\zeta_{n}\right)^{2}\right)}$.

3. Heptagonal Curves

3.1. Hodge structure and Periods

From now, we concentrate in the case $n=7$, that is, a 1-dimensional family of algebraic curves

$$
X_{t}: y^{7}=x(x-1)(x-t)
$$

We denote $\zeta_{7}=\exp (2 \pi i / 7)$ simply by ζ. As a Riemann surface, X_{t} is obtained by glueing seven sheets $\Sigma_{1}, \ldots, \Sigma_{7}$, each of which is a copy of \mathbb{P}^{1} with cuts (see Figure 1) and satisfying $\rho\left(\Sigma_{i}\right)=\Sigma_{i+1}$ where indices are considered modulo 7. Let $\mathfrak{i}_{i}\left(x_{1}, x_{2}\right)$ be an oriented real interval from x_{1} to x_{2} on Σ_{i}. We define 1-cycles

$$
\begin{aligned}
& \gamma_{1}=\mathfrak{i}_{1}(0, t)+\mathfrak{i}_{2}(t, 0)=(1-\rho) \mathfrak{i}_{1}(0, t) \\
& \gamma_{2}=\mathfrak{i}_{1}(t, 1)+\mathfrak{i}_{2}(1, t)=(1-\rho) \mathfrak{i}_{1}(t, 1) \\
& \gamma_{3}=\mathfrak{i}_{1}(1, \infty)+\mathfrak{i}_{2}(\infty, 1)=(1-\rho) \mathfrak{i}_{1}(1, \infty)
\end{aligned}
$$

For computation of intersection numbers, we use deformations of γ_{1} and γ_{3} as in Figure 3. Let $\mathbf{I n t}_{k}$ be the intersection matrix $\left[\rho^{i}\left(\gamma_{k}\right) \cdot \rho^{j}\left(\gamma_{k}\right)\right]_{0 \leq i, j \leq 5}$. We have

Figure 3. γ_{1} and γ_{3}.
$\mathbf{I n t}_{1}=\left[\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0\end{array}\right] \quad \mathbf{I n t}_{3}=\left[\begin{array}{cccccc}0 & 1 & 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 0 & -1 & 1 \\ 0 & -1 & 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ -1 & 1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 1 & 0 & -1 & 0\end{array}\right]$
and $\operatorname{det}\left(\mathbf{I n t}_{1}\right)=\operatorname{det}\left(\mathbf{I n t}_{3}\right)=1$. Since $\rho^{i}\left(\gamma_{1}\right) \cdot \rho^{j}\left(\gamma_{3}\right)=0$, the intersection matrix of twelve 1-cycles $\gamma_{1}, \rho\left(\gamma_{1}\right), \ldots, \rho^{5}\left(\gamma_{1}\right)$ and $\gamma_{3}, \rho\left(\gamma_{3}\right), \ldots, \rho^{5}\left(\gamma_{3}\right)$ is unimodular, and they form a basis of $H_{1}\left(X_{t}, \mathbb{Z}\right)$. Hence $\left\{\gamma_{1}, \gamma_{3}\right\}$ gives a basis of $H_{1}\left(X_{t}, \mathbb{Z}\right) \cong \mathbb{Z}[\rho]^{2}$ as a $\mathbb{Z}[\rho]$-module.

Similarly we have $H^{1}\left(X_{t}, \mathbb{Z}\right) \cong \mathbb{Z}[\rho]^{2}$ and the decomposition of $H^{1}\left(X_{t}, \mathbb{C}\right) \cong \mathbb{Z}[\rho]^{2} \otimes \mathbb{C}$ into eigenspaces of ρ :

$$
H^{1}\left(X_{t}, \mathbb{C}\right)=V(\zeta) \oplus V\left(\zeta^{2}\right) \oplus \cdots \oplus V\left(\zeta^{6}\right), \quad \operatorname{dim} V\left(\zeta^{k}\right)=2
$$

Let P_{0}, P_{1}, P_{t} and P_{∞} be four ramification points of X_{t} over $0,1, t$ and ∞. We denote the divisor of a rational function (or a rational 1-form) f by $\operatorname{div}(f)$. Then we see that

$$
\begin{gathered}
\operatorname{div}(x)=7 P_{0}-7 P_{\infty}, \quad \operatorname{div}(y)=P_{0}+P_{1}+P_{t}-3 P_{\infty} \\
\operatorname{div}(d x)=6\left(P_{0}+P_{1}+P_{t}\right)-8 P_{\infty}
\end{gathered}
$$

and holomorphic 1-forms

$$
\omega_{1}=\frac{d x}{y^{3}}, \quad \omega_{2}=\frac{d x}{y^{4}}, \quad \omega_{3}=\frac{d x}{y^{5}}, \quad \omega_{4}=\frac{x d x}{y^{5}}, \quad \omega_{5}=\frac{d x}{y^{6}}, \quad \omega_{6}=\frac{x d x}{y^{6}}
$$

on X_{t} give a basis of $H^{1,0}\left(X_{t}\right)$.
Remark 3.1 As stated in the previous section, we have

$$
V(\zeta) \oplus V\left(\zeta^{2}\right) \subset H^{1,0}\left(X_{t}\right), \quad V\left(\zeta^{5}\right) \oplus V\left(\zeta^{6}\right) \subset H^{0,1}\left(X_{t}\right)
$$

and the Hodge structure on $H^{1}\left(X_{t}, \mathbb{Z}\right)$ is determined by a decomposition of $V\left(\zeta^{4}\right)$.

The following 1-cycles

$$
\begin{array}{lll}
B_{1}=\gamma_{1}, & B_{2}=\left(1+\rho^{2}\right)\left(\gamma_{1}\right), & B_{3}=\left(1+\rho^{2}+\rho^{4}\right)\left(\gamma_{1}\right), \\
A_{1}=\rho\left(\gamma_{1}\right), & A_{2}=\rho^{3}\left(\gamma_{1}\right), & A_{3}=\rho^{5}\left(\gamma_{1}\right), \\
B_{4}=\rho^{5}\left(\gamma_{3}\right), & B_{5}=\rho^{3}\left(\gamma_{3}\right), & B_{6}=\left(1+\rho-\rho^{4}-\rho^{5}\right)\left(\gamma_{3}\right), \\
A_{4}=\left(1+\rho^{2}\right)\left(\gamma_{3}\right), & A_{5}=\left(-\rho+\rho^{4}+\rho^{5}\right)\left(\gamma_{3}\right), & A_{6}=\left(1+\rho+\rho^{2}\right)\left(\gamma_{3}\right),
\end{array}
$$

give a symplectic basis of $H_{1}\left(X_{t}, \mathbb{Z}\right)$ such that

$$
A_{i} \cdot A_{j}=0, \quad B_{i} \cdot B_{j}=0, \quad B_{i} \cdot A_{j}=\delta_{i j} .
$$

The associated period matrix is

$$
\begin{gathered}
\Pi_{A}=\left[\int_{A_{i}} \omega_{j}\right]=\left[\begin{array}{c}
\int_{\gamma_{1}} \vec{\omega} R \\
\int_{\gamma_{1}} \vec{\omega} R^{3} \\
\int_{\gamma_{1}} \vec{\omega} R^{5} \\
\int_{\gamma_{3}} \vec{\omega}\left(I+R^{2}\right) \\
\int_{\gamma_{3}} \vec{\omega}\left(-R+R^{4}+R^{5}\right) \\
\int_{\gamma_{3}} \vec{\omega}\left(I+R+R^{2}\right)
\end{array}\right], \\
\Pi_{B}=\left[\int_{B_{i}} \omega_{j}\right]=\left[\begin{array}{c}
\int_{\gamma_{1}} \vec{\omega} \\
\int_{\gamma_{1}} \vec{\omega}\left(I+R^{2}\right) \\
\int_{\gamma_{1}} \vec{\omega}\left(I+R^{2}+R^{4}\right) \\
\int_{\gamma_{3}} \vec{\omega} R^{5} \\
\int_{\gamma_{3}} \vec{\omega} R^{3} \\
\int_{\gamma_{3}} \vec{\omega}\left(I+R-R^{4}-R^{5}\right)
\end{array}\right]
\end{gathered}
$$

where $\vec{\omega}=\left(\omega_{1}, \ldots, \omega_{6}\right)$ and R is a diagonal matrix $\operatorname{diag}\left(\zeta^{4}, \zeta^{3}, \zeta^{2}, \zeta^{2}, \zeta, \zeta\right)$. The normalized period matrix $\tau=\Pi_{A} \Pi_{B}^{-1}$ belongs to the Siegel upper half space \mathbb{H}_{6}, consisting of symmetric matrices of degree 6 whose imaginary part is positive definite. The symplectic group

$$
S p_{12}(\mathbb{Z})=\left\{\left.g \in \mathrm{GL}_{12}(\mathbb{Z})\right|^{t} g J g=J\right\}, \quad J=\left[\begin{array}{cc}
0 & \mathrm{I}_{6} \\
-\mathrm{I}_{6} & 0
\end{array}\right],
$$

acts on \mathbb{H}_{6} by $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot \tau=(a \tau+b)(c \tau+d)^{-1}$, and $\mathcal{A}_{6}=\mathbb{H}_{6} / S p_{12}(\mathbb{Z})$ is the moduli space of principally polarized abelian varieties (p.p.a.v.) of dimension 6 .

Remark 3.2 For a suitable choice of a branch of $\Omega_{\alpha}(x)$ in the previous section, we have

$$
\int_{\gamma_{k}} \omega_{1}=\left(1-\zeta^{4}\right) u_{k}(t) \quad(k=1,2,3)
$$

Since we use u_{k} for projective coordinates mainly, hereafter we denote $\int_{\gamma_{k}} \omega_{1}$ by u_{k} for simplicity.

3.2. Modular embedding

Let $M \in S p_{12}(\mathbb{Z})$ be the symplectic representation of ρ with respect to the above basis:

$$
\left(\rho\left(A_{1}\right), \ldots, \rho\left(A_{6}\right), \rho\left(B_{1}\right), \ldots, \rho\left(B_{6}\right)\right)=\left(A_{1}, \ldots, A_{6}, B_{1}, \ldots, B_{6}\right)^{t} M
$$

Explicit form of M is given in Appendix. By definition, we have $M\left[\begin{array}{l}\Pi_{A} \\ \Pi_{B}\end{array}\right]=$ $\left[\begin{array}{l}\Pi_{A} \\ \Pi_{B}\end{array}\right] R$. Therefore $\Pi_{A} \Pi_{B}^{-1}$ belongs to a domain $\mathbb{H}_{6}^{M}=\left\{\tau \in \mathbb{H}_{6} \mid M \cdot \tau=\tau\right\}$, which parametrizes p.p.a.v of dimension 6 with an automorphism M (see section 5 in [vG92]). We know that this domain is 1-dimensional, and hence isomorphic to $\mathbb{D}_{H}^{+}([\operatorname{BL} 92$, Chapter 9] and $[\operatorname{Sm64}])$. The centralizer of M in $S p_{12}(\mathbb{Z})$ is

$$
S p_{12}^{M}(\mathbb{Z})=\left\{g \in S p_{12}(\mathbb{Z}) \mid g M=M g\right\}
$$

which acts on the domain \mathbb{H}_{6}^{M}.
Proposition 3.1 There exist a group isomorphisms $\phi: \Gamma \rightarrow S p_{12}^{M}(\mathbb{Z})$ and an analytic isomorphism $\Phi: \mathbb{D}_{H}^{+} \rightarrow \mathbb{H}_{6}^{M}$ such that $\Phi(g u)=\phi(g) \Phi(u)$. We
have the following commutative diagram.

Proof. Now we have

$$
\begin{aligned}
\Pi_{A, 1} & ={ }^{t}\left[\int_{A_{1}} \omega_{1}, \ldots, \int_{A_{6}} \omega_{1}\right] \\
& ={ }^{t}\left[\zeta^{4} u_{1}, \zeta^{5} u_{1}, \zeta^{6} u_{1},(1+\zeta) u_{3},\left(\zeta^{2}-\zeta^{4}+\zeta^{6}\right) u_{3},\left(1+\zeta+\zeta^{4}\right) u_{3}\right] \\
\Pi_{B, 1} & ={ }^{t}\left[\int_{B_{1}} \omega_{1}, \ldots, \int_{B_{6}} \omega_{1}\right] \\
& ={ }^{t}\left[u_{1},(1+\zeta) u_{1},\left(1+\zeta+\zeta^{2}\right) u_{1}, \zeta^{6} u_{3}, \zeta^{5} u_{3},\left(1+\zeta^{4}-\zeta^{2}-\zeta^{6}\right) u_{3}\right] .
\end{aligned}
$$

This correspondence $\left[\begin{array}{l}u_{1} \\ u_{3}\end{array}\right] \mapsto\left[\begin{array}{l}\Pi_{A, 1} \\ \Pi_{B, 1}\end{array}\right]$ define a linear map $\Phi_{1}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{12}$. Since coefficients of $u_{1}\left(\right.$ or $\left.u_{3}\right)$ in $\Pi_{A, 1}$ and $\Pi_{B, 1}$ give a \mathbb{Z}-basis of $\mathbb{Z}[\zeta]$, there exists a homomorphism $\phi: \mathrm{GL}_{2}(\mathbb{Z}[\zeta]) \rightarrow \mathrm{GL}_{12}(\mathbb{Z})$ such that $\Phi_{1}(g u)=$ $\phi(g) \Phi_{1}(u)$. Especially, we have $\phi\left(\zeta^{4} I_{2}\right)=M$ and the image of ϕ is the centralizer of M. We can easily check that the condition

$$
\left|u_{1}\right|^{2}+\left(1+\zeta^{3}+\zeta^{4}\right)\left|u_{3}\right|^{2}<0
$$

for \mathbb{D}_{H}^{+}is equivalent to Riemann's relation ([M83])

$$
\operatorname{Im}\left(\sum_{i=1}^{6} \overline{\int_{B_{i}} \omega_{1}} \int_{A_{i}} \omega_{1}\right)>0
$$

and hence $\phi(\Gamma)=S p_{12}^{M}(\mathbb{Z})$. We give the map Φ, which is compatible with Φ_{1}, explicitly in Appendix.

Remark 3.3 Let us define a homomorphism

$$
\lambda: H_{1}\left(X_{t}, \mathbb{Z}\right)=\left\langle\gamma_{1}, \gamma_{3}\right\rangle_{\mathbb{Z}[\rho]} \longrightarrow \mathbb{Z}[\zeta]^{2}
$$

$$
F_{1}(\rho) \gamma_{1}+F_{3}(\rho) \gamma_{3} \mapsto\left(F_{1}\left(\zeta^{4}\right), F_{3}\left(\zeta^{4}\right)\right)
$$

By explicit computation, we see that the intersection form (which gives the polarization) on $H_{1}\left(X_{t}, \mathbb{Z}\right)$ is given by

$$
E(x, y)=\frac{1}{7} \operatorname{Tr}_{\mathbb{Q}(\zeta) / \mathbb{Q}}\left(\left(\zeta^{3}-\zeta^{4}\right)^{t} \overline{\lambda(x)} H^{-1} \lambda(y)\right)
$$

4. Schwarz inverse and theta function

4.1. Abel-Jacobi map

For the normalized holomorphic 1-forms

$$
\vec{\xi}=\left(\xi_{1}, \ldots, \xi_{6}\right)=\left(\omega_{1}, \ldots, \omega_{6}\right) \Pi_{B}^{-1}
$$

with respect to A_{i} and B_{i} in the previous section, period integrals satisfy

$$
\tau=\left[\int_{A_{i}} \vec{\xi}\right]_{1 \leq i \leq 6} \in \mathbb{H}_{6}^{M}, \quad\left[\int_{B_{i}} \vec{\xi}\right]_{1 \leq i \leq 6}=I_{6}
$$

Let $\operatorname{Div}\left(X_{t}\right)$ be the group of divisors on X_{t}, and $J\left(X_{t}\right)$ be the Jacobian variety $\mathbb{C}^{6} /\left(\mathbb{Z}^{6} \tau+\mathbb{Z}^{6}\right)$. The Abel-Jacobi map with the base point P_{∞} is

$$
\operatorname{Div}\left(X_{t}\right) \longrightarrow J\left(X_{t}\right), \quad \sum m_{i} Q_{i} \mapsto \sum m_{i} \int_{P_{\infty}}^{Q_{i}} \vec{\xi} \bmod \mathbb{Z}^{6} \tau+\mathbb{Z}^{6}
$$

We denote this homomorphism by $\overline{\mathfrak{A}}$, and a lift of $\overline{\mathfrak{A}}(D)$ by $\mathfrak{A}(D)$ (Hence $\mathfrak{A}: \operatorname{Div}\left(X_{t}\right) \rightarrow \mathbb{C}^{6}$ is a multi-valued map). As is well known, $\overline{\mathfrak{A}}$ factors through

$$
\operatorname{Div}\left(X_{t}\right) \longrightarrow \operatorname{Pic}\left(X_{t}\right)=\operatorname{Div}\left(X_{t}\right) /\{\text { principal divisors }\}
$$

Since the base point is fixed by ρ, the map $\overline{\mathfrak{A}}$ is ρ-equivariant. Therefore the image of a ρ-invariant divisor belongs to the set of fixed points of ρ, that is, the $(1-\rho)$-torsion subgroup

$$
J\left(X_{t}\right)_{1-\rho}=\left\{z \in J\left(X_{t}\right) \mid(1-\rho) z=0\right\} .
$$

Lemma 4.1 The $(1-\rho)$-torsion subgroup is

$$
J\left(X_{t}\right)_{1-\rho}=\left\{\overline{\mathfrak{A}}\left(m P_{0}+n P_{1}\right) \mid m, n \in \mathbb{Z}\right\} \cong(\mathbb{Z} / 7 \mathbb{Z})^{2}
$$

More explicitly, we have

$$
\mathfrak{A}\left(m P_{0}+n P_{1}\right) \equiv a_{m, n} \tau+b_{m, n} \quad \bmod \mathbb{Z}^{6} \tau+\mathbb{Z}^{6}
$$

with

$$
\begin{aligned}
& a_{m, n}=\frac{1}{7}(m, 2 m, 3 m, 2 m+3 n, 2 m+3 n, 0) \in \frac{1}{7} \mathbb{Z}^{6} \\
& b_{m, n}=\frac{1}{7}(-m,-m,-m, 3 m+n, 5 m+4 n, m+5 n) \in \frac{1}{7} \mathbb{Z}^{6} .
\end{aligned}
$$

Proof. It is obvious that $\operatorname{Ker}(1-\rho) \cong(\mathbb{Z}[\zeta] /(1-\zeta))^{2} \cong(\mathbb{Z} / 7 \mathbb{Z})^{2}$. Recall that

$$
\gamma_{1}=(1-\rho) \mathfrak{i}_{1}(0,1), \quad \gamma_{2}=(1-\rho) \mathfrak{i}_{1}(1, \infty), \quad \gamma_{3}=(1-\rho) \mathfrak{i}_{1}(t, 1)
$$

Computing intersection numbers, we see that $\gamma_{2}=A_{1}+A_{2}+A_{3}+B_{4}+B_{5}=\rho\left(\gamma_{1}\right)+\rho^{3}\left(\gamma_{1}\right)+\rho^{5}\left(\gamma_{1}\right)+\rho^{5}\left(\gamma_{3}\right)+\rho^{3}\left(\gamma_{3}\right)$.

Therefore we have

$$
\begin{aligned}
\mathfrak{i}_{1}(0, t)= & \frac{1}{7}\left(6+5 \rho+4 \rho^{2}+3 \rho^{3}+2 \rho^{4}+\rho^{5}\right) \gamma_{1} \\
= & \frac{1}{7}\left(5 A_{1}+3 A_{2}+A_{3}+2 B_{1}+2 B_{2}+2 B_{3}\right), \\
\mathfrak{i}_{1}(1, \infty)= & \frac{1}{7}\left(6+5 \rho+4 \rho^{2}+3 \rho^{3}+2 \rho^{4}+\rho^{5}\right) \gamma_{3} \\
= & \frac{1}{7}\left(-3 A_{4}+4 A_{5}+7 A_{6}-B_{4}+3 B_{5}+2 B_{6}\right), \\
\mathfrak{i}_{1}(t, 1)= & \frac{1}{7}\left(6+5 \rho+4 \rho^{2}+3 \rho^{3}+2 \rho^{4}+\rho^{5}\right) \gamma_{2} \\
= & \frac{1}{7}\left(A_{1}+2 A_{2}+3 A_{3}-B_{1}-B_{2}-B_{3}\right) \\
& +\frac{1}{7}\left(A_{4}+A_{5}-7 A_{6}+5 B_{4}-B_{5}+4 B_{6}\right),
\end{aligned}
$$

namely,

$$
\begin{aligned}
\int_{0}^{t} \vec{\xi} & \equiv \frac{1}{7}(5,3,1,0,0,0) \tau+\frac{1}{7}(2,2,2,0,0,0) \\
\int_{1}^{\infty} \vec{\xi} & \equiv \frac{1}{7}(0,0,0,4,4,0) \tau+\frac{1}{7}(0,0,0,6,3,2) \\
\int_{t}^{1} \vec{\xi} & \equiv \frac{1}{7}(1,2,3,1,1,0) \tau+\frac{1}{7}(6,6,6,5,6,4) \quad \bmod \mathbb{Z}^{6}+\tau \mathbb{Z}^{6}
\end{aligned}
$$

As combinations of these integrals, we obtain explicit values of $\overline{\mathfrak{A}}\left(P_{0}\right)$ and $\overline{\mathfrak{A}}\left(P_{1}\right)$.

4.2. Theta function and Riemann constant

Let us consider Riemann's theta function

$$
\vartheta(z, \tau)=\sum_{n \in \mathbb{Z}^{6}} \exp \left[\pi i n \tau^{t} n+2 \pi i n^{t} z\right], \quad(z, \tau) \in \mathbb{C}^{6} \times \mathbb{H}_{6}
$$

The Abel-Jacobi map $\overline{\mathfrak{A}}$ induces a birational morphism from $\operatorname{Sym}^{6} X_{t}$ to $J\left(X_{t}\right)$, and $W_{\mathfrak{A}}^{5}=\overline{\mathfrak{A}}\left(\operatorname{Sym}^{5} X_{t}\right)$ is a translation of the theta divisor

$$
\Theta=\left\{z \in J\left(X_{t}\right) \mid \vartheta(z)=0\right\}
$$

More precisely, there exist a constant vector $\kappa \in \mathbb{C}^{6}$ such that $\vartheta(e, \tau)=0$ if and only if

$$
e \equiv \kappa-\mathfrak{A}\left(Q_{1}+\cdots+Q_{5}\right) \quad \bmod \mathbb{Z}^{6} \tau+\mathbb{Z}^{6}
$$

for some $Q_{1}, \ldots, Q_{5} \in X_{t}$. The constant κ (or its image $\bar{\kappa}$ in $J\left(X_{t}\right)$) is called the Riemann constant. It is the image of a half canonical class by \mathfrak{A} ([M83, Chapter II], Appendix to Section 3), and depends only on a symplectic basis A_{i}, B_{i} and the base point of \mathfrak{A}. Since $\operatorname{div}\left(\omega_{5}\right)=10 P_{\infty}$, the image of the canonical class by $\overline{\mathfrak{A}}$ is 0 and κ must be a half period. Hence we have $\kappa=a \tau+b$ for some $a, b \in(1 / 2) \mathbb{Z}^{6}$. By the same argument as the proof of Lemma 5.4 in [K03], the corresponding theta characteristic (a, b) is invariant under the action of M on $\mathbb{Q}^{12} / \mathbb{Z}^{12}$:

$$
M \cdot(a, b)=(a, b) M^{-1}+\frac{1}{2}\left(\left(C^{t} D\right)_{0},\left(A^{t} B\right)_{0}\right), \quad M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right],
$$

where $(M)_{0}$ is the diagonal vector of M. By explicit computations, we have
Lemma 4.2 The M-invariant theta characteristics are $\left(a_{m, n}+a_{0}, b_{m, n}+\right.$ b_{0}) with

$$
a_{0}=\frac{1}{2}(1,0,1,0,0,1), \quad b_{0}=\frac{1}{2}(1,1,1,0,1,0) .
$$

Especially, we have $\kappa \equiv a_{0} \tau+b_{0}$. Since $\vartheta(-e)=\vartheta(e)$ and κ is a half period, we have

$$
\bar{\kappa}-W_{\mathfrak{A}}^{5}=\Theta=-\Theta=\bar{\kappa}+W_{\mathfrak{A}}^{5},
$$

that is $W_{\mathfrak{A}}^{5}=-W_{\mathfrak{A}}^{5}$.
Let us consider $J(X)_{1-\rho} \cap W_{\mathfrak{A}}^{5}$. By definition, we have

$$
\overline{\mathfrak{A}}\left(m P_{0}+n P_{1}\right) \in W_{\mathfrak{A}}^{5}=-W_{\mathfrak{A}}^{5}
$$

for $0 \leq m, n \leq 6$ such that $m+n \leq 5$ or $(7-m)+(7-n) \leq 5$. The rest of $J(X)_{1-\rho}$ are $\overline{\mathfrak{A}}\left(m P_{0}+n P_{1}\right)$ with the following (m, n):

$$
\begin{aligned}
& (1,5),(1,6),(2,4)(2,5),(2,6),(3,3),(3,4),(3,5) \\
& (4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(6,1),(6,2)
\end{aligned}
$$

Moreover we have the following reductions:

$$
\begin{aligned}
& \left(6 P_{0}+P_{1}\right)=\left(2 P_{1}+P_{t}+4 P_{\infty}\right)+\operatorname{div}\left(\frac{x}{y}\right) \\
& \left(3 P_{0}+3 P_{1}\right)=\left(4 P_{t}+2 P_{\infty}\right)+\operatorname{div}\left(\frac{x(x-1)}{y^{4}}\right) \\
& \left(5 P_{0}+P_{1}\right)=\left(3 P_{1}+2 P_{t}+P_{\infty}\right)+\operatorname{div}\left(\frac{x}{y^{2}}\right) \\
& \left(4 P_{0}+3 P_{1}\right)=\left(P_{0}+4 P_{t}+2 P_{\infty}\right)+\operatorname{div}\left(\frac{x(x-1)}{y^{4}}\right)
\end{aligned}
$$

that is,

$$
\overline{\mathfrak{A}}\left(6 P_{0}+P_{1}\right), \quad \overline{\mathfrak{A}}\left(3 P_{0}+3 P_{1}\right), \quad \overline{\mathfrak{A}}\left(5 P_{0}+P_{1}\right), \quad \overline{\mathfrak{A}}\left(4 P_{0}+3 P_{1}\right) \in W_{\mathfrak{A}}^{5} .
$$

By the equality $W_{\mathfrak{A}}^{5}=-W_{\mathfrak{A}}^{5}$ and the symmetry for P_{0}, P_{1}, we see that $\overline{\mathfrak{A}}\left(m P_{0}+n P_{1}\right) \in W_{\mathfrak{A}}^{5}$ if

$$
(m, n) \neq(2,4),(2,5),(3,5),(4,2),(5,2),(5,3)
$$

The converse is also true:
Lemma 4.3 We have $\overline{\mathfrak{A}}\left(m P_{0}+n P_{1}\right) \notin W_{\mathfrak{A}}^{5}$ for

$$
(m, n)=(2,4),(2,5),(3,5),(4,2),(5,2),(5,3)
$$

Proof. To prove this, note that

$$
\left(5 P_{0}+2 P_{1}\right)=\left(4 P_{1}+2 P_{t}+P_{\infty}\right)+\operatorname{div}\left(\frac{x}{y^{2}}\right)
$$

and hence $\overline{\mathfrak{A}}\left(5 P_{0}+2 P_{1}\right)=\overline{\mathfrak{A}}\left(4 P_{1}+2 P_{t}\right)$. Moreover we have

$$
\overline{\mathfrak{A}}\left(3 P_{i}+5 P_{j}\right)=-\overline{\mathfrak{A}}\left(4 P_{i}+2 P_{j}\right), \quad i, j \in\{0,1\} .
$$

By symmetry for P_{0}, P_{1} and P_{t}, it suffices to prove that $\overline{\mathfrak{A}}\left(4 P_{0}+2 P_{1}\right) \notin W_{\mathfrak{\mathfrak { l }}}^{5}$.
Applying the Riemann-Roch formula for $4 P_{0}+2 P_{1}$, we have

$$
\ell\left(4 P_{0}+2 P_{1}\right)=\ell\left(K-4 P_{0}-2 P_{1}\right)+1
$$

where $\ell(D)=\operatorname{dim} H^{0}\left(X_{t}, \mathcal{O}(D)\right)$ and K is the canonical class. From the vanishing order of ω_{i} :

	ω_{5}	ω_{3}	ω_{2}	ω_{1}	ω_{6}	ω_{4}
at P_{0}	0	1	2	3	7	8

	ω_{5}	ω_{6}	ω_{3}	ω_{4}	ω_{2}	ω_{1}
at P_{1}	0	0	1	1	2	3

we see that there does not exist a holomorphic 1-form ω such that $\operatorname{div}(\omega)-4 P_{0}-2 P_{1}$ is positive. Therefore we have $\ell\left(4 P_{0}+2 P_{1}\right)=1$ and $H^{0}\left(X_{t}, \mathcal{O}\left(4 P_{0}+2 P_{1}\right)\right)$ contains only constant functions. This implies $\overline{\mathfrak{A}}\left(4 P_{0}+2 P_{1}\right) \notin W_{\mathfrak{A}}^{5}$.

4.3. Jacobi inversion

We apply Theorem 4 in [Si71, Chapter 4, Section 11], for rational functions

$$
f: X_{t} \longrightarrow \mathbb{P}^{1},(x, y) \mapsto x, \quad g: X_{t} \longrightarrow \mathbb{P}^{1},(x, y) \mapsto 1-x
$$

on X_{t}. Then we have

$$
\begin{align*}
& f\left(Q_{1}\right) \times \cdots \times f\left(Q_{6}\right)=\frac{1}{E} \prod_{k=1}^{7} \frac{\vartheta\left(\kappa-\mathfrak{A}\left(Q_{1}+\cdots+Q_{6}\right)+\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa-\mathfrak{A}\left(Q_{1}+\cdots+Q_{6}\right), \tau\right)}, \tag{1}\\
& g\left(Q_{1}\right) \times \cdots \times g\left(Q_{6}\right)=\frac{1}{E^{\prime}} \prod_{k=1}^{7} \frac{\vartheta\left(\kappa-\mathfrak{A}\left(Q_{1}+\cdots+Q_{6}\right)+\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa-\mathfrak{A}\left(Q_{1}+\cdots+Q_{6}\right), \tau\right)} \tag{2}
\end{align*}
$$

where constants E and E^{\prime} are independent of Q_{1}, \ldots, Q_{6}, integrals $\int_{\mathfrak{i}_{k}(\infty, *)} \vec{\xi} \in \mathbb{C}^{6}$ are chosen such that

$$
\int_{\mathfrak{i}_{1}(\infty, *)} \vec{\xi}+\cdots+\int_{\mathfrak{i}_{7}(\infty, *)} \vec{\xi}=0
$$

and $\mathfrak{A}\left(Q_{1}+\cdots+Q_{6}\right) \in \mathbb{C}^{6}$ takes the same value in the numerator and the denominator.

Substituting $4 P_{1}+2 P_{t}$ and $2 P_{1}+4 P_{t}$ for $Q_{1}+\cdots+Q_{6}$ in (1), and taking their ratio, we have an expression of t^{2} by theta values:

$$
\begin{align*}
& t^{2}=\left(f\left(P_{1}\right)^{2} f\left(P_{t}\right)^{4}\right) /\left(f\left(P_{1}\right)^{4} f\left(P_{t}\right)^{2}\right) \\
&=\prod_{k=1}^{7} \frac{\vartheta\left(\kappa-\mathfrak{A}\left(2 P_{1}+4 P_{t}\right)+\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa-\mathfrak{A}\left(2 P_{1}+4 P_{t}\right), \tau\right)} / \\
& \prod_{k=1}^{7} \frac{\vartheta\left(\kappa-\mathfrak{A}\left(4 P_{1}+2 P_{t}\right)+\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa-\mathfrak{A}\left(4 P_{1}+2 P_{t}\right), \tau\right)} \\
& \prod_{k=1}^{7} \frac{\vartheta\left(\kappa+a_{4,2} \tau+b_{4,2}+\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa+a_{4,2} \tau+b_{4,2}, \tau\right)} / \\
& \prod_{k=1}^{7} \frac{\vartheta\left(\kappa+a_{5,2} \tau+b_{5,2}+\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa+a_{5,2} \tau+b_{5,2}, \tau\right)} . \tag{3}
\end{align*}
$$

Similarly, substituting $4 P_{1}+2 P_{t}$ and $2 P_{1}+4 P_{t}$ for $Q_{1}+\cdots+Q_{6}$ in (2), we have

$$
\begin{align*}
&(1-t)^{2}=\left(g\left(P_{0}\right)^{2} g\left(P_{t}\right)^{4}\right) /\left(g\left(P_{1}\right)^{4} g\left(P_{t}\right)^{2}\right) \\
&=\prod_{k=1}^{7} \frac{\vartheta\left(\kappa-\mathfrak{A}\left(2 P_{0}+4 P_{t}\right)+\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa-\mathfrak{A}\left(2 P_{0}+4 P_{t}\right), \tau\right)} / \\
&=\prod_{k=1}^{7} \frac{\vartheta\left(\kappa-\mathfrak{A}\left(4 P_{0}+2 P_{t}\right)+\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa-\mathfrak{A}\left(4 P_{0}+2 P_{t}\right), \tau\right)} \\
& \vartheta\left(\kappa+a_{2,4} \tau+b_{2,4}, \tau\right) \\
& \prod_{k=1}^{7} \frac{\vartheta\left(\kappa+a_{5,2} \tau+b_{5,2}+\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)}{\vartheta\left(\kappa+a_{5,2} \tau+b_{5,2}, \tau\right)} . \tag{4}
\end{align*}
$$

The above expressions are simplified by introducing theta functions with characteristcs $a, b \in \mathbb{Q}^{6}$:

$$
\begin{aligned}
\vartheta_{a, b}(z, \tau) & =\exp \left[\pi i a \tau^{t} a+2 \pi i a^{t}(z+b)\right] \vartheta(z+a \tau+b, \tau) \\
& =\sum_{n \in \mathbb{Z}^{6}} \exp \left[\pi i(n+a) \tau^{t}(n+a)+2 \pi i(n+a)^{t}(z+b)\right]
\end{aligned}
$$

We denote a theta constant $\vartheta_{a, b}(0, \tau)$ by $\vartheta_{a, b}(\tau)$. Let $\vartheta_{[m, n]}(z, \tau)$ be $\vartheta_{a, b}(z, \tau)$ with characteristics $a=a_{m, n}+a_{0}, b=b_{m, n}+b_{0}$ in Lemma 4.2. With this notation, theta expressions (3) and (4) are

$$
\begin{aligned}
t^{2} & =\prod_{k=1}^{7} \frac{\vartheta_{[2,5]}(\tau) \vartheta_{[4,2]}\left(\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}{\vartheta_{[4,2]}(\tau) \vartheta_{[2,5]}\left(\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}, \\
(1-t)^{2} & =\prod_{k=1}^{7} \frac{\vartheta_{[5,2]}(\tau) \vartheta_{[2,4]}\left(\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)}{\vartheta_{[2,4]}(\tau) \vartheta_{[5,2]}\left(\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)} .
\end{aligned}
$$

Putting

$$
\begin{aligned}
& \int_{\mathfrak{i}_{k}(\infty, x)} \vec{\xi}=\left\{\begin{array}{ll}
a_{1,0} \tau+b_{1,0}(x=0) \\
a_{0,1} \tau+b_{0,1} & (x=1)
\end{array} \quad(1 \leq k \leq 6),\right. \\
& \int_{\mathfrak{i}_{7}(\infty, x)} \vec{\xi}
\end{aligned}= \begin{cases}-6\left(a_{1,0} \tau+b_{1,0}\right) & (x=0) \\
-6\left(a_{1,0} \tau+b_{1,0}\right) & (x=1)\end{cases}
$$

and using formulas

$$
\begin{aligned}
& \vartheta_{a, b}\left(a^{\prime} \tau+b^{\prime}, \tau\right)=\exp \left[-\pi i a^{\prime} \tau^{t} a^{\prime}-2 \pi i a^{\prime t}\left(b+b^{\prime}\right)\right] \vartheta_{a+a^{\prime}, b+b^{\prime}}(0, \tau), \\
& a^{\prime}, b^{\prime} \in \mathbb{Q}^{6}, \\
& \theta_{\left(a+a^{\prime}, b+b^{\prime}\right)}(z, \tau)=\exp \left(2 \pi \sqrt{-1} a^{t} b^{\prime}\right) \theta_{(a, b)}(z, \tau), \quad \quad a^{\prime}, b^{\prime} \in \mathbb{Z}^{6},
\end{aligned}
$$

we see that

$$
\begin{aligned}
& \prod_{k=1}^{7} \frac{\vartheta_{[4,2]}\left(\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}{\vartheta_{[2,5]}\left(\int_{\mathfrak{i}_{k}(\infty, 0)} \vec{\xi}, \tau\right)}=\zeta^{3} \frac{\vartheta_{[5,2]}(\tau)^{7}}{\vartheta_{[3,5]}(\tau)^{7}}, \\
& \prod_{k=1}^{7} \frac{\vartheta_{[2,4]}\left(\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)}{\vartheta_{[5,2]}\left(\int_{\mathfrak{i}_{k}(\infty, 1)} \vec{\xi}, \tau\right)}=\frac{\vartheta_{[2,5]}(\tau)^{7}}{\vartheta_{[5,3]}(\tau)^{7}}
\end{aligned}
$$

Since $\vartheta_{-a,-b}(-z, \tau)=\vartheta_{a, b}(z, \tau)$, we can easily show the following equalities

$$
\vartheta_{[2,5]}(\tau)=\vartheta_{[5,2]}(\tau), \quad \vartheta_{[2,4]}(\tau)=\vartheta_{[5,3]}(\tau), \quad \vartheta_{[3,4]}(\tau)=\vartheta_{[4,3]}(\tau) .
$$

Therefore the above expressions of t^{2} and $(1-t)^{2}$ are simply

$$
t^{2}=\zeta^{3} \frac{\vartheta_{[5,2]}(\tau)^{14}}{\vartheta_{[4,2]}(\tau)^{14}}, \quad(1-t)^{2}=\frac{\vartheta_{[2,5]}(\tau)^{14}}{\vartheta_{[2,4]}(\tau)^{14}}
$$

Namely, there exist constants $\varepsilon_{1}= \pm 1$ and $\varepsilon_{2}= \pm 1$ such that

$$
\begin{equation*}
t=\zeta^{3} \varepsilon_{1} \frac{\vartheta_{[5,2]}(\tau)^{7}}{\vartheta_{[4,2]}(\tau)^{7}}, \quad 1-t=\varepsilon_{2} \frac{\vartheta_{[2,5]}(\tau)^{7}}{\vartheta_{[2,4]}(\tau)^{7}} \tag{5}
\end{equation*}
$$

For $g=\left[\begin{array}{cc}A & B \\ C & B\end{array}\right] \in \operatorname{Sp}_{2 g}(\mathbb{Z})$, theta constants $\vartheta_{a, b}(\tau)$ satisfy the transformation formula

$$
\vartheta_{g \cdot(a, b)}(g \tau)=\mu(g) \exp \left[2 \pi i \lambda_{a, b}(g)\right] \operatorname{det}(C \tau+D)^{1 / 2} \vartheta_{(a, b)}(\tau)
$$

where

$$
\begin{aligned}
g \cdot(a, b) & =(a, b) g^{-1}+\frac{1}{2}\left(\left(C^{t} D\right)_{0},\left(A^{t} B\right)_{0}\right) \\
\lambda_{a, b}(g) & =-\frac{1}{2}\left({ }^{t} a^{t} D B a-2^{t} a^{t} B C b+{ }^{t} b^{t} C A b\right)+\frac{1}{2}\left({ }^{t} a^{t} D-{ }^{t} b^{t} C\right)\left(A^{t} B\right)_{0}
\end{aligned}
$$

and $\mu(g)$ is a certain 8 -th root of 1 depending only on g. Therefore, as coordinates of $\mathbb{P}^{2}(\mathbb{C})$, we have

$$
\begin{align*}
& {\left[\vartheta_{g[2,4]}: \vartheta_{g[2,5]}: \vartheta_{g[3,5]}\right](g \cdot \tau)} \\
& \quad=\left[\mathbf{e}\left[\lambda_{[2,4]}(g)\right] \vartheta_{[2,4]}: \mathbf{e}\left[\lambda_{[2,5]}(g)\right] \vartheta_{[2,5]}: \mathbf{e}\left[\lambda_{[3,5]}(g)\right] \vartheta_{[3,5]}\right](\tau) \tag{6}
\end{align*}
$$

where $\mathbf{e}[-]=\exp [2 \pi i-]$.
By explicit forms of $\sigma_{0}=\phi\left(h_{0}\right)$ and $\sigma_{1}=\phi\left(h_{1}\right)$ in Appendix, we see that

$$
\begin{array}{lll}
\lambda_{[2,4]}\left(\sigma_{0}\right)=53 / 56, & \lambda_{[2,5]}\left(\sigma_{0}\right)=53 / 56, & \lambda_{[3,5]}\left(\sigma_{0}\right)=7 / 8 \\
\lambda_{[2,4]}\left(\sigma_{1}\right)=25 / 56, & \lambda_{[2,5]}\left(\sigma_{1}\right)=19 / 392, & \lambda_{[3,5]}\left(\sigma_{1}\right)=79 / 392
\end{array}
$$

and

$$
\begin{array}{lll}
\vartheta_{\sigma_{0}[2,4]}=\mathbf{e}[5 / 14] \vartheta_{[5,2]}, & \vartheta_{\sigma_{0}[2,5]}=-\vartheta_{[5,3]}, & \vartheta_{\sigma_{0}[3,5]}=\mathbf{e}[13 / 14] \vartheta_{[4,2]}, \\
\vartheta_{\sigma_{1}[2,4]}=-\vartheta_{[5,3]}, & \vartheta_{\sigma_{1}[2,5]}=\mathbf{e}[9 / 14] \vartheta_{[4,2]}, & \vartheta_{\sigma_{1}[3,5]}=\mathbf{e}[4 / 7] \vartheta_{[5,2]} .
\end{array}
$$

Applying these for (6), we obtain

$$
\begin{align*}
& {\left[\vartheta_{[2,4]}: \vartheta_{[2,5]}: \vartheta_{[3,5]}\right]\left(\sigma_{0} \cdot \tau\right)=\left[-\vartheta_{[2,5]}: \mathbf{e}[9 / 14] \vartheta_{[2,4]}: \vartheta_{[3,5]}\right](\tau),} \tag{7}\\
& {\left[\vartheta_{[2,4]}: \vartheta_{[2,5]}: \vartheta_{[3,5]}\right]\left(\sigma_{1} \cdot \tau\right)=\left[\vartheta_{[2,4]}: \mathbf{e}[67 / 98] \vartheta_{[3,5]}: \mathbf{e}[45 / 98] \vartheta_{[2,5]}\right](\tau) .}
\end{align*}
$$

Theorem 4.1 (1) The inverse of the Schwarz map

$$
\mathfrak{s}: \mathbb{C}-\{0,1\} \longrightarrow \mathbb{D}_{H}^{+}, \quad t \mapsto u=\left[u_{1}(t): u_{3}(t)\right]
$$

is given by $\Gamma(1-\zeta)$-invariant function $\mathfrak{t}(u)=\zeta^{5}\left(\vartheta_{[2,5]}(\Phi(u))^{7} / \vartheta_{[3,5]}(\Phi(u))^{7}\right)$, where $\Phi: \mathbb{D}_{H}^{+} \rightarrow \mathbb{H}_{6}^{M}$ is the modular embedding given in Appendix. In other
words, $\Phi(u) \in \mathbb{H}_{6}^{M}$ is the period matrix of an algebraic curve

$$
y^{7}=x(x-1)(x-\mathfrak{t}(u)) .
$$

(2) The analytic map

$$
\begin{aligned}
& T h: \mathbb{D}_{H}^{+} \longrightarrow \mathbb{P}^{2}(\mathbb{C}), \\
& u \mapsto\left[\mathbf{e}[5 / 49] \vartheta_{[2,4]} \vartheta_{[2,5]}: \vartheta_{[2,5]} \vartheta_{[3,5]}:-\vartheta_{[2,4]} \vartheta_{[3,5]}\right](\Phi(u))
\end{aligned}
$$

induces an isomorphism $\mathbb{D}_{H}^{+} / \Gamma\left((1-\zeta)^{2}\right)$ and the Fermat septic curve

$$
\mathcal{F}_{7}: X^{7}+Y^{7}+Z^{7}=0, \quad[X: Y: Z] \in \mathbb{P}^{2}(\mathbb{C})
$$

Proof. From (5), we have

$$
1=\varepsilon_{1} \zeta^{5} \frac{\vartheta_{[2,5]}(\tau)^{7}}{\vartheta_{[3,5]}(\tau)^{7}}+\varepsilon_{2} \frac{\vartheta_{[2,5]}(\tau)^{7}}{\vartheta_{[2,4]}(\tau)^{7}}
$$

Since this equation must be invariant under actions of $\sigma_{0}=\phi\left(h_{0}\right)$ and $\sigma_{1}=\phi\left(h_{1}\right)$ in (7) (otherwise, the image of $T h$ is not irreducible), we see that $\varepsilon_{1}=\varepsilon_{2}=1$ and

$$
t=\zeta^{5} \frac{\vartheta_{[2,5]}(\Phi(u))^{7}}{\vartheta_{[3,5]}(\Phi(u))^{7}} .
$$

Let us recall that $\Gamma(1-\zeta)$ is projectively generated by h_{0}^{2} and h_{1}^{2}, and $\Gamma\left((1-\zeta)^{2}\right)$ is projectively isomorphic to the commutator subgroup of $\Gamma(1-\zeta)$. From (7), we see that

$$
\begin{aligned}
& {\left[\vartheta_{[2,4]}: \vartheta_{[2,5]}: \vartheta_{[3,5]}\right]\left(\sigma_{0}^{2} \cdot \tau\right)=\left[\zeta \vartheta_{[2,4]}: \zeta \vartheta_{[2,5]}: \vartheta_{[3,5]}\right](\tau),} \\
& {\left[\vartheta_{[2,4]}: \vartheta_{[2,5]}: \vartheta_{[3,5]}\right]\left(\sigma_{1}^{2} \cdot \tau\right)=\left[\vartheta_{[2,4]}: \zeta \vartheta_{[2,5]}: \zeta \vartheta_{[3,5]}\right](\tau) .}
\end{aligned}
$$

Therefore the commutator subgroup of $\Gamma(1-\zeta)$ acts trivially on

$$
\left[\vartheta_{[2,4]}(\Phi(u)): \vartheta_{[2,5]}(\Phi(u)): \vartheta_{[3,5]}(\Phi(u))\right] \in \mathbb{P}^{2},
$$

and the map $T h$ gives a $(\mathbb{Z} / 7 \mathbb{Z})^{2}$-equivariant isomorphism of $\mathbb{D}_{H}^{+} / \Gamma\left((1-\zeta)^{2}\right)$ and the Fermat septic curve.

4.4. Klein quartic

It is known that the Klein quartic curve

$$
\mathcal{K}_{4}: X^{3} Y+Y^{3} Z+Z^{3} X=0, \quad[X: Y: Z] \in \mathbb{P}^{2}(\mathbb{C})
$$

is the quotient of \mathcal{F}_{7} by an automorphism

$$
\alpha: \mathcal{F}_{7} \longrightarrow \mathcal{F}_{7}, \quad[X: Y: Z] \mapsto\left[\zeta X: \zeta^{3} Y: Z\right]
$$

which is induced by $g_{0} g_{1}^{3} \in \Gamma(1-\zeta)$ via the map $T h$. The quotient map is given by

$$
\mathcal{F}_{7} \longrightarrow \mathcal{K}_{4}, \quad[X: Y: Z] \mapsto\left[X Y^{3}: Y Z^{3}: Z X^{3}\right]
$$

The Klein quartic \mathcal{K}_{4} is isomorphic to the elliptic modular curve $\mathcal{X}(7)$ of level 7, and also to a Shimura curve parametrizing a family of QM Abelian 6folds (see [E99]). The following Corollary gives a new moduli interpretation of \mathcal{K}_{4}.

Corollary 4.1 The Klein quartic curve \mathcal{K}_{4} is isomorphic to $\mathbb{D}_{H}^{+} / \Gamma_{\text {Klein }}$, where

$$
\Gamma_{\text {Klein }}=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma(1-\zeta) \right\rvert\, a \equiv 1 \quad \bmod (1-\zeta)^{2}\right\}
$$

Proof. Let us recall the homomorphism

$$
\nu: \Gamma(1-\zeta) \longrightarrow \mathrm{M}_{2}\left(\mathbb{F}_{7}\right), \quad \nu(g)=\frac{1}{1-\zeta}(g-1) \quad \bmod 1-\zeta
$$

in the proof of Proposition 2.1. The kernel of ν is $\Gamma\left((1-\zeta)^{2}\right)$ and the image is generated by

$$
\nu\left(g_{0}\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right], \quad \nu\left(g_{1}\right)=\left[\begin{array}{ll}
5 & 1 \\
5 & 1
\end{array}\right]
$$

Since we have $\nu\left(g_{0}^{a} g_{1}^{b}\right)=\left[\begin{array}{cc}-a+5 b & b \\ 5 b & b\end{array}\right]$, the group $\Gamma_{\text {Klein }}$ is generated by $\Gamma((1-$ $\zeta)^{2}$) and $g_{0} g_{1}^{3}$. Namely we have $\mathbb{D}_{H}^{+} / \Gamma_{\text {Klein }}=\mathcal{F}_{7} /\langle\alpha\rangle$.

Let (A, E, ρ, λ) be a 4 -tuple
(1) A is a 6 -dimensional complex Abelian variety V / Λ, where V is isomorphic to the tangent space $T_{0} A$ and Λ is isomorphic to $H_{1}(A, \mathbb{Z})$.
(2) $E: \Lambda \times \Lambda \rightarrow \mathbb{Z}$ is a principal polarization.
(3) ρ is an automorphism of order 7 preserving E, and the induced action on $T_{0} A$ has eigenvalues $\zeta, \zeta, \zeta^{2}, \zeta^{2}, \zeta^{3}, \zeta^{4}$.
(4) $\lambda: \Lambda \rightarrow \mathbb{Z}[\zeta]^{2}$ is an isomorphism such that

$$
\lambda(\rho(x))=\zeta^{4} \lambda(x), \quad E(x, y)=\frac{1}{7} \operatorname{Tr}_{\mathbb{Q}(\zeta) / \mathbb{Q}}\left(\left(\zeta^{3}-\zeta^{4}\right)^{t} \overline{\lambda(x)} H^{-1} \lambda(y)\right)
$$

(see Remark 3.3). Note that λ induces an isomorphism of the torsion subgroup $A_{\text {tor }}$ and $(\mathbb{Q}(\zeta) / \mathbb{Z}[\zeta])^{2}$.

An isomorphism $f:(A, E, \rho, \lambda) \rightarrow\left(A^{\prime}, E^{\prime}, \rho^{\prime}, \lambda^{\prime}\right)$ is defined as an isomorphism of Abelian varieties $f: A \rightarrow A^{\prime}$ such that $f^{*} E^{\prime}=E, f \circ \rho=\rho^{\prime} \circ f$ and $\lambda=\lambda^{\prime} \circ f$. Then we see the following.

Corollary 4.2 We have isomorphisms

$$
\begin{gathered}
\mathbb{D}_{H}^{+} / \Gamma(\mathfrak{m}) \cong\left\{\begin{array}{c}
\text { Set of }(A, E, \rho, \lambda) \text { modulo isomorphisms } f \text { such that } \\
\lambda^{-1} \equiv\left(\lambda^{\prime} \circ f\right)^{-1} \quad \text { on }\left(\mathfrak{m}^{-1} \mathbb{Z}[\zeta] / \mathbb{Z}[\zeta]\right)^{2}
\end{array}\right\}, \\
\mathbb{D}_{H}^{+} / \Gamma_{\text {Klein }} \cong\left\{\begin{array}{c}
\text { Set of }(A, E, \rho, \lambda) \text { modulo isomorphisms } f \text { such that } \\
\text { (i) } \lambda^{-1}\left(\frac{1}{(1-\zeta)^{2}}, 0\right)=\left(\lambda^{\prime} \circ f\right)^{-1}\left(\frac{1}{(1-\zeta)^{2}}, \frac{b}{1-\zeta}\right) \\
\text { for }{ }^{\exists} b \in \mathbb{Z}[\zeta] \\
\text { (ii) } \lambda^{-1}\left(0, \frac{1}{1-\zeta}\right)=\left(\lambda^{\prime} \circ f\right)^{-1}\left(0, \frac{1}{1-\zeta}\right)
\end{array}\right\} .
\end{gathered}
$$

5. K3 surface

In this final section, we construct K3 surfaces with a non-symplectic automorphism of order 7 attached to X_{t}, according to Garbagnati and Penegini ([GP]). For generalities on K3 surfaces and elliptic surfaces, see [SS10] and references therein. Let us consider two curves

$$
X_{t}: y_{1}^{7}=x_{1}\left(x_{1}-1\right)\left(x_{1}-t\right), \quad X_{\infty}: y_{2}^{7}=x_{2}^{2}-1
$$

and an affine algebraic surface

$$
S_{t}: y^{2}=x(x-z)(x-t z)+z^{10}
$$

Note that X_{t} is a hyperelliptic curve of genus 3. The surface S_{t} is birational to the quotient of $X_{t} \times X_{\infty}$ by an automorphism
$\rho \times \rho: X_{t} \times X_{\infty} \longrightarrow X_{t} \times X_{\infty}, \quad\left(x_{1}, y_{1}\right) \times\left(x_{2}, y_{2}\right) \mapsto\left(x_{1}, \zeta y_{1}\right) \times\left(x_{2}, \zeta y_{2}\right)$, and the rational quotient map $X_{t} \times X_{\infty} \rightarrow S_{t}$ is given by

$$
z=y_{1} / y_{2}, \quad y=z^{5} x_{2}, \quad x=z x_{1}
$$

The minimal smooth compact model of S_{t} (denoted by the same symbol S_{t}) is a K3 surface with an elliptic fibration

$$
\pi: S_{t} \longrightarrow \mathbb{P}^{1}, \quad(x, y, z) \mapsto z
$$

To see this, let us consider a minimal Weierstrass form

$$
\begin{aligned}
S_{t}^{\prime}: y^{2}= & x^{3}+G_{2}(z) x+G_{3}(z) \\
G_{2}(z) & =-\frac{1}{3}\left(t^{2}-t+1\right) z^{2}, \\
G_{3}(z) & =z^{10}-\frac{1}{27}(2 t-1)(t+1)(t-2) z^{3}
\end{aligned}
$$

and the discriminant

$$
\begin{aligned}
\Delta(z) & =4 G_{2}(z)^{3}+27 G_{3}(z)^{2} \\
& =z^{6}\left\{27 z^{14}-2(2 t-1)(t+1)(t-2) z^{7}-t^{2}(t-1)^{2}\right\}
\end{aligned}
$$

From this, we see that S_{t} is a K3 surface, and it has a singular fiber of type I_{0}^{*} at $z=0$, of type IV at $z=\infty$ and fourteen fibers of type I_{1} on $\mathbb{P}^{1}-\{0, \infty\}$. Note that

$$
\frac{d x_{1}}{y_{1}^{3}} \otimes \frac{y_{2}^{2} d y_{2}}{x_{2}} \in H^{0}\left(X_{t}, \Omega^{1}\right) \otimes H^{0}\left(X_{\infty}, \Omega^{1}\right)
$$

is the unique $(\rho \times \rho)$ - invariant element up to constants, and descents to a holomorphic 2-form on S_{t} (see [GP, Section 3]). Therefore the period map for a family of K3 surface S_{t} is given by the Schwarz map \mathfrak{s}. Note also that
an automorphism $\rho \times$ id of $X_{t} \times X_{\infty}$ descends to S_{t} :

$$
\rho \times \mathrm{id}: S_{t} \longrightarrow S_{t}, \quad(x, y, z) \mapsto\left(\zeta x, \zeta^{5} y, \zeta z\right)
$$

Since $S_{t} /\langle\rho \times \mathrm{id}\rangle$ is birational to a rational surface $X_{t} /\langle\rho\rangle \times X_{\infty} /\langle\rho\rangle$, the automorphism $\rho \times$ id is non-symplectic. Hence the transcendental lattice $\mathrm{T}_{S_{t}}$ is a free $\mathbb{Z}[\rho \times \mathrm{id}]$-module ([Ni79]). Since our family has positive dimensional moduli, we have rank $\mathrm{T}_{S_{t}} \geq 12$ and $\operatorname{rank} \mathrm{NS}\left(S_{t}\right) \leq 10$ for a general $t \in$ $\mathbb{C}-\{0,1\}$, where $\operatorname{NS}\left(S_{t}\right)$ is the Néron-Severi lattice.

Let us compute the Néron-Severi lattice and the Mordell-Weil group $\operatorname{MW}\left(S_{t}\right)$. Let o be the zero section of $\pi: S_{t} \rightarrow \mathbb{P}^{1}$. We have three sections

$$
s_{a}: \mathbb{P}^{1} \longrightarrow S_{t}, \quad z \mapsto(x, y, z)=\left(a z, z^{5}, z\right), \quad a=0,1, t
$$

such that $s_{0}+s_{1}+s_{t}=o$ in $\operatorname{MW}\left(S_{t}\right)$. Let $2 \ell_{0}+\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}$ be the irreducible decomposition of $\pi^{-1}(0)$, and $\ell_{1}^{\prime}+\ell_{2}^{\prime}+\ell_{3}^{\prime}$ be that of $\pi^{-1}(\infty)$. For a suitable choice of indeces, intersection numbers of these curves are given by the following graph; the self intersection number of each curve is -2 , two curves are connected by an edge if they intersect and intersection numbers are 1 except $s_{a} \cdot s_{b}=2$ (Figure 4). Let $N \subset \operatorname{NS}\left(S_{t}\right)$ be the lattice generated by $o, s_{0}, s_{1}, s_{t}, \ell_{0}, \ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}, \ell_{1}^{\prime}$. The rank of N is 10 and the discriminant is -49 . Hence the Picard number of S_{t} is generically 10 and the rank of MW $\left(S_{t}\right)$ is 2 by the Shioda-Tate formula ([SS10, Corollary 6.13]). Since the fixed locus $S_{t}^{\rho \times \text { id }}$ is contained in $\pi^{-1}(0) \cup \pi^{-1}(\infty)$ and no elliptic curve contained in $S_{t}^{\rho \times i d}$, we see that $\operatorname{NS}\left(S_{t}\right)=\mathrm{U}(7) \oplus \mathrm{E}_{8}$ by the classification theorem of Artebani, Sarti and Taki ([AST11, Section 6]). Therefore we have $\operatorname{NS}\left(S_{t}\right)=N$. Let L be the lattice generated by the zero section and vertical divisors. It is known that $\operatorname{MW}\left(S_{t}\right) \cong \operatorname{NS}\left(S_{t}\right) / L$

Figure 4. intersection graph.
([SS10, Theorem 6.3]). Now it is obvious that $\operatorname{MW}\left(S_{t}\right)=\mathbb{Z} s_{0} \oplus \mathbb{Z} s_{1} \cong \mathbb{Z}^{2}$. Summarizing the above, we have the following proposition.

Proposition 5.1 For a general $t \in \mathbb{C}-\{0,1\}$, an elliptic $K 3$ surface S_{t} has transcendental lattice $\mathrm{T}_{S_{t}}=\mathrm{U} \oplus \mathrm{U}(7) \oplus \mathrm{E}_{8}$ and the Mordell-Weil group $\operatorname{MW}\left(S_{t}\right) \cong \mathbb{Z}^{2}$. By the automorphism $(x, y, z) \mapsto\left(\zeta x, \zeta^{5} y, \zeta z\right)$, we have $\mathrm{T}_{S_{t}} \cong \mathbb{Z}[\zeta]^{2}$ and the period map for this 1-parameter family is given by the Scwarz triangle mapping $\mathfrak{s}(t)$ with the monodromy group $\Delta(7,7,7)$. Therefore the Schwarz inverse $\mathfrak{t}(u)$ is an example of "K3 modular function" ([Sh79,81]).

A. Appendix

A. 1 Symplectic representation

Here we give the representation matrix $M \in S p_{12}(\mathbb{Z})$ of ρ with respect to symplectic basis B_{i} and A_{i}, and images of h_{0} and h_{1} by the homomorphism ϕ in Proposition 3.1:

$$
\phi\left(h_{1}\right)=\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 1 & 2 & 1 & 1 & 0 & 1 & 1 & 0 & 2 & 1 & 1 \\
1 & 2 & 2 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline-1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & -1 \\
-1 & -2 & -2 & 0 & 0 & 0 & -1 & 0 & 0 & -2 & -1 & -1 \\
-1 & -2 & -3 & 0 & -1 & -1 & -1 & -1 & 0 & -2 & -2 & -1 \\
\hline 1 & 1 & 1 & -1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & 0 & -2 & 1 & -1 & -1 & 0 & -1 & 1
\end{array}\right] .
$$

A.2. Period matrix

Let ζ be $\exp [2 \pi i / 7]$ and put

$$
\begin{gathered}
\alpha=1+\zeta+\zeta^{2}+\zeta^{4}=\frac{1+\sqrt{-7}}{2} \\
\beta_{1}=\zeta-2 \zeta^{2}-2 \zeta^{4}, \quad \beta_{2}=-\left(2 \zeta^{3}+1-\zeta^{6}+2 \zeta^{5}\right)
\end{gathered}
$$

The modular embedding $\Phi: \mathbb{D}_{H}^{+} \rightarrow \mathbb{H}_{6}^{M}$ in Proposition 3.1 is given by

$$
\Phi(u)=\frac{1}{\Delta}\left(\left[\begin{array}{cc}
A_{11} & O \\
O & D_{11}
\end{array}\right] u_{1}^{2}+\left[\begin{array}{cc}
O & B_{12} \\
{ }^{t} B_{12} & O
\end{array}\right] u_{1} u_{2}+\left[\begin{array}{cc}
A_{22} & O \\
O & D_{22}
\end{array}\right] u_{2}^{2}\right)
$$

where

$$
\Delta=\left(\zeta^{2}+\zeta+1\right)\left(2 \zeta^{2}-\zeta+2\right) u_{1}^{2}+3(\zeta+1) u_{2}^{2}
$$

and

$$
\begin{aligned}
& A_{11}=\left(\zeta^{2}+\zeta+1\right)\left(2 \zeta^{2}-\zeta+2\right)\left[\begin{array}{ccc}
\alpha & 0 & -1 \\
0 & \alpha-1 & -\alpha \\
-1 & -\alpha & 1
\end{array}\right], \\
& D_{11}=\left(\zeta^{2}+1\right)\left[\begin{array}{ccc}
2 \zeta^{6}+\zeta^{5}-\zeta^{3}-1 & 2 \zeta^{6}-\zeta^{3} & -\zeta^{3} \\
2 \zeta^{6}-\zeta^{3} & \zeta^{2}-\zeta^{3} & \zeta^{6}-\alpha \\
-\zeta^{3} & \zeta^{6}-\alpha & \alpha
\end{array}\right], \\
& B_{12}=\left(\zeta^{3}-\zeta^{5}\right)\left[\begin{array}{ccc}
-\beta_{1} & -\beta_{2} & -1 \\
\zeta^{5} \beta_{1} & \zeta^{5} \beta_{2} & \zeta^{5} \\
\left(1+\zeta^{6}\right) \beta_{1} & \left(1+\zeta^{6}\right) \beta_{2} & \left(1+\zeta^{6}\right)
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& A_{22}=-3\left[\begin{array}{ccc}
\zeta\left(\zeta^{5}-\zeta^{2}-1\right) & \zeta-1 & \zeta^{3}+1 \\
\zeta-1 & \zeta^{5}-\zeta^{2}+1 & \zeta^{2} \\
\zeta^{3}+1 & \zeta^{2} & -\zeta^{2}(\zeta+1)
\end{array}\right] \\
& D_{22}=(\zeta+1)\left[\begin{array}{ccc}
3 \alpha-2 & \alpha-1 & \alpha \\
\alpha-1 & 2 \alpha-1 & -2 \\
\alpha & -2 & \alpha+1
\end{array}\right] .
\end{aligned}
$$

References

[AST11] Artebani M., Sarti A. and Taki S., K3 surfaces with non-symplectic automorphisms of prime order. Math. Z. 268 (2011), 507-533.
[BR87] Bershadsky M. and Radul A., Conformal field theories with additional Z_{N} symmetry. Int. J. Mod. Phys. A2-1 (1987), 165-178.
[BR88] Bershadsky M. and Radul A., Fermionic fields on Z_{N} curves. Commun. Math. Phys. 116 (1988), 689-700.
[B07] Beukers F., Gauss'hypergeometric function, in Arithmetic and Geometry Around Hypergeometric Functions, Progress in Math., vol. 260, 23-42. Birkhäuser (2007).
[BL92] Birkenhake Ch. and Lange H., Complex Abelian Varieties, Springer (1992).
[CIW94] Cohen P. B., Itzykson C. and Wolfart J., Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyi. Comm. Math. Phys. 163 (1994), 605-627.
[DGMS13] Doran C., Gannon T., Movasati H. and Shokri K., Automorphic forms for triangle groups. Commun. Number Theory Phys. 7 (2013), 689-737.
[E99] Elkies N. D., The Klein quartic in number theory, in The Eightfold Way, Math. Sci. Res. Inst. Publ., 35, 51-102, Cambridge Univ. Press (1999).
[EG06] Enolski V. Z. and Grava T., Thomae type formulae for singular Z_{N} curves. Lett. Math. Phys. 76 (2006), 187-214.
[GP] Garbagnati A. and Penegini M., K3 surfaces with a non-symplectic automorphism and product-quotient surfaces with cyclic group, arXiv1303.1653[math.AG].
[vG92] van Geemen B., Projective models of Picard Modular Varieties, in Classification of Irregular Varieties, Springer LNM 1515 (1992), 6899.
[HY99] Hanamura M. and Yoshida M., Hodge structure on twisted cohomolo-
gies. Nagoya Math. J. 154 (1999), 123-139.
[H05] Harmer M., Note on the Schwarz triangle functions. Bull. Austral. Math. Soc. 72 (2005), 385-389.
[dJN91] de Jong J. and Noot R., Jacobians with complex multiplication, in Arithmetic Algebraic Geometry, Progress in Math., vol. 89, pp.177192, Birkhäuser (1991).
[K03] Koike K., On the family of pentagonal curves of genus 6 and associated modular forms on the ball. J. Math. Soc. Japan. 55 (2003), 165-196.
[KS07] Koike K. and Shiga H., Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean. J. Number Theory. 124 (2007), 123-141.
[KW04] Koike K. and Weng A., Construction of CM Picard curves. Math. Comp., 74 (2004), 499-518.
[Mi75] Milnor J., On the 3-dimensional Brieskorn manifolds $M(p, q, r)$, in Knots, groups, and 3-manifolds, Ann. of Math. Studies, No. 84, Princeton Univ. Press (1975), pp. 175-225.
[MO13] Moonen B. and Oort F., The Torelli locus and special subvarieties, in Handbook of Moduli vol. II, Adv. Lect. Math., 25, Int. Press (2013), 549-594.
[M83] Mumford D., Tata Lectures on Theta I, Birkhäuser (1983).
[Na97] Nakayashiki A., On the Thomae formula for Z_{N} curves. Publ. Res. Inst. Math. Sci. 33 (1997), 987-1015.
[Ni79] Nikulin V. V., Finite automorphism groups of Kahler surfaces of type K3. Proc. Moscow Math. Soc. 38 (1979), 75-137.
[P1883] Picard E., Sur les fonctions de deux vanables indépendantes analogues aux fonctions modulaires. Acta math. 2 (1883), 114-135.
[R09] Rohde C., Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication. Springer LNM 1975 (2009).
[SS10] Schütt M. and Shioda T., Elliptic surfaces. Algebraic Geometry in East Asia-Seoul 2008, Adv. Stud. Pure Math. 60 (2010), 51-160.
[Si71] Siegel C. L., Topics in Complex Function Theory, Vol. II, Wiley (1971).
[Sh79,81] Shiga H., On attempt to the K3 modular function I-II. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), 609-635, 8 (1981), 157-182.
[Sh88] Shiga H., On the representation of the Picard modular function by θ constants I-II. Pub. R.I.M.S. Kyoto Univ. 24 (1988), 311-360.
[Sm64] Shimura G., On purly transcendental fields of automorphic functions of several complex variables. Osaka J. Math. 1 (1964), 1-14.
[T77] Takeuchi K., Arithmetic triangle group. J. Math. Soc. Japan. 29 (1977), 91-106.
[YY84] Yamazaki T. and Yoshida M., On Hirzebruch's Examples of Surfaces with $c_{1}^{2}=3 c_{2}$. Math. Ann. 266 (1984), 421-431.
[Y97] Yoshida M., Hypergeometric functions, my love, Aspects of Mathematics, E32. Friedr. Vieweg \& Sohn (1997).
[W81] Wolfart J., Graduierte algebren automorpher formen zu dreiecksgruppen. Analysis. 1 (1981), 177-190.

Kenji Koike

Faculty of Education
University of Yamanashi
Takeda 4-4-37, Kofu, Yamanashi 400-8510, Japan
E-mail: kkoike@yamanashi.ac.jp

