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The Fermat septic and the Klein quartic as moduli spaces

of hypergeometric Jacobians
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Abstract. We study the Schwarz triangle function with the monodromy group

∆(7, 7, 7), and we construct its inverse by theta constants. As consequences, we give

uniformizations of the Klein quartic curve and the Fermat septic curve as Shimura

curves parametrizing Abelian 6-folds with endomorphisms Z[ζ7].
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1. Introduction

The Gauss hypergeometric differential equation

E(a, b, c) : z(z − 1)u′′ + {(a + b + 1)z − c}u′ + abu = 0

is regular on C − {0, 1} for general parameters a, b and c, and the solution
space is spanned by Euler type integrals

∫

γ

xa−c(x− 1)c−b−1(x− z)−adx,

that are regarded as period integrals for algebraic curves if a, b, c ∈ Q. Two
independent solutions f0(z), f1(z) define a multi-valued analytic function
s(z) = f0(z)/f1(z) (Schwarz map), and monodromy transformations for
s(z) are given by fractional linear transformations.

If parameters satisfy the conditions

|1− c| = 1
p
, |c− a− b| = 1

q
, |a− b| = 1

r
,

1
p

+
1
q

+
1
r

< 1,
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with p, q, r ∈ N ∪ {∞}, the monodromy group is isomorphic to a triangle
group

∆(p, q, r) = 〈M0, M1, M∞ | Mp
0 = Mq

1 = Mr
∞ = M0M1M∞ = 1〉

(the condition Mp
0 = 1 is omitted if p = ∞, and so on). In this case, the up-

per half plane is mapped by s to a triangle with vertices s(0), s(1) and s(∞),
angles π/p, π/q and π/r, respectively, and so is the lower half plane. Copies
of these two triangles give a tessellation of a disk D by the monodromy ac-
tion, and we have an isomorphism D/∆(p, q, r) ∼= C− {0, 1} = P1. For
example, E(1/2, 1/2, 1) is known as the Picard-Fuchs equation for the Leg-
endre family of elliptic curves y2 = x(x − 1)(x − z) and the monodromy
group ∆(∞,∞,∞) is projectively isomorphic to the congruence subgroup
Γ(2) in SL2(Z) of level 2. Also a triangle group ∆(n, n, n) with n ≥ 4
is interesting, since its commutator subgroup Nn gives a uniformization of
the Fermat curve Fn of degree n. More precisely, the natural projection
D/Nn → D/∆(n, n, n) = P1 is an Abelian covering branched at 0, 1 and ∞
with the covering group ∆(n, n, n)/Nn

∼= (Z/nZ)2 (see [CIW94]).
In [T77], Takeuchi determined all arithmetic triangle groups. According

to it, ∆(n, n, n) is arithmetic (and hence the Fermat curve Fn is a Shimura
curve) for n ∈ FT = {4, 5, 6, 7, 8, 9, 12, 15}. These groups come from the
Picard-Fuchs equation for algebraic curves Xt : ym = x(x − 1)(x − t) with
m = n (resp. m = 2n) if n ∈ FT is odd (resp. even). Among them, n = 5
and 7 are special in the sense that a Jacobian J(Xt) is simple in general,
and Picard-Fuchs equations describe variations of Hodge structure on the
whole of H1(Xt,Q), rather than sub Hodge structures. These two families
are treated by Shimura as examples of PEL families in [Sm64]. Also de Jong
and Noot studied them as counter examples of Coleman’s conjecture (which
asserts the finiteness of the number of CM Jacobians for a fixed genus g ≥ 4)
for g = 4, 6 in [dJN91] (see also [R09] and [MO13] for this direction).

For n = 5, we gave s−1 by theta constants in [K03] as a byproduct of
study of the moduli space of ordered five points on P1. In present paper,
we compute the monodromy group, Riemann’s period matrices and the Rie-
mann constant with an explicit symplectic basis for n = 7. Using them, we
express the Schwarz inverse map s−1 by Riemann’s theta constants (Theo-
rem 4.1). As a consequence, we give explicit modular interpretations of the
Klein quartic curve K4 and the Fermat septic curve F7 as modular varieties
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parametrizing Abelian 6-folds with endomorphisms Z[ζ7]. (Corollary 4.1 and
Corollary 4.2). The Klein quartic is classically known to be isomorphic to
the elliptic modular curve of level 7. In [E99], Elkies studied it as a Shimura
curve parametrizing a family of QM Abelian 6-folds. Our interpretation of
K4 gives the third face as a modular variety. Our expression of s−1 is a vari-
ant of Thomae’s formula. This kind of formula for cyclic coverings was stud-
ied in general context by Bershadsky-Radul ([BR87], [BR88]), Nakayashiki
([Na97]) and Enolski-Grava ([EG06]), but our standpoint is more moduli
theoretic as a classical work of Picard ([P1883]) which produces modular
forms on a 2-dimensional complex ball. In [Sh88], Shiga determined Picard
modular forms explicitly, and his results were applied to number theory and
cryptography (see [KS07] and [KW04]). We expect that also our concrete
results will give a good example to develop a generalization of arithmetic
theory of elliptic curves. Here we mention that there are several studies
of automorphic forms for triangle groups (e.g. [Mi75], [W81], [H05] and
[DGMS13]). However it seems that we have very few explicit constructions
of autmorphic forms for co-compact triangle groups in the view point of the
Picard’s work.

Our Schwarz map is regarded also as a periods map of K3 surfaces. In
pioneer work [Sh79,81], Shiga studied families of elliptic K3 surfaces with
period maps to complex balls. These K3 surfaces have a non-symplectic
automorphism of order 3, which induces a Hermitian structure on the tran-
scendental lattice. Now K3 surfaces with non-symplectic automorphisms of
prime order are classified (see [AST11]), and many of them are known to be
quotients of product surfaces ([GP]). In the last section, we give elliptic K3
surfaces St associated to Xt and compute the Neron-Severi group and the
Mordell-Weil lattice of St.

2. Uniformization of Fermat Curves

2.1. Hypergeometric integral
We compute monodromy groups and invariant Hermitian forms for hy-

pergeometric integrals

u(t) =
∫

Ωα(x), Ωα(x) = {x(x− 1)(x− t)}−αdx
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according to [Y97, Chapter IV], for α = k/(2k + 1) and (2k − 1)/4k with
k ≥ 2. They satisfy differential equations E(k/(2k + 1), (k − 1)/(2k + 1),
2k/(2k + 1)) and E((2k − 1)/4k, (2k − 3)/4k, (2k − 1)/2k) with mon-
odromy groups ∆(n, n, n), n = 2k + 1 and 2k respectively. Let us consider
decompositions

P1(C) = H+ ∪ P1(R) ∪H−, P1(R) = I0 ∪ I1 ∪ I2 ∪ I3,

I0 = (−∞, 0), I1 = (0, t), I2 = (t, 1), I3 = (1,∞),

where H+ and H− are the upper and lower half planes respectively, and Ik

are (oriented) real intervals. (As the initial position of t, we assume that
0 < t < 1.) Modifying boundaries ∂H+ and ∂H− to avoid 0, t, 1 and ∞ as

- - - -r r r r0 t 1 ∞
I0 I1 I2 I3 I0

r r r r r r r r¨ ¥ ¨ ¥ ¨ ¥ ¨ ¥
§ ¦ § ¦ § ¦ § ¦

- - - -
- - - -∂H+

∂H− ∂H+ − ∂H−

l l l l

Figure 1. oriented interval Ik.

in Figure 1, we fix a branch of Ωα(x) on a simply connected domain H− and
define integrals uk(t) =

∫
Ik

Ωα(x) by this branch. By the Cauchy integral
theorem, they satisfy

0 =
∫

∂H−
Ωα(x) = u0(t) + u1(t) + u2(t) + u3(t),

0 =
∫

∂H+

Ωα(x) = u0(t) + cu1(t) + c2u2(t) + c3u3(t), c = exp(2πiα),

since Ωα(x) is multiplied by exp(2πiα) if x travels around 0, t or 1 in clock-
wise direction. Hence we have

u2(t) = − 1
1 + c

{u1(t) + (1 + c + c2)u3(t)}.

Now let δ0 and δ1 be paths to make a half turn around 0 and 1 re-
spectively in counter clockwise direction, starting from the initial point of
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Figure 2. δ0 and δ1.

t (Figure 2). Corresponding analytic continuations are represented by con-
nection matrices h0 and h1:

δ0 :
[
u1(t)
u3(t)

]
99K

[−c−1u1(t′)
u3(t′)

]
= h0

[
u1(t′)
u3(t′)

]
, h0 =

[−c−1 0
0 1

]
,

δ1 :
[
u1(t)
u3(t)

]
99K

[
u1(t′) + u2(t′)

c−1u2(t′) + u3(t′)

]
= h1

[
u1(t′)
u3(t′)

]
,

h1 =




c

c + 1
−c2 + c + 1

c + 1

− 1
c2 + c

− 1
c2 + c


 ,

where u1(t′), . . . , u4(t′) are integrals over oriented intervals I ′1, . . . , I
′
4 defined

for new configurations −∞ < t′ < 0 < 1 < ∞ and −∞ < 0 < 1 < t′ < ∞.
The monodromy group Mon is generated by

g0 = h2
0 =

[
c−2 0
0 1

]
, g1 = h2

1 =




c2 + 1
c2 + c

1− c3

c2 + c

1− c

c3 + c2

c2 + 1
c3 + c2


 .

It is known that there exists a unique monodromy-invariant Hermitian form
up to constant (see e.g. [B07] and [Y97]). In fact, we can easily check that
h0 and h1 belong to a unitary group

UH = {g ∈ GL2(C) | tḡHg = H}, H =
[
1 0
0 1 + c + c−1

]
,

and hence Mon ⊂ UH . The value of 1+c+c−1 is negative for c = exp(2πiα)
with α = k/(2k + 1) and (2k − 1)/4k (k ≥ 2), and H is indefinite. Therefore
two domains

D±H = {u ∈ C2 | ±tūHu < 0}/C× ⊂ P1(C).
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are disks, and UH acts on each domain. Now the image of the Schwarz map

s : C− {0, 1} −→ P1(C), t 7→ [u1(t) : u3(t)]

is contained in either D+
H or D−H , which is tessellated by Schwarz triangles.

Since we have

s(0) = lim
t→0

[u1(u) : u3(t)] = [0 : u3(0)] ∈ D+
H ,

we see that D+
H/Mon ∼= P1(C) and D+

H/[Mon,Mon] ∼= Fn (see [CIW94]),
where Fn is the Fermat curve of degree n with n = 2k + 1 (resp. 2k) if
α = k/(2k + 1) (resp. (2k − 1)/4k).

Remark 2.1 (1) Putting ζd = exp(2πi/d), we have

1 + c + c−1 =

{
1 + (ζ2k+1)k + (ζ2k+1)k+1 (n = 2k + 1),

1 + (ζ4k)2k−1 + (ζ4k)2k+1 (n = 2k).

(2) In the case of n = 2k + 1, we have

g0 =
[
ζ 0
0 1

]
, g1 =

1
1 + ζk

[
ζk + ζk+1 ζk+1 − ζ2k

ζ − ζk+1 1 + ζ

]
,

where ζ = ζ2k+1. Since 1/(1 + ζk) = −(ζ + ζ2 + · · · + ζk) and det g1 = ζ,
the monodromy group Mon is a subgroup of UH ∩GL2(Z[ζ]).

(3) In the case of n = 2k, we have

g0 =
[
ζ2 0
0 1

]
, g1 =

1
1 + ζ2k−1

[
ζ2k+1 + ζ2k−1 ζ2k+1 − ζ4k−2

ζ2 − ζ2k+1 1 + ζ2

]
,

where ζ = ζ4k. Note that the cyclotomic polynomial Φ4k(x) satisfies
Φ4k(1) = 1 if 4k 6= 2m. In this case, 1 − ζ is a unit in Z[ζ], and so is
1/(1 + ζ2k−1) = ζ/(ζ − 1). Hence Mon is a subgroup of UH ∩GL2(Z[ζ]) if
4k 6= 2m.

2.2. Fermat curve as a Shimura variety
A triangle group ∆(n, n, n) is arithmetic for

n ∈ FT = {4, 5, 6, 7, 8, 9, 12, 15},
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and the Fermat curve Fn is a Shimura curve. Let us see corresponding
families of hypergeometric curves

Xt : ym = x(x− 1)(x− t)

to these case. By the Riemann-Hurwitz formula, the genus of Xt is g = m−1
if 3 - m, and g = m − 2 if 3 | m. Let ρ be the covering automorphism
(x, y) → (x, ζmy), where ζm = exp(2πi/m). By this action, we can decom-
pose H1(Xt,Q) into irreducible representations of ρ, and H1(Xt,C) into
eigenspaces of ρ. Let V (λ) be the λ-eigenspace of ρ. If m is not prime, the
covering Xt → P1 has intermediate curves Yt, and the pullback of H1(Yt,C)
consists of V (ζk

m) such that (m, k) 6= 1. Conversely, such V (ζk
m) descends

to a quotient curve. From explicit basis of H1,0(Xt), we see that the Prym
part

H1
Prym(Xt,Q) =

[ ⊕

(k,m)=1

V (ζk
m)

]
∩H1(Xt,Q)

has a Hodge structure of type

H1
Prym(Xt,C)

= V (λ1)⊕ · · · ⊕ V (λd−1)︸ ︷︷ ︸
contained in H1,0

⊕V (λd)︸ ︷︷ ︸
split

⊕V (λd+1)︸ ︷︷ ︸
split

⊕V (λd+2)⊕ · · · ⊕ V (λ2d)︸ ︷︷ ︸
contained in H0,1

,

where 2d = [Q(ζm) : Q], λ1, . . . , λ2d are primitive roots of unity
ζm, . . . , ζm−1

m such that λ̄i = λ2d+1−i and dimV (λi) = 2 for i = 1, . . . , 2d

(see Table 1). Therefore the Hodge structure on H1
Prym(Xt,Q) with the

action of ρ is determined by a decomposition V (λd) = V (λd)1,0 ⊕ V (λd)0,1

(the decomposition of V (λd+1) is automatically determined as the com-
plex conjugate of V (λd), and vice versa), that is, determined by periods of
Ωα(x) ∈ V (λd)1,0. In the cases n = 5 and 7, the monodromy group has a
nice representation. Put

Γ = UH ∩GL2(Z[ζn]), Γ(m) = {g ∈ Γ | g ≡ 1 mod m} (m ∈ Z[ζn]).

The arithmetic quotient D+
H/Γ is the moduli space of Jacobians of curves

yn = x3 + ax + b (n = 5, 7) as a PEL-family (see [Sm64]). Therefore we
have the following diagram
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Table 1. H1,0(Xt)Prym.

xadx/yb with the following (a, b)
∆(n, n, n) m g [Q(ζm) : Q] give a basis of H1,0(Xt)Prym

(4,4,4) 8 7 4 (0,3), (0,5), (0,7), (1,7)

(5,5,5) 5 4 4 (0,2), (0,3), (0,4), (1,4)

(6,6,6) 12 10 4 (0,5), (0,7), (0,11), (1,11)

(7,7,7) 7 6 6 (0,3), (0,4), (0,5), (1,5), (0,6),(1,6)

(8,8,8) 16 15 8 (0,7), (0,9), (0,11), (1,11),
(0,13),(1,13), (0,15),(1,15)

(9,9,9) 9 7 6 (0,4), (0,5), (0,7), (1,7),(0,8),(1,8)

(12,12,12) 24 22 8 (0,11), (0,13), (0,17), (1,17),
(0,19),(1,19), (0,23),(1,23)

(15,15,15) 15 13 8 (0,7), (0,8), (0,11), (1,11),
(0,13),(1,13), (0,14),(1,14)

D+
H/Mon //

²²

P1 = {ordered distinct (3 + 1) points (0, 1, t,∞)}

²²
D+

H/Γ // P1/S3 = {unordered distinct 3 points in C}/ ∼

where horizontal arrow are isomorphisms, and ∼ is the equivalence relation
by affine transformations. From this fact, we see that Γ/Mon is isomorphic
to S3 up to the center.

Remark 2.2 For n = 5, the Hermitian form H is same with one given in
[Sm64]:

H =
[
1 0
0 1 + ζ2

5 + ζ3
5

]
=

[
1 0
0 (1−√5)/2

]
.

For n = 7, the Hermitian form given in [Sm64] is

S =




1 0

0 − sin(3π/7)
sin(2π/7)


 =

[
1 0
0 −(ζ7 + ζ6

7 )

]
= tĀHA,
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A =
[
1 0
0 ζ7 + ζ6

7

]
∈ GL2(Z[ζ7]).

Proposition 2.1 ([YY84] for n = 5) Let us denote the image of G ⊂
GL2(Z[ζn]) in PGL2(Z[ζn]) by G. For n = 5 and 7,

(1) the projective modular group Γ is projectively generated by h0 and h1,

(2) we have

Mon = Γ(1− ζn), [Mon,Mon] = Γ((1− ζn)2)

as automorphisms of D+
H .

Proof. We show these facts only for n = 7, but the case n = 5 can be
shown by the same way (also see [YY84] and [K03] for n = 5). The quotient
group Γ/Γ(1−ζ7) is isomorphic to a subgroup of the finite orthogonal group

O(Q,F7) = {g ∈ GL2(F7) | tgQg = Q}, F7 = Z[ζ7]/(1− ζ7), Q =
[
1 0
0 3

]
.

The group O(Q,F7) is isomorphic to S3 × {±1}, since elements of
O(Q,F7)/{±1} are

order 2 :
[−1 0

0 1

]
,

[
3 2
3 4

]
,

[
4 2
3 3

]
, order 3 :

[
3 2
4 3

]
,

[
3 5
3 3

]
.

Since we have

h0 ≡
[−1 0

0 1

]
, h1 ≡

[
4 2
3 3

]
mod 1− ζ7,

the group Γ/Γ(1 − ζ7) is generated by h0, h1 and ±1, and isomorphic to
S3 × {±1}. Moreover we see that

g0 = h2
0 ≡

[
1 0
0 1

]
, g1 = h2

1 ≡
[
1 0
0 1

]
mod 1− ζ7,

and Mon = 〈g0, g1〉 ⊂ Γ(1 − ζ). Therefore Mon coincides with Γ(1− ζ7)
since we have Γ/Mon = S3 as mentioned earlier. Hence Γ is generated by
h0 and h1. A homomorphism
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ν : Γ(1− ζ7) −→ M2(F7), ν(g) =
1

1− ζ7
(g − 1) mod 1− ζ7

has the kernel Γ((1− ζ7)2), and the image is generated by

ν(g0) =
[−1 0

0 0

]
, ν(g1) =

[
5 1
5 1

]
.

Therefore we have Γ(1− ζ7)/Γ((1− ζ7)2) ∼= (Z/7Z)2. Since we have

[Γ(1− ζ7),Γ(1− ζ7)] ⊂ Γ((1− ζ7)2), Mon/[Mon,Mon] ∼= (Z/7Z)2,

we conclude that [Mon,Mon] = Γ((1− ζn)2). ¤

3. Heptagonal Curves

3.1. Hodge structure and Periods
From now, we concentrate in the case n = 7, that is, a 1-dimensional

family of algebraic curves

Xt : y7 = x(x− 1)(x− t).

We denote ζ7 = exp(2πi/7) simply by ζ. As a Riemann surface, Xt is
obtained by glueing seven sheets Σ1, . . . ,Σ7, each of which is a copy of
P1 with cuts (see Figure 1) and satisfying ρ(Σi) = Σi+1 where indices are
considered modulo 7. Let ii(x1, x2) be an oriented real interval from x1 to
x2 on Σi. We define 1-cycles

γ1 = i1(0, t) + i2(t, 0) = (1− ρ)i1(0, t),

γ2 = i1(t, 1) + i2(1, t) = (1− ρ)i1(t, 1),

γ3 = i1(1,∞) + i2(∞, 1) = (1− ρ)i1(1,∞).

For computation of intersection numbers, we use deformations of γ1 and γ3

as in Figure 3. Let Intk be the intersection matrix [ρi(γk) · ρj(γk)]0≤i,j≤5.
We have
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Figure 3. γ1 and γ3.

Int1 =




0 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1
0 0 0 0 −1 0




Int3 =




0 1 0 −1 1 0
−1 0 1 0 −1 1
0 −1 0 1 0 −1
1 0 −1 0 1 0
−1 1 0 −1 0 1
0 −1 1 0 −1 0




and det(Int1) = det(Int3) = 1. Since ρi(γ1) · ρj(γ3) = 0, the intersec-
tion matrix of twelve 1-cycles γ1, ρ(γ1), . . . , ρ5(γ1) and γ3, ρ(γ3), . . . , ρ5(γ3)
is unimodular, and they form a basis of H1(Xt,Z). Hence {γ1, γ3} gives a
basis of H1(Xt,Z) ∼= Z[ρ]2 as a Z[ρ]-module.

Similarly we have H1(Xt,Z) ∼= Z[ρ]2 and the decomposition of
H1(Xt,C) ∼= Z[ρ]2 ⊗ C into eigenspaces of ρ:

H1(Xt,C) = V (ζ)⊕ V (ζ2)⊕ · · · ⊕ V (ζ6), dimV (ζk) = 2.

Let P0, P1, Pt and P∞ be four ramification points of Xt over 0, 1, t and
∞. We denote the divisor of a rational function (or a rational 1-form) f by
div(f). Then we see that

div(x) = 7P0 − 7P∞, div(y) = P0 + P1 + Pt − 3P∞,

div(dx) = 6(P0 + P1 + Pt)− 8P∞,

and holomorphic 1-forms

ω1 =
dx

y3
, ω2 =

dx

y4
, ω3 =

dx

y5
, ω4 =

xdx

y5
, ω5 =

dx

y6
, ω6 =

xdx

y6
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on Xt give a basis of H1,0(Xt).

Remark 3.1 As stated in the previous section, we have

V (ζ)⊕ V (ζ2) ⊂ H1,0(Xt), V (ζ5)⊕ V (ζ6) ⊂ H0,1(Xt)

and the Hodge structure on H1(Xt,Z) is determined by a decomposition of
V (ζ4).

The following 1-cycles

B1 = γ1, B2 = (1 + ρ2)(γ1), B3 = (1 + ρ2 + ρ4)(γ1),

A1 = ρ(γ1), A2 = ρ3(γ1), A3 = ρ5(γ1),

B4 = ρ5(γ3), B5 = ρ3(γ3), B6 = (1 + ρ− ρ4 − ρ5)(γ3),

A4 = (1 + ρ2)(γ3), A5 = (−ρ + ρ4 + ρ5)(γ3), A6 = (1 + ρ + ρ2)(γ3),

give a symplectic basis of H1(Xt,Z) such that

Ai ·Aj = 0, Bi ·Bj = 0, Bi ·Aj = δij .

The associated period matrix is

ΠA =
[∫

Ai
ωj

]
=




∫
γ1

~ωR∫
γ1

~ωR3

∫
γ1

~ωR5

∫
γ3

~ω(I + R2)∫
γ3

~ω(−R + R4 + R5)∫
γ3

~ω(I + R + R2)




,

ΠB =
[∫

Bi
ωj

]
=




∫
γ1

~ω∫
γ1

~ω(I + R2)∫
γ1

~ω(I + R2 + R4)∫
γ3

~ωR5

∫
γ3

~ωR3

∫
γ3

~ω(I + R−R4 −R5)
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where ~ω = (ω1, . . . , ω6) and R is a diagonal matrix diag(ζ4, ζ3, ζ2, ζ2, ζ, ζ).
The normalized period matrix τ = ΠAΠ−1

B belongs to the Siegel upper half
space H6, consisting of symmetric matrices of degree 6 whose imaginary part
is positive definite. The symplectic group

Sp12(Z) = {g ∈ GL12(Z) | tgJg = J}, J =
[

0 I6
−I6 0

]
,

acts on H6 by
[

a b
c d

] · τ = (aτ + b)(cτ + d)−1, and A6 = H6/Sp12(Z) is the
moduli space of principally polarized abelian varieties (p.p.a.v.) of dimen-
sion 6.

Remark 3.2 For a suitable choice of a branch of Ωα(x) in the previous
section, we have

∫

γk

ω1 = (1− ζ4)uk(t) (k = 1, 2, 3).

Since we use uk for projective coordinates mainly, hereafter we denote
∫

γk
ω1

by uk for simplicity.

3.2. Modular embedding
Let M ∈ Sp12(Z) be the symplectic representation of ρ with respect to

the above basis:

(ρ(A1), . . . , ρ(A6), ρ(B1), . . . , ρ(B6)) = (A1, . . . , A6, B1, . . . , B6)tM.

Explicit form of M is given in Appendix. By definition, we have M
[

ΠA

ΠB

]
=[

ΠA

ΠB

]
R. Therefore ΠAΠ−1

B belongs to a domain HM
6 = {τ ∈ H6 | M ·τ = τ},

which parametrizes p.p.a.v of dimension 6 with an automorphism M (see
section 5 in [vG92]). We know that this domain is 1-dimensional, and hence
isomorphic to D+

H ([BL92, Chapter 9] and [Sm64]). The centralizer of M in
Sp12(Z) is

SpM
12(Z) = {g ∈ Sp12(Z) | gM = Mg},

which acts on the domain HM
6 .

Proposition 3.1 There exist a group isomorphisms φ : Γ → SpM
12(Z) and

an analytic isomorphism Φ : D+
H → HM

6 such that Φ(gu) = φ(g)Φ(u). We
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have the following commutative diagram.

D+
H

Φ //

²²

HM
6

²²
D+

H/Γ // HM
6 /SpM

12(Z)

Proof. Now we have

ΠA,1 = t

[ ∫

A1

ω1, . . . ,

∫

A6

ω1

]

= t[ζ4u1, ζ5u1, ζ6u1, (1 + ζ)u3, (ζ2 − ζ4 + ζ6)u3, (1 + ζ + ζ4)u3],

ΠB,1 = t

[ ∫

B1

ω1, . . . ,

∫

B6

ω1

]

= t[u1, (1 + ζ)u1, (1 + ζ + ζ2)u1, ζ6u3, ζ5u3, (1 + ζ4 − ζ2 − ζ6)u3].

This correspondence
[

u1
u3

] 7→ [ ΠA,1
ΠB,1

]
define a linear map Φ1 : C2 → C12.

Since coefficients of u1 (or u3) in ΠA,1 and ΠB,1 give a Z-basis of Z[ζ],
there exists a homomorphism φ : GL2(Z[ζ]) → GL12(Z) such that Φ1(gu) =
φ(g)Φ1(u). Especially, we have φ(ζ4I2) = M and the image of φ is the
centralizer of M . We can easily check that the condition

|u1|2 + (1 + ζ3 + ζ4)|u3|2 < 0

for D+
H is equivalent to Riemann’s relation ([M83])

Im
( 6∑

i=1

∫

Bi

ω1

∫

Ai

ω1

)
> 0,

and hence φ(Γ) = SpM
12(Z). We give the map Φ, which is compatible with

Φ1, explicitly in Appendix. ¤

Remark 3.3 Let us define a homomorphism

λ : H1(Xt,Z) = 〈γ1, γ3〉Z[ρ] −→ Z[ζ]2,
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F1(ρ)γ1 + F3(ρ)γ3 7→ (F1(ζ4), F3(ζ4)).

By explicit computation, we see that the intersection form (which gives the
polarization) on H1(Xt,Z) is given by

E(x, y) =
1
7
TrQ(ζ)/Q((ζ3 − ζ4)tλ(x)H−1λ(y)).

4. Schwarz inverse and theta function

4.1. Abel-Jacobi map
For the normalized holomorphic 1-forms

~ξ = (ξ1, . . . , ξ6) = (ω1, . . . , ω6)Π−1
B

with respect to Ai and Bi in the previous section, period integrals satisfy

τ =
[ ∫

Ai

~ξ

]

1≤i≤6

∈ HM
6 ,

[ ∫

Bi

~ξ

]

1≤i≤6

= I6.

Let Div(Xt) be the group of divisors on Xt, and J(Xt) be the Jacobian
variety C6/(Z6τ + Z6). The Abel-Jacobi map with the base point P∞ is

Div(Xt) −→ J(Xt),
∑

miQi 7→
∑

mi

∫ Qi

P∞

~ξ mod Z6τ + Z6.

We denote this homomorphism by A, and a lift of A(D) by A(D) (Hence
A : Div(Xt) → C6 is a multi-valued map). As is well known, A factors
through

Div(Xt) −→ Pic(Xt) = Div(Xt)/{principal divisors}.

Since the base point is fixed by ρ, the map A is ρ-equivariant. Therefore the
image of a ρ-invariant divisor belongs to the set of fixed points of ρ, that is,
the (1− ρ)-torsion subgroup

J(Xt)1−ρ = {z ∈ J(Xt) | (1− ρ)z = 0}.

Lemma 4.1 The (1− ρ)-torsion subgroup is
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J(Xt)1−ρ = {A(mP0 + nP1) | m,n ∈ Z} ∼= (Z/7Z)2.

More explicitly, we have

A(mP0 + nP1) ≡ am,nτ + bm,n mod Z6τ + Z6

with

am,n =
1
7
(m, 2m, 3m, 2m + 3n, 2m + 3n, 0) ∈ 1

7
Z6,

bm,n =
1
7
(−m, −m, −m, 3m + n, 5m + 4n, m + 5n) ∈ 1

7
Z6.

Proof. It is obvious that Ker(1− ρ) ∼= (Z[ζ]/(1− ζ))2 ∼= (Z/7Z)2. Recall
that

γ1 = (1− ρ)i1(0, 1), γ2 = (1− ρ)i1(1,∞), γ3 = (1− ρ)i1(t, 1).

Computing intersection numbers, we see that

γ2 = A1 + A2 + A3 + B4 + B5 = ρ(γ1) + ρ3(γ1) + ρ5(γ1) + ρ5(γ3) + ρ3(γ3).

Therefore we have

i1(0, t) =
1
7
(6 + 5ρ + 4ρ2 + 3ρ3 + 2ρ4 + ρ5)γ1

=
1
7
(5A1 + 3A2 + A3 + 2B1 + 2B2 + 2B3),

i1(1,∞) =
1
7
(6 + 5ρ + 4ρ2 + 3ρ3 + 2ρ4 + ρ5)γ3

=
1
7
(−3A4 + 4A5 + 7A6 −B4 + 3B5 + 2B6),

i1(t, 1) =
1
7
(6 + 5ρ + 4ρ2 + 3ρ3 + 2ρ4 + ρ5)γ2

=
1
7
(A1 + 2A2 + 3A3 −B1 −B2 −B3)

+
1
7
(A4 + A5 − 7A6 + 5B4 −B5 + 4B6),
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namely,

∫ t

0

~ξ ≡ 1
7
(5, 3, 1, 0, 0, 0)τ +

1
7
(2, 2, 2, 0, 0, 0),

∫ ∞

1

~ξ ≡ 1
7
(0, 0, 0, 4, 4, 0)τ +

1
7
(0, 0, 0, 6, 3, 2),

∫ 1

t

~ξ ≡ 1
7
(1, 2, 3, 1, 1, 0)τ +

1
7
(6, 6, 6, 5, 6, 4) mod Z6 + τZ6.

As combinations of these integrals, we obtain explicit values of A(P0) and
A(P1). ¤

4.2. Theta function and Riemann constant
Let us consider Riemann’s theta function

ϑ(z, τ) =
∑

n∈Z6

exp[πinτ tn + 2πintz], (z, τ) ∈ C6 ×H6.

The Abel-Jacobi map A induces a birational morphism from Sym6Xt to
J(Xt), and W 5

A = A(Sym5Xt) is a translation of the theta divisor

Θ = {z ∈ J(Xt) | ϑ(z) = 0}.

More precisely, there exist a constant vector κ ∈ C6 such that ϑ(e, τ) = 0 if
and only if

e ≡ κ− A(Q1 + · · ·+ Q5) mod Z6τ + Z6

for some Q1, . . . , Q5 ∈ Xt. The constant κ (or its image κ in J(Xt)) is called
the Riemann constant. It is the image of a half canonical class by A ([M83,
Chapter II], Appendix to Section 3), and depends only on a symplectic basis
Ai, Bi and the base point of A. Since div(ω5) = 10P∞, the image of the
canonical class by A is 0 and κ must be a half period. Hence we have
κ = aτ + b for some a, b ∈ (1/2)Z6. By the same argument as the proof of
Lemma 5.4 in [K03], the corresponding theta characteristic (a, b) is invariant
under the action of M on Q12/Z12:
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M · (a, b) = (a, b)M−1 +
1
2
((CtD)0, (AtB)0), M =

[
A B
C D

]
,

where (M)0 is the diagonal vector of M . By explicit computations, we have

Lemma 4.2 The M -invariant theta characteristics are (am,n +a0, bm,n +
b0) with

a0 =
1
2
(1, 0, 1, 0, 0, 1), b0 =

1
2
(1, 1, 1, 0, 1, 0).

Especially, we have κ ≡ a0τ +b0. Since ϑ(−e) = ϑ(e) and κ is a half period,
we have

κ−W 5
A = Θ = −Θ = κ + W 5

A,

that is W 5
A = −W 5

A.

Let us consider J(X)1−ρ ∩W 5
A. By definition, we have

A(mP0 + nP1) ∈ W 5
A = −W 5

A

for 0 ≤ m,n ≤ 6 such that m + n ≤ 5 or (7−m) + (7− n) ≤ 5. The rest of
J(X)1−ρ are A(mP0 + nP1) with the following (m,n):

(1, 5), (1, 6), (2, 4) (2, 5), (2, 6), (3, 3), (3, 4), (3, 5),
(4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2).

Moreover we have the following reductions:

(6P0 + P1) = (2P1 + Pt + 4P∞) + div
(

x

y

)
,

(3P0 + 3P1) = (4Pt + 2P∞) + div
(

x(x− 1)
y4

)
,

(5P0 + P1) = (3P1 + 2Pt + P∞) + div
(

x

y2

)
,

(4P0 + 3P1) = (P0 + 4Pt + 2P∞) + div
(

x(x− 1)
y4

)
,



The Fermat septic and the Klein quartic 127

that is,

A(6P0 + P1), A(3P0 + 3P1), A(5P0 + P1), A(4P0 + 3P1) ∈ W 5
A.

By the equality W 5
A = −W 5

A and the symmetry for P0, P1, we see that
A(mP0 + nP1) ∈ W 5

A if

(m,n) 6= (2, 4), (2, 5), (3, 5), (4, 2), (5, 2), (5, 3).

The converse is also true:

Lemma 4.3 We have A(mP0 + nP1) /∈ W 5
A for

(m,n) = (2, 4), (2, 5), (3, 5), (4, 2), (5, 2), (5, 3).

Proof. To prove this, note that

(5P0 + 2P1) = (4P1 + 2Pt + P∞) + div
(

x

y2

)
,

and hence A(5P0 + 2P1) = A(4P1 + 2Pt). Moreover we have

A(3Pi + 5Pj) = −A(4Pi + 2Pj), i, j ∈ {0, 1}.

By symmetry for P0, P1 and Pt, it suffices to prove that A(4P0 +2P1) /∈ W 5
A.

Applying the Riemann-Roch formula for 4P0 + 2P1, we have

`(4P0 + 2P1) = `(K − 4P0 − 2P1) + 1,

where `(D) = dimH0(Xt,O(D)) and K is the canonical class. From the
vanishing order of ωi:

ω5 ω3 ω2 ω1 ω6 ω4

at P0 0 1 2 3 7 8
,

ω5 ω6 ω3 ω4 ω2 ω1

at P1 0 0 1 1 2 3
,

we see that there does not exist a holomorphic 1-form ω such that
div(ω) − 4P0 − 2P1 is positive. Therefore we have `(4P0 + 2P1) = 1
and H0(Xt,O(4P0 + 2P1)) contains only constant functions. This implies
A(4P0 + 2P1) /∈ W 5

A. ¤
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4.3. Jacobi inversion
We apply Theorem 4 in [Si71, Chapter 4, Section 11], for rational func-

tions

f : Xt −→ P1, (x, y) 7→ x, g : Xt −→ P1, (x, y) 7→ 1− x

on Xt. Then we have

f(Q1)×· · ·× f(Q6) =
1
E

7∏

k=1

ϑ(κ− A(Q1 + · · ·+ Q6) +
∫

ik(∞,0)
~ξ, τ)

ϑ(κ− A(Q1 + · · ·+ Q6), τ)
, (1)

g(Q1)×· · ·× g(Q6) =
1
E′

7∏

k=1

ϑ(κ− A(Q1 + · · ·+ Q6) +
∫

ik(∞,1)
~ξ, τ)

ϑ(κ− A(Q1 + · · ·+ Q6), τ)
, (2)

where constants E and E′ are independent of Q1, . . . , Q6, integrals∫
ik(∞,∗)

~ξ ∈ C6 are chosen such that

∫

i1(∞,∗)
~ξ + · · ·+

∫

i7(∞,∗)
~ξ = 0,

and A(Q1 + · · ·+ Q6) ∈ C6 takes the same value in the numerator and the
denominator.

Substituting 4P1+2Pt and 2P1+4Pt for Q1+ · · ·+Q6 in (1), and taking
their ratio, we have an expression of t2 by theta values:

t2 = (f(P1)2f(Pt)4)
/
(f(P1)4f(Pt)2)

=
7∏

k=1

ϑ(κ− A(2P1 + 4Pt) +
∫

ik(∞,0)
~ξ, τ)

ϑ(κ− A(2P1 + 4Pt), τ)

/

7∏

k=1

ϑ(κ− A(4P1 + 2Pt) +
∫

ik(∞,0)
~ξ, τ)

ϑ(κ− A(4P1 + 2Pt), τ)

=
7∏

k=1

ϑ(κ + a4,2τ + b4,2 +
∫

ik(∞,0)
~ξ, τ)

ϑ(κ + a4,2τ + b4,2, τ)

/

7∏

k=1

ϑ(κ + a5,2τ + b5,2 +
∫

ik(∞,0)
~ξ, τ)

ϑ(κ + a5,2τ + b5,2, τ)
. (3)
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Similarly, substituting 4P1 + 2Pt and 2P1 + 4Pt for Q1 + · · ·+ Q6 in (2), we
have

(1− t)2 = (g(P0)2g(Pt)4)
/
(g(P1)4g(Pt)2)

=
7∏

k=1

ϑ(κ− A(2P0 + 4Pt) +
∫

ik(∞,1)
~ξ, τ)

ϑ(κ− A(2P0 + 4Pt), τ)

/

7∏

k=1

ϑ(κ− A(4P0 + 2Pt) +
∫

ik(∞,1)
~ξ, τ)

ϑ(κ− A(4P0 + 2Pt), τ)

=
7∏

k=1

ϑ(κ + a2,4τ + b2,4 +
∫

ik(∞,1)
~ξ, τ)

ϑ(κ + a2,4τ + b2,4, τ)

/

7∏

k=1

ϑ(κ + a5,2τ + b5,2 +
∫

ik(∞,1)
~ξ, τ)

ϑ(κ + a5,2τ + b5,2, τ)
. (4)

The above expressions are simplified by introducing theta functions with
characteristcs a, b ∈ Q6:

ϑa,b(z, τ) = exp[πiaτ ta + 2πiat(z + b)]ϑ(z + aτ + b, τ)

=
∑

n∈Z6

exp[πi(n + a)τ t(n + a) + 2πi(n + a)t(z + b)].

We denote a theta constant ϑa,b(0, τ) by ϑa,b(τ). Let ϑ[m,n](z, τ) be
ϑa,b(z, τ) with characteristics a = am,n + a0, b = bm,n + b0 in Lemma 4.2.
With this notation, theta expressions (3) and (4) are

t2 =
7∏

k=1

ϑ[2,5](τ) ϑ[4,2](
∫

ik(∞,0)
~ξ, τ)

ϑ[4,2](τ) ϑ[2,5](
∫

ik(∞,0)
~ξ, τ)

,

(1− t)2 =
7∏

k=1

ϑ[5,2](τ) ϑ[2,4](
∫

ik(∞,1)
~ξ, τ)

ϑ[2,4](τ) ϑ[5,2](
∫

ik(∞,1)
~ξ, τ)

.

Putting
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∫

ik(∞,x)

~ξ =

{
a1,0τ + b1,0 (x = 0)

a0,1τ + b0,1 (x = 1)
(1 ≤ k ≤ 6),

∫

i7(∞,x)

~ξ =

{−6(a1,0τ + b1,0) (x = 0)

−6(a1,0τ + b1,0) (x = 1)

and using formulas

ϑa,b(a′τ + b′, τ) = exp[−πia′τ ta′ − 2πia′t(b + b′)]ϑa+a′,b+b′(0, τ),

a′, b′ ∈ Q6,

θ(a+a′,b+b′)(z, τ) = exp(2π
√−1atb′)θ(a,b)(z, τ), a′, b′ ∈ Z6,

we see that

7∏

k=1

ϑ[4,2](
∫

ik(∞,0)
~ξ, τ)

ϑ[2,5](
∫

ik(∞,0)
~ξ, τ)

= ζ3 ϑ[5,2](τ)7

ϑ[3,5](τ)7
,

7∏

k=1

ϑ[2,4](
∫

ik(∞,1)
~ξ, τ)

ϑ[5,2](
∫

ik(∞,1)
~ξ, τ)

=
ϑ[2,5](τ)7

ϑ[5,3](τ)7
.

Since ϑ−a,−b(−z, τ) = ϑa,b(z, τ), we can easily show the following equalities

ϑ[2,5](τ) = ϑ[5,2](τ), ϑ[2,4](τ) = ϑ[5,3](τ), ϑ[3,4](τ) = ϑ[4,3](τ).

Therefore the above expressions of t2 and (1− t)2 are simply

t2 = ζ3 ϑ[5,2](τ)14

ϑ[4,2](τ)14
, (1− t)2 =

ϑ[2,5](τ)14

ϑ[2,4](τ)14
.

Namely, there exist constants ε1 = ±1 and ε2 = ±1 such that

t = ζ3ε1

ϑ[5,2](τ)7

ϑ[4,2](τ)7
, 1− t = ε2

ϑ[2,5](τ)7

ϑ[2,4](τ)7
. (5)

For g =
[

A B
C D

] ∈ Sp2g(Z), theta constants ϑa,b(τ) satisfy the transfor-
mation formula
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ϑg·(a,b)(gτ) = µ(g) exp[2πiλa,b(g)]det(Cτ + D)1/2ϑ(a,b)(τ)

where

g · (a, b) = (a, b)g−1 +
1
2
((CtD)0, (AtB)0),

λa,b(g) = −1
2
(tatDBa− 2tatBCb + tbtCAb) +

1
2
(tatD −t btC)(AtB)0,

and µ(g) is a certain 8-th root of 1 depending only on g. Therefore, as
coordinates of P2(C), we have

[ϑg[2,4] : ϑg[2,5] : ϑg[3,5]](g · τ)

= [e[λ[2,4](g)]ϑ[2,4] : e[λ[2,5](g)]ϑ[2,5] : e[λ[3,5](g)]ϑ[3,5]](τ) (6)

where e[−] = exp[2πi−].
By explicit forms of σ0 = φ(h0) and σ1 = φ(h1) in Appendix, we see

that

λ[2,4](σ0) = 53/56, λ[2,5](σ0) = 53/56, λ[3,5](σ0) = 7/8,

λ[2,4](σ1) = 25/56, λ[2,5](σ1) = 19/392, λ[3,5](σ1) = 79/392,

and

ϑσ0[2,4] = e[5/14]ϑ[5,2], ϑσ0[2,5] = −ϑ[5,3], ϑσ0[3,5] = e[13/14]ϑ[4,2],

ϑσ1[2,4] = −ϑ[5,3], ϑσ1[2,5] = e[9/14]ϑ[4,2], ϑσ1[3,5] = e[4/7]ϑ[5,2].

Applying these for (6), we obtain

[ϑ[2,4] : ϑ[2,5] : ϑ[3,5]](σ0 · τ) = [−ϑ[2,5] : e[9/14]ϑ[2,4] : ϑ[3,5]](τ),

[ϑ[2,4] : ϑ[2,5] : ϑ[3,5]](σ1 · τ) = [ϑ[2,4] : e[67/98]ϑ[3,5] : e[45/98]ϑ[2,5]](τ).
(7)

Theorem 4.1 (1) The inverse of the Schwarz map

s : C− {0, 1} −→ D+
H , t 7→ u = [u1(t) : u3(t)]

is given by Γ(1−ζ)-invariant function t(u) = ζ5(ϑ[2,5](Φ(u))7/ϑ[3,5](Φ(u))7),
where Φ : D+

H → HM
6 is the modular embedding given in Appendix. In other
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words, Φ(u) ∈ HM
6 is the period matrix of an algebraic curve

y7 = x(x− 1)(x− t(u)).

(2) The analytic map

Th : D+
H −→ P2(C),

u 7→ [e[5/49]ϑ[2,4]ϑ[2,5] : ϑ[2,5]ϑ[3,5] : −ϑ[2,4]ϑ[3,5]](Φ(u))

induces an isomorphism D+
H/Γ((1− ζ)2) and the Fermat septic curve

F7 : X7 + Y 7 + Z7 = 0, [X : Y : Z] ∈ P2(C).

Proof. From (5), we have

1 = ε1ζ
5 ϑ[2,5](τ)7

ϑ[3,5](τ)7
+ ε2

ϑ[2,5](τ)7

ϑ[2,4](τ)7
.

Since this equation must be invariant under actions of σ0 = φ(h0) and
σ1 = φ(h1) in (7) (otherwise, the image of Th is not irreducible), we see
that ε1 = ε2 = 1 and

t = ζ5 ϑ[2,5](Φ(u))7

ϑ[3,5](Φ(u))7
.

Let us recall that Γ(1 − ζ) is projectively generated by h2
0 and h2

1, and
Γ((1−ζ)2) is projectively isomorphic to the commutator subgroup of Γ(1−ζ).
From (7), we see that

[ϑ[2,4] : ϑ[2,5] : ϑ[3,5]](σ2
0 · τ) = [ζϑ[2,4] : ζϑ[2,5] : ϑ[3,5]](τ),

[ϑ[2,4] : ϑ[2,5] : ϑ[3,5]](σ2
1 · τ) = [ϑ[2,4] : ζϑ[2,5] : ζϑ[3,5]](τ).

Therefore the commutator subgroup of Γ(1− ζ) acts trivially on

[ϑ[2,4](Φ(u)) : ϑ[2,5](Φ(u)) : ϑ[3,5](Φ(u))] ∈ P2,

and the map Th gives a (Z/7Z)2-equivariant isomorphism of D+
H/Γ((1−ζ)2)

and the Fermat septic curve. ¤
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4.4. Klein quartic
It is known that the Klein quartic curve

K4 : X3Y + Y 3Z + Z3X = 0, [X : Y : Z] ∈ P2(C),

is the quotient of F7 by an automorphism

α : F7 −→ F7, [X : Y : Z] 7→ [ζX : ζ3Y : Z]

which is induced by g0g
3
1 ∈ Γ(1− ζ) via the map Th. The quotient map is

given by

F7 −→ K4, [X : Y : Z] 7→ [XY 3 : Y Z3 : ZX3].

The Klein quartic K4 is isomorphic to the elliptic modular curve X (7) of
level 7, and also to a Shimura curve parametrizing a family of QM Abelian 6-
folds (see [E99]). The following Corollary gives a new moduli interpretation
of K4.

Corollary 4.1 The Klein quartic curve K4 is isomorphic to D+
H/ΓKlein,

where

ΓKlein =
{[

a b
c d

]
∈ Γ(1− ζ)

∣∣∣∣ a ≡ 1 mod (1− ζ)2
}

.

Proof. Let us recall the homomorphism

ν : Γ(1− ζ) −→ M2(F7), ν(g) =
1

1− ζ
(g − 1) mod 1− ζ

in the proof of Proposition 2.1. The kernel of ν is Γ((1− ζ)2) and the image
is generated by

ν(g0) =
[−1 0

0 0

]
, ν(g1) =

[
5 1
5 1

]
.

Since we have ν(ga
0gb

1) =
[−a+5b b

5b b

]
, the group ΓKlein is generated by Γ((1−

ζ)2) and g0g
3
1 . Namely we have D+

H/ΓKlein = F7/ 〈α〉. ¤

Let (A,E, ρ, λ) be a 4-tuple
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(1) A is a 6-dimensional complex Abelian variety V/Λ, where V is isomor-
phic to the tangent space T0A and Λ is isomorphic to H1(A,Z).

(2) E : Λ× Λ → Z is a principal polarization.
(3) ρ is an automorphism of order 7 preserving E, and the induced action

on T0A has eigenvalues ζ, ζ, ζ2, ζ2, ζ3, ζ4.
(4) λ : Λ → Z[ζ]2 is an isomorphism such that

λ(ρ(x)) = ζ4λ(x), E(x, y) =
1
7
TrQ(ζ)/Q

(
(ζ3 − ζ4)tλ(x)H−1λ(y)

)

(see Remark 3.3). Note that λ induces an isomorphism of the torsion
subgroup Ator and (Q(ζ)/Z[ζ])2.

An isomorphism f : (A,E, ρ, λ) → (A′, E′, ρ′, λ′) is defined as an isomor-
phism of Abelian varieties f : A → A′ such that f∗E′ = E, f ◦ ρ = ρ′ ◦ f

and λ = λ′ ◦ f . Then we see the following.

Corollary 4.2 We have isomorphisms

D+
H/Γ(m) ∼=

{
Set of (A,E, ρ, λ) modulo isomorphisms f such that

λ−1 ≡ (λ′ ◦ f)−1 on (m−1Z[ζ]/Z[ζ])2

}
,

D+
H/ΓKlein

∼=





Set of (A,E, ρ, λ) modulo isomorphisms f such that

(i) λ−1

(
1

(1− ζ)2
, 0

)
= (λ′ ◦ f)−1

(
1

(1− ζ)2
,

b

1− ζ

)

for ∃b ∈ Z[ζ]

(ii) λ−1

(
0,

1
1− ζ

)
= (λ′ ◦ f)−1

(
0,

1
1− ζ

)





.

5. K3 surface

In this final section, we construct K3 surfaces with a non-symplectic au-
tomorphism of order 7 attached to Xt, according to Garbagnati and Penegini
([GP]). For generalities on K3 surfaces and elliptic surfaces, see [SS10] and
references therein. Let us consider two curves

Xt : y7
1 = x1(x1 − 1)(x1 − t), X∞ : y7

2 = x2
2 − 1

and an affine algebraic surface
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St : y2 = x(x− z)(x− tz) + z10.

Note that Xt is a hyperelliptic curve of genus 3. The surface St is birational
to the quotient of Xt ×X∞ by an automorphism

ρ× ρ : Xt ×X∞ −→ Xt ×X∞, (x1, y1)× (x2, y2) 7→ (x1, ζy1)× (x2, ζy2),

and the rational quotient map Xt ×X∞ 99K St is given by

z = y1/y2, y = z5x2, x = zx1.

The minimal smooth compact model of St (denoted by the same symbol St)
is a K3 surface with an elliptic fibration

π : St −→ P1, (x, y, z) 7→ z.

To see this, let us consider a minimal Weierstrass form

S′t : y2 = x3 + G2(z)x + G3(z)

G2(z) = −1
3
(t2 − t + 1)z2,

G3(z) = z10 − 1
27

(2t− 1)(t + 1)(t− 2)z3

and the discriminant

∆(z) = 4G2(z)3 + 27G3(z)2

= z6{27z14 − 2(2t− 1)(t + 1)(t− 2)z7 − t2(t− 1)2}.

From this, we see that St is a K3 surface, and it has a singular fiber of
type I∗0 at z = 0, of type IV at z = ∞ and fourteen fibers of type I1 on
P1 − {0,∞}. Note that

dx1

y3
1

⊗ y2
2dy2

x2
∈ H0(Xt,Ω1)⊗H0(X∞,Ω1)

is the unique (ρ× ρ) - invariant element up to constants, and descents to a
holomorphic 2-form on St (see [GP, Section 3]). Therefore the period map
for a family of K3 surface St is given by the Schwarz map s. Note also that
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an automorphism ρ× id of Xt ×X∞ descends to St:

ρ× id : St −→ St, (x, y, z) 7→ (ζx, ζ5y, ζz).

Since St/ 〈ρ× id〉 is birational to a rational surface Xt/ 〈ρ〉 ×X∞/ 〈ρ〉, the
automorphism ρ×id is non-symplectic. Hence the transcendental lattice TSt

is a free Z[ρ× id]-module ([Ni79]). Since our family has positive dimensional
moduli, we have rank TSt

≥ 12 and rank NS(St) ≤ 10 for a general t ∈
C− {0, 1}, where NS(St) is the Néron-Severi lattice.

Let us compute the Néron-Severi lattice and the Mordell-Weil group
MW(St). Let o be the zero section of π : St → P1. We have three sections

sa : P1 −→ St, z 7→ (x, y, z) = (az, z5, z), a = 0, 1, t

such that s0 + s1 + st = o in MW(St). Let 2`0 + `1 + `2 + `3 + `4 be the
irreducible decomposition of π−1(0), and `′1 + `′2 + `′3 be that of π−1(∞).
For a suitable choice of indeces, intersection numbers of these curves are
given by the following graph; the self intersection number of each curve is
−2, two curves are connected by an edge if they intersect and intersection
numbers are 1 except sa · sb = 2 (Figure 4). Let N ⊂ NS(St) be the lattice
generated by o, s0, s1, st, `0, `1, `2, `3, `4, `′1. The rank of N is 10 and
the discriminant is −49. Hence the Picard number of St is generically 10
and the rank of MW(St) is 2 by the Shioda-Tate formula ([SS10, Corollary
6.13]). Since the fixed locus Sρ×id

t is contained in π−1(0) ∪ π−1(∞) and
no elliptic curve contained in Sρ×id

t , we see that NS(St) = U(7) ⊕ E8 by
the classification theorem of Artebani, Sarti and Taki ([AST11, Section 6]).
Therefore we have NS(St) = N . Let L be the lattice generated by the
zero section and vertical divisors. It is known that MW(St) ∼= NS(St)/L

`0h
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`2

`3

`4

h

h

h

h

o

s0

s1

st

h

h

h

h
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¡

¡
¡
¡

!!!!
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@
@
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2

22

Figure 4. intersection graph.
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([SS10, Theorem 6.3]). Now it is obvious that MW(St) = Zs0 ⊕ Zs1
∼= Z2.

Summarizing the above, we have the following proposition.

Proposition 5.1 For a general t ∈ C − {0, 1}, an elliptic K3 surface
St has transcendental lattice TSt

= U ⊕ U(7) ⊕ E8 and the Mordell-Weil
group MW(St) ∼= Z2. By the automorphism (x, y, z) 7→ (ζx, ζ5y, ζz), we
have TSt

∼= Z[ζ]2 and the period map for this 1-parameter family is given
by the Scwarz triangle mapping s(t) with the monodromy group ∆(7, 7, 7).
Therefore the Schwarz inverse t(u) is an example of “K3 modular function”
([Sh79,81]).

A. Appendix

A.1 Symplectic representation
Here we give the representation matrix M ∈ Sp12(Z) of ρ with respect to

symplectic basis Bi and Ai, and images of h0 and h1 by the homomorphism
φ in Proposition 3.1:

M =




0 0 0 −1 1 0
0 0 0 O 0 −1 1 O
−1 −1 −1 0 0 −1

−1 0 1 0 1 0
O 0 0 −2 O 1 −1 1

0 −1 1 0 1 −1

1 0 0
1 1 0 O O O
1 1 1

1 −1 −2 0 −1 0
O −1 1 1 O −1 0 0

−1 0 3 −1 1 −1




,

φ(h0) =




0 0 0 1 −1 0
0 0 0 O 0 1 −1 O
1 1 1 0 0 1

1 0 0
O 0 1 0 O O

0 0 1

−1 0 0
−1 −1 0 O O O
−1 −1 −1

1 0 0
O O O 0 1 0

0 0 1




,
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φ(h1) =




1 1 1 0 0 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1 0 1 0 1
0 0 1 1 0 0 0 0 1 0 0 0

0 1 2 1 1 0 1 1 0 2 1 1
1 2 2 0 1 2 0 1 1 1 2 0
0 0 1 0 1 0 1 0 0 1 0 1

−1 −1 −1 0 0 1 0 0 0 −1 0 −1
−1 −2 −2 0 0 0 −1 0 0 −2 −1 −1
−1 −2 −3 0 −1 −1 −1 −1 0 −2 −2 −1

1 1 1 −1 0 1 0 0 0 1 1 0
0 0 −1 0 −1 −1 0 0 −1 0 0 0
−1 −1 −1 0 0 −2 1 −1 −1 0 −1 1




.

A.2. Period matrix
Let ζ be exp[2πi/7] and put

α = 1 + ζ + ζ2 + ζ4 =
1 +

√−7
2

,

β1 = ζ − 2ζ2 − 2ζ4, β2 = −(2ζ3 + 1− ζ6 + 2ζ5).

The modular embedding Φ : D+
H → HM

6 in Proposition 3.1 is given by

Φ(u) =
1
∆

([
A11 O
O D11

]
u2

1 +
[

O B12
tB12 O

]
u1u2 +

[
A22 O
O D22

]
u2

2

)
,

where

∆ = (ζ2 + ζ + 1)(2ζ2 − ζ + 2)u2
1 + 3(ζ + 1)u2

2

and

A11 = (ζ2 + ζ + 1)(2ζ2 − ζ + 2)




α 0 −1
0 α− 1 −α

−1 −α 1


 ,

D11 = (ζ2 + 1)




2ζ6 + ζ5 − ζ3 − 1 2ζ6 − ζ3 −ζ3

2ζ6 − ζ3 ζ2 − ζ3 ζ6 − α

−ζ3 ζ6 − α α


 ,

B12 = (ζ3 − ζ5)




−β1 −β2 −1
ζ5β1 ζ5β2 ζ5

(1 + ζ6)β1 (1 + ζ6)β2 (1 + ζ6)


 ,
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A22 = −3




ζ(ζ5 − ζ2 − 1) ζ − 1 ζ3 + 1
ζ − 1 ζ5 − ζ2 + 1 ζ2

ζ3 + 1 ζ2 −ζ2(ζ + 1)


 ,

D22 = (ζ + 1)




3α− 2 α− 1 α

α− 1 2α− 1 −2
α −2 α + 1


 .
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[Na97] Nakayashiki A., On the Thomae formula for ZN curves. Publ. Res.

Inst. Math. Sci. 33 (1997), 987–1015.

[Ni79] Nikulin V. V., Finite automorphism groups of Kahler surfaces of type

K3. Proc. Moscow Math. Soc. 38 (1979), 75–137.

[P1883] Picard E., Sur les fonctions de deux vanables indépendantes analogues

aux fonctions modulaires. Acta math. 2 (1883), 114–135.

[R09] Rohde C., Cyclic Coverings, Calabi-Yau Manifolds and Complex

Multiplication. Springer LNM 1975 (2009).
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