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Schwarz maps associated

with the triangle groups (2,4,4) and (2,3,6)
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Abstract. We consider the Schwarz maps with monodromy groups isomorphic to

the triangle groups (2, 4, 4) and (2, 3, 6) and their inverses. We apply our formulas to

studies of mean iterations.
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1. Introduction

The Gauss hypergeometric function F (α, β, γ; z) is defined by the series

F (α, β, γ; z) =
∞∑

n=0

(α, n)(β, n)
(γ, n)(1, n)

zn,

where z is the main variable in the unit disk D = {z ∈ C | |z| < 1}, α, β, γ

are parameters with γ 6= 0,−1,−2, . . . , and (α, n) = α(α+1) · · · (α+n−1).
This function admits an integral representation

Γ (γ)
Γ (α)Γ (γ − α)

∫ ∞

1

tβ−γ(t− z)−β(t− 1)γ−α−1dt, (1.1)

and satisfies the hypergeometric differential equation

F(α, β, γ) : z(1− z)f ′′(z) + {γ − (α + β + 1)z}f ′(z)− αβf(z) = 0, (1.2)

which has only singular points of regular type at z = 0, 1,∞. The Schwarz
map is defined by the continuation to X = C − {0, 1} of the ratio of two
linearly independent solutions to F(α, β, γ) in a small simply connected
domain in X. It is well known that the inverse of the Schwarz map is single
valued if and only if each of
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r0 =
1

|1− γ| , r1 =
1

|γ − α− β| , r∞ =
1

|α− β|

belongs to {2, 3, . . . ,∞}. In this case, the projective monodromy group of
F(α, β, γ) is isomorphic to the triangle group (r0, r1, r∞) and the image of
the Schwarz map is isomorphic to





the complex projective line P1 if 1/r0 + 1/r1 + 1/r∞ > 1,

the complex plane C if 1/r0 + 1/r1 + 1/r∞ = 1,

the upper half space H if 1/r0 + 1/r1 + 1/r∞ < 1.

There are only finite sets

{r0, r1, r∞} = {2, 2,∞}, {2, 4, 4}, {2, 3, 6}, {3, 3, 3},

such that 1/r0 + 1/r1 + 1/r∞ = 1. All of them appear in studies of mean
iterations in [HKM] and [MO]. In particular, a limit formula of a mean
iteration associated to {2, 2,∞} is extended in [Ma1] to that of an iteration
of three means of three terms. Moreover, it is shown in [G] as a geometrical
background that this extended limit formula can be obtained from the twice
formula of an elliptic curve and the Abel-Jacobi map for it.

In this paper, we consider the Schwarz maps for two sets of the param-
eters

(α, β, γ) =
(

1
4
, 0,

1
2

)
,

(
1
3
, 0,

1
2

)

to study geometrically limit formulas of mean iterations associated to
{2, 4, 4} and {2, 3, 6}. The monodromy groups of F(α, β, γ) for these
sets of parameters are reducible and isomorphic to the triangle groups
(2, 4, 4) and (2, 3, 6), respectively. We give circuit matrices generating these
groups in Corollary 1. The images of the Schwarz maps are the quo-
tient of the complex torus Ei = C/(iZ + Z) by the multiplicative group
〈i〉 = {±1,±i} for (α, β, γ) = (1/4, 0, 1/2), and that of Eζ = C/(ζZ + Z)
by 〈ζ〉 = {±1,±ζ,±ζ2} for (α, β, γ) = (1/3, 0, 1/2), where i =

√−1 and
ζ = (1 +

√
3i)/2. We consider elliptic curves

Ci : u4 = t2(t− 1), Cζ : u6 = t3(t− 1),
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and relate these Schwarz maps and the Abel-Jacobi maps

i : Ci → Ei, ζ : Cζ → Eζ

defined by incomplete elliptic integrals on Ci and on Cζ . We express the
inverses of these Schwarz maps in terms of the theta function ϑa,b(z, τ) with
characteristics a, b; see Theorem 1 and Theorem 3. We study the pull-back
of the (1 + i)-multiple on Ei and that of the (1 + ζ)-multiple on Eζ under
the corresponding Abel-Jacobi maps. We show that Theorem 2 yields the
limit formula of the mean iteration in [HKM]:

lim
n→∞

n︷ ︸︸ ︷
m ◦ · · · ◦m(a, b) =

a

F (1/4, 1/2, 5/4; 1− b2/a2)2
(1, 1),

where a > b > 0 and

m : (a, b) 7→
(

a + b

2
,

√
a(a + b)

2

)
.

We have a similar result from the (1 + ζ)-multiple formula on the elliptic
curve Eζ in Theorem 4. We elucidate a geometric background of these limit
formulas as multiplications on the complex tori Ei and Eζ .

As by-products of our results, we evaluate some ϑa,b(0, τ) for τ = i, ζ in
terms of the Gamma function in Corollaries 3, 6, and give relations between
θa,b(z, τ) for τ = i, ζ and the hypergeometric function in Corollaries 5, 8.

2. The Schwarz map

2.1. Fundamental system of solutions to F(α,β, γ)
We define the Schwarz map as the ratio of solutions to F(α, β, γ) given

by the Euler type integral representations

f1(x) =
∫ x

1

tβ−γ(t− x)−β(t− 1)γ−α dt

t− 1
,

f2(x) =
∫ ∞

1

tβ−γ(t− x)−β(t− 1)γ−α dt

t− 1
,

where
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0 < Re(α) < Re(γ), Re(β) < 1.

For an element x in U = {x ∈ X | |x| < 1, |x−1| < 1}, they can be expressed
by the hypergeometric series. By (1.1),

f2(x) = B(γ − α, α) · F (α, β, γ;x),

where B(∗, ∗) denotes the beta function. By the variable change

s =
x− 1
t− 1

, i.e. t =
s + x− 1

s
, dt = − (x− 1)ds

s2

for the integral representation of f1(x) and (1.1), we have

f1(x) = eπi(γ−α)B(γ−α, 1−β)(1−x)γ−α−β ·F (γ−α, γ−β, γ−α−β+1; 1−x),

where θ1 = arg x and θ2 = arg(1−x) belong to the open interval (−π/2, π/2),
and the arguments of t, t− x, t− 1 on the open segments (1, x) and (1,∞)
belong to the intervals in Table 1. Here pay your attention to the argument
of t− 1 and the orientation of the path integral.

Table 1. Arguments of t, t− x and t− 1.

t ∈ (x, 1) t ∈ (1,∞)

arg(t) [min(0, θ1),max(0, θ1)] 0

arg(t− x) θ2 [min(0, θ2),max(0, θ2)]

arg(t− 1) π + θ2 0

Remark 1 When β = 0, the solution f1(x) is expressed as

f1(x) =
eπi(γ−α)

γ − α
· (1− x)γ−α · F (γ − α, γ, γ − α + 1; 1− x)

for |x− 1| < 1, and the solution f2(x) reduces to a constant

B(γ − α, α) =
Γ (γ − α)Γ (α)

Γ (γ)
.
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2.2. Monodromy representation of F(α,β, γ)
We take a base point ẋ in U . LetM be the monodromy representation of

F(α, β, γ) with respect to the base point ẋ. It is the homomorphism from the
fundamental group π1(X, ẋ) to the general linear group of the local solution
space to F(α, β, γ) on U arising from the analytic continuation along a loop
with terminal ẋ. We denote the image of ` ∈ π1(X, ẋ) by M`. Let `0 and
`1 be a loop starting from ẋ turning positively once around the point x = 0
and that around the point x = 1, respectively. Since π1(X, ẋ) is generated
by `0 and `1, M is determined by M0 = M`0 and M1 = M`1 . By the
basis t(f1(x), f2(x)), the transformations M0 and M1 are represented by
matrices M0 and M1. That is, the basis t(f1(x), f2(x)) is transformed into

Mi

(
f1(x)
f2(x)

)

by the analytic continuation along the loop `i. They are expressed by the
intersection matrix

H =




e(γ − α)− e(β)
e(γ − α)− 1

−e(γ − α)
e(γ − α)− 1

−e(β) + 1
e(γ − α)− 1

−e(γ) + 1
(e(γ − α)− 1)(e(α)− 1)




as in [Ma2], where e(α) = exp(2πiα).

Proposition 1 Suppose that

α, α− γ, β − γ /∈ Z, β /∈ N = {1, 2, 3, . . . }.

Then we have

M0 = λ0I2 − λ0 − 1
e2H e∗2

H e∗2e2 =
(
e(−γ) 1− e(−α)

0 1

)
,

M1 = I2 − 1− λ1

e1H e∗1
H e∗1e1 =

(
e(γ − α− β) 0
−1 + e(−β) 1

)
,

where λ0 = e(−γ), λ1 = e(γ − α− β),
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I2 =
(

1 0
0 1

)
, e1 = (1, 0), e2 = (0, 1), e∗1 =

(
1
0

)
, e∗2 =

(
0
1

)
.

We use this proposition for β ∈ Z− N with a base change

(
1 0
0 1− e(α)

)(
f1(x)
f2(x)

)
.

Corollary 1 In this case, M0 and M1 are transformed into

N0 =
(
e(−γ) −e(−α)

0 1

)
, N1 =

(
e(γ − α) 0

0 1

)
,

respectively. When (α, β, γ) = (1/4, 0, 1/2), N0, N1, (N0N1)−1 are

(−1 i
0 1

)
,

(
i 0
0 1

)
,

(
i 1
0 1

)
.

The group generated by these matrices is isomorphic to the triangle group
(2, 4, 4), and to the semi-direct product 〈i〉n Z[i]. When (α, β, γ) = (1/3, 0,

1/2), N0, N1, (N0N1)−1 are

(−1 ζ
0 1

)
,

(
ζ 0
0 1

)
,

(
ζ2 1
0 1

)
, ζ =

1 +
√

3i

2
.

The group generated by these matrices is isomorphic to the triangle group
(2, 3, 6), and to the semi-direct product 〈ζ〉n Z[ζ].

3. Theta functions

3.1. Basic properties of ϑa,b

The theta function with characteristics is defined by

ϑa,b(z, τ) =
∑

n∈Z
exp(πi(n + a)2τ + 2πi(n + a)(z + b)),

where z ∈ C and τ ∈ H are main variables, and a, b are rational parameters.
For a fixed τ , we denote ϑa,b(z, τ) by ϑa,b(z). In this subsection, we collect
useful formulas for ϑa,b(z, τ) in our study from [I] and [Mu].
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It is easy to see that this function satisfies

ϑa,b(z, τ) = e
(

a2τ

2
+ a(z + b)

)
ϑ0,0(z + aτ + b, τ),

ϑ−a,−b(z, τ) = ϑa,b(−z, τ),

ϑa,b(z + pτ + q, τ) = e
(

aq − p2τ

2
− pz − bp

)
ϑa,b(z, τ)

ϑa+p,b+q(z, τ) = e(aq)ϑa,b(z, τ),

ϑa,b(z + cτ + d, τ)
ϑa′,b′(z + cτ + d, τ)

= e(c(b′ − b))
ϑa+c,b+d(z, τ)
ϑa′+c,b′+d(z, τ)

,

where p, q ∈ Z and a′, b′ ∈ Q.
It is known that ϑa,b(z) = 0 if and only if

(
− a + p +

1
2

)
τ +

(
− b + q +

1
2

)
(p, q ∈ Z),

and they are simple zeroes. If (a1, b1), . . . , (ar, br) and (a′1, b
′
1), . . . , (a

′
r, b

′
r)

satisfy
r∑

i=1

(ai, bi) ≡
r∑

i=1

(a′i, b
′
i) mod Z2

then the product

F (z) =
r∏

i=1

ϑai,bi
(z)

ϑa′i,b
′
i
(z)

becomes an elliptic function with respect to the lattice Lτ = Zτ +Z, i.e., it
is meromorphic on C and satisfies

F (z) = F (z + 1) = F (z + τ).

Fact 1 (Jacobi’s derivative formula)

∂

∂z
ϑ1/2,1/2(z, τ)

∣∣∣∣
z=0

= −πϑ0,0(0, τ)ϑ0,1/2(0, τ)ϑ1/2,0(0, τ).
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Fact 2 (Transformation formulas)

ϑa,b(z, τ + 1) = e
(

a(1− a)
2

)
ϑa,a+b−1/2(z, τ),

ϑa,b

(
z

τ
,
−1
τ

)
= e(ab)

√
τ

i
e
(

z2

2τ

)
ϑb,−a(z, τ),

where
√

τ/i is positive when τ is purely imaginary.

Fact 3 (Addition formulas, Jacobi’s identity)

ϑ0,0(z1 + z2)ϑ0,0(z1 − z2)ϑ0,0(0)2

= ϑ0,0(z1)2ϑ0,0(z2)2 + ϑ1/2,1/2(z1)2ϑ1/2,1/2(z2)2

= ϑ0,1/2(z1)2ϑ0,1/2(z2)2 + ϑ1/2,0(z1)2ϑ1/2,0(z2)2,

ϑ0,1/2(z1 + z2)ϑ0,1/2(z1 − z2)ϑ0,1/2(0)2

= ϑ0,0(z1)2ϑ0,0(z2)2 − ϑ1/2,0(z1)2ϑ1/2,0(z2)2

= ϑ0,1/2(z1)2ϑ0,1/2(z2)2 − ϑ1/2,1/2(z1)2ϑ1/2,1/2(z2)2,

ϑ1/2,0(z1 + z2)ϑ1/2,0(z1 − z2)ϑ1/2,0(0)2

= ϑ0,0(z1)2ϑ0,0(z2)2 − ϑ0,1/2(z1)2ϑ0,1/2(z2)2

= ϑ1/2,0(z1)2ϑ1/2,0(z2)2 − ϑ1/2,1/2(z1)2ϑ1/2,1/2(z2)2,

ϑ1/2,1/2(z1 + z2)ϑ1/2,1/2(z1 − z2)ϑ0,0(0)2

= ϑ1/2,1/2(z1)2ϑ0,0(z2)2 − ϑ0,0(z1)2ϑ1/2,1/2(z2)2

= ϑ0,1/2(z1)2ϑ1/2,0(z2)2 − ϑ1/2,0(z1)2ϑ0,1/2(z2)2,

ϑ0,0(0)4 = ϑ0,1/2(0)4 + ϑ1/2,0(0)4.

3.2. Formulas for τ = i

In this subsection, we obtain several formulas for ϑa,b(z, i) in the case
of τ = i.

Lemma 1 We have

ϑa,b(iz, i) = e(ab) exp(πz2)ϑ−b,a(z, i),
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ϑ0,0(iz, i) = exp(πz2)ϑ0,0(z, i), ϑ0,1/2(iz, i) = exp(πz2)ϑ1/2,0(z, i),

ϑ1/2,0(iz, i)=exp(πz2)ϑ0,1/2(z, i), ϑ1/2,1/2(iz, i)= i exp(πz2)ϑ1/2,1/2(iz, i),

ϑ0,1/2(0, i) = ϑ1/2,0(0, i) =
ϑ0,0(0, i)

4
√

2
.

Proof. For the i-multiple formulas, we have only to substitute τ = i into
the second formula for ϑ−a,−b in Fact 2. We have ϑ0,1/2(0) = ϑ1/2,0(0) by
substituting z = 0 into the identity between ϑ0,1/2(iz) and ϑ1/2,0(z). By
Jacobi’s identity, we have ϑ0,0(0)4 = 2ϑ0,1/2(0)4. Note that ϑ0,0(0) and
ϑ0,1/2(0) take positive real values. ¤

Lemma 2 We have

ϑ0,0((1 + i)z, i) =
ϑ0,0(0, i)ϑ0,1/2(z, i)ϑ1/2,0(z, i)

exp(πi(1 + i)z2)ϑ0,1/2(0, i)ϑ1/2,0(0, i)
,

ϑ1/2,1/2((1 + i)z, i) = e
(

1
8

)
ϑ0,0(0, i)ϑ0,0(z, i)ϑ1/2,1/2(z, i)

exp(πi(1 + i)z2)ϑ0,1/2(0, i)ϑ1/2,0(0, i)
,

ϑ0,1/2((1+i)z, i)ϑ1/2,0((1 + i)z, i)=
ϑ0,0(z, i)4 − ϑ0,1/2(z, i)2ϑ1/2,0(z, i)2

exp(2πi(1+i)z2)ϑ0,1/2(0, i)ϑ1/2,0(0, i)
.

Proof. We set

η(z) = exp(πi(1 + i)z2)ϑ0,0((1 + i)z, i).

Since ϑ0,0(z) has simple zero at z = (i + 1)/2, the function η(z) has simple
zero at z = 1/2, i/2. By using the quasi periodicity of ϑ0,0(z), we can show
that

η(z + 1) = −η(z), η(z + i) = − exp(−2πi(i + 2z))η(z).

Thus the function

η(z)
ϑ0,1/2(z)ϑ1/2,0(z)

is a holomorphic elliptic function with respect to the lattice Li; it is a con-
stant. We can determine this constant by putting z = 0. The second formula
is obtained by the substitution z +1/2 into z for the first formula. We show
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the third formula. By Fact 3 for z1 = z and z2 = iz, we have

ϑ0,1/2(z+iz)ϑ0,1/2(z−iz)ϑ0,1/2(0)2 = ϑ0,0(z)2ϑ0,0(iz)2−ϑ1/2,0(z)2ϑ1/2,0(iz)2.

This identity together with Lemma 1 leads the third formula. ¤

3.3. Formulas for τ = ζ

In this subsection, we obtain several formulas for ϑa,b(z, ζ) in the case
of τ = ζ = (1 +

√
3i)/2.

Lemma 3 We have

ϑa,b(ωz, ζ) = e
(

a2

2
+ ab− 1

24

)
e
(

z2

2ζ

)
ϑ−a−b−1/2,a(z, ζ),

ϑa,b(ω2z, ζ) = e
(

ab +
b2 + b

2
+

1
24

)
e
(

z2

2ω

)
ϑb,−a−b−1/2(z, ζ),

ϑ0,0(ωz, ζ) = e
(−1

24

)
e
(

z2

2ζ

)
ϑ1/2,0(z, ζ),

ϑ0,0(ω2z, ζ) = e
(

1
24

)
e
(

z2

2ω

)
ϑ0,1/2(z, ζ),

ϑ0,1/2(ωz, ζ) = e
(−1

24

)
e
(

z2

2ζ

)
ϑ0,0(z, ζ),

ϑ0,1/2(ω2z, ζ) = e
(−1

12

)
e
(

z2

2ω

)
ϑ1/2,0(z, ζ),

ϑ1/2,0(ωz, ζ) = e
(

1
12

)
e
(

z2

2ζ

)
ϑ0,1/2(z, ζ),

ϑ1/2,0(ω2z, ζ) = e
(

1
24

)
e
(

z2

2ω

)
ϑ0,0(z, ζ),

ϑ1/2,1/2(ωz, ζ) = ωe
(

z2

2ζ

)
ϑ1/2,1/2(z, ζ),

ϑ1/2,1/2(ω2z, ζ) = ω2e
(

z2

2ω

)
ϑ1/2,1/2(z, ζ),

where ω = ζ2 = (−1 +
√

3i)/2.
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Proof. Fact 2 yields that

ϑa,b

(
z

ζ
,
−1
ζ

)
= e(ab)e

(−1
24

)
e
(

z2

2ζ

)
ϑb,−a(z, ζ),

= ϑa,b(−ωz, ζ − 1) = e
(

a(a− 1)
2

)
ϑa,−a+b+1/2(−ωz, ζ)

= e
(

a(a− 1)
2

)
ϑ−a,a−b−1/2(ωz, ζ).

By rewriting (a′, b′) = (−a, a − b − 1/2) i.e., (a, b) = (−a′,−a′ − b′ − 1/2)
for the identity

e(ab)e
(−1

24

)
e
(

z2

2ζ

)
ϑb,−a(z, ζ) = e

(
a(a− 1)

2

)
ϑ−a,a−b−1/2(ωz, ζ),

we have the first formula. To get the second formula, substitute z = ω2z

into the first formula. These formulas yield the others. ¤

Lemma 4 For τ = ζ, we have

ϑ0,0((1 + ζ)z) =
e(1/8)e((ω2+ω/2)z2)

ϑ0,0(0)2
ϑ1/2,0(z){ϑ0,0(z)2−iϑ0,1/2(z)2},

ϑ0,1/2((1 + ζ)z) =
e(1/8)e((ω2 + ω/2)z2)

ϑ0,1/2(0)2
ϑ0,0(z){ϑ0,1/2(z)2 − ϑ1/2,0(z)2},

ϑ1/2,0((1 + ζ)z) =
e((ω2 + ω/2)z2)

ϑ1/2,0(0)2
ϑ0,1/2(z){ϑ0,0(z)2 + iϑ1/2,0(z)2},

ϑ1/2,1/2((1 + ζ)z) =
e((ω2 + ω/2)z2)

ϑ0,0(0)2
ϑ1/2,1/2(z){ϑ0,0(z)2 + iϑ0,1/2(z)2}.

Proof. We apply addition formulas in Fact 3 to z1 = z and z2 = ζz, and
use Lemma 3. For example, we have

ϑ0,0((1 + ζ)z)ϑ0,0((1− ζ)z)ϑ0,0(0)2

= ϑ0,1/2(z)2ϑ0,1/2(ζz)2 + ϑ1/2,0(z)2ϑ1/2,0(ζz)2,
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ϑ0,0((1− ζ)z) = ϑ0,0(−ωz) = ϑ0,0(ωz) = e
(−1

24

)
e
(

z2

2ζ

)
ϑ1/2,0(z),

ϑ0,1/2(ζz)2 = ϑ0,1/2(−ω2z)2 = ϑ0,1/2(ω2z)2 = e
(−1

6

)
e
(

z2

ω

)
ϑ1/2,0(z)2,

ϑ1/2,0(ζz)2 = ϑ1/2,0(−ω2z)2 = ϑ1/2,0(ω2z)2 = e
(

1
12

)
e
(

z2

ω

)
ϑ0,0(z)2,

which yield the first formula. ¤

Lemma 5 Some theta constants ϑa,b(0, ζ) are related as follows:

ϑ0,1/2(0, ζ)=e
(−1

24

)
ϑ0,0(0, ζ), ϑ1/2,0(0, ζ)=e

(
1
24

)
ϑ0,0(0, ζ),

ϑ5/6,1/3(0, ζ)=e
(−1

8

)
ϑ1/3,1/3(0, ζ), ϑ1/3,5/6(0, ζ)=e

(−17
24

)
ϑ1/3,1/3(0, ζ).

ϑ1/3,1/3(0, ζ)=e
(

1
18

)
1
3
√

2
ϑ0,0(0, ζ), ϑ1/6,1/6(0, ζ)=e

(
1
72

) 4
√

3
3
√

2
ϑ0,0(0, ζ).

Proof. By substituting z = 0 and z = (ζ +1)/3 into formulas in Lemma 3,
we have the formulas in the first and second lines in this lemma. We show
the formulas in the third line. Substitute z = (ζ + 1)/3 and z = (ζ + 1)/6
into the first formula in Lemma 4. Then we have

ϑ0,0(ζ) =
e(1/8)e((ω2 + ω/2)(ζ + 1)2/9)

ϑ0,0(0)2

× ϑ1/2,0

(
ζ + 1

3

){
ϑ0,0

(
ζ + 1

3

)2

− iϑ0,1/2

(
ζ + 1

3

)2}
,

ϑ0,0

(
ζ

2

)
=

e(1/8)e((ω2 + ω/2)(ζ + 1)2/36)
ϑ0,0(0)2

× ϑ1/2,0

(
ζ + 1

6

){
ϑ0,0

(
ζ + 1

6

)2

− iϑ0,1/2

(
ζ + 1

6

)2}
.

By using shown formulas in this lemma, we can transform these identities
into
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ϑ0,0(0, ζ)3 =
2
ζ
ϑ1/3,1/3(0, ζ)3,

ϑ0,0(0, ζ)3 = ϑ1/3,1/3(0, ζ)(ϑ1/6,1/6(0, ζ)2 − ζϑ1/3,1/3(0, ζ)2).

Note that the last identity is equivalent to

ϑ1/6,1/6(0, ζ)2 =
ϑ0,0(0, ζ)3 + ζϑ1/3,1/3(0, ζ)3

ϑ1/3,1/3(0, ζ)
=

ζ + 1
2

· ϑ0,0(0, ζ)3

ϑ1/3,1/3(0, ζ)
.

By numerical computations, we can see that the identity

ϑ1/3,1/3(0, ζ) = e
(

1
18

)
1
3
√

2
ϑ0,0(0, ζ)

holds. This identity yields that

ϑ1/6,1/6(0, ζ)2 = e
(

1
36

)√
3

3
√

4
ϑ0,0(0, ζ)2.

By numerical computations, we can select a square root of e(1/36) so that
identity between ϑ1/6,1/6(0, ζ) and ϑ0,0(0, ζ) holds. ¤

4. The Schwarz map for (α,β, γ) = (1/4,0,1/2)

We study the Schwarz map for (α, β, γ) = (1/4, 0, 1/2) and its inverse
by using an elliptic curve with i-action and ϑa,b(z, i).

4.1. Abel-Jacobi map for Ci

Let Ci be an algebraic curve in P2 defined by

Ci : s4
2 = s0s

2
1(s1 − s0).

By affine coordinates (t, u) = (s1/s0, s2/s0), Ci is expressed by

u4 = t2(t− 1).

Note that the point (t, u) = (0, 0) in Ci is a node. We use the same symbol
Ci for a non-singular model of Ci. By a projection pr from the non-singular
model Ci to the complex projective line P1 arising from
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Ci 3 (t, u) 7→ t ∈ C,

we regard Ci as a branched covering P1 with a covering transformation ρi

arising from a map

ρi : Ci 3 (t, u) 7→ (t, iu) ∈ Ci.

The branch points of pr are t = 0, 1,∞. Each preimage of pr−1(1) and
pr−1(∞) consists of a point; P1 = pr−1(1) and P∞ = pr−1(∞) are expressed
as (t, u) = (1, 0) and [s0, s1, s2] = [0, 1, 0], respectively. On the other hand,
the preimage pr−1(0) consists of two points, which are denoted by P0,1 and
P0,2. The point P0,1 corresponds to

lim
x→0

x∈(0,1)

(
x, 4

√
x2(x− 1)

)
, arg x2(x− 1) = π

for x in the open interval (0, 1), and P0,2 is given by ρi(P0,1). By the Hurwitz
formula, Ci is an elliptic curve.

Let I1∞ be an oriented path in Ci given by

(
x, 4

√
x2(x− 1)

) ∈ Ci, x ∈ [1,∞],

where 4
√

x2(x− 1) takes positive real values for x ∈ [1,∞) and the interval
[1,∞] is naturally oriented. We define a cycle B by I1∞ − ρi · I1∞ and a
cycle A by ρi ·B. Since

B ·A = 1,

A and B form a basis of H1(Ci,Z).
The space of holomorphic 1-forms on Ci is one dimensional and it is

spanned by a form expressed by

ϕ =
udt

t(t− 1)
=

dt
4
√

t2(t− 1)3
.

The period integral
∫

B
ϕ is evaluated as

(1− i)
∫ ∞

1

dt
4
√

t2(t− 1)3
= (1− i)B

(
1
4
,
1
4

)
.
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On the other hand, we have
∫

A

ϕ =
∫

ρi(B)

ϕ =
∫

B

ρ∗i (ϕ) = i

∫

B

ϕ.

We normalize ϕ to ϕ1 as

ϕ1 =
1

(1− i)B(1/4, 1/4)
ϕ.

Then we have
∫

B

ϕ1 = 1,

∫

A

ϕ1 = i

and the Abel-Jacobi map

i : Ci 3 P =
(
x, 4

√
x2(x− 1)

) 7→ z =
∫ P

P1

ϕ1 ∈ Ei = C/Li,

where Li = Zi +Z ⊂ C. The map i is an isomorphism between Ci and Ei.

Proposition 2 The Abel-Jacobi map i sends points P1, P∞, P0,1 and
P0,2 to

i(P1) = 0, i(P∞) =
i + 1

2
, i(P0,1) =

i

2
, i(P0,2) =

1
2

as elements of Ei.

Proof. It is clear that i(P1) = 0 and i(P∞) = (i + 1)/2. We have

i(P0,1) =
1

(1− i)B(1/4, 1/4)

∫ 0

1

exp(πi/4)
4
√

s2(1− s)ds

s(s− 1)

=
i√
2
· Γ (1/2)2Γ (1/4)
Γ (1/4)2Γ (3/4)

=
i√
2
· π

π/ sin(π/4)
=

i

2
.

Since P0,2 = ρi(P0,1), i(P0,2) is equal to ii(P0,1) = −1/2 ≡ 1/2 modLi. ¤

We consider the relation between the Abel-Jacobi map i and the
Schwarz map
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x 7→ f1(x)
(1− i)f2(x)

=
2
√

2i

B(1/4, 1/4)
4
√

1− xF

(
1
4
,
1
2
,
5
4
, 1− x

)
(4.1)

for F(1/4, 0, 1/2). By Corollary 1, its monodromy group is generated by the
three transformations

N0 : z 7→ −z + i, N1 : z 7→ iz, (N0N1)−1 : z 7→ iz + 1,

and this group is isomorphic to the semi-direct product 〈i〉 n Z[i]. Note
that the information of a branch of 4

√
x2(x− 1) is lost in the Schwarz map.

Thus we can regard the Schwarz map as the Abel-Jacobi map i modulo the
actions of ρi and i; that is

Ci/〈ρi〉 3 x 7→
∫ x

1

ϕ1 ∈ Ei/〈i〉,

where 〈ρi〉 and 〈i〉 are the groups generated by ρi and i, respectively.

4.2. The inverse of i

In this subsection, we express the inverse of the Abel-Jacobi map i in
terms of ϑa,b(z, τ). We fix the variable τ to i and denote ϑa,b(z, i) by ϑa,b(z)
in short. Since the pull-backs −1

i

∗
(t) and −1

i

∗
(u) are elliptic functions with

respect to the lattice Li, they can be expressed as

−1
i

∗
(t) = θt(z), −1

i

∗
(u) = θu(z)

in terms of ϑa,b(z). It turns out that the map

Ei 3 z 7→ (θt(z), θu(z)) ∈ Ci

is the inverse of i.

Theorem 1 The inverse of i : Ci 3 (t, u) 7→ z ∈ Ei is given by

t = 2
ϑ0,1/2(z, i)2ϑ1/2,0(z, i)2

ϑ0,0(z, i)4
= 1− ϑ1/2,1/2(z, i)4

ϑ0,0(z, i)4
,

u = −(1− i)
ϑ0,1/2(z, i)ϑ1/2,0(z, i)ϑ1/2,1/2(z, i)

ϑ0,0(z, i)3
.

The holomorphic 1-form ϕ = udt/t(t− 1) on Ci corresponds to
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2(1− i)πϑ0,0(0, i)2dz = (1− i)B
(

1
4
,
1
4

)
dz

by the Abel-Jacobi map i.

Proof. We regard the coordinate t of Ci as a meromorphic function on Ci.
Its divisor is

2P0,1 + 2P0,2 − 4P∞.

We construct an elliptic function for Li with zero of order 2 at z = i/2, 1/2
and pole of order 4 at z = (i + 1)/2. Since

2 ·
(

0,
1
2

)
+ 2 ·

(
1
2
, 0

)
≡ 4 ·

(
1
2
,
1
2

)
mod Z2,

the function

ϑ0,1/2(z)2ϑ1/2,0(z)2

ϑ0,0(z)4

becomes an elliptic function for Li. Moreover, it has zero of order 2 at
z = i/2, 1/2, and pole of order 4 at z = (i + 1)/2, since ϑa,b(z) = 0 if and
only if z ≡ (−a + 1/2)i + (−b + 1/2) mod Z2. Thus the pull-back F (P ) of
this function under the map i is a constant multiple of t by Proposition 2.
Let us determine this constant. Lemma 1 yields that

ϑ0,1/2(0)2ϑ1/2,0(0)2

ϑ0,0(0)4
=

ϑ0,1/2(0)4

ϑ0,0(0)4
=

1
2
.

Thus 2F (P ) is equal to t.
Similarly we regard t−1 as a meromorphic function on Ci whose divisor

is

4P1 − 4P∞.

The function

ϑ1/2,1/2(z)4

ϑ0,0(z)4
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becomes an elliptic function for Li with zero of order 4 at z = 0 and pole
of order 4 at z = (i + 1)/2. The pull-back of this function under the map i

is a constant multiple of t− 1. By substituting P0,1 into this pull-back, we
can determine the constant. We have

t− 1 = −ϑ1/2,1/2(z)4

ϑ0,0(z)4
.

By regarding the coordinate u of Ci as a meromorphic function on Ci,
we see that its divisor is

P0,1 + P0,2 + P1 − 3P∞.

Thus it is the pull-back of

c · ϑ0,1/2(z)ϑ1/2,0(z)ϑ1/2,1/2(z)
ϑ0,0(z)3

under i, where c is a constant. Let us determine c. By u4 = t2(t − 1), we
have

c4 · ϑ0,1/2(z)4ϑ1/2,0(z)4ϑ1/2,1/2(z)4

ϑ0,0(z)12
=

4ϑ0,1/2(z)4ϑ1/2,0(z)4

ϑ0,0(z)8
· −ϑ1/2,1/2(z)4

ϑ0,0(z)4
,

which yields that c4 = −4, i.e., c = ik · (1 + i) for some k ∈ {0, 1, 2, 3}.
By the expressions t, t − 1 and u in terms of ϑa,b(z), it turns out that

the holomorphic 1-from ϕ = udt/t(t− 1) corresponds to

ik(1 + i) · ϑ0,1/2(z)ϑ1/2,0(z)ϑ1/2,1/2(z)
ϑ0,0(z)3

· ϑ0,0(z)4

2ϑ0,1/2(z)2ϑ1/2,0(z)2
· −ϑ0,0(z)4

ϑ1/2,1/2(z)4

· 4{ϑ0,0(z)3ϑ0,0(z)′ϑ1/2,1/2(z)4 − ϑ1/2,1/2(z)3ϑ1/2,1/2(z)′ϑ0,0(z)4}
ϑ0,0(z)8

dz

= −2ik(1 + i) · {ϑ0,0(z)′ϑ1/2,1/2(z)− ϑ1/2,1/2(z)′ϑ0,0(z)}
ϑ0,1/2(z)ϑ1/2,0(z)

dz,

which should be a constant multiple of dz. By putting z = 0 and using Fact
1, we have

ϕ = −2ik(1 + i)πϑ0,0(0)2∗i (dz).
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Since ϑ0,0(0)2 and

B

(
1
4
,
1
4

)
=

∫ ∞

1

ϕ =
∫ i(P∞)

i(P1)

−2ik(1 + i)πϑ0,0(0)2dz

= −2ik(1 + i)πϑ0,0(0)2 · 1 + i

2

are positive real numbers, k is equal to 1. Hence we have the expressions of
u and ϕ. ¤

Corollary 2 Let z ∈ Ei be the image of (t, u) ∈ Ci under the Abel-Jacobi
map i. Then we have

i
u2

t
=

ϑ1/2,1/2(z)2

ϑ0,0(z)2
, 1 + i

u2

t
=
√

2
ϑ0,1/2(z)2

ϑ0,0(z)2
, 1− i

u2

t
=
√

2
ϑ1/2,0(z)2

ϑ0,0(z)2
.

Moreover, ϑa,b(z)’s satisfy relations

√
2ϑ0,1/2(z)2 = ϑ0,0(z)2 + ϑ1/2,1/2(z)2,

√
2ϑ1/2,0(z)2 = ϑ0,0(z)2 − ϑ1/2,1/2(z)2.

Proof. The first identity is a direct consequence of Theorem 1. The right
hand side of the second identity is an elliptic function with respect to Li.
It has zero of order 2 at i(P0,1) and pole of order 2 at i(P∞). Since P0,1

corresponds to the limit as t → 0 given by the branch of u with arg(u) =
π/4 on the interval (0, 1), lim

t→0
i(u2/t) = −1. By comparing the zero and

pole of both functions, 1 + i(u2/t) is a constant multiple of the pull-back
of ϑ0,1/2(z)2/ϑ0,0(z)2 under i. We can determine this constant by the
substitution z = 0. The third identity is obtained by the action of ρi on the
second identity. By eliminating i(u2/t) from these identities, we have the
relations among ϑa,b(z)’s ¤

Corollary 3 We have

ϑ0,0(0, i) =
Γ (1/4)

4
√

4π3
=

4
√

π

Γ (3/4)
,

ϑ0,1/2(0, i) = ϑ1/2,0(0, i) =
Γ (1/4)
4
√

(2π)3
=

4
√

π
4
√

2Γ (3/4)
.
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Proof. By Theorem 1, we have

2πϑ0,0(0)2 = B

(
1
4
,
1
4

)
=

Γ (1/4)2√
π

.

Note that ϑ0,0(0) and Γ (1/4) are positive. To show the rest, use the inversion
formula for the Γ -function and Lemma 1. ¤

Corollary 4 The inverse of the Schwarz map (4.1) for F(1/4, 0, 1/2) is
given by

x = 2
ϑ0,1/2(z)2ϑ1/2,0(z)2

ϑ0,0(z)4
= 1− ϑ1/2,1/2(z)4

ϑ0,0(z)4
.

Proof. It is clear by Theorem 1. We can check this map is invariant under
the action of 〈i〉 by Lemma 1. ¤

Corollary 5 For any point z around 0, we have

− 2
√

2π

Γ (1/4)2
· ϑ1/2,1/2(z, i)

ϑ0,0(z, i)
· F

(
1
4
,
1
2
,
5
4
;
ϑ1/2,1/2(z, i)4

ϑ0,0(z, i)4

)
= z.

Proof. By Corollary 4, we have

2
√

2π

Γ (1/4)2
· ϑ1/2,1/2(z, i)

ϑ0,0(z, i)
· F

(
1
4
,
1
2
,
5
4
;
ϑ1/2,1/2(z, i)4

ϑ0,0(z, i)4

)
≡ z

modulo the monodromy group of F(1/4, 0, 1/2). Since the both sides of the
above become 0 for z = 0, their difference is represented as the group 〈i〉.
Consider the limit of the both sides as z → i/2 along the imaginary axis.
Use

ϑ1/2,1/2(i/2, i)
ϑ0,0(i/2, i)

= e
(

1
2
· −1

2

)
· ϑ0,1/2(0, i)
ϑ1/2,0(0, i)

= −i,

and the Gauss-Kummer formula

F (α, β, γ; 1) =
Γ (γ)Γ (γ − α− β)
Γ (γ − α)Γ (γ − β)

for Re(γ − α− β) > 0. ¤
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4.3. (1 + i)-multiplication
Theorem 2 Let z ∈ Ei be the image of (t, u) ∈ Ci under the Abel-Jacobi
map i. Then we have

−1
i ((1 + i)z) =

((
t− 2

t

)2

, (1 + i)
u(2− t)

t2

)
. (4.2)

Proof. We set

(t′, u′) = −1
i ((1 + i)z).

By Theorem 1, we have

t′ = 2
ϑ0,1/2((1 + i)z)2ϑ1/2,0((1 + i)z)2

ϑ0,0((1 + i)z)4
,

u′ = −(1− i)
ϑ0,1/2((1 + i)z)ϑ1/2,0((1 + i)z)ϑ1/2,1/2((1 + i)z)

ϑ0,0((1 + i)z)3
.

We transform them as

t′ = 2
ϑ4

0,1/2(0)ϑ4
1/2,0(0)

ϑ4
0,0(0)ϑ0,1/2(z)4ϑ1/2,0(z)4

· (ϑ0,0(z)4 − ϑ0,1/2(z)2ϑ1/2,0(z)2)2

ϑ0,1/2(0)2ϑ1/2,0(0)2

= 2
ϑ0,1/2(0)2ϑ1/2,0(0)2

ϑ0,0(0)4
· (ϑ0,0(z)4 − ϑ0,1/2(z)2ϑ1/2,0(z)2)2

ϑ0,1/2(z)4ϑ1/2,0(z)4
=

(
2
t
− 1

)2

,

u′ = −(1− i) · e(1/8)ϑ0,0(0)ϑ0,0(z)ϑ1/2,1/2(z)
ϑ0,1/2(0)ϑ1/2,0(0)

· ϑ0,0(z)4 − ϑ0,1/2(z)2ϑ1/2,0(z)2

ϑ0,1/2(0)ϑ1/2,0(0)

· ϑ0,1/2(0)3ϑ1/2,0(0)3

ϑ0,0(0)3
1

ϑ0,1/2(z)3ϑ1/2,0(z)3

= −
√

2 · ϑ0,1/2(0)ϑ1/2,0(0)
ϑ0,0(0)2

· ϑ0,0(z)ϑ1/2,1/2(z)(ϑ0,0(z)4 − ϑ0,1/2(z)2ϑ1/2,0(z)2)
ϑ0,1/2(z)3ϑ1/2,0(z)3
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= −ϑ0,0(z)8ϑ1/2,1/2(z)ϑ0,1/2(z)ϑ1/2,0(z)
ϑ0,1/2(z)4ϑ1/2,0(z)4ϑ0,0(z)3

+
ϑ0,0(z)4ϑ1/2,1/2(z)ϑ0,1/2(z)ϑ1/2,0(z)

ϑ0,1/2(z)2ϑ1/2,0(z)2ϑ0,0(z)3

=
4

(1− i)
u

t2
− 2

(1− i)
u

t
= (1 + i)

u(2− t)
t2

,

by Lemma 2 and Theorem 1. ¤

5. The Schwarz map for (α,β, γ) = (1/3,0,1/2)

In this section, we study the Schwarz map for (α, β, γ) = (1/3, 0, 1/2)
and its inverse by using an elliptic curve with ζ-action and ϑa,b(z, ζ), where
ζ = (1 +

√
3i)/2.

5.1. The Abel-Jacobi map for Cζ

Let Cζ be an algebraic curve in P2 defined by

Cζ : s6
2 = s2

0s
3
1(s1 − s0).

By affine coordinates (t, u) = (s1/s0, s2/s0), Cζ is expressed as

u6 = t3(t− 1).

Note that (t, u) = (0, 0) is a triple node and [s0, s1, s2] = [0, 1, 0] is a node.
We use the same symbol Cζ for a non-singular model of Cζ . We regard Cζ

as a cyclic 6-fold covering of the t-space with covering transformation

ρζ : (t, u) 7→ (t, ζu), ζ =
1 +

√−3
2

.

The branching information of this covering is as in Table 2. Here we set
some points in the non-singular model Cζ as follows:

P0,1 = lim
t→0

t∈(0,1)

(t, t1/2(t− 1)1/6), P0,2 = ρζ(P0,1), P0,3 = ρ2
ζ(P0,1),

P∞,1 = lim
t→∞

t∈(1,∞)

(t, t1/2(t− 1)1/6), P∞,2 = ρζ(P∞,1),
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Table 2. Branching information.

ramification point P0,1 P0,2 P0,3 P1 = (1, 0) P∞,1 P∞,2

projected point 0 0 0 1 ∞ ∞
ramification index 2 2 2 6 3 3

where arg(t) = arg(t−1) = 0 on the open interval I∞ = (1,∞) and arg(t) =
0, arg(t− 1) = π on the open interval I0 = (0, 1). By the Hurwitz formula,
Cζ is an elliptic curve.

We can regard t and u as meromorphic functions on Cζ . We give some
meromorphic functions on Cζ and their zero and pole divisors as in Table 3.
Pay your attention to the last three meromorphic functions for the setting
of branch of u. Note that

(
1 +

t

u2

)(
1 +

ζ2t

u2

)(
1 +

ζ4t

u2

)
= 1 +

1
t− 1

.

The preimage of I∞ under the natural projection consists of six copies ρi
ζ ·I∞

(i = 0, 1, . . . , 5). Since the terminal points of ρ2
ζ · I∞ coincide with that of

I∞, the formal difference B = ρ0
ζ · I∞ − ρ2

ζ · I∞ = (1 − ρ2
ζ) · I∞ is a cycle

of Cζ . Let A be the cycle ρζ · B. Then the intersection number B · A of
the cycles B and A is 1. Thus the cycles A and B form a basis of the first
homology group H1(Cζ ,Z) of Cζ .

A non-zero holomorphic 1-form ψ on Cζ is given by

ψ =
t2dt

u5
=

udt

t(t− 1)
=

t1/2(t− 1)1/6dt

t(t− 1)
.

It is easy to see that

ρ∗ζ(ψ) = ζψ.

Note that
∫

I∞
ψ =

∫ ∞

1

t1/2−1(t− 1)1/6−1dt =
∫ 1

0

s1/3−1(1− s)1/6−1ds = B

(
1
3
,
1
6

)
,

∫

A

ψ = ζ(1− ζ2)B
(

1
3
,
1
6

)
,

∫

B

ψ = (1− ζ2)B
(

1
3
,
1
6

)
.
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Table 3. Meromorphic functions on Cζ .

functions zero divisor pole divisor

t 2P0,1 + 2P0,2 + 2P0,3 3P∞,1 + 3P∞,2

t− 1 6P1 3P∞,1 + 3P∞,2

1 +
1

t− 1
2P0,1 + 2P0,2 + 2P0,3 6P1

u P0,1 + P0,2 + P0,3 + P1 2P∞,1 + 2P∞,2

u2

t

(
= 3
√

t− 1
)

2P1 P∞,1 + P∞,2

u3

t

(
=

√
t(t− 1)

)
P0,1 + P0,2 + P0,3 + 3P1 3P∞,1 + 3P∞,2

u3

t(t− 1)

(
=

√
t

t− 1

)
P0,1 + P0,2 + P0,3 3P1

1 +
ζ4t

u2

(
= 1 +

ζ4

3
√

t− 1

)
2P0,1 2P1

1 +
t

u2

(
= 1 +

1
3
√

t− 1

)
2P0,2 2P1

1 +
ζ2t

u2

(
= 1 +

ζ2

3
√

t− 1

)
2P0,3 2P1

We normalize ψ to ψ1 as

ψ1 =
1

(1− ζ2)B(1/3, 1/6)
ψ,

then we have
∫

A

ψ1 = ζ,

∫

B

ψ1 = 1.

The Abel-Jacobi map is defined by

ζ : Cζ 3 P 7→
∫ P

P1

ψ1 ∈ Eζ = C/Lζ ,
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where Lζ = Zζ + Z ⊂ C. The map ζ is an isomorphism between Cζ and
Eζ .

Proposition 3 We have

ζ(P1) = 0, ζ(P∞,1) =
ζ + 1

3
, ζ(P∞,2) =

2ζ + 2
3

,

ζ(P0,1) =
ζ

2
, ζ(P0,2) =

ζ + 1
2

, ζ(P0,3) =
1
2

as elements of Eζ .

Proof. It is obvious that ζ(P1) = 0. It is easy to see that

ζ(P∞,1) =
∫

I∞
ψ1 =

1
1− ζ2

=
ζ + 1

3
,

ζ(P∞,2) =
∫

ρζ ·I∞
ψ1 =

∫

I∞
ρ∗ζ(ψ1) = ζζ(P∞,1) =

ζ2 + ζ

3
≡ 2ζ + 2

3
mod Lζ .

Note that

ζ(P0,1) =
∫

I0

ψ1 =
1

(1− ζ2)B(1/3, 1/6)

∫ 0

1

t1/2(t− 1)1/6 dt

t(t− 1)
,

∫ 0

1

t1/2(t− 1)1/6 dt

t(t− 1)
= e

(
1
12

) ∫ 1

0

t1/2(1− t)1/6 dt

t(1− t)

= e
(

1
12

)
B

(
1
2
,
1
6

)
.

Thus we have

ζ(P0,1) =
e(1/12)
1− ζ2

· B(1/2, 1/6)
B(1/3, 1/6)

=
(ζ + 1)e(1/12)

3
· Γ (1/2)Γ (1/2)
Γ (2/3)Γ (1/3)

=
√

3e(1/6)
3

·
√

3
2

=
ζ

2
.

The rests are obtained as

ζ(P0,2) = ζζ(P0,1) ≡ ζ + 1
2

mod Lζ , ζ(P0,3) = ζ2ζ(P0,1) ≡ 1
2

mod Lζ ,
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since P0,2 = ρζ · P0,1 and P0,3 = ρ2
ζ · P0,1. ¤

We consider the relation between the Abel-Jacobi map ζ and the
Schwarz map

x 7→ f1(x)
(1− ζ2)f2(x)

=
2
√

3ζ

B(1/3, 1/6)
6
√

1− xF

(
1
6
,
1
2
,
7
6
; 1− x

)
(5.1)

for F(1/3, 0, 1/2). By Corollary 1, its monodromy group is generated by the
three transformations

N0 : z 7→ −z + ζ, N1 : z 7→ ζz, (N0N1)−1 : z 7→ ζ2z + 1,

and this group is isomorphic to the semi-direct product 〈ζ〉nZ[ζ]. Note that
the information of a branch of u = 6

√
x3(x− 1) is lost in the Schwarz map.

Thus we can regard the Schwarz map as the Abel-Jacobi map ζ modulo
the actions of ρζ and ζ; that is

Cζ/〈ρζ〉 3 x 7→
∫ x

1

ψ1 ∈ Eζ/〈ζ〉.

5.2. The inverse of ζ

We express the inverse of the Abel-Jacobi map ζ . We regard the co-
ordinates t and u as meromorphic functions on Cζ . The pull-backs −1

ζ

∗
(t)

and −1
ζ

∗
(u) are elliptic functions with respect to the lattice Lζ , they can be

expressed as

−1
ζ

∗
(t) = θt(z), −1

ζ

∗
(u) = θu(z)

in terms of theta functions with characteristics. It turns out that the map

Eζ 3 z 7→ (θt(z), θu(z)) ∈ Cζ

is the inverse of ζ .

Lemma 6 Let z be the image of (t, u) ∈ Cζ under the Abel-Jacobi map.
Then we have

1 +
t

u2
=
√

3i
ϑ0,0(z, ζ)2

ϑ1/2,1/2(z, ζ)2
, 1 +

ζ2t

u2
= −

√
3

ϑ1/2,0(z, ζ)2

ϑ1/2,1/2(z, ζ)2
,
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1 +
ζ4t

u2
=
√

3
ϑ0,1/2(z, ζ)2

ϑ1/2,1/2(z, ζ)2
.

Proof. By Table 3, we have

1 +
t

u2
= c · ϑ0,0(z)2

ϑ1/2,1/2(z)2
,

where c is a constant. We substitute P0,1 into the above, we have

1− ω = c · ϑ0,0(ζ/2)2

ϑ1/2,1/2(ζ/2)2
= c ·

(
− ϑ1/2,0(0)2

ϑ0,1/2(0)2

)
= −c · e

(
1
6

)
,

which yields c =
√

3i. The rests can be shown similarly. ¤

Lemma 7 The functions ϑ0,1/2(z, ζ)2 and ϑ1/2,0(z, ζ)2 are expressed as
linear combinations of ϑ0,0(z, ζ)2 and ϑ1/2,1/2(z, ζ)2:

ϑ0,1/2(z, ζ)2 = e
(−1

12

)(
ϑ0,0(z, ζ)2 − ω2ϑ1/2,1/2(z, ζ)2

)
,

ϑ1/2,0(z, ζ)2 = e
(

1
12

)(
ϑ0,0(z, ζ)2 + ωϑ1/2,1/2(z, ζ)2

)
.

Proof. By Lemma 6, we have

−√3
ϑ1/2,0(z)2

ϑ1/2,1/2(z)2
− 1 = ω

t

u2
= ω

(√
3i

ϑ0,0(z)2

ϑ1/2,1/2(z)2
− 1

)
,

√
3

ϑ0,1/2(z)2

ϑ1/2,1/2(z)2
− 1 = ω2 t

u2
= ω2

(√
3i

ϑ0,0(z)2

ϑ1/2,1/2(z)2
− 1

)
,

which yield this lemma. ¤

Lemma 8 Let z be the image of (t, u) ∈ Cζ under the Abel-Jacobi map.
Then we have

u3

t(t− 1)
= e

(−1
8

)
4
√

27
ϑ0,0(z, ζ)ϑ0,1/2(z, ζ)ϑ1/2,0(z, ζ)

ϑ1/2,1/2(z, ζ)3
.

Proof. By Table 3, we have
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u3

t(t− 1)
= c′

ϑ0,0(z)ϑ0,1/2(z)ϑ1/2,0(z)
ϑ1/2,1/2(z)3

,

where c′ is a constant. We consider the limit as t → ∞ with t ∈ (1,∞),
u ∈ (0,∞). The left hand side of the above converges to 1. On the other
hand, the right hand side of the above converges to

c′
ϑ0,0((ζ + 1)/3)ϑ0,1/2((ζ + 1)/3)ϑ1/2,0((ζ + 1)/3)

ϑ1/2,1/2((ζ + 1)/3)3

= c′e
(

1
3
·
(

1
2

+
1
2

))
ϑ1/3,1/3(0)ϑ1/3,5/6(0)ϑ5/6,1/3

(
0)

ϑ5/6,5/6(0)3

= c′e
(

1
3
− 1

8
− 17

24
+

3
6

)
ϑ1/3,1/3(0)3

ϑ1/6,1/6(0)3
= c′

ϑ1/3,1/3(0)3

ϑ1/6,1/6(0)3
= c′e

(
1
8

)
1

4
√

27

by Lemma 5. Hence we have c′ = e(−1/8) 4
√

27. ¤

Theorem 3 The inverse of ζ : Cζ 3 (t, u) 7→ z ∈ Eζ is given by

t =
−3
√

3iϑ0,0(z, ζ)2ϑ0,1/2(z, ζ)2ϑ1/2,0(z, ζ)2
(√

3iϑ0,0(z, ζ)2 − ϑ1/2,1/2(z, ζ)2
)3 ,

u = e
(−1

8

)
4
√

27
ϑ0,0(z, ζ)ϑ0,1/2(z, ζ)ϑ1/2,0(z, ζ)ϑ1/2,1/2(z, ζ)

(√
3iϑ0,0(z, ζ)2 − ϑ1/2,1/2(z, ζ)2

)2 .

Proof. Note that
(

1 +
t

u2

)(
1 +

ζ2t

u2

)(
1 +

ζ4t

u2

)
= 1 +

t3

u6
= 1 +

1
t− 1

.

By Lemma 6, we have

1 +
1

t− 1
= −3

√
3i

ϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2

ϑ1/2,1/2(z)6
,

which yields

t =
3
√

3iϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2

3
√

3iϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2 + ϑ1/2,1/2(z)6
.
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Rewrite ϑ0,1/2(z)2 and ϑ1/2,0(z)2 in the denominator of this expression by
ϑ0,0(z)2 and ϑ1/2,1/2(z)2 by Lemma 7. Then it can be factorized as

3
√

3iϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2 + ϑ1/2,1/2(z)6

= −(√
3iϑ0,0(z)2 − ϑ1/2,1/2(z)2

)3
.

Hence we have the expression of t.
By Lemmas 6 and 8, the functions 1+t/u2 and u3/t(t− 1) are expressed

in terms ϑa,b(z, ζ). We have

u =
u3

t(t− 1)
·
((

1 +
t

u2

)
− 1

)
· (t− 1)

= e
(−1

8

)
4
√

27
ϑ0,0(z)ϑ0,1/2(z)ϑ1/2,0(z)

ϑ1/2,1/2(z)3
·
√

3iϑ0,0(z)2 − ϑ1/2,1/2(z)2

ϑ1/2,1/2(z)2

· −ϑ1/2,1/2(z)6

3
√

3iϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2 + ϑ1/2,1/2(z)6

= e
(−1

8

)
4
√

27

· ϑ0,0(z)ϑ0,1/2(z)ϑ1/2,0(z)ϑ1/2,1/2(z)(
√

3iϑ0,0(z)2 − ϑ1/2,1/2(z)2)

−3
√

3iϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2 − ϑ1/2,1/2(z)6
.

Note that the denominator of the last term is (
√

3iϑ0,0(z)2− ϑ1/2,1/2(z)2)3.
Hence we have the expression of u. ¤

Corollary 6 The pull back of the holomorphic 1-from ψ = udt/t(t− 1)
under the map −1

ζ is

e
(−1

8

)
2π

4
√

27ϑ0,0(0, ζ)2dz.

The theta constant ϑ0,0(0, ζ) is evaluated as

ϑ0,0(0, ζ) = e
(

1
48

) 8
√

3
3
√

4π
Γ

(
1
3

)3/2

.
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The other theta constants ϑa,b(0, ζ) are

ϑ0,1/2(0, ζ) = e
(−1

48

) 8
√

3
3
√

4π
Γ

(
1
3

)3/2

,

ϑ1/2,0(0, ζ) = e
(

1
16

) 8
√

3
3
√

4π
Γ

(
1
3

)3/2

,

ϑ1/3,1/3(0, ζ) = e
(

11
144

) 8
√

3
2π

Γ

(
1
3

)3/2

,

ϑ1/6,1/6(0, ζ) = e
(

5
144

) 8
√

27
2π

Γ

(
1
3

)3/2

.

ϑ 5
6 ,1/3(0, ζ) = e

(−7
144

) 8
√

3
2π

Γ

(
1
3

)3/2

,

ϑ1/3, 5
6
(0, ζ) = e

(
53
144

) 8
√

3
2π

Γ

(
1
3

)3/2

.

Proof. Recall that

t

t− 1
= −3

√
3i

ϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2

ϑ1/2,1/2(z)6
.

Thus we have

dt

t2
= d

(
1− 1

t

)
= d

(
t− 1

t

)

=
dz

−3
√

3i

[
6ϑ1/2,1/2(z)5ϑ1/2,1/2(z)′ · ϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2

ϑ0,0(z)4ϑ0,1/2(z)4ϑ1/2,0(z)4

− ϑ1/2,1/2(z)6 · (ϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2)′

ϑ0,0(z)4ϑ0,1/2(z)4ϑ1/2,0(z)4

]
,

where f(z)′ = df(z)/dz. Since ψ = u · t/(t− 1) · dt/t2, the pull-back of ψ

under the map −1
ζ is e(−1/8) 4

√
27 times
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6ϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2ϑ1/2,1/2(z)′−ϑ1/2,1/2(z)(ϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2)′

(
√

3iϑ0,0(z)2 − ϑ1/2,1/2(z)2)2ϑ0,0(z)ϑ0,1/2(z)ϑ1/2,0(z)
dz.

It should be a constant times dz. We determine this constant by substituting
z = 0 into the above. By Fact 1 and Lemma 5, we have

−1
ζ

∗
(ψ) = e

(−1
8

)
2π

4
√

27ϑ0,0(0, ζ)2dz.

Note that

B

(
1
3
,
1
6

)
=

∫ ∞

1

ψ =
∫ ζ(P∞,1)

ζ(P1)

−1
ζ

∗
(ψ)

= e
(−1

8

)
2π

4
√

27ϑ0,0(0, ζ)2 ·
(

ζ + 1
3

− 0
)

by Proposition 3. The well-known formula

Γ

(
1
6

)
=

1
3
√

2

√
3√
π

Γ

(
1
3

)2

yields that

B

(
1
3
,
1
6

)
=

Γ (1/3)Γ (1/6)
Γ (1/2)

=
√

3
3
√

2π
Γ

(
1
3

)3

.

Hence we evaluate the theta constant as

ϑ0,0(0, ζ)2 = e
(

1
24

) 4
√

3
3
√

16π2
Γ

(
1
3

)3

.

We can determine the sign of ϑ0,0(0, ζ) by a numerical computation. The
rests can be obtained by Lemma 5. ¤

Corollary 7 The inverse of the Schwarz map (5.1) for F(1/3, 0, 1/2) is
given by

x =
−3
√

3iϑ0,0(z, ζ)2ϑ0,1/2(z, ζ)2ϑ1/2,0(z, ζ)2

(
√

3iϑ0,0(z, ζ)2 − ϑ1/2,1/2(z, ζ)2)3
.
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Proof. It is clear by Theorem 3. We can check this map is invariant under
the action of 〈ζ〉 by Lemma 3. ¤

Corollary 8 For any point z around 0, we have

3
√

16πζ2

Γ (1/3)3
· 1√

1−√3i
ϑ0,0(z, ζ)2

ϑ1/2,1/2(z, ζ)2

· F
(

1
6
,
1
2
,
7
6
;

ϑ1/2,1/2(z, ζ)6

(ϑ1/2,1/2(z, ζ)2 −√3iϑ0,0(z, ζ)2)3

)
= z,

where the branch of the square root is selected as
√

ζ2 = ζ for z = ζ/2.

Proof. Let z be the image of the Schwarz map (5.1). We have seen in
Proof of Theorem 3 that

1
1− x

=
3
√

3iϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2 + ϑ1/2,1/2(z)6

ϑ1/2,1/2(z)6

=
(ϑ1/2,1/2(z)2 −√3iϑ0,0(z)2)3

ϑ1/2,1/2(z)6
.

Thus we have the desired identity modulo the monodromy group of
F(1/3, 0, 1/2). Since the both sides of the above become 0 for z = 0, their
difference is represented as the group 〈ζ〉. Consider the limit of the both
sides as z → ζ/2 along the segment connecting 0 and ζ/2. Since 1/(1 − x)
converges to 1 by this limit, it turns out that x converges to 0. Use

1−
√

3i
ϑ0,0(ζ/2, ζ)2

ϑ1/2,1/2(ζ/2, ζ)2
= 1 +

√
3i

ϑ1/2,0(0, ζ)2

ϑ0,1/2(0, ζ)2
= 1 +

√
3iζ = ζ2

and the Gauss-Kummer formula. ¤

5.3. (1 + ζ)-multiplication
Theorem 4 Let z ∈ Eζ be the image of (t, u) ∈ Cζ under the Abel-Jacobi
map ζ . Then we have

−1
ζ ((1 + ζ)z) =

(
t(9− 8t)2

(4t− 3)3
, e

(
1
12

)√
3u

9− 8t

(4t− 3)2

)
. (5.2)
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Proof. We set (t′, u′) = −1
ζ ((1 + ζ)z). Then t′ is given by the substitution

z to (z + 1)z into the expression of t in Theorem 3. Rewrite ϑa,b((1 + ζ)z)
in terms of ϑa,b(z) by Lemma 4. Its numerator N(t′) is

N(t′) = 3
√

3iϑ0,0(z)2ϑ0,1/2(z)2ϑ1/2,0(z)2

× (ϑ0,0(z)2 − iϑ0,1/2(z)2)2(ϑ0,0(z)2 + iϑ1/2,0(z)2)2

× (ϑ0,1/2(z)2 − ϑ1/2,0(z)2)2,

and its denominator D(t′) is

D(t′) =
{− (√

3ϑ1/2,0(z)2 + ϑ1/2,1/2(z)2
)
(ϑ0,0(z)4 − ϑ0,1/2(z)4)

+ 2i
(√

3ϑ1/2,0(z)2 − ϑ1/2,1/2(z)2
)
ϑ0,0(z)2ϑ0,1/2(z)2

}3
.

In this computation, the theta constants ϑ0,0(0), ϑ0,1/2(0), ϑ1/2,0(0) are
canceled by Lemma 5. Divide them by ϑ1/2,1/2(z)18 and rewrite

ϑ0,0(z)2

ϑ1/2,1/2(z)2
=

1 + t/u2

√
3i

,
ϑ1/2,0(z)2

ϑ1/2,1/2(z)2
=

1 + ωt/u2

−√3
,

ϑ0,1/2(z)2

ϑ1/2,1/2(z)2
=

1 + ω2t/u2

√
3

.

Then we have

t′ =
(−(t3 + u6)(t3 − 8u6)2

27u18

)/(−(t3 + 4u6)3

27u18

)
=

t(9− 8t)2

(4t− 3)3
,

where we use the relation u6 = t3(t− 1).
By the same way, we can express u′ in terms of ϑa,b(z)’s, whose numer-

ator N(u′) and denominator D(u′) are

N(u′) = e
(

1
8

)
4
√

27ϑ0,0(z)ϑ0,1/2(z)ϑ1/2,0(z)ϑ1/2,1/2(z)

· (ϑ0,1/2(z)2 − ϑ1/2,0(z)2
)(

ϑ0,0(z)4 + ϑ0,1/2(z)4
)

· (ϑ0,0(z)2 + iϑ1/2,0(z)2
)
,
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D(u′) =
{(√

3ϑ1/2,0(z)2 + ϑ1/2,1/2(z)2
)
(ϑ0,0(z)4 − ϑ0,1/2(z)4)

− 2i
(√

3ϑ1/2,0(z)2 − ϑ1/2,1/2(z)2
)
ϑ0,0(z)2ϑ0,1/2(z)2

}2
.

Divide them by ϑ1/2,1/2(z)8(
√

3iϑ0,0(z)2 − ϑ1/2,1/2(z)2)2. We factor out u

from the numerator as

N(u′)

ϑ1/2,1/2(z)8(
√

3iϑ0,0(z)2 − ϑ1/2,1/2(z)2)2

= iu

`
ϑ0,1/2(z)2 − ϑ1/2,0(z)2

´`
ϑ0,0(z)4 + ϑ0,1/2(z)4

´`
ϑ0,0(z)2 + iϑ1/2,0(z)2

´

ϑ1/2,1/2(z)8
.

Since the rest terms are expressed in terms of ϑa,b(z)2, we can compute them
quite similarly to the case of t′. Hence we have

u′ = iu

(
(3i−√3)(−t3 + 8u6)t

18u8

)/(
(t3 + 4u6)2

9t2u8

)
=

3 +
√

3i

2
·u · (9− 8t)

(4t− 3)2
.

It is easy to see that (t′, u′) satisfies u′6 = t′3(t′ − 1). ¤

6. Limits of mean iterations

6.1. Limit formula by F (1/4,1/2,5/4;x)
Theorem 2 is interpreted as follows.

Theorem 5 Let Px = (x, 4
√

x2(x− 1)) be a point of the curve C. We set

Px′ =
(

(2− x)2

x2
,
(1 + i)(2− x) 4

√
x2(x− 1)

x2

)
∈ C.

Then we have
∫ Px′

P1

ϕ ≡ (1 + i)
∫ Px

P1

ϕ mod 〈i〉n Z[i].

Corollary 9 The following identity holds around x = 1:

1√
x

F

(
1
4
,
1
2
,
5
4
, 1− (2− x)2

x2

)
= F

(
1
4
,
1
2
,
5
4
, 1− x

)
.
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Proof. Theorem 5 implies that

∫ (2−x)2/x2

1

4
√

t2(t− 1)dt

t(t− 1)
≡ (1 + i)

∫ x

1

4
√

t2(t− 1)dt

t(t− 1)
mod 〈i〉n Z[i].

Note that
∫ x

1

4
√

t2(t− 1)dt

t(t− 1)
= 2

√
2(1 + i) 4

√
1− xF

(
1
4
,
1
2
,
5
4
, 1− x

)
,

4

√
1− (2− x)2

x2
= 4

√
4x− 4

x2
= (1 + i)

4
√

1− x√
x

,

for 0 < x < 1 and arg(1−(2−x)2/x2) = π. We can cancel the factor 4
√

1− x

and determine the action of 〈i〉 n Z[i] by the substitution x = 1. Thus we
have the desired identity. ¤

Let a = a1 and b = b1 be positive real numbers. We define a pair
{an, bn}n∈N of sequences by the recursive relations

an+1 =
an + bn

2
, bn+1 =

√
an(an + bn)

2
. (6.1)

Corollary 10 (A formula in Theorem 2 in [HKM]) We have

lim
n→∞

an = lim
n→∞

bn =
a

F (1/4, 1/2, 5/4; 1− b2/a2)2
.

Proof. We can show that the sequences {an} and {bn} converge and
lim

n→∞
an = lim

n→∞
bn by Lemma 1 in [HKM]. Substitute x = 2a/(a + b)

into the identity between hypergeometric series in Corollary 9. Since

2− x

x
=

b

a
,

we have
√

a + b√
2a

F

(
1
4
,
1
2
,
5
4
; 1− b2

a2

)
= F

(
1
4
,
1
2
,
5
4
; 1− 2a

a + b

)
,
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a

F (1/4, 1/2, 5/4; 1− b2/a2)2

=
(a + b)/2

F
(
1/4, 1/2, 5/4; 1− (√

a(a + b)/2/((a + b)/2)
)2)2

=
a2

F (1/4, 1/2, 5/4; 1− b2
2/a2

2)2
= · · · = an

F (1/4, 1/2, 5/4; 1− b2
n/a2

n)2
.

The last term is equal to lim
n→∞

an since lim
n→∞

(b2
n/a2

n) = 1 and F (1/4, 1/2,

5/4; 0) = 1. ¤

Hence we see that the (1+i)-multiple formula (4.2) in Theorem 2 implies
this limit formula for the sequences defined by the mean iteration (6.1).

6.2. Limit formula by F (1/6,1/2,7/6;x)
Theorem 4 is interpreted as follows.

Theorem 6 Let Px = (x, 6
√

x3(x− 1)) be a point of the curve Cζ . We set

Px′ =
(

x(9− 8x)2

(4x− 3)3
, e

(
1
12

)√
3 6
√

x3(x− 1)
9− 8x

(4x− 3)2

)
∈ Cζ .

Then we have
∫ Px′

P1

ψ ≡ (1 + ζ)
∫ Px

P1

ψ mod 〈ζ〉n Z[ω].

Corollary 11 The following identity holds around x = 1:

F

(
1
6
,
1
2
,
7
6
; 1− x

)
=

1√
4x− 3

F

(
1
6
,
1
2
,
7
6
; 1− x(9− 8x)2

(4x− 3)3

)
,

where
√

4x− 3 = 1 for x = 1.

Proof. Theorem 6 implies that

∫ x′

1

6
√

t3(t− 1)dt

t(t− 1)
≡ (1 + ζ)

∫ x

1

6
√

t3(t− 1)dt

t(t− 1)
mod 〈ζ〉n Z[ω],

for x′ = x(9− 8x)2/(4x− 3)3. By this relation, there exists k ∈ N such that
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ζk
6
√

27(x− 1)√
4x− 3

F

(
1
6
,
1
2
,
7
6
; 1− x(9− 8x)2

(4x− 3)3

)

= (1 + ζ) 6
√

1− xF

(
1
6
,
1
2
,
7
6
; 1− x

)
.

We cancel (1 + ζ) 6
√

1− x and 6
√

27(x− 1), and choose k = 0 so that the
identity holds for x = 1. ¤

By Corollary 11, we define two means as follows. We solve the cubic
equation

x(9− 8x)2

(4x− 3)3
=

b2

a2

of the variable x, where we assume 0 < a < b. A real solution x0 of this
equation is

3
8

[ 3
√

a2

√
b2 − a2

(
3
√

b +
√

b2 − a2 − 3
√

b−
√

b2 − a2
)

+ 2
]
.

We set

η1 = b +
√

b2 − a2, η2 = b−
√

b2 − a2. (6.2)

Note that

η1η2 = a2,
η1 + η2

2
= b,

η1 − η2

2
=

√
b2 − a2.

We express x0 and 4x0 − 3 in terms of η1 and η2 as

x0 =
3
8

[
3
√

η1
3
√

η2

(η1−η2)/2
(

3
√

η1− 3
√

η2

)
+2

]
=

3
4

[
3
√

η1
3
√

η2

3
√

η2
1+ 3

√
η1

3
√

η2+ 3
√

η2
2

+1
]

=
3
4

( 3
√

η1 + 3
√

η2)2

3
√

η2
1 + 3

√
η1

3
√

η2 + 3
√

η2
2

,

4x0 − 3 =
3
2

[
3
√

η1
3
√

η2

(η1 − η2)/2
(

3
√

η1 − 3
√

η2

)
+ 2

]
− 3 =

3 3
√

η1
3
√

η2

3
√

η2
1 + 3

√
η1

3
√

η2 + 3
√

η2
2

.
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Thus the identity in Corollary 11 is transformed into

F

(
1
6
,
1
2
,
7
6
; 1−

(
3
√

η1 + 3
√

η2

2

)2/(√
η
2/3
1 + η

1/3
1 η

1/3
2 + η

2/3
2

3

)2
)

=
1
3
√

a

√
η
2/3
1 + η

1/3
1 η

1/3
2 + η

2/3
2

3
F

(
1
6
,
1
2
,
7
6
; 1− b2

a2

)
.

This formula is equivalent to

a

F (1/6, 1/2, 7/6; 1− b2/a2)

=
m1(a, b)

F (1/6, 1/2, 7/6; 1−m2(a, b)2/m1(a, b)2)
(6.3)

if we define two means m1 and m2 of positive real numbers a and b by

m1(a, b) =
a2/3

√
η
2/3
1 + η

1/3
1 η

1/3
2 + η

2/3
2√

3
, m2(a, b) =

a2/3(η1/3
1 + η

1/3
2 )

2
,

where η1 and η2 are given in (6.2) with conditions

−π

6
< arg(η1/3

i ) <
π

6
, η

1/3
1 η

1/3
2 = a2/3.

Let a1 = a and b1 = b be positive real numbers. We give a pair of sequences
{an, bn}n∈N with initial terms a1 = a, b1 = b by the recursive relations

an+1 = m1(an, bn), bn+1 = m2(an, bn). (6.4)

Corollary 12 (A formula in Theorem 3 in [HKM]) We have

lim
n→∞

an = lim
n→∞

bn =
a

F (1/6, 1/2, 7/6; 1− b2/a2)
.

Proof. It is shown in §5 of [HKM] that the sequences {an} and {bn} con-
verge and satisfy lim

n→∞
an = lim

n→∞
bn. By (6.3), we have
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a

F (1/6, 1/2, 7/6; 1− b2/a2)
=

a2

F (1/6, 1/2, 7/6; 1− b2
2/a2

2)

=
a3

F (1/6, 1/2, 7/6; 1− b2
3/a2

3)
= · · ·

=
an

F (1/6, 1/2, 7/6; 1− b2
n/a2

n)
= · · · = lim

n→∞
an,

since lim
n→∞

(b2
n/a2

n) = 1 and F (1/6, 1/2, 7/6; 0) = 1. ¤

Hence we see that the (1+ζ)-multiple formula (5.2) in Theorem 4 implies
this limit formula for the sequences defined by the mean iteration (6.4).
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