Schwarz maps associated with the triangle groups $(2,4,4)$ and $(2,3,6)$

Yuto Koguchi, Keiji Matsumoto and Fuko Seto

(Received May 8, 2015; Revised February 15, 2017)

Abstract

We consider the Schwarz maps with monodromy groups isomorphic to the triangle groups $(2,4,4)$ and $(2,3,6)$ and their inverses. We apply our formulas to studies of mean iterations.

Key words: Schwarz map, theta function, mean iteration.

1. Introduction

The Gauss hypergeometric function $F(\alpha, \beta, \gamma ; z)$ is defined by the series

$$
F(\alpha, \beta, \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha, n)(\beta, n)}{(\gamma, n)(1, n)} z^{n}
$$

where z is the main variable in the unit disk $\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}, \alpha, \beta, \gamma$ are parameters with $\gamma \neq 0,-1,-2, \ldots$, and $(\alpha, n)=\alpha(\alpha+1) \cdots(\alpha+n-1)$. This function admits an integral representation

$$
\begin{equation*}
\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma-\alpha)} \int_{1}^{\infty} t^{\beta-\gamma}(t-z)^{-\beta}(t-1)^{\gamma-\alpha-1} d t \tag{1.1}
\end{equation*}
$$

and satisfies the hypergeometric differential equation

$$
\begin{equation*}
\mathcal{F}(\alpha, \beta, \gamma): z(1-z) f^{\prime \prime}(z)+\{\gamma-(\alpha+\beta+1) z\} f^{\prime}(z)-\alpha \beta f(z)=0 \tag{1.2}
\end{equation*}
$$

which has only singular points of regular type at $z=0,1, \infty$. The Schwarz map is defined by the continuation to $X=\mathbb{C}-\{0,1\}$ of the ratio of two linearly independent solutions to $\mathcal{F}(\alpha, \beta, \gamma)$ in a small simply connected domain in X. It is well known that the inverse of the Schwarz map is single valued if and only if each of

$$
r_{0}=\frac{1}{|1-\gamma|}, \quad r_{1}=\frac{1}{|\gamma-\alpha-\beta|}, \quad r_{\infty}=\frac{1}{|\alpha-\beta|}
$$

belongs to $\{2,3, \ldots, \infty\}$. In this case, the projective monodromy group of $\mathcal{F}(\alpha, \beta, \gamma)$ is isomorphic to the triangle group $\left(r_{0}, r_{1}, r_{\infty}\right)$ and the image of the Schwarz map is isomorphic to

$$
\begin{cases}\text { the complex projective line } \mathbb{P}^{1} & \text { if } 1 / r_{0}+1 / r_{1}+1 / r_{\infty}>1 \\ \text { the complex plane } \mathbb{C} & \text { if } 1 / r_{0}+1 / r_{1}+1 / r_{\infty}=1 \\ \text { the upper half space } \mathbb{H} & \text { if } 1 / r_{0}+1 / r_{1}+1 / r_{\infty}<1\end{cases}
$$

There are only finite sets

$$
\left\{r_{0}, r_{1}, r_{\infty}\right\}=\{2,2, \infty\},\{2,4,4\},\{2,3,6\},\{3,3,3\}
$$

such that $1 / r_{0}+1 / r_{1}+1 / r_{\infty}=1$. All of them appear in studies of mean iterations in [HKM] and [MO]. In particular, a limit formula of a mean iteration associated to $\{2,2, \infty\}$ is extended in [Ma1] to that of an iteration of three means of three terms. Moreover, it is shown in [G] as a geometrical background that this extended limit formula can be obtained from the twice formula of an elliptic curve and the Abel-Jacobi map for it.

In this paper, we consider the Schwarz maps for two sets of the parameters

$$
(\alpha, \beta, \gamma)=\left(\frac{1}{4}, 0, \frac{1}{2}\right), \quad\left(\frac{1}{3}, 0, \frac{1}{2}\right)
$$

to study geometrically limit formulas of mean iterations associated to $\{2,4,4\}$ and $\{2,3,6\}$. The monodromy groups of $\mathcal{F}(\alpha, \beta, \gamma)$ for these sets of parameters are reducible and isomorphic to the triangle groups $(2,4,4)$ and $(2,3,6)$, respectively. We give circuit matrices generating these groups in Corollary 1. The images of the Schwarz maps are the quotient of the complex torus $E_{i}=\mathbb{C} /(i \mathbb{Z}+\mathbb{Z})$ by the multiplicative group $\langle i\rangle=\{ \pm 1, \pm i\}$ for $(\alpha, \beta, \gamma)=(1 / 4,0,1 / 2)$, and that of $E_{\zeta}=\mathbb{C} /(\zeta \mathbb{Z}+\mathbb{Z})$ by $\langle\zeta\rangle=\left\{ \pm 1, \pm \zeta, \pm \zeta^{2}\right\}$ for $(\alpha, \beta, \gamma)=(1 / 3,0,1 / 2)$, where $i=\sqrt{-1}$ and $\zeta=(1+\sqrt{3} i) / 2$. We consider elliptic curves

$$
C_{i}: u^{4}=t^{2}(t-1), \quad C_{\zeta}: u^{6}=t^{3}(t-1)
$$

and relate these Schwarz maps and the Abel-Jacobi maps

$$
\jmath_{i}: C_{i} \rightarrow E_{i}, \quad \jmath_{\zeta}: C_{\zeta} \rightarrow E_{\zeta}
$$

defined by incomplete elliptic integrals on C_{i} and on C_{ζ}. We express the inverses of these Schwarz maps in terms of the theta function $\vartheta_{a, b}(z, \tau)$ with characteristics a, b; see Theorem 1 and Theorem 3. We study the pull-back of the $(1+i)$-multiple on E_{i} and that of the $(1+\zeta)$-multiple on E_{ζ} under the corresponding Abel-Jacobi maps. We show that Theorem 2 yields the limit formula of the mean iteration in $[\mathrm{HKM}]$:

$$
\lim _{n \rightarrow \infty} \overbrace{m \circ \cdots \circ m}^{n}(a, b)=\frac{a}{F\left(1 / 4,1 / 2,5 / 4 ; 1-b^{2} / a^{2}\right)^{2}}(1,1)
$$

where $a>b>0$ and

$$
m:(a, b) \mapsto\left(\frac{a+b}{2}, \sqrt{\frac{a(a+b)}{2}}\right)
$$

We have a similar result from the $(1+\zeta)$-multiple formula on the elliptic curve E_{ζ} in Theorem 4. We elucidate a geometric background of these limit formulas as multiplications on the complex tori E_{i} and E_{ζ}.

As by-products of our results, we evaluate some $\vartheta_{a, b}(0, \tau)$ for $\tau=i, \zeta$ in terms of the Gamma function in Corollaries 3, 6 , and give relations between $\theta_{a, b}(z, \tau)$ for $\tau=i, \zeta$ and the hypergeometric function in Corollaries 5, 8.

2. The Schwarz map

2.1. Fundamental system of solutions to $\mathcal{F}(\alpha, \beta, \gamma)$

We define the Schwarz map as the ratio of solutions to $\mathcal{F}(\alpha, \beta, \gamma)$ given by the Euler type integral representations

$$
\begin{aligned}
& f_{1}(x)=\int_{1}^{x} t^{\beta-\gamma}(t-x)^{-\beta}(t-1)^{\gamma-\alpha} \frac{d t}{t-1} \\
& f_{2}(x)=\int_{1}^{\infty} t^{\beta-\gamma}(t-x)^{-\beta}(t-1)^{\gamma-\alpha} \frac{d t}{t-1}
\end{aligned}
$$

where

$$
0<\operatorname{Re}(\alpha)<\operatorname{Re}(\gamma), \quad \operatorname{Re}(\beta)<1
$$

For an element x in $U=\{x \in X| | x|<1,|x-1|<1\}$, they can be expressed by the hypergeometric series. By (1.1),

$$
f_{2}(x)=B(\gamma-\alpha, \alpha) \cdot F(\alpha, \beta, \gamma ; x)
$$

where $B(*, *)$ denotes the beta function. By the variable change

$$
s=\frac{x-1}{t-1}, \quad \text { i.e. } \quad t=\frac{s+x-1}{s}, \quad d t=-\frac{(x-1) d s}{s^{2}}
$$

for the integral representation of $f_{1}(x)$ and (1.1), we have
$f_{1}(x)=e^{\pi i(\gamma-\alpha)} B(\gamma-\alpha, 1-\beta)(1-x)^{\gamma-\alpha-\beta} \cdot F(\gamma-\alpha, \gamma-\beta, \gamma-\alpha-\beta+1 ; 1-x)$,
where $\theta_{1}=\arg x$ and $\theta_{2}=\arg (1-x)$ belong to the open interval $(-\pi / 2, \pi / 2)$, and the arguments of $t, t-x, t-1$ on the open segments $(1, x)$ and $(1, \infty)$ belong to the intervals in Table 1. Here pay your attention to the argument of $t-1$ and the orientation of the path integral.

Table 1. Arguments of $t, t-x$ and $t-1$.

	$t \in(x, 1)$	$t \in(1, \infty)$
$\arg (t)$	$\left[\min \left(0, \theta_{1}\right), \max \left(0, \theta_{1}\right)\right]$	0
$\arg (t-x)$	θ_{2}	$\left[\min \left(0, \theta_{2}\right), \max \left(0, \theta_{2}\right)\right]$
$\arg (t-1)$	$\pi+\theta_{2}$	0

Remark 1 When $\beta=0$, the solution $f_{1}(x)$ is expressed as

$$
f_{1}(x)=\frac{e^{\pi i(\gamma-\alpha)}}{\gamma-\alpha} \cdot(1-x)^{\gamma-\alpha} \cdot F(\gamma-\alpha, \gamma, \gamma-\alpha+1 ; 1-x)
$$

for $|x-1|<1$, and the solution $f_{2}(x)$ reduces to a constant

$$
B(\gamma-\alpha, \alpha)=\frac{\Gamma(\gamma-\alpha) \Gamma(\alpha)}{\Gamma(\gamma)}
$$

2.2. Monodromy representation of $\mathcal{F}(\alpha, \beta, \gamma)$

We take a base point \dot{x} in U. Let \mathcal{M} be the monodromy representation of $\mathcal{F}(\alpha, \beta, \gamma)$ with respect to the base point \dot{x}. It is the homomorphism from the fundamental group $\pi_{1}(X, \dot{x})$ to the general linear group of the local solution space to $\mathcal{F}(\alpha, \beta, \gamma)$ on U arising from the analytic continuation along a loop with terminal \dot{x}. We denote the image of $\ell \in \pi_{1}(X, \dot{x})$ by \mathcal{M}_{ℓ}. Let ℓ_{0} and ℓ_{1} be a loop starting from \dot{x} turning positively once around the point $x=0$ and that around the point $x=1$, respectively. Since $\pi_{1}(X, \dot{x})$ is generated by ℓ_{0} and ℓ_{1}, \mathcal{M} is determined by $\mathcal{M}_{0}=\mathcal{M}_{\ell_{0}}$ and $\mathcal{M}_{1}=\mathcal{M}_{\ell_{1}}$. By the basis ${ }^{t}\left(f_{1}(x), f_{2}(x)\right)$, the transformations \mathcal{M}_{0} and \mathcal{M}_{1} are represented by matrices M_{0} and M_{1}. That is, the basis ${ }^{t}\left(f_{1}(x), f_{2}(x)\right)$ is transformed into

$$
M_{i}\binom{f_{1}(x)}{f_{2}(x)}
$$

by the analytic continuation along the loop ℓ_{i}. They are expressed by the intersection matrix

$$
H=\left(\begin{array}{cc}
\frac{\mathbf{e}(\gamma-\alpha)-\mathbf{e}(\beta)}{\mathbf{e}(\gamma-\alpha)-1} & \frac{-\mathbf{e}(\gamma-\alpha)}{\mathbf{e}(\gamma-\alpha)-1} \\
\frac{-\mathbf{e}(\beta)+1}{\mathbf{e}(\gamma-\alpha)-1} & \frac{-\mathbf{e}(\gamma)+1}{(\mathbf{e}(\gamma-\alpha)-1)(\mathbf{e}(\alpha)-1)}
\end{array}\right)
$$

as in [Ma2], where $\mathbf{e}(\alpha)=\exp (2 \pi i \alpha)$.
Proposition 1 Suppose that

$$
\alpha, \quad \alpha-\gamma, \quad \beta-\gamma \notin \mathbb{Z}, \quad \beta \notin \mathbb{N}=\{1,2,3, \ldots\}
$$

Then we have

$$
\begin{aligned}
& M_{0}=\lambda_{0} I_{2}-\frac{\lambda_{0}-1}{e_{2} H e_{2}^{*}} H e_{2}^{*} e_{2}=\left(\begin{array}{cc}
\mathbf{e}(-\gamma) & 1-\mathbf{e}(-\alpha) \\
0 & 1
\end{array}\right) \\
& M_{1}=I_{2}-\frac{1-\lambda_{1}}{e_{1} H e_{1}^{*}} H e_{1}^{*} e_{1}=\left(\begin{array}{cc}
\mathbf{e}(\gamma-\alpha-\beta) & 0 \\
-1+\mathbf{e}(-\beta) & 1
\end{array}\right)
\end{aligned}
$$

where $\lambda_{0}=\mathbf{e}(-\gamma), \lambda_{1}=\mathbf{e}(\gamma-\alpha-\beta)$,

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad e_{1}=(1,0), \quad e_{2}=(0,1), \quad e_{1}^{*}=\binom{1}{0}, \quad e_{2}^{*}=\binom{0}{1}
$$

We use this proposition for $\beta \in \mathbb{Z}-\mathbb{N}$ with a base change

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 1-\mathbf{e}(\alpha)
\end{array}\right)\binom{f_{1}(x)}{f_{2}(x)}
$$

Corollary 1 In this case, M_{0} and M_{1} are transformed into

$$
N_{0}=\left(\begin{array}{cc}
\mathbf{e}(-\gamma) & -\mathbf{e}(-\alpha) \\
0 & 1
\end{array}\right), \quad N_{1}=\left(\begin{array}{cc}
\mathbf{e}(\gamma-\alpha) & 0 \\
0 & 1
\end{array}\right),
$$

respectively. When $(\alpha, \beta, \gamma)=(1 / 4,0,1 / 2), N_{0}, N_{1},\left(N_{0} N_{1}\right)^{-1}$ are

$$
\left(\begin{array}{cc}
-1 & i \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
i & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
i & 1 \\
0 & 1
\end{array}\right)
$$

The group generated by these matrices is isomorphic to the triangle group $(2,4,4)$, and to the semi-direct product $\langle i\rangle \ltimes \mathbb{Z}[i]$. When $(\alpha, \beta, \gamma)=(1 / 3,0$, $1 / 2), N_{0}, N_{1},\left(N_{0} N_{1}\right)^{-1}$ are

$$
\left(\begin{array}{cc}
-1 & \zeta \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
\zeta & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
\zeta^{2} & 1 \\
0 & 1
\end{array}\right), \quad \zeta=\frac{1+\sqrt{3} i}{2}
$$

The group generated by these matrices is isomorphic to the triangle group $(2,3,6)$, and to the semi-direct product $\langle\zeta\rangle \ltimes \mathbb{Z}[\zeta]$.

3. Theta functions

3.1. Basic properties of $\boldsymbol{\vartheta}_{\boldsymbol{a}, \boldsymbol{b}}$

The theta function with characteristics is defined by

$$
\vartheta_{a, b}(z, \tau)=\sum_{n \in \mathbb{Z}} \exp \left(\pi i(n+a)^{2} \tau+2 \pi i(n+a)(z+b)\right)
$$

where $z \in \mathbb{C}$ and $\tau \in \mathbb{H}$ are main variables, and a, b are rational parameters. For a fixed τ, we denote $\vartheta_{a, b}(z, \tau)$ by $\vartheta_{a, b}(z)$. In this subsection, we collect useful formulas for $\vartheta_{a, b}(z, \tau)$ in our study from [I] and $[\mathrm{Mu}]$.

It is easy to see that this function satisfies

$$
\begin{aligned}
\vartheta_{a, b}(z, \tau) & =\mathbf{e}\left(\frac{a^{2} \tau}{2}+a(z+b)\right) \vartheta_{0,0}(z+a \tau+b, \tau), \\
\vartheta_{-a,-b}(z, \tau) & =\vartheta_{a, b}(-z, \tau), \\
\vartheta_{a, b}(z+p \tau+q, \tau) & =\mathbf{e}\left(a q-\frac{p^{2} \tau}{2}-p z-b p\right) \vartheta_{a, b}(z, \tau) \\
\vartheta_{a+p, b+q}(z, \tau) & =\mathbf{e}(a q) \vartheta_{a, b}(z, \tau), \\
\frac{\vartheta_{a, b}(z+c \tau+d, \tau)}{\vartheta_{a^{\prime}, b^{\prime}}(z+c \tau+d, \tau)} & =\mathbf{e}\left(c\left(b^{\prime}-b\right)\right) \frac{\vartheta_{a+c, b+d}(z, \tau)}{\vartheta_{a^{\prime}+c, b^{\prime}+d}(z, \tau)}
\end{aligned}
$$

where $p, q \in \mathbb{Z}$ and $a^{\prime}, b^{\prime} \in \mathbb{Q}$.
It is known that $\vartheta_{a, b}(z)=0$ if and only if

$$
\left(-a+p+\frac{1}{2}\right) \tau+\left(-b+q+\frac{1}{2}\right) \quad(p, q \in \mathbb{Z})
$$

and they are simple zeroes. If $\left(a_{1}, b_{1}\right), \ldots,\left(a_{r}, b_{r}\right)$ and $\left(a_{1}^{\prime}, b_{1}^{\prime}\right), \ldots,\left(a_{r}^{\prime}, b_{r}^{\prime}\right)$ satisfy

$$
\sum_{i=1}^{r}\left(a_{i}, b_{i}\right) \equiv \sum_{i=1}^{r}\left(a_{i}^{\prime}, b_{i}^{\prime}\right) \bmod \mathbb{Z}^{2}
$$

then the product

$$
F(z)=\prod_{i=1}^{r} \frac{\vartheta_{a_{i}, b_{i}}(z)}{\vartheta_{a_{i}^{\prime}, b_{i}^{\prime}}(z)}
$$

becomes an elliptic function with respect to the lattice $L_{\tau}=\mathbb{Z} \tau+\mathbb{Z}$, i.e., it is meromorphic on \mathbb{C} and satisfies

$$
F(z)=F(z+1)=F(z+\tau)
$$

Fact 1 (Jacobi's derivative formula)

$$
\left.\frac{\partial}{\partial z} \vartheta_{1 / 2,1 / 2}(z, \tau)\right|_{z=0}=-\pi \vartheta_{0,0}(0, \tau) \vartheta_{0,1 / 2}(0, \tau) \vartheta_{1 / 2,0}(0, \tau)
$$

Fact 2 (Transformation formulas)

$$
\begin{aligned}
& \vartheta_{a, b}(z, \tau+1)=\mathbf{e}\left(\frac{a(1-a)}{2}\right) \vartheta_{a, a+b-1 / 2}(z, \tau) \\
& \vartheta_{a, b}\left(\frac{z}{\tau}, \frac{-1}{\tau}\right)=\mathbf{e}(a b) \sqrt{\frac{\tau}{i}} \mathbf{e}\left(\frac{z^{2}}{2 \tau}\right) \vartheta_{b,-a}(z, \tau)
\end{aligned}
$$

where $\sqrt{\tau / i}$ is positive when τ is purely imaginary.
Fact 3 (Addition formulas, Jacobi's identity)

$$
\begin{aligned}
& \vartheta_{0,0}\left(z_{1}+z_{2}\right) \vartheta_{0,0}\left(z_{1}-z_{2}\right) \vartheta_{0,0}(0)^{2} \\
& \quad=\vartheta_{0,0}\left(z_{1}\right)^{2} \vartheta_{0,0}\left(z_{2}\right)^{2}+\vartheta_{1 / 2,1 / 2}\left(z_{1}\right)^{2} \vartheta_{1 / 2,1 / 2}\left(z_{2}\right)^{2} \\
& \quad=\vartheta_{0,1 / 2}\left(z_{1}\right)^{2} \vartheta_{0,1 / 2}\left(z_{2}\right)^{2}+\vartheta_{1 / 2,0}\left(z_{1}\right)^{2} \vartheta_{1 / 2,0}\left(z_{2}\right)^{2}, \\
& \vartheta_{0,1 / 2}\left(z_{1}+z_{2}\right) \vartheta_{0,1 / 2}\left(z_{1}-z_{2}\right) \vartheta_{0,1 / 2}(0)^{2} \\
& \quad=\vartheta_{0,0}\left(z_{1}\right)^{2} \vartheta_{0,0}\left(z_{2}\right)^{2}-\vartheta_{1 / 2,0}\left(z_{1}\right)^{2} \vartheta_{1 / 2,0}\left(z_{2}\right)^{2} \\
& \quad=\vartheta_{0,1 / 2}\left(z_{1}\right)^{2} \vartheta_{0,1 / 2}\left(z_{2}\right)^{2}-\vartheta_{1 / 2,1 / 2}\left(z_{1}\right)^{2} \vartheta_{1 / 2,1 / 2}\left(z_{2}\right)^{2}, \\
& \begin{array}{l}
\vartheta_{1 / 2,0}\left(z_{1}+z_{2}\right) \vartheta_{1 / 2,0}\left(z_{1}-z_{2}\right) \vartheta_{1 / 2,0}(0)^{2} \\
\quad=\vartheta_{0,0}\left(z_{1}\right)^{2} \vartheta_{0,0}\left(z_{2}\right)^{2}-\vartheta_{0,1 / 2}\left(z_{1}\right)^{2} \vartheta_{0,1 / 2}\left(z_{2}\right)^{2} \\
\quad=\vartheta_{1 / 2,0}\left(z_{1}\right)^{2} \vartheta_{1 / 2,0}\left(z_{2}\right)^{2}-\vartheta_{1 / 2,1 / 2}\left(z_{1}\right)^{2} \vartheta_{1 / 2,1 / 2}\left(z_{2}\right)^{2}, \\
\vartheta_{1 / 2,1 / 2}\left(z_{1}+z_{2}\right) \vartheta_{1 / 2,1 / 2}\left(z_{1}-z_{2}\right) \vartheta_{0,0}(0)^{2} \\
\quad=\vartheta_{1 / 2,1 / 2}\left(z_{1}\right)^{2} \vartheta_{0,0}\left(z_{2}\right)^{2}-\vartheta_{0,0}\left(z_{1}\right)^{2} \vartheta_{1 / 2,1 / 2}\left(z_{2}\right)^{2} \\
\quad=\vartheta_{0,1 / 2}\left(z_{1}\right)^{2} \vartheta_{1 / 2,0}\left(z_{2}\right)^{2}-\vartheta_{1 / 2,0}\left(z_{1}\right)^{2} \vartheta_{0,1 / 2}\left(z_{2}\right)^{2}, \\
\vartheta_{0,0}(0)^{4}=\vartheta_{0,1 / 2}(0)^{4}+\vartheta_{1 / 2,0}(0)^{4} .
\end{array}
\end{aligned}
$$

3.2. Formulas for $\tau=i$

In this subsection, we obtain several formulas for $\vartheta_{a, b}(z, i)$ in the case of $\tau=i$.

Lemma 1 We have

$$
\vartheta_{a, b}(i z, i)=\mathbf{e}(a b) \exp \left(\pi z^{2}\right) \vartheta_{-b, a}(z, i),
$$

$$
\begin{gathered}
\vartheta_{0,0}(i z, i)=\exp \left(\pi z^{2}\right) \vartheta_{0,0}(z, i), \quad \vartheta_{0,1 / 2}(i z, i)=\exp \left(\pi z^{2}\right) \vartheta_{1 / 2,0}(z, i) \\
\vartheta_{1 / 2,0}(i z, i)=\exp \left(\pi z^{2}\right) \vartheta_{0,1 / 2}(z, i), \quad \vartheta_{1 / 2,1 / 2}(i z, i)=i \exp \left(\pi z^{2}\right) \vartheta_{1 / 2,1 / 2}(i z, i), \\
\vartheta_{0,1 / 2}(0, i)=\vartheta_{1 / 2,0}(0, i)=\frac{\vartheta_{0,0}(0, i)}{\sqrt[4]{2}}
\end{gathered}
$$

Proof. For the i-multiple formulas, we have only to substitute $\tau=i$ into the second formula for $\vartheta_{-a,-b}$ in Fact 2. We have $\vartheta_{0,1 / 2}(0)=\vartheta_{1 / 2,0}(0)$ by substituting $z=0$ into the identity between $\vartheta_{0,1 / 2}(i z)$ and $\vartheta_{1 / 2,0}(z)$. By Jacobi's identity, we have $\vartheta_{0,0}(0)^{4}=2 \vartheta_{0,1 / 2}(0)^{4}$. Note that $\vartheta_{0,0}(0)$ and $\vartheta_{0,1 / 2}(0)$ take positive real values.

Lemma 2 We have

$$
\begin{gathered}
\vartheta_{0,0}((1+i) z, i)=\frac{\vartheta_{0,0}(0, i) \vartheta_{0,1 / 2}(z, i) \vartheta_{1 / 2,0}(z, i)}{\exp \left(\pi i(1+i) z^{2}\right) \vartheta_{0,1 / 2}(0, i) \vartheta_{1 / 2,0}(0, i)}, \\
\vartheta_{1 / 2,1 / 2}((1+i) z, i)=\mathbf{e}\left(\frac{1}{8}\right) \frac{\vartheta_{0,0}(0, i) \vartheta_{0,0}(z, i) \vartheta_{1 / 2,1 / 2}(z, i)}{\exp \left(\pi i(1+i) z^{2}\right) \vartheta_{0,1 / 2}(0, i) \vartheta_{1 / 2,0}(0, i)}, \\
\vartheta_{0,1 / 2}((1+i) z, i) \vartheta_{1 / 2,0}((1+i) z, i)=\frac{\vartheta_{0,0}(z, i)^{4}-\vartheta_{0,1 / 2}(z, i)^{2} \vartheta_{1 / 2,0}(z, i)^{2}}{\exp \left(2 \pi i(1+i) z^{2}\right) \vartheta_{0,1 / 2}(0, i) \vartheta_{1 / 2,0}(0, i)} .
\end{gathered}
$$

Proof. We set

$$
\eta(z)=\exp \left(\pi i(1+i) z^{2}\right) \vartheta_{0,0}((1+i) z, i) .
$$

Since $\vartheta_{0,0}(z)$ has simple zero at $z=(i+1) / 2$, the function $\eta(z)$ has simple zero at $z=1 / 2, i / 2$. By using the quasi periodicity of $\vartheta_{0,0}(z)$, we can show that

$$
\eta(z+1)=-\eta(z), \quad \eta(z+i)=-\exp (-2 \pi i(i+2 z)) \eta(z) .
$$

Thus the function

$$
\frac{\eta(z)}{\vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z)}
$$

is a holomorphic elliptic function with respect to the lattice L_{i}; it is a constant. We can determine this constant by putting $z=0$. The second formula is obtained by the substitution $z+1 / 2$ into z for the first formula. We show
the third formula. By Fact 3 for $z_{1}=z$ and $z_{2}=i z$, we have $\vartheta_{0,1 / 2}(z+i z) \vartheta_{0,1 / 2}(z-i z) \vartheta_{0,1 / 2}(0)^{2}=\vartheta_{0,0}(z)^{2} \vartheta_{0,0}(i z)^{2}-\vartheta_{1 / 2,0}(z)^{2} \vartheta_{1 / 2,0}(i z)^{2}$.

This identity together with Lemma 1 leads the third formula.

3.3. Formulas for $\tau=\zeta$

In this subsection, we obtain several formulas for $\vartheta_{a, b}(z, \zeta)$ in the case of $\tau=\zeta=(1+\sqrt{3} i) / 2$.

Lemma 3 We have

$$
\begin{aligned}
\vartheta_{a, b}(\omega z, \zeta) & =\mathbf{e}\left(\frac{a^{2}}{2}+a b-\frac{1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{-a-b-1 / 2, a}(z, \zeta), \\
\vartheta_{a, b}\left(\omega^{2} z, \zeta\right) & =\mathbf{e}\left(a b+\frac{b^{2}+b}{2}+\frac{1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \omega}\right) \vartheta_{b,-a-b-1 / 2}(z, \zeta), \\
\vartheta_{0,0}(\omega z, \zeta) & =\mathbf{e}\left(\frac{-1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{1 / 2,0}(z, \zeta), \\
\vartheta_{0,0}\left(\omega^{2} z, \zeta\right) & =\mathbf{e}\left(\frac{1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \omega}\right) \vartheta_{0,1 / 2}(z, \zeta), \\
\vartheta_{0,1 / 2}(\omega z, \zeta) & =\mathbf{e}\left(\frac{-1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{0,0}(z, \zeta), \\
\vartheta_{0,1 / 2}\left(\omega^{2} z, \zeta\right) & =\mathbf{e}\left(\frac{-1}{12}\right) \mathbf{e}\left(\frac{z^{2}}{2 \omega}\right) \vartheta_{1 / 2,0}(z, \zeta), \\
\vartheta_{1 / 2,0}(\omega z, \zeta) & =\mathbf{e}\left(\frac{1}{12}\right) \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{0,1 / 2}(z, \zeta), \\
\vartheta_{1 / 2,0}\left(\omega^{2} z, \zeta\right) & =\mathbf{e}\left(\frac{1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \omega}\right) \vartheta_{0,0}(z, \zeta), \\
\vartheta_{1 / 2,1 / 2}(\omega z, \zeta) & =\omega \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{1 / 2,1 / 2}(z, \zeta), \\
\vartheta_{1 / 2,1 / 2}\left(\omega^{2} z, \zeta\right) & =\omega^{2} \mathbf{e}\left(\frac{z^{2}}{2 \omega}\right) \vartheta_{1 / 2,1 / 2}(z, \zeta),
\end{aligned}
$$

where $\omega=\zeta^{2}=(-1+\sqrt{3} i) / 2$.

Proof. Fact 2 yields that

$$
\begin{aligned}
\vartheta_{a, b}\left(\frac{z}{\zeta}, \frac{-1}{\zeta}\right) & =\mathbf{e}(a b) \mathbf{e}\left(\frac{-1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{b,-a}(z, \zeta) \\
& =\vartheta_{a, b}(-\omega z, \zeta-1)=\mathbf{e}\left(\frac{a(a-1)}{2}\right) \vartheta_{a,-a+b+1 / 2}(-\omega z, \zeta) \\
& =\mathbf{e}\left(\frac{a(a-1)}{2}\right) \vartheta_{-a, a-b-1 / 2}(\omega z, \zeta)
\end{aligned}
$$

By rewriting $\left(a^{\prime}, b^{\prime}\right)=(-a, a-b-1 / 2)$ i.e., $(a, b)=\left(-a^{\prime},-a^{\prime}-b^{\prime}-1 / 2\right)$ for the identity

$$
\mathbf{e}(a b) \mathbf{e}\left(\frac{-1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{b,-a}(z, \zeta)=\mathbf{e}\left(\frac{a(a-1)}{2}\right) \vartheta_{-a, a-b-1 / 2}(\omega z, \zeta)
$$

we have the first formula. To get the second formula, substitute $z=\omega^{2} z$ into the first formula. These formulas yield the others.

Lemma 4 For $\tau=\zeta$, we have

$$
\begin{aligned}
\vartheta_{0,0}((1+\zeta) z) & =\frac{\mathbf{e}(1 / 8) \mathbf{e}\left(\left(\omega^{2}+\omega / 2\right) z^{2}\right)}{\vartheta_{0,0}(0)^{2}} \vartheta_{1 / 2,0}(z)\left\{\vartheta_{0,0}(z)^{2}-i \vartheta_{0,1 / 2}(z)^{2}\right\}, \\
\vartheta_{0,1 / 2}((1+\zeta) z) & =\frac{\mathbf{e}(1 / 8) \mathbf{e}\left(\left(\omega^{2}+\omega / 2\right) z^{2}\right)}{\vartheta_{0,1 / 2}(0)^{2}} \vartheta_{0,0}(z)\left\{\vartheta_{0,1 / 2}(z)^{2}-\vartheta_{1 / 2,0}(z)^{2}\right\}, \\
\vartheta_{1 / 2,0}((1+\zeta) z) & =\frac{\mathbf{e}\left(\left(\omega^{2}+\omega / 2\right) z^{2}\right)}{\vartheta_{1 / 2,0}(0)^{2}} \vartheta_{0,1 / 2}(z)\left\{\vartheta_{0,0}(z)^{2}+i \vartheta_{1 / 2,0}(z)^{2}\right\}, \\
\vartheta_{1 / 2,1 / 2}((1+\zeta) z) & =\frac{\mathbf{e}\left(\left(\omega^{2}+\omega / 2\right) z^{2}\right)}{\vartheta_{0,0}(0)^{2}} \vartheta_{1 / 2,1 / 2}(z)\left\{\vartheta_{0,0}(z)^{2}+i \vartheta_{0,1 / 2}(z)^{2}\right\}
\end{aligned}
$$

Proof. We apply addition formulas in Fact 3 to $z_{1}=z$ and $z_{2}=\zeta z$, and use Lemma 3. For example, we have

$$
\begin{aligned}
& \vartheta_{0,0}((1+\zeta) z) \vartheta_{0,0}((1-\zeta) z) \vartheta_{0,0}(0)^{2} \\
& \quad=\vartheta_{0,1 / 2}(z)^{2} \vartheta_{0,1 / 2}(\zeta z)^{2}+\vartheta_{1 / 2,0}(z)^{2} \vartheta_{1 / 2,0}(\zeta z)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vartheta_{0,0}((1-\zeta) z)=\vartheta_{0,0}(-\omega z)=\vartheta_{0,0}(\omega z)=\mathbf{e}\left(\frac{-1}{24}\right) \mathbf{e}\left(\frac{z^{2}}{2 \zeta}\right) \vartheta_{1 / 2,0}(z) \\
& \vartheta_{0,1 / 2}(\zeta z)^{2}=\vartheta_{0,1 / 2}\left(-\omega^{2} z\right)^{2}=\vartheta_{0,1 / 2}\left(\omega^{2} z\right)^{2}=\mathbf{e}\left(\frac{-1}{6}\right) \mathbf{e}\left(\frac{z^{2}}{\omega}\right) \vartheta_{1 / 2,0}(z)^{2} \\
& \vartheta_{1 / 2,0}(\zeta z)^{2}=\vartheta_{1 / 2,0}\left(-\omega^{2} z\right)^{2}=\vartheta_{1 / 2,0}\left(\omega^{2} z\right)^{2}=\mathbf{e}\left(\frac{1}{12}\right) \mathbf{e}\left(\frac{z^{2}}{\omega}\right) \vartheta_{0,0}(z)^{2}
\end{aligned}
$$

which yield the first formula.
Lemma 5 Some theta constants $\vartheta_{a, b}(0, \zeta)$ are related as follows:

$$
\begin{aligned}
\vartheta_{0,1 / 2}(0, \zeta) & =\mathbf{e}\left(\frac{-1}{24}\right) \vartheta_{0,0}(0, \zeta), & \vartheta_{1 / 2,0}(0, \zeta) & =\mathbf{e}\left(\frac{1}{24}\right) \vartheta_{0,0}(0, \zeta) \\
\vartheta_{5 / 6,1 / 3}(0, \zeta) & =\mathbf{e}\left(\frac{-1}{8}\right) \vartheta_{1 / 3,1 / 3}(0, \zeta), & \vartheta_{1 / 3,5 / 6}(0, \zeta) & =\mathbf{e}\left(\frac{-17}{24}\right) \vartheta_{1 / 3,1 / 3}(0, \zeta) \\
\vartheta_{1 / 3,1 / 3}(0, \zeta) & =\mathbf{e}\left(\frac{1}{18}\right) \frac{1}{\sqrt[3]{2}} \vartheta_{0,0}(0, \zeta), & \vartheta_{1 / 6,1 / 6}(0, \zeta) & =\mathbf{e}\left(\frac{1}{72}\right) \frac{\sqrt[4]{3}}{\sqrt[3]{2}} \vartheta_{0,0}(0, \zeta)
\end{aligned}
$$

Proof. By substituting $z=0$ and $z=(\zeta+1) / 3$ into formulas in Lemma 3, we have the formulas in the first and second lines in this lemma. We show the formulas in the third line. Substitute $z=(\zeta+1) / 3$ and $z=(\zeta+1) / 6$ into the first formula in Lemma 4. Then we have

$$
\begin{aligned}
\vartheta_{0,0}(\zeta)= & \frac{\mathbf{e}(1 / 8) \mathbf{e}\left(\left(\omega^{2}+\omega / 2\right)(\zeta+1)^{2} / 9\right)}{\vartheta_{0,0}(0)^{2}} \\
& \times \vartheta_{1 / 2,0}\left(\frac{\zeta+1}{3}\right)\left\{\vartheta_{0,0}\left(\frac{\zeta+1}{3}\right)^{2}-i \vartheta_{0,1 / 2}\left(\frac{\zeta+1}{3}\right)^{2}\right\}, \\
\vartheta_{0,0}\left(\frac{\zeta}{2}\right)= & \frac{\mathbf{e}(1 / 8) \mathbf{e}\left(\left(\omega^{2}+\omega / 2\right)(\zeta+1)^{2} / 36\right)}{\vartheta_{0,0}(0)^{2}} \\
& \times \vartheta_{1 / 2,0}\left(\frac{\zeta+1}{6}\right)\left\{\vartheta_{0,0}\left(\frac{\zeta+1}{6}\right)^{2}-i \vartheta_{0,1 / 2}\left(\frac{\zeta+1}{6}\right)^{2}\right\}
\end{aligned}
$$

By using shown formulas in this lemma, we can transform these identities into

$$
\begin{aligned}
& \vartheta_{0,0}(0, \zeta)^{3}=\frac{2}{\zeta} \vartheta_{1 / 3,1 / 3}(0, \zeta)^{3} \\
& \vartheta_{0,0}(0, \zeta)^{3}=\vartheta_{1 / 3,1 / 3}(0, \zeta)\left(\vartheta_{1 / 6,1 / 6}(0, \zeta)^{2}-\zeta \vartheta_{1 / 3,1 / 3}(0, \zeta)^{2}\right)
\end{aligned}
$$

Note that the last identity is equivalent to

$$
\vartheta_{1 / 6,1 / 6}(0, \zeta)^{2}=\frac{\vartheta_{0,0}(0, \zeta)^{3}+\zeta \vartheta_{1 / 3,1 / 3}(0, \zeta)^{3}}{\vartheta_{1 / 3,1 / 3}(0, \zeta)}=\frac{\zeta+1}{2} \cdot \frac{\vartheta_{0,0}(0, \zeta)^{3}}{\vartheta_{1 / 3,1 / 3}(0, \zeta)}
$$

By numerical computations, we can see that the identity

$$
\vartheta_{1 / 3,1 / 3}(0, \zeta)=\mathbf{e}\left(\frac{1}{18}\right) \frac{1}{\sqrt[3]{2}} \vartheta_{0,0}(0, \zeta)
$$

holds. This identity yields that

$$
\vartheta_{1 / 6,1 / 6}(0, \zeta)^{2}=\mathbf{e}\left(\frac{1}{36}\right) \frac{\sqrt{3}}{\sqrt[3]{4}} \vartheta_{0,0}(0, \zeta)^{2}
$$

By numerical computations, we can select a square root of $\mathbf{e}(1 / 36)$ so that identity between $\vartheta_{1 / 6,1 / 6}(0, \zeta)$ and $\vartheta_{0,0}(0, \zeta)$ holds.

4. The Schwarz map for $(\alpha, \beta, \gamma)=(1 / 4,0,1 / 2)$

We study the Schwarz map for $(\alpha, \beta, \gamma)=(1 / 4,0,1 / 2)$ and its inverse by using an elliptic curve with i-action and $\vartheta_{a, b}(z, i)$.

4.1. Abel-Jacobi map for $\boldsymbol{C}_{\boldsymbol{i}}$

Let C_{i} be an algebraic curve in \mathbb{P}^{2} defined by

$$
C_{i}: s_{2}^{4}=s_{0} s_{1}^{2}\left(s_{1}-s_{0}\right)
$$

By affine coordinates $(t, u)=\left(s_{1} / s_{0}, s_{2} / s_{0}\right), C_{i}$ is expressed by

$$
u^{4}=t^{2}(t-1)
$$

Note that the point $(t, u)=(0,0)$ in C_{i} is a node. We use the same symbol C_{i} for a non-singular model of C_{i}. By a projection pr from the non-singular model C_{i} to the complex projective line \mathbb{P}^{1} arising from

$$
C_{i} \ni(t, u) \mapsto t \in \mathbb{C}
$$

we regard C_{i} as a branched covering \mathbb{P}^{1} with a covering transformation ρ_{i} arising from a map

$$
\rho_{i}: C_{i} \ni(t, u) \mapsto(t, i u) \in C_{i}
$$

The branch points of pr are $t=0,1, \infty$. Each preimage of $p r^{-1}(1)$ and $p r^{-1}(\infty)$ consists of a point; $P_{1}=p r^{-1}(1)$ and $P_{\infty}=p r^{-1}(\infty)$ are expressed as $(t, u)=(1,0)$ and $\left[s_{0}, s_{1}, s_{2}\right]=[0,1,0]$, respectively. On the other hand, the preimage $p r^{-1}(0)$ consists of two points, which are denoted by $P_{0,1}$ and $P_{0,2}$. The point $P_{0,1}$ corresponds to

$$
\lim _{\substack{x \rightarrow 0 \\ x \in(0,1)}}\left(x, \sqrt[4]{x^{2}(x-1)}\right), \quad \arg x^{2}(x-1)=\pi
$$

for x in the open interval $(0,1)$, and $P_{0,2}$ is given by $\rho_{i}\left(P_{0,1}\right)$. By the Hurwitz formula, C_{i} is an elliptic curve.

Let $I_{1 \infty}$ be an oriented path in C_{i} given by

$$
\left(x, \sqrt[4]{x^{2}(x-1)}\right) \in C_{i}, \quad x \in[1, \infty]
$$

where $\sqrt[4]{x^{2}(x-1)}$ takes positive real values for $x \in[1, \infty)$ and the interval $[1, \infty]$ is naturally oriented. We define a cycle B by $I_{1 \infty}-\rho_{i} \cdot I_{1 \infty}$ and a cycle A by $\rho_{i} \cdot B$. Since

$$
B \cdot A=1
$$

A and B form a basis of $H_{1}\left(C_{i}, \mathbb{Z}\right)$.
The space of holomorphic 1-forms on C_{i} is one dimensional and it is spanned by a form expressed by

$$
\varphi=\frac{u d t}{t(t-1)}=\frac{d t}{\sqrt[4]{t^{2}(t-1)^{3}}}
$$

The period integral $\int_{B} \varphi$ is evaluated as

$$
(1-i) \int_{1}^{\infty} \frac{d t}{\sqrt[4]{t^{2}(t-1)^{3}}}=(1-i) B\left(\frac{1}{4}, \frac{1}{4}\right)
$$

On the other hand, we have

$$
\int_{A} \varphi=\int_{\rho_{i}(B)} \varphi=\int_{B} \rho_{i}^{*}(\varphi)=i \int_{B} \varphi
$$

We normalize φ to φ_{1} as

$$
\varphi_{1}=\frac{1}{(1-i) B(1 / 4,1 / 4)} \varphi
$$

Then we have

$$
\int_{B} \varphi_{1}=1, \quad \int_{A} \varphi_{1}=i
$$

and the Abel-Jacobi map

$$
\jmath_{i}: C_{i} \ni P=\left(x, \sqrt[4]{x^{2}(x-1)}\right) \mapsto z=\int_{P_{1}}^{P} \varphi_{1} \in E_{i}=\mathbb{C} / L_{i}
$$

where $L_{i}=\mathbb{Z} i+\mathbb{Z} \subset \mathbb{C}$. The map \jmath_{i} is an isomorphism between C_{i} and E_{i}.
Proposition 2 The Abel-Jacobi map \jmath_{i} sends points $P_{1}, P_{\infty}, P_{0,1}$ and $P_{0,2}$ to

$$
\jmath_{i}\left(P_{1}\right)=0, \quad \jmath_{i}\left(P_{\infty}\right)=\frac{i+1}{2}, \quad \jmath_{i}\left(P_{0,1}\right)=\frac{i}{2}, \quad \jmath_{i}\left(P_{0,2}\right)=\frac{1}{2}
$$

as elements of E_{i}.
Proof. It is clear that $\jmath_{i}\left(P_{1}\right)=0$ and $\jmath_{i}\left(P_{\infty}\right)=(i+1) / 2$. We have

$$
\begin{aligned}
\jmath_{i}\left(P_{0,1}\right) & =\frac{1}{(1-i) B(1 / 4,1 / 4)} \int_{1}^{0} \exp (\pi i / 4) \frac{\sqrt[4]{s^{2}(1-s)} d s}{s(s-1)} \\
& =\frac{i}{\sqrt{2}} \cdot \frac{\Gamma(1 / 2)^{2} \Gamma(1 / 4)}{\Gamma(1 / 4)^{2} \Gamma(3 / 4)}=\frac{i}{\sqrt{2}} \cdot \frac{\pi}{\pi / \sin (\pi / 4)}=\frac{i}{2}
\end{aligned}
$$

Since $P_{0,2}=\rho_{i}\left(P_{0,1}\right), \jmath_{i}\left(P_{0,2}\right)$ is equal to $i \jmath_{i}\left(P_{0,1}\right)=-1 / 2 \equiv 1 / 2 \bmod L_{i}$.
We consider the relation between the Abel-Jacobi map \jmath_{i} and the Schwarz map

$$
\begin{equation*}
x \mapsto \frac{f_{1}(x)}{(1-i) f_{2}(x)}=\frac{2 \sqrt{2} i}{B(1 / 4,1 / 4)} \sqrt[4]{1-x} F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, 1-x\right) \tag{4.1}
\end{equation*}
$$

for $\mathcal{F}(1 / 4,0,1 / 2)$. By Corollary 1 , its monodromy group is generated by the three transformations

$$
N_{0}: z \mapsto-z+i, \quad N_{1}: z \mapsto i z, \quad\left(N_{0} N_{1}\right)^{-1}: z \mapsto i z+1,
$$

and this group is isomorphic to the semi-direct product $\langle i\rangle \ltimes \mathbb{Z}[i]$. Note that the information of a branch of $\sqrt[4]{x^{2}(x-1)}$ is lost in the Schwarz map. Thus we can regard the Schwarz map as the Abel-Jacobi map \jmath_{i} modulo the actions of ρ_{i} and i; that is

$$
C_{i} /\left\langle\rho_{i}\right\rangle \ni x \mapsto \int_{1}^{x} \varphi_{1} \in E_{i} /\langle i\rangle,
$$

where $\left\langle\rho_{i}\right\rangle$ and $\langle i\rangle$ are the groups generated by ρ_{i} and i, respectively.

4.2. The inverse of $\boldsymbol{\jmath}_{\boldsymbol{i}}$

In this subsection, we express the inverse of the Abel-Jacobi map \jmath_{i} in terms of $\vartheta_{a, b}(z, \tau)$. We fix the variable τ to i and denote $\vartheta_{a, b}(z, i)$ by $\vartheta_{a, b}(z)$ in short. Since the pull-backs $\jmath_{i}^{-1^{*}}(t)$ and $\jmath_{i}^{-1^{*}}(u)$ are elliptic functions with respect to the lattice L_{i}, they can be expressed as

$$
\jmath_{i}^{-1^{*}}(t)=\theta_{t}(z), \quad \jmath_{i}^{-1^{*}}(u)=\theta_{u}(z)
$$

in terms of $\vartheta_{a, b}(z)$. It turns out that the map

$$
E_{i} \ni z \mapsto\left(\theta_{t}(z), \theta_{u}(z)\right) \in C_{i}
$$

is the inverse of \jmath_{i}.
Theorem 1 The inverse of $\jmath_{i}: C_{i} \ni(t, u) \mapsto z \in E_{i}$ is given by

$$
\begin{aligned}
& t=2 \frac{\vartheta_{0,1 / 2}(z, i)^{2} \vartheta_{1 / 2,0}(z, i)^{2}}{\vartheta_{0,0}(z, i)^{4}}=1-\frac{\vartheta_{1 / 2,1 / 2}(z, i)^{4}}{\vartheta_{0,0}(z, i)^{4}} \\
& u=-(1-i) \frac{\vartheta_{0,1 / 2}(z, i) \vartheta_{1 / 2,0}(z, i) \vartheta_{1 / 2,1 / 2}(z, i)}{\vartheta_{0,0}(z, i)^{3}}
\end{aligned}
$$

The holomorphic 1-form $\varphi=u d t / t(t-1)$ on C_{i} corresponds to

$$
2(1-i) \pi \vartheta_{0,0}(0, i)^{2} d z=(1-i) B\left(\frac{1}{4}, \frac{1}{4}\right) d z
$$

by the Abel-Jacobi map J_{i}.
Proof. We regard the coordinate t of C_{i} as a meromorphic function on C_{i}. Its divisor is

$$
2 P_{0,1}+2 P_{0,2}-4 P_{\infty}
$$

We construct an elliptic function for L_{i} with zero of order 2 at $z=i / 2,1 / 2$ and pole of order 4 at $z=(i+1) / 2$. Since

$$
2 \cdot\left(0, \frac{1}{2}\right)+2 \cdot\left(\frac{1}{2}, 0\right) \equiv 4 \cdot\left(\frac{1}{2}, \frac{1}{2}\right) \bmod \mathbb{Z}^{2}
$$

the function

$$
\frac{\vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{0,0}(z)^{4}}
$$

becomes an elliptic function for L_{i}. Moreover, it has zero of order 2 at $z=i / 2,1 / 2$, and pole of order 4 at $z=(i+1) / 2$, since $\vartheta_{a, b}(z)=0$ if and only if $z \equiv(-a+1 / 2) i+(-b+1 / 2) \quad \bmod \mathbb{Z}^{2}$. Thus the pull-back $F(P)$ of this function under the map \jmath_{i} is a constant multiple of t by Proposition 2. Let us determine this constant. Lemma 1 yields that

$$
\frac{\vartheta_{0,1 / 2}(0)^{2} \vartheta_{1 / 2,0}(0)^{2}}{\vartheta_{0,0}(0)^{4}}=\frac{\vartheta_{0,1 / 2}(0)^{4}}{\vartheta_{0,0}(0)^{4}}=\frac{1}{2} .
$$

Thus $2 F(P)$ is equal to t.
Similarly we regard $t-1$ as a meromorphic function on C_{i} whose divisor is

$$
4 P_{1}-4 P_{\infty}
$$

The function

$$
\frac{\vartheta_{1 / 2,1 / 2}(z)^{4}}{\vartheta_{0,0}(z)^{4}}
$$

becomes an elliptic function for L_{i} with zero of order 4 at $z=0$ and pole of order 4 at $z=(i+1) / 2$. The pull-back of this function under the map \jmath_{i} is a constant multiple of $t-1$. By substituting $P_{0,1}$ into this pull-back, we can determine the constant. We have

$$
t-1=-\frac{\vartheta_{1 / 2,1 / 2}(z)^{4}}{\vartheta_{0,0}(z)^{4}}
$$

By regarding the coordinate u of C_{i} as a meromorphic function on C_{i}, we see that its divisor is

$$
P_{0,1}+P_{0,2}+P_{1}-3 P_{\infty}
$$

Thus it is the pull-back of

$$
c \cdot \frac{\vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z) \vartheta_{1 / 2,1 / 2}(z)}{\vartheta_{0,0}(z)^{3}}
$$

under \jmath_{i}, where c is a constant. Let us determine c. By $u^{4}=t^{2}(t-1)$, we have

$$
c^{4} \cdot \frac{\vartheta_{0,1 / 2}(z)^{4} \vartheta_{1 / 2,0}(z)^{4} \vartheta_{1 / 2,1 / 2}(z)^{4}}{\vartheta_{0,0}(z)^{12}}=\frac{4 \vartheta_{0,1 / 2}(z)^{4} \vartheta_{1 / 2,0}(z)^{4}}{\vartheta_{0,0}(z)^{8}} \cdot \frac{-\vartheta_{1 / 2,1 / 2}(z)^{4}}{\vartheta_{0,0}(z)^{4}}
$$

which yields that $c^{4}=-4$, i.e., $c=i^{k} \cdot(1+i)$ for some $k \in\{0,1,2,3\}$.
By the expressions $t, t-1$ and u in terms of $\vartheta_{a, b}(z)$, it turns out that the holomorphic 1-from $\varphi=u d t / t(t-1)$ corresponds to

$$
\begin{gathered}
i^{k}(1+i) \cdot \frac{\vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z) \vartheta_{1 / 2,1 / 2}(z)}{\vartheta_{0,0}(z)^{3}} \cdot \frac{\vartheta_{0,0}(z)^{4}}{2 \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}} \cdot \frac{-\vartheta_{0,0}(z)^{4}}{\vartheta_{1 / 2,1 / 2}(z)^{4}} \\
\cdot \frac{4\left\{\vartheta_{0,0}(z)^{3} \vartheta_{0,0}(z)^{\prime} \vartheta_{1 / 2,1 / 2}(z)^{4}-\vartheta_{1 / 2,1 / 2}(z)^{3} \vartheta_{1 / 2,1 / 2}(z)^{\prime} \vartheta_{0,0}(z)^{4}\right\}}{\vartheta_{0,0}(z)^{8}} d z \\
\quad=-2 i^{k}(1+i) \cdot \frac{\left\{\vartheta_{0,0}(z)^{\prime} \vartheta_{1 / 2,1 / 2}(z)-\vartheta_{1 / 2,1 / 2}(z)^{\prime} \vartheta_{0,0}(z)\right\}}{\vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z)} d z
\end{gathered}
$$

which should be a constant multiple of $d z$. By putting $z=0$ and using Fact 1, we have

$$
\varphi=-2 i^{k}(1+i) \pi \vartheta_{0,0}(0)^{2} \jmath_{i}^{*}(d z)
$$

Since $\vartheta_{0,0}(0)^{2}$ and

$$
\begin{aligned}
B\left(\frac{1}{4}, \frac{1}{4}\right) & =\int_{1}^{\infty} \varphi=\int_{J_{i}\left(P_{1}\right)}^{J_{i}\left(P_{\infty}\right)}-2 i^{k}(1+i) \pi \vartheta_{0,0}(0)^{2} d z \\
& =-2 i^{k}(1+i) \pi \vartheta_{0,0}(0)^{2} \cdot \frac{1+i}{2}
\end{aligned}
$$

are positive real numbers, k is equal to 1 . Hence we have the expressions of u and φ.

Corollary 2 Let $z \in E_{i}$ be the image of $(t, u) \in C_{i}$ under the Abel-Jacobi map J_{i}. Then we have

$$
i \frac{u^{2}}{t}=\frac{\vartheta_{1 / 2,1 / 2}(z)^{2}}{\vartheta_{0,0}(z)^{2}}, \quad 1+i \frac{u^{2}}{t}=\sqrt{2} \frac{\vartheta_{0,1 / 2}(z)^{2}}{\vartheta_{0,0}(z)^{2}}, \quad 1-i \frac{u^{2}}{t}=\sqrt{2} \frac{\vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{0,0}(z)^{2}}
$$

Moreover, $\vartheta_{a, b}(z)$'s satisfy relations

$$
\begin{aligned}
& \sqrt{2} \vartheta_{0,1 / 2}(z)^{2}=\vartheta_{0,0}(z)^{2}+\vartheta_{1 / 2,1 / 2}(z)^{2} \\
& \sqrt{2} \vartheta_{1 / 2,0}(z)^{2}=\vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}
\end{aligned}
$$

Proof. The first identity is a direct consequence of Theorem 1. The right hand side of the second identity is an elliptic function with respect to L_{i}. It has zero of order 2 at $\jmath_{i}\left(P_{0,1}\right)$ and pole of order 2 at $\jmath_{i}\left(P_{\infty}\right)$. Since $P_{0,1}$ corresponds to the limit as $t \rightarrow 0$ given by the branch of u with $\arg (u)=$ $\pi / 4$ on the interval $(0,1), \lim _{t \rightarrow 0} i\left(u^{2} / t\right)=-1$. By comparing the zero and pole of both functions, $1+i\left(u^{2} / t\right)$ is a constant multiple of the pull-back of $\vartheta_{0,1 / 2}(z)^{2} / \vartheta_{0,0}(z)^{2}$ under \jmath_{i}. We can determine this constant by the substitution $z=0$. The third identity is obtained by the action of ρ_{i} on the second identity. By eliminating $i\left(u^{2} / t\right)$ from these identities, we have the relations among $\vartheta_{a, b}(z)$'s

Corollary 3 We have

$$
\begin{aligned}
\vartheta_{0,0}(0, i) & =\frac{\Gamma(1 / 4)}{\sqrt[4]{4 \pi^{3}}}=\frac{\sqrt[4]{\pi}}{\Gamma(3 / 4)} \\
\vartheta_{0,1 / 2}(0, i)=\vartheta_{1 / 2,0}(0, i) & =\frac{\Gamma(1 / 4)}{\sqrt[4]{(2 \pi)^{3}}}=\frac{\sqrt[4]{\pi}}{\sqrt[4]{2} \Gamma(3 / 4)}
\end{aligned}
$$

Proof. By Theorem 1, we have

$$
2 \pi \vartheta_{0,0}(0)^{2}=B\left(\frac{1}{4}, \frac{1}{4}\right)=\frac{\Gamma(1 / 4)^{2}}{\sqrt{\pi}} .
$$

Note that $\vartheta_{0,0}(0)$ and $\Gamma(1 / 4)$ are positive. To show the rest, use the inversion formula for the Γ-function and Lemma 1.

Corollary 4 The inverse of the Schwarz map (4.1) for $\mathcal{F}(1 / 4,0,1 / 2)$ is given by

$$
x=2 \frac{\vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{0,0}(z)^{4}}=1-\frac{\vartheta_{1 / 2,1 / 2}(z)^{4}}{\vartheta_{0,0}(z)^{4}} .
$$

Proof. It is clear by Theorem 1. We can check this map is invariant under the action of $\langle i\rangle$ by Lemma 1.
Corollary 5 For any point z around 0 , we have

$$
-\frac{2 \sqrt{2 \pi}}{\Gamma(1 / 4)^{2}} \cdot \frac{\vartheta_{1 / 2,1 / 2}(z, i)}{\vartheta_{0,0}(z, i)} \cdot F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; \frac{\vartheta_{1 / 2,1 / 2}(z, i)^{4}}{\vartheta_{0,0}(z, i)^{4}}\right)=z .
$$

Proof. By Corollary 4, we have

$$
\frac{2 \sqrt{2 \pi}}{\Gamma(1 / 4)^{2}} \cdot \frac{\vartheta_{1 / 2,1 / 2}(z, i)}{\vartheta_{0,0}(z, i)} \cdot F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; \frac{\vartheta_{1 / 2,1 / 2}(z, i)^{4}}{\vartheta_{0,0}(z, i)^{4}}\right) \equiv z
$$

modulo the monodromy group of $\mathcal{F}(1 / 4,0,1 / 2)$. Since the both sides of the above become 0 for $z=0$, their difference is represented as the group $\langle i\rangle$. Consider the limit of the both sides as $z \rightarrow i / 2$ along the imaginary axis. Use

$$
\frac{\vartheta_{1 / 2,1 / 2}(i / 2, i)}{\vartheta_{0,0}(i / 2, i)}=\mathbf{e}\left(\frac{1}{2} \cdot \frac{-1}{2}\right) \cdot \frac{\vartheta_{0,1 / 2}(0, i)}{\vartheta_{1 / 2,0}(0, i)}=-i
$$

and the Gauss-Kummer formula

$$
F(\alpha, \beta, \gamma ; 1)=\frac{\Gamma(\gamma) \Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha) \Gamma(\gamma-\beta)}
$$

for $\operatorname{Re}(\gamma-\alpha-\beta)>0$.

4.3. $(1+i)$-multiplication

Theorem 2 Let $z \in E_{i}$ be the image of $(t, u) \in C_{i}$ under the Abel-Jacobi map J_{i}. Then we have

$$
\begin{equation*}
\jmath_{i}^{-1}((1+i) z)=\left(\left(\frac{t-2}{t}\right)^{2},(1+i) \frac{u(2-t)}{t^{2}}\right) \tag{4.2}
\end{equation*}
$$

Proof. We set

$$
\left(t^{\prime}, u^{\prime}\right)=\jmath_{i}^{-1}((1+i) z)
$$

By Theorem 1, we have

$$
\begin{aligned}
t^{\prime} & =2 \frac{\vartheta_{0,1 / 2}((1+i) z)^{2} \vartheta_{1 / 2,0}((1+i) z)^{2}}{\vartheta_{0,0}((1+i) z)^{4}} \\
u^{\prime} & =-(1-i) \frac{\vartheta_{0,1 / 2}((1+i) z) \vartheta_{1 / 2,0}((1+i) z) \vartheta_{1 / 2,1 / 2}((1+i) z)}{\vartheta_{0,0}((1+i) z)^{3}}
\end{aligned}
$$

We transform them as

$$
\begin{aligned}
t^{\prime}= & 2 \frac{\vartheta_{0,1 / 2}^{4}(0) \vartheta_{1 / 2,0}^{4}(0)}{\vartheta_{0,0}^{4}(0) \vartheta_{0,1 / 2}(z)^{4} \vartheta_{1 / 2,0}(z)^{4}} \cdot \frac{\left(\vartheta_{0,0}(z)^{4}-\vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}\right)^{2}}{\vartheta_{0,1 / 2}(0)^{2} \vartheta_{1 / 2,0}(0)^{2}} \\
= & 2 \frac{\vartheta_{0,1 / 2}(0)^{2} \vartheta_{1 / 2,0}(0)^{2}}{\vartheta_{0,0}(0)^{4}} \cdot \frac{\left(\vartheta_{0,0}(z)^{4}-\vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}\right)^{2}}{\vartheta_{0,1 / 2}(z)^{4} \vartheta_{1 / 2,0}(z)^{4}}=\left(\frac{2}{t}-1\right)^{2} \\
u^{\prime}= & -(1-i) \cdot \frac{\mathbf{e}(1 / 8) \vartheta_{0,0}(0) \vartheta_{0,0}(z) \vartheta_{1 / 2,1 / 2}(z)}{\vartheta_{0,1 / 2}(0) \vartheta_{1 / 2,0}(0)} \\
& \cdot \frac{\vartheta_{0,0}(z)^{4}-\vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{0,1 / 2}(0) \vartheta_{1 / 2,0}(0)} \\
& \cdot \frac{\vartheta_{0,1 / 2}(0)^{3} \vartheta_{1 / 2,0}(0)^{3}}{\vartheta_{0,0}(0)^{3}} \frac{1}{\vartheta_{0,1 / 2}(z)^{3} \vartheta_{1 / 2,0}(z)^{3}} \\
= & -\sqrt{2} \cdot \frac{\vartheta_{0,1 / 2}(0) \vartheta_{1 / 2,0}(0)}{\vartheta_{0,0}(0)^{2}} \\
& \cdot \frac{\vartheta_{0,0}(z) \vartheta_{1 / 2,1 / 2}(z)\left(\vartheta_{0,0}(z)^{4}-\vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}\right)}{\vartheta_{0,1 / 2}(z)^{3} \vartheta_{1 / 2,0}(z)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{\vartheta_{0,0}(z)^{8} \vartheta_{1 / 2,1 / 2}(z) \vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z)}{\vartheta_{0,1 / 2}(z)^{4} \vartheta_{1 / 2,0}(z)^{4} \vartheta_{0,0}(z)^{3}} \\
& +\frac{\vartheta_{0,0}(z)^{4} \vartheta_{1 / 2,1 / 2}(z) \vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z)}{\vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2} \vartheta_{0,0}(z)^{3}} \\
= & \frac{4}{(1-i)} \frac{u}{t^{2}}-\frac{2}{(1-i)} \frac{u}{t}=(1+i) \frac{u(2-t)}{t^{2}}
\end{aligned}
$$

by Lemma 2 and Theorem 1.

5. The Schwarz map for $(\alpha, \beta, \gamma)=(1 / 3,0,1 / 2)$

In this section, we study the Schwarz map for $(\alpha, \beta, \gamma)=(1 / 3,0,1 / 2)$ and its inverse by using an elliptic curve with ζ-action and $\vartheta_{a, b}(z, \zeta)$, where $\zeta=(1+\sqrt{3} i) / 2$.

5.1. The Abel-Jacobi map for C_{ζ}

Let C_{ζ} be an algebraic curve in \mathbb{P}^{2} defined by

$$
C_{\zeta}: s_{2}^{6}=s_{0}^{2} s_{1}^{3}\left(s_{1}-s_{0}\right)
$$

By affine coordinates $(t, u)=\left(s_{1} / s_{0}, s_{2} / s_{0}\right), C_{\zeta}$ is expressed as

$$
u^{6}=t^{3}(t-1) .
$$

Note that $(t, u)=(0,0)$ is a triple node and $\left[s_{0}, s_{1}, s_{2}\right]=[0,1,0]$ is a node. We use the same symbol C_{ζ} for a non-singular model of C_{ζ}. We regard C_{ζ} as a cyclic 6 -fold covering of the t-space with covering transformation

$$
\rho_{\zeta}:(t, u) \mapsto(t, \zeta u), \quad \zeta=\frac{1+\sqrt{-3}}{2}
$$

The branching information of this covering is as in Table 2. Here we set some points in the non-singular model C_{ζ} as follows:

$$
\begin{gathered}
P_{0,1}=\lim _{\substack{t \rightarrow 0 \\
t \in(0,1)}}\left(t, t^{1 / 2}(t-1)^{1 / 6}\right), \quad P_{0,2}=\rho_{\zeta}\left(P_{0,1}\right), \quad P_{0,3}=\rho_{\zeta}^{2}\left(P_{0,1}\right), \\
P_{\infty, 1}=\lim _{\substack{t \rightarrow \infty \\
t \in(1, \infty)}}\left(t, t^{1 / 2}(t-1)^{1 / 6}\right), \quad P_{\infty, 2}=\rho_{\zeta}\left(P_{\infty, 1}\right)
\end{gathered}
$$

Table 2. Branching information.

ramification point	$P_{0,1}$	$P_{0,2}$	$P_{0,3}$	$P_{1}=(1,0)$	$P_{\infty, 1}$	$P_{\infty, 2}$
projected point	0	0	0	1	∞	∞
ramification index	2	2	2	6	3	3

where $\arg (t)=\arg (t-1)=0$ on the open interval $I_{\infty}=(1, \infty)$ and $\arg (t)=$ $0, \arg (t-1)=\pi$ on the open interval $I_{0}=(0,1)$. By the Hurwitz formula, C_{ζ} is an elliptic curve.

We can regard t and u as meromorphic functions on C_{ζ}. We give some meromorphic functions on C_{ζ} and their zero and pole divisors as in Table 3. Pay your attention to the last three meromorphic functions for the setting of branch of u. Note that

$$
\left(1+\frac{t}{u^{2}}\right)\left(1+\frac{\zeta^{2} t}{u^{2}}\right)\left(1+\frac{\zeta^{4} t}{u^{2}}\right)=1+\frac{1}{t-1}
$$

The preimage of I_{∞} under the natural projection consists of six copies $\rho_{\zeta}^{i} \cdot I_{\infty}$ $(i=0,1, \ldots, 5)$. Since the terminal points of $\rho_{\zeta}^{2} \cdot I_{\infty}$ coincide with that of I_{∞}, the formal difference $B=\rho_{\zeta}^{0} \cdot I_{\infty}-\rho_{\zeta}^{2} \cdot I_{\infty}=\left(1-\rho_{\zeta}^{2}\right) \cdot I_{\infty}$ is a cycle of C_{ζ}. Let A be the cycle $\rho_{\zeta} \cdot B$. Then the intersection number $B \cdot A$ of the cycles B and A is 1 . Thus the cycles A and B form a basis of the first homology group $H_{1}\left(C_{\zeta}, \mathbb{Z}\right)$ of C_{ζ}.

A non-zero holomorphic 1-form ψ on C_{ζ} is given by

$$
\psi=\frac{t^{2} d t}{u^{5}}=\frac{u d t}{t(t-1)}=\frac{t^{1 / 2}(t-1)^{1 / 6} d t}{t(t-1)}
$$

It is easy to see that

$$
\rho_{\zeta}^{*}(\psi)=\zeta \psi .
$$

Note that

$$
\begin{gathered}
\int_{I_{\infty}} \psi=\int_{1}^{\infty} t^{1 / 2-1}(t-1)^{1 / 6-1} d t=\int_{0}^{1} s^{1 / 3-1}(1-s)^{1 / 6-1} d s=B\left(\frac{1}{3}, \frac{1}{6}\right) \\
\int_{A} \psi=\zeta\left(1-\zeta^{2}\right) B\left(\frac{1}{3}, \frac{1}{6}\right), \quad \int_{B} \psi=\left(1-\zeta^{2}\right) B\left(\frac{1}{3}, \frac{1}{6}\right)
\end{gathered}
$$

Table 3. Meromorphic functions on C_{ζ}.

functions	zero divisor	pole divisor
t	$2 P_{0,1}+2 P_{0,2}+2 P_{0,3}$	$3 P_{\infty, 1}+3 P_{\infty, 2}$
$t-1$	$6 P_{1}$	$3 P_{\infty, 1}+3 P_{\infty, 2}$
$1+\frac{1}{t-1}$	$2 P_{0,1}+2 P_{0,2}+2 P_{0,3}$	$6 P_{1}$
u	$P_{0,1}+P_{0,2}+P_{0,3}+P_{1}$	$2 P_{\infty, 1}+2 P_{\infty, 2}$
$\frac{u^{2}}{t}(=\sqrt[3]{t-1})$	$2 P_{1}$	$P_{\infty, 1}+P_{\infty, 2}$
$\frac{u^{3}}{t}(=\sqrt{t(t-1)})$	$P_{0,1}+P_{0,2}+P_{0,3}+3 P_{1}$	$3 P_{\infty, 1}+3 P_{\infty, 2}$
$\frac{u^{3}}{t(t-1)}\left(=\sqrt{\frac{t}{t-1}}\right)$	$P_{0,1}+P_{0,2}+P_{0,3}$	$3 P_{1}$
$1+\frac{\zeta^{4} t}{u^{2}}\left(=1+\frac{\zeta^{4}}{\sqrt[3]{t-1}}\right)$	$2 P_{0,1}$	$2 P_{1}$
$1+\frac{t}{u^{2}}\left(=1+\frac{1}{\sqrt[3]{t-1}}\right)$	$2 P_{0,2}$	$2 P_{1}$
$1+\frac{\zeta^{2} t}{u^{2}}\left(=1+\frac{\zeta^{2}}{\sqrt[3]{t-1}}\right)$	$2 P_{0,3}$	$2 P_{1}$

We normalize ψ to ψ_{1} as

$$
\psi_{1}=\frac{1}{\left(1-\zeta^{2}\right) B(1 / 3,1 / 6)} \psi
$$

then we have

$$
\int_{A} \psi_{1}=\zeta, \quad \int_{B} \psi_{1}=1 .
$$

The Abel-Jacobi map is defined by

$$
\jmath_{\zeta}: C_{\zeta} \ni P \mapsto \int_{P_{1}}^{P} \psi_{1} \in E_{\zeta}=\mathbb{C} / L_{\zeta}
$$

where $L_{\zeta}=\mathbb{Z} \zeta+\mathbb{Z} \subset \mathbb{C}$. The map \jmath_{ζ} is an isomorphism between C_{ζ} and E_{ζ}.
Proposition 3 We have

$$
\begin{gathered}
\jmath_{\zeta}\left(P_{1}\right)=0, \quad \jmath_{\zeta}\left(P_{\infty, 1}\right)=\frac{\zeta+1}{3}, \quad \jmath_{\zeta}\left(P_{\infty, 2}\right)=\frac{2 \zeta+2}{3}, \\
\jmath_{\zeta}\left(P_{0,1}\right)=\frac{\zeta}{2}, \quad \jmath_{\zeta}\left(P_{0,2}\right)=\frac{\zeta+1}{2}, \quad \jmath_{\zeta}\left(P_{0,3}\right)=\frac{1}{2}
\end{gathered}
$$

as elements of E_{ζ}.
Proof. It is obvious that $\jmath_{\zeta}\left(P_{1}\right)=0$. It is easy to see that
$\jmath_{\zeta}\left(P_{\infty, 1}\right)=\int_{I_{\infty}} \psi_{1}=\frac{1}{1-\zeta^{2}}=\frac{\zeta+1}{3}$,
$\jmath_{\zeta}\left(P_{\infty, 2}\right)=\int_{\rho_{\zeta} \cdot I_{\infty}} \psi_{1}=\int_{I_{\infty}} \rho_{\zeta}^{*}\left(\psi_{1}\right)=\zeta \jmath_{\zeta}\left(P_{\infty, 1}\right)=\frac{\zeta^{2}+\zeta}{3} \equiv \frac{2 \zeta+2}{3} \bmod L_{\zeta}$.
Note that

$$
\begin{gathered}
\jmath_{\zeta}\left(P_{0,1}\right)=\int_{I_{0}} \psi_{1}=\frac{1}{\left(1-\zeta^{2}\right) B(1 / 3,1 / 6)} \int_{1}^{0} t^{1 / 2}(t-1)^{1 / 6} \frac{d t}{t(t-1)} \\
\int_{1}^{0} t^{1 / 2}(t-1)^{1 / 6} \frac{d t}{t(t-1)}=\mathbf{e}\left(\frac{1}{12}\right) \int_{0}^{1} t^{1 / 2}(1-t)^{1 / 6} \frac{d t}{t(1-t)} \\
=\mathbf{e}\left(\frac{1}{12}\right) B\left(\frac{1}{2}, \frac{1}{6}\right)
\end{gathered}
$$

Thus we have

$$
\begin{aligned}
\jmath_{\zeta}\left(P_{0,1}\right) & =\frac{\mathbf{e}(1 / 12)}{1-\zeta^{2}} \cdot \frac{B(1 / 2,1 / 6)}{B(1 / 3,1 / 6)}=\frac{(\zeta+1) \mathbf{e}(1 / 12)}{3} \cdot \frac{\Gamma(1 / 2) \Gamma(1 / 2)}{\Gamma(2 / 3) \Gamma(1 / 3)} \\
& =\frac{\sqrt{3} \mathbf{e}(1 / 6)}{3} \cdot \frac{\sqrt{3}}{2}=\frac{\zeta}{2}
\end{aligned}
$$

The rests are obtained as

$$
\jmath_{\zeta}\left(P_{0,2}\right)=\zeta \jmath_{\zeta}\left(P_{0,1}\right) \equiv \frac{\zeta+1}{2} \bmod L_{\zeta}, \quad \jmath_{\zeta}\left(P_{0,3}\right)=\zeta^{2} \jmath_{\zeta}\left(P_{0,1}\right) \equiv \frac{1}{2} \bmod L_{\zeta}
$$

since $P_{0,2}=\rho_{\zeta} \cdot P_{0,1}$ and $P_{0,3}=\rho_{\zeta}^{2} \cdot P_{0,1}$.
We consider the relation between the Abel-Jacobi map \jmath_{ζ} and the Schwarz map

$$
\begin{equation*}
x \mapsto \frac{f_{1}(x)}{\left(1-\zeta^{2}\right) f_{2}(x)}=\frac{2 \sqrt{3} \zeta}{B(1 / 3,1 / 6)} \sqrt[6]{1-x} F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-x\right) \tag{5.1}
\end{equation*}
$$

for $\mathcal{F}(1 / 3,0,1 / 2)$. By Corollary 1 , its monodromy group is generated by the three transformations

$$
N_{0}: z \mapsto-z+\zeta, \quad N_{1}: z \mapsto \zeta z, \quad\left(N_{0} N_{1}\right)^{-1}: z \mapsto \zeta^{2} z+1,
$$

and this group is isomorphic to the semi-direct product $\langle\zeta\rangle \ltimes \mathbb{Z}[\zeta]$. Note that the information of a branch of $u=\sqrt[6]{x^{3}(x-1)}$ is lost in the Schwarz map. Thus we can regard the Schwarz map as the Abel-Jacobi map \jmath_{ζ} modulo the actions of ρ_{ζ} and ζ; that is

$$
C_{\zeta} /\left\langle\rho_{\zeta}\right\rangle \ni x \mapsto \int_{1}^{x} \psi_{1} \in E_{\zeta} /\langle\zeta\rangle
$$

5.2. The inverse of \jmath_{ζ}

We express the inverse of the Abel-Jacobi map $\jmath \zeta$. We regard the coordinates t and u as meromorphic functions on C_{ζ}. The pull-backs $J_{\zeta}^{-1^{*}}(t)$ and $\jmath_{\zeta}^{-1^{*}}(u)$ are elliptic functions with respect to the lattice L_{ζ}, they can be expressed as

$$
J_{\zeta}^{-1^{*}}(t)=\theta_{t}(z), \quad \jmath_{\zeta}^{-1^{*}}(u)=\theta_{u}(z)
$$

in terms of theta functions with characteristics. It turns out that the map

$$
E_{\zeta} \ni z \mapsto\left(\theta_{t}(z), \theta_{u}(z)\right) \in C_{\zeta}
$$

is the inverse of $\jmath \zeta$.
Lemma 6 Let z be the image of $(t, u) \in C_{\zeta}$ under the Abel-Jacobi map. Then we have

$$
1+\frac{t}{u^{2}}=\sqrt{3} i \frac{\vartheta_{0,0}(z, \zeta)^{2}}{\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}}, \quad 1+\frac{\zeta^{2} t}{u^{2}}=-\sqrt{3} \frac{\vartheta_{1 / 2,0}(z, \zeta)^{2}}{\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}}
$$

$$
1+\frac{\zeta^{4} t}{u^{2}}=\sqrt{3} \frac{\vartheta_{0,1 / 2}(z, \zeta)^{2}}{\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}}
$$

Proof. By Table 3, we have

$$
1+\frac{t}{u^{2}}=c \cdot \frac{\vartheta_{0,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}
$$

where c is a constant. We substitute $P_{0,1}$ into the above, we have

$$
1-\omega=c \cdot \frac{\vartheta_{0,0}(\zeta / 2)^{2}}{\vartheta_{1 / 2,1 / 2}(\zeta / 2)^{2}}=c \cdot\left(-\frac{\vartheta_{1 / 2,0}(0)^{2}}{\vartheta_{0,1 / 2}(0)^{2}}\right)=-c \cdot \mathbf{e}\left(\frac{1}{6}\right)
$$

which yields $c=\sqrt{3} i$. The rests can be shown similarly.
Lemma 7 The functions $\vartheta_{0,1 / 2}(z, \zeta)^{2}$ and $\vartheta_{1 / 2,0}(z, \zeta)^{2}$ are expressed as linear combinations of $\vartheta_{0,0}(z, \zeta)^{2}$ and $\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}$:

$$
\begin{aligned}
& \vartheta_{0,1 / 2}(z, \zeta)^{2}=\mathbf{e}\left(\frac{-1}{12}\right)\left(\vartheta_{0,0}(z, \zeta)^{2}-\omega^{2} \vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}\right) \\
& \vartheta_{1 / 2,0}(z, \zeta)^{2}=\mathbf{e}\left(\frac{1}{12}\right)\left(\vartheta_{0,0}(z, \zeta)^{2}+\omega \vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}\right)
\end{aligned}
$$

Proof. By Lemma 6, we have

$$
\begin{aligned}
-\sqrt{3} \frac{\vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}-1 & =\omega \frac{t}{u^{2}}
\end{aligned}=\omega\left(\sqrt{3} i \frac{\vartheta_{0,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}-1\right), ~ 子 \sqrt{3} \frac{\vartheta_{0,1 / 2}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}-1=\omega^{2} \frac{t}{u^{2}}=\omega^{2}\left(\sqrt{3} i \frac{\vartheta_{0,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}-1\right), ~ \$
$$

which yield this lemma.
Lemma 8 Let z be the image of $(t, u) \in C_{\zeta}$ under the Abel-Jacobi map. Then we have

$$
\frac{u^{3}}{t(t-1)}=\mathbf{e}\left(\frac{-1}{8}\right) \sqrt[4]{27} \frac{\vartheta_{0,0}(z, \zeta) \vartheta_{0,1 / 2}(z, \zeta) \vartheta_{1 / 2,0}(z, \zeta)}{\vartheta_{1 / 2,1 / 2}(z, \zeta)^{3}}
$$

Proof. By Table 3, we have

$$
\frac{u^{3}}{t(t-1)}=c^{\prime} \frac{\vartheta_{0,0}(z) \vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z)}{\vartheta_{1 / 2,1 / 2}(z)^{3}}
$$

where c^{\prime} is a constant. We consider the limit as $t \rightarrow \infty$ with $t \in(1, \infty)$, $u \in(0, \infty)$. The left hand side of the above converges to 1 . On the other hand, the right hand side of the above converges to

$$
\begin{aligned}
& c^{\prime} \frac{\vartheta_{0,0}((\zeta+1) / 3) \vartheta_{0,1 / 2}((\zeta+1) / 3) \vartheta_{1 / 2,0}((\zeta+1) / 3)}{\vartheta_{1 / 2,1 / 2}((\zeta+1) / 3)^{3}} \\
&=c^{\prime} \mathbf{e}\left(\frac{1}{3} \cdot\left(\frac{1}{2}+\frac{1}{2}\right)\right) \frac{\vartheta_{1 / 3,1 / 3}(0) \vartheta_{1 / 3,5 / 6}(0) \vartheta_{5 / 6,1 / 3}(0)}{\vartheta_{5 / 6,5 / 6}(0)^{3}} \\
& \quad=c^{\prime} \mathbf{e}\left(\frac{1}{3}-\frac{1}{8}-\frac{17}{24}+\frac{3}{6}\right) \frac{\vartheta_{1 / 3,1 / 3}(0)^{3}}{\vartheta_{1 / 6,1 / 6}(0)^{3}}=c^{\prime} \frac{\vartheta_{1 / 3,1 / 3}(0)^{3}}{\vartheta_{1 / 6,1 / 6}(0)^{3}}=c^{\prime} \mathbf{e}\left(\frac{1}{8}\right) \frac{1}{\sqrt[4]{27}}
\end{aligned}
$$

by Lemma 5 . Hence we have $c^{\prime}=\mathbf{e}(-1 / 8) \sqrt[4]{27}$.
Theorem 3 The inverse of $\jmath_{\zeta}: C_{\zeta} \ni(t, u) \mapsto z \in E_{\zeta}$ is given by

$$
\begin{aligned}
t & =\frac{-3 \sqrt{3} i \vartheta_{0,0}(z, \zeta)^{2} \vartheta_{0,1 / 2}(z, \zeta)^{2} \vartheta_{1 / 2,0}(z, \zeta)^{2}}{\left(\sqrt{3} i \vartheta_{0,0}(z, \zeta)^{2}-\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}\right)^{3}} \\
u & =\mathbf{e}\left(\frac{-1}{8}\right) \sqrt[4]{27} \frac{\vartheta_{0,0}(z, \zeta) \vartheta_{0,1 / 2}(z, \zeta) \vartheta_{1 / 2,0}(z, \zeta) \vartheta_{1 / 2,1 / 2}(z, \zeta)}{\left(\sqrt{3} i \vartheta_{0,0}(z, \zeta)^{2}-\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}\right)^{2}}
\end{aligned}
$$

Proof. Note that

$$
\left(1+\frac{t}{u^{2}}\right)\left(1+\frac{\zeta^{2} t}{u^{2}}\right)\left(1+\frac{\zeta^{4} t}{u^{2}}\right)=1+\frac{t^{3}}{u^{6}}=1+\frac{1}{t-1}
$$

By Lemma 6, we have

$$
1+\frac{1}{t-1}=-3 \sqrt{3} i \frac{\vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{6}}
$$

which yields

$$
t=\frac{3 \sqrt{3} i \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}}{3 \sqrt{3} i \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}+\vartheta_{1 / 2,1 / 2}(z)^{6}} .
$$

Rewrite $\vartheta_{0,1 / 2}(z)^{2}$ and $\vartheta_{1 / 2,0}(z)^{2}$ in the denominator of this expression by $\vartheta_{0,0}(z)^{2}$ and $\vartheta_{1 / 2,1 / 2}(z)^{2}$ by Lemma 7 . Then it can be factorized as

$$
\begin{aligned}
& 3 \sqrt{3} i \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}+\vartheta_{1 / 2,1 / 2}(z)^{6} \\
& \quad=-\left(\sqrt{3} i \vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right)^{3}
\end{aligned}
$$

Hence we have the expression of t.
By Lemmas 6 and 8 , the functions $1+t / u^{2}$ and $u^{3} / t(t-1)$ are expressed in terms $\vartheta_{a, b}(z, \zeta)$. We have

$$
\begin{aligned}
u= & \frac{u^{3}}{t(t-1)} \cdot\left(\left(1+\frac{t}{u^{2}}\right)-1\right) \cdot(t-1) \\
= & \mathbf{e}\left(\frac{-1}{8}\right) \sqrt[4]{27} \frac{\vartheta_{0,0}(z) \vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z)}{\vartheta_{1 / 2,1 / 2}(z)^{3}} \cdot \frac{\sqrt{3} i \vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}} \\
& \cdot \frac{-\vartheta_{1 / 2,1 / 2}(z)^{6}}{3 \sqrt{3} i \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}+\vartheta_{1 / 2,1 / 2}(z)^{6}} \\
= & \mathbf{e}\left(\frac{-1}{8}\right) \sqrt[4]{27} \\
& \cdot \frac{\vartheta_{0,0}(z) \vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z) \vartheta_{1 / 2,1 / 2}(z)\left(\sqrt{3} i \vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right)}{-3 \sqrt{3} i \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{6}}
\end{aligned}
$$

Note that the denominator of the last term is $\left(\sqrt{3} i \vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right)^{3}$. Hence we have the expression of u.

Corollary 6 The pull back of the holomorphic 1-from $\psi=u d t / t(t-1)$ under the map \jmath_{ζ}^{-1} is

$$
\mathbf{e}\left(\frac{-1}{8}\right) 2 \pi \sqrt[4]{27} \vartheta_{0,0}(0, \zeta)^{2} d z
$$

The theta constant $\vartheta_{0,0}(0, \zeta)$ is evaluated as

$$
\vartheta_{0,0}(0, \zeta)=\mathbf{e}\left(\frac{1}{48}\right) \frac{\sqrt[8]{3}}{\sqrt[3]{4} \pi} \Gamma\left(\frac{1}{3}\right)^{3 / 2}
$$

The other theta constants $\vartheta_{a, b}(0, \zeta)$ are

$$
\begin{aligned}
\vartheta_{0,1 / 2}(0, \zeta) & =\mathbf{e}\left(\frac{-1}{48}\right) \frac{\sqrt[8]{3}}{\sqrt[3]{4} \pi} \Gamma\left(\frac{1}{3}\right)^{3 / 2} \\
\vartheta_{1 / 2,0}(0, \zeta) & =\mathbf{e}\left(\frac{1}{16}\right) \frac{\sqrt[8]{3}}{\sqrt[3]{4} \pi} \Gamma\left(\frac{1}{3}\right)^{3 / 2} \\
\vartheta_{1 / 3,1 / 3}(0, \zeta) & =\mathbf{e}\left(\frac{11}{144}\right) \frac{\sqrt[8]{3}}{2 \pi} \Gamma\left(\frac{1}{3}\right)^{3 / 2} \\
\vartheta_{1 / 6,1 / 6}(0, \zeta) & =\mathbf{e}\left(\frac{5}{144}\right) \frac{\sqrt[8]{27}}{2 \pi} \Gamma\left(\frac{1}{3}\right)^{3 / 2} \\
\vartheta_{\frac{5}{6}, 1 / 3}(0, \zeta) & =\mathbf{e}\left(\frac{-7}{144}\right) \frac{\sqrt[8]{3}}{2 \pi} \Gamma\left(\frac{1}{3}\right)^{3 / 2} \\
\vartheta_{1 / 3, \frac{5}{6}}(0, \zeta) & =\mathbf{e}\left(\frac{53}{144}\right) \frac{\sqrt[8]{3}}{2 \pi} \Gamma\left(\frac{1}{3}\right)^{3 / 2}
\end{aligned}
$$

Proof. Recall that

$$
\frac{t}{t-1}=-3 \sqrt{3} i \frac{\vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{6}}
$$

Thus we have

$$
\begin{aligned}
\frac{d t}{t^{2}}= & d\left(1-\frac{1}{t}\right)=d\left(\frac{t-1}{t}\right) \\
= & \frac{d z}{-3 \sqrt{3} i}\left[\frac{6 \vartheta_{1 / 2,1 / 2}(z)^{5} \vartheta_{1 / 2,1 / 2}(z)^{\prime} \cdot \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{0,0}(z)^{4} \vartheta_{0,1 / 2}(z)^{4} \vartheta_{1 / 2,0}(z)^{4}}\right. \\
& \left.\quad-\frac{\vartheta_{1 / 2,1 / 2}(z)^{6} \cdot\left(\vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}\right)^{\prime}}{\vartheta_{0,0}(z)^{4} \vartheta_{0,1 / 2}(z)^{4} \vartheta_{1 / 2,0}(z)^{4}}\right]
\end{aligned}
$$

where $f(z)^{\prime}=d f(z) / d z$. Since $\psi=u \cdot t /(t-1) \cdot d t / t^{2}$, the pull-back of ψ under the map \jmath_{ζ}^{-1} is $\mathbf{e}(-1 / 8) \sqrt[4]{27}$ times
$\frac{6 \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2} \vartheta_{1 / 2,1 / 2}(z)^{\prime}-\vartheta_{1 / 2,1 / 2}(z)\left(\vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}\right)^{\prime}}{\left(\sqrt{3} i \vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right)^{2} \vartheta_{0,0}(z) \vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z)} d z$.
It should be a constant times $d z$. We determine this constant by substituting $z=0$ into the above. By Fact 1 and Lemma 5, we have

$$
J_{\zeta}^{-1^{*}}(\psi)=\mathbf{e}\left(\frac{-1}{8}\right) 2 \pi \sqrt[4]{27} \vartheta_{0,0}(0, \zeta)^{2} d z
$$

Note that

$$
\begin{aligned}
B\left(\frac{1}{3}, \frac{1}{6}\right) & =\int_{1}^{\infty} \psi=\int_{\jmath_{\zeta}\left(P_{1}\right)}^{\jmath_{\zeta}\left(P_{\infty, 1}\right)} \jmath_{\zeta}^{-1^{*}}(\psi) \\
& =\mathbf{e}\left(\frac{-1}{8}\right) 2 \pi \sqrt[4]{27} \vartheta_{0,0}(0, \zeta)^{2} \cdot\left(\frac{\zeta+1}{3}-0\right)
\end{aligned}
$$

by Proposition 3. The well-known formula

$$
\Gamma\left(\frac{1}{6}\right)=\frac{1}{\sqrt[3]{2}} \frac{\sqrt{3}}{\sqrt{\pi}} \Gamma\left(\frac{1}{3}\right)^{2}
$$

yields that

$$
B\left(\frac{1}{3}, \frac{1}{6}\right)=\frac{\Gamma(1 / 3) \Gamma(1 / 6)}{\Gamma(1 / 2)}=\frac{\sqrt{3}}{\sqrt[3]{2} \pi} \Gamma\left(\frac{1}{3}\right)^{3}
$$

Hence we evaluate the theta constant as

$$
\vartheta_{0,0}(0, \zeta)^{2}=\mathbf{e}\left(\frac{1}{24}\right) \frac{\sqrt[4]{3}}{\sqrt[3]{16} \pi^{2}} \Gamma\left(\frac{1}{3}\right)^{3}
$$

We can determine the sign of $\vartheta_{0,0}(0, \zeta)$ by a numerical computation. The rests can be obtained by Lemma 5 .

Corollary 7 The inverse of the Schwarz map (5.1) for $\mathcal{F}(1 / 3,0,1 / 2)$ is given by

$$
x=\frac{-3 \sqrt{3} i \vartheta_{0,0}(z, \zeta)^{2} \vartheta_{0,1 / 2}(z, \zeta)^{2} \vartheta_{1 / 2,0}(z, \zeta)^{2}}{\left(\sqrt{3} i \vartheta_{0,0}(z, \zeta)^{2}-\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}\right)^{3}}
$$

Proof. It is clear by Theorem 3. We can check this map is invariant under the action of $\langle\zeta\rangle$ by Lemma 3.

Corollary 8 For any point z around 0 , we have

$$
\begin{aligned}
& \frac{\sqrt[3]{16} \pi \zeta^{2}}{\Gamma(1 / 3)^{3}} \cdot \frac{1}{\sqrt{1-\sqrt{3} i \frac{\vartheta_{0,0}(z, \zeta)^{2}}{\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}}}} \\
& \quad \cdot F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; \frac{\vartheta_{1 / 2,1 / 2}(z, \zeta)^{6}}{\left(\vartheta_{1 / 2,1 / 2}(z, \zeta)^{2}-\sqrt{3} i \vartheta_{0,0}(z, \zeta)^{2}\right)^{3}}\right)=z,
\end{aligned}
$$

where the branch of the square root is selected as $\sqrt{\zeta^{2}}=\zeta$ for $z=\zeta / 2$.
Proof. Let z be the image of the Schwarz map (5.1). We have seen in Proof of Theorem 3 that

$$
\begin{aligned}
\frac{1}{1-x} & =\frac{3 \sqrt{3} i \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2}+\vartheta_{1 / 2,1 / 2}(z)^{6}}{\vartheta_{1 / 2,1 / 2}(z)^{6}} \\
& =\frac{\left(\vartheta_{1 / 2,1 / 2}(z)^{2}-\sqrt{3} i \vartheta_{0,0}(z)^{2}\right)^{3}}{\vartheta_{1 / 2,1 / 2}(z)^{6}} .
\end{aligned}
$$

Thus we have the desired identity modulo the monodromy group of $\mathcal{F}(1 / 3,0,1 / 2)$. Since the both sides of the above become 0 for $z=0$, their difference is represented as the group $\langle\zeta\rangle$. Consider the limit of the both sides as $z \rightarrow \zeta / 2$ along the segment connecting 0 and $\zeta / 2$. Since $1 /(1-x)$ converges to 1 by this limit, it turns out that x converges to 0 . Use

$$
1-\sqrt{3} i \frac{\vartheta_{0,0}(\zeta / 2, \zeta)^{2}}{\vartheta_{1 / 2,1 / 2}(\zeta / 2, \zeta)^{2}}=1+\sqrt{3} i \frac{\vartheta_{1 / 2,0}(0, \zeta)^{2}}{\vartheta_{0,1 / 2}(0, \zeta)^{2}}=1+\sqrt{3} i \zeta=\zeta^{2}
$$

and the Gauss-Kummer formula.

5.3. $\quad(1+\zeta)$-multiplication

Theorem 4 Let $z \in E_{\zeta}$ be the image of $(t, u) \in C_{\zeta}$ under the Abel-Jacobi map \jmath_{ζ}. Then we have

$$
\begin{equation*}
\jmath_{\zeta}^{-1}((1+\zeta) z)=\left(\frac{t(9-8 t)^{2}}{(4 t-3)^{3}}, \mathbf{e}\left(\frac{1}{12}\right) \sqrt{3} u \frac{9-8 t}{(4 t-3)^{2}}\right) \tag{5.2}
\end{equation*}
$$

Proof. We set $\left(t^{\prime}, u^{\prime}\right)=\jmath_{\zeta}^{-1}((1+\zeta) z)$. Then t^{\prime} is given by the substitution z to $(z+1) z$ into the expression of t in Theorem 3. Rewrite $\vartheta_{a, b}((1+\zeta) z)$ in terms of $\vartheta_{a, b}(z)$ by Lemma 4. Its numerator $N\left(t^{\prime}\right)$ is

$$
\begin{aligned}
N\left(t^{\prime}\right)= & 3 \sqrt{3} i \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2} \vartheta_{1 / 2,0}(z)^{2} \\
& \times\left(\vartheta_{0,0}(z)^{2}-i \vartheta_{0,1 / 2}(z)^{2}\right)^{2}\left(\vartheta_{0,0}(z)^{2}+i \vartheta_{1 / 2,0}(z)^{2}\right)^{2} \\
& \times\left(\vartheta_{0,1 / 2}(z)^{2}-\vartheta_{1 / 2,0}(z)^{2}\right)^{2},
\end{aligned}
$$

and its denominator $D\left(t^{\prime}\right)$ is

$$
\begin{aligned}
D\left(t^{\prime}\right)=\{ & -\left(\sqrt{3} \vartheta_{1 / 2,0}(z)^{2}+\vartheta_{1 / 2,1 / 2}(z)^{2}\right)\left(\vartheta_{0,0}(z)^{4}-\vartheta_{0,1 / 2}(z)^{4}\right) \\
& \left.+2 i\left(\sqrt{3} \vartheta_{1 / 2,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right) \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2}\right\}^{3} .
\end{aligned}
$$

In this computation, the theta constants $\vartheta_{0,0}(0), \vartheta_{0,1 / 2}(0), \vartheta_{1 / 2,0}(0)$ are canceled by Lemma 5 . Divide them by $\vartheta_{1 / 2,1 / 2}(z)^{18}$ and rewrite

$$
\begin{gathered}
\frac{\vartheta_{0,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}=\frac{1+t / u^{2}}{\sqrt{3} i}, \quad \frac{\vartheta_{1 / 2,0}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}=\frac{1+\omega t / u^{2}}{-\sqrt{3}}, \\
\frac{\vartheta_{0,1 / 2}(z)^{2}}{\vartheta_{1 / 2,1 / 2}(z)^{2}}=\frac{1+\omega^{2} t / u^{2}}{\sqrt{3}} .
\end{gathered}
$$

Then we have

$$
t^{\prime}=\left(\frac{-\left(t^{3}+u^{6}\right)\left(t^{3}-8 u^{6}\right)^{2}}{27 u^{18}}\right) /\left(\frac{-\left(t^{3}+4 u^{6}\right)^{3}}{27 u^{18}}\right)=\frac{t(9-8 t)^{2}}{(4 t-3)^{3}},
$$

where we use the relation $u^{6}=t^{3}(t-1)$.
By the same way, we can express u^{\prime} in terms of $\vartheta_{a, b}(z)$'s, whose numerator $N\left(u^{\prime}\right)$ and denominator $D\left(u^{\prime}\right)$ are

$$
\begin{aligned}
N\left(u^{\prime}\right)= & \mathbf{e}\left(\frac{1}{8}\right) \sqrt[4]{27} \vartheta_{0,0}(z) \vartheta_{0,1 / 2}(z) \vartheta_{1 / 2,0}(z) \vartheta_{1 / 2,1 / 2}(z) \\
& \cdot\left(\vartheta_{0,1 / 2}(z)^{2}-\vartheta_{1 / 2,0}(z)^{2}\right)\left(\vartheta_{0,0}(z)^{4}+\vartheta_{0,1 / 2}(z)^{4}\right) \\
& \cdot\left(\vartheta_{0,0}(z)^{2}+i \vartheta_{1 / 2,0}(z)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
D\left(u^{\prime}\right)= & \left\{\left(\sqrt{3} \vartheta_{1 / 2,0}(z)^{2}+\vartheta_{1 / 2,1 / 2}(z)^{2}\right)\left(\vartheta_{0,0}(z)^{4}-\vartheta_{0,1 / 2}(z)^{4}\right)\right. \\
& \left.-2 i\left(\sqrt{3} \vartheta_{1 / 2,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right) \vartheta_{0,0}(z)^{2} \vartheta_{0,1 / 2}(z)^{2}\right\}^{2}
\end{aligned}
$$

Divide them by $\vartheta_{1 / 2,1 / 2}(z)^{8}\left(\sqrt{3} i \vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right)^{2}$. We factor out u from the numerator as

$$
\begin{aligned}
& \frac{N\left(u^{\prime}\right)}{\vartheta_{1 / 2,1 / 2}(z)^{8}\left(\sqrt{3} i \vartheta_{0,0}(z)^{2}-\vartheta_{1 / 2,1 / 2}(z)^{2}\right)^{2}} \\
& \quad=i u \frac{\left(\vartheta_{0,1 / 2}(z)^{2}-\vartheta_{1 / 2,0}(z)^{2}\right)\left(\vartheta_{0,0}(z)^{4}+\vartheta_{0,1 / 2}(z)^{4}\right)\left(\vartheta_{0,0}(z)^{2}+i \vartheta_{1 / 2,0}(z)^{2}\right)}{\vartheta_{1 / 2,1 / 2}(z)^{8}} .
\end{aligned}
$$

Since the rest terms are expressed in terms of $\vartheta_{a, b}(z)^{2}$, we can compute them quite similarly to the case of t^{\prime}. Hence we have

$$
u^{\prime}=i u\left(\frac{(3 i-\sqrt{3})\left(-t^{3}+8 u^{6}\right) t}{18 u^{8}}\right) /\left(\frac{\left(t^{3}+4 u^{6}\right)^{2}}{9 t^{2} u^{8}}\right)=\frac{3+\sqrt{3} i}{2} \cdot u \cdot \frac{(9-8 t)}{(4 t-3)^{2}} .
$$

It is easy to see that $\left(t^{\prime}, u^{\prime}\right)$ satisfies $u^{\prime 6}=t^{\prime 3}\left(t^{\prime}-1\right)$.

6. Limits of mean iterations

6.1. Limit formula by $F(1 / 4,1 / 2,5 / 4 ; x)$

Theorem 2 is interpreted as follows.
Theorem 5 Let $P_{x}=\left(x, \sqrt[4]{x^{2}(x-1)}\right)$ be a point of the curve C. We set

$$
P_{x^{\prime}}=\left(\frac{(2-x)^{2}}{x^{2}}, \frac{(1+i)(2-x) \sqrt[4]{x^{2}(x-1)}}{x^{2}}\right) \in C .
$$

Then we have

$$
\int_{P_{1}}^{P_{x^{\prime}}} \varphi \equiv(1+i) \int_{P_{1}}^{P_{x}} \varphi \quad \bmod \langle i\rangle \ltimes \mathbb{Z}[i] .
$$

Corollary $9 \quad$ The following identity holds around $x=1$:

$$
\frac{1}{\sqrt{x}} F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, 1-\frac{(2-x)^{2}}{x^{2}}\right)=F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, 1-x\right) .
$$

Proof. Theorem 5 implies that

$$
\int_{1}^{(2-x)^{2} / x^{2}} \frac{\sqrt[4]{t^{2}(t-1)} d t}{t(t-1)} \equiv(1+i) \int_{1}^{x} \frac{\sqrt[4]{t^{2}(t-1)} d t}{t(t-1)} \quad \bmod \langle i\rangle \ltimes \mathbb{Z}[i]
$$

Note that

$$
\begin{gathered}
\int_{1}^{x} \frac{\sqrt[4]{t^{2}(t-1)} d t}{t(t-1)}=2 \sqrt{2}(1+i) \sqrt[4]{1-x} F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, 1-x\right) \\
\sqrt[4]{1-\frac{(2-x)^{2}}{x^{2}}}=\sqrt[4]{\frac{4 x-4}{x^{2}}}=(1+i) \frac{\sqrt[4]{1-x}}{\sqrt{x}}
\end{gathered}
$$

for $0<x<1$ and $\arg \left(1-(2-x)^{2} / x^{2}\right)=\pi$. We can cancel the factor $\sqrt[4]{1-x}$ and determine the action of $\langle i\rangle \ltimes \mathbb{Z}[i]$ by the substitution $x=1$. Thus we have the desired identity.

Let $a=a_{1}$ and $b=b_{1}$ be positive real numbers. We define a pair $\left\{a_{n}, b_{n}\right\}_{n \in \mathbb{N}}$ of sequences by the recursive relations

$$
\begin{equation*}
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{\frac{a_{n}\left(a_{n}+b_{n}\right)}{2}} . \tag{6.1}
\end{equation*}
$$

Corollary 10 (A formula in Theorem 2 in [HKM]) We have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\frac{a}{F\left(1 / 4,1 / 2,5 / 4 ; 1-b^{2} / a^{2}\right)^{2}}
$$

Proof. We can show that the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$ by Lemma 1 in [HKM]. Substitute $x=2 a /(a+b)$ into the identity between hypergeometric series in Corollary 9. Since

$$
\frac{2-x}{x}=\frac{b}{a},
$$

we have

$$
\frac{\sqrt{a+b}}{\sqrt{2 a}} F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; 1-\frac{b^{2}}{a^{2}}\right)=F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4} ; 1-\frac{2 a}{a+b}\right),
$$

$$
\begin{aligned}
& \frac{a}{F}\left(1 / 4,1 / 2,5 / 4 ; 1-b^{2} / a^{2}\right)^{2} \\
& \quad=\frac{(a+b) / 2}{F\left(1 / 4,1 / 2,5 / 4 ; 1-(\sqrt{a(a+b) / 2} /((a+b) / 2))^{2}\right)^{2}} \\
& \quad=\frac{a_{2}}{F\left(1 / 4,1 / 2,5 / 4 ; 1-b_{2}^{2} / a_{2}^{2}\right)^{2}}=\cdots=\frac{a_{n}}{F\left(1 / 4,1 / 2,5 / 4 ; 1-b_{n}^{2} / a_{n}^{2}\right)^{2}} .
\end{aligned}
$$

The last term is equal to $\lim _{n \rightarrow \infty} a_{n}$ since $\lim _{n \rightarrow \infty}\left(b_{n}^{2} / a_{n}^{2}\right)=1$ and $F(1 / 4,1 / 2$, $5 / 4 ; 0)=1$.

Hence we see that the $(1+i)$-multiple formula (4.2) in Theorem 2 implies this limit formula for the sequences defined by the mean iteration (6.1).

6.2. Limit formula by $F(1 / 6,1 / 2,7 / 6 ; x)$

Theorem 4 is interpreted as follows.
Theorem 6 Let $P_{x}=\left(x, \sqrt[6]{x^{3}(x-1)}\right)$ be a point of the curve C_{ζ}. We set

$$
P_{x^{\prime}}=\left(\frac{x(9-8 x)^{2}}{(4 x-3)^{3}}, \mathbf{e}\left(\frac{1}{12}\right) \sqrt{3} \sqrt[6]{x^{3}(x-1)} \frac{9-8 x}{(4 x-3)^{2}}\right) \in C_{\zeta} .
$$

Then we have

$$
\int_{P_{1}}^{P_{x^{\prime}}} \psi \equiv(1+\zeta) \int_{P_{1}}^{P_{x}} \psi \quad \bmod \langle\zeta\rangle \ltimes \mathbb{Z}[\omega] .
$$

Corollary 11 The following identity holds around $x=1$:

$$
F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-x\right)=\frac{1}{\sqrt{4 x-3}} F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-\frac{x(9-8 x)^{2}}{(4 x-3)^{3}}\right),
$$

where $\sqrt{4 x-3}=1$ for $x=1$.
Proof. Theorem 6 implies that

$$
\int_{1}^{x^{\prime}} \frac{\sqrt[6]{t^{3}(t-1)} d t}{t(t-1)} \equiv(1+\zeta) \int_{1}^{x} \frac{\sqrt[6]{t^{3}(t-1)} d t}{t(t-1)} \quad \bmod \langle\zeta\rangle \ltimes \mathbb{Z}[\omega]
$$

for $x^{\prime}=x(9-8 x)^{2} /(4 x-3)^{3}$. By this relation, there exists $k \in \mathbb{N}$ such that

$$
\begin{aligned}
& \zeta^{k} \frac{\sqrt[6]{27(x-1)}}{\sqrt{4 x-3}} F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-\frac{x(9-8 x)^{2}}{(4 x-3)^{3}}\right) \\
& \quad=(1+\zeta) \sqrt[6]{1-x} F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-x\right)
\end{aligned}
$$

We cancel $(1+\zeta) \sqrt[6]{1-x}$ and $\sqrt[6]{27(x-1)}$, and choose $k=0$ so that the identity holds for $x=1$.

By Corollary 11, we define two means as follows. We solve the cubic equation

$$
\frac{x(9-8 x)^{2}}{(4 x-3)^{3}}=\frac{b^{2}}{a^{2}}
$$

of the variable x, where we assume $0<a<b$. A real solution x_{0} of this equation is

$$
\frac{3}{8}\left[\frac{\sqrt[3]{a^{2}}}{\sqrt{b^{2}-a^{2}}}\left(\sqrt[3]{b+\sqrt{b^{2}-a^{2}}}-\sqrt[3]{b-\sqrt{b^{2}-a^{2}}}\right)+2\right]
$$

We set

$$
\begin{equation*}
\eta_{1}=b+\sqrt{b^{2}-a^{2}}, \quad \eta_{2}=b-\sqrt{b^{2}-a^{2}} . \tag{6.2}
\end{equation*}
$$

Note that

$$
\eta_{1} \eta_{2}=a^{2}, \quad \frac{\eta_{1}+\eta_{2}}{2}=b, \quad \frac{\eta_{1}-\eta_{2}}{2}=\sqrt{b^{2}-a^{2}}
$$

We express x_{0} and $4 x_{0}-3$ in terms of η_{1} and η_{2} as

$$
\begin{aligned}
x_{0} & =\frac{3}{8}\left[\frac{\sqrt[3]{\eta_{1}} \sqrt[3]{\eta_{2}}}{\left(\eta_{1}-\eta_{2}\right) / 2}\left(\sqrt[3]{\eta_{1}}-\sqrt[3]{\eta_{2}}\right)+2\right]=\frac{3}{4}\left[\frac{\sqrt[3]{\eta_{1}} \sqrt[3]{\eta_{2}}}{\sqrt[3]{\eta_{1}^{2}}+\sqrt[3]{\eta_{1}} \sqrt[3]{\eta_{2}}+\sqrt[3]{\eta_{2}^{2}}}+1\right] \\
& =\frac{3}{4} \frac{\left(\sqrt[3]{\eta_{1}}+\sqrt[3]{\eta_{2}}\right)^{2}}{\sqrt[3]{\eta_{1}^{2}}+\sqrt[3]{\eta_{1}} \sqrt[3]{\eta_{2}}+\sqrt[3]{\eta_{2}^{2}}}, \\
4 x_{0}-3 & =\frac{3}{2}\left[\frac{\sqrt[3]{\eta_{1}} \sqrt[3]{\eta_{2}}}{\left(\eta_{1}-\eta_{2}\right) / 2}\left(\sqrt[3]{\eta_{1}}-\sqrt[3]{\eta_{2}}\right)+2\right]-3=\frac{3 \sqrt[3]{\eta_{1}} \sqrt[3]{\eta_{2}}}{\sqrt[3]{\eta_{1}^{2}}+\sqrt[3]{\eta_{1}} \sqrt[3]{\eta_{2}}+\sqrt[3]{\eta_{2}^{2}}} .
\end{aligned}
$$

Thus the identity in Corollary 11 is transformed into

$$
\begin{aligned}
& F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-\left(\frac{\sqrt[3]{\eta_{1}}+\sqrt[3]{\eta_{2}}}{2}\right)^{2} /\left(\sqrt{\frac{\eta_{1}^{2 / 3}+\eta_{1}^{1 / 3} \eta_{2}^{1 / 3}+\eta_{2}^{2 / 3}}{3}}\right)^{2}\right) \\
& \quad=\frac{1}{\sqrt[3]{a}} \sqrt{\frac{\eta_{1}^{2 / 3}+\eta_{1}^{1 / 3} \eta_{2}^{1 / 3}+\eta_{2}^{2 / 3}}{3}} F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6} ; 1-\frac{b^{2}}{a^{2}}\right) .
\end{aligned}
$$

This formula is equivalent to

$$
\begin{align*}
& \frac{a}{F\left(1 / 6,1 / 2,7 / 6 ; 1-b^{2} / a^{2}\right)} \\
& \quad=\frac{m_{1}(a, b)}{F\left(1 / 6,1 / 2,7 / 6 ; 1-m_{2}(a, b)^{2} / m_{1}(a, b)^{2}\right)} \tag{6.3}
\end{align*}
$$

if we define two means m_{1} and m_{2} of positive real numbers a and b by

$$
m_{1}(a, b)=\frac{a^{2 / 3} \sqrt{\eta_{1}^{2 / 3}+\eta_{1}^{1 / 3} \eta_{2}^{1 / 3}+\eta_{2}^{2 / 3}}}{\sqrt{3}}, \quad m_{2}(a, b)=\frac{a^{2 / 3}\left(\eta_{1}^{1 / 3}+\eta_{2}^{1 / 3}\right)}{2}
$$

where η_{1} and η_{2} are given in (6.2) with conditions

$$
-\frac{\pi}{6}<\arg \left(\eta_{i}^{1 / 3}\right)<\frac{\pi}{6}, \quad \eta_{1}^{1 / 3} \eta_{2}^{1 / 3}=a^{2 / 3}
$$

Let $a_{1}=a$ and $b_{1}=b$ be positive real numbers. We give a pair of sequences $\left\{a_{n}, b_{n}\right\}_{n \in \mathbb{N}}$ with initial terms $a_{1}=a, b_{1}=b$ by the recursive relations

$$
\begin{equation*}
a_{n+1}=m_{1}\left(a_{n}, b_{n}\right), \quad b_{n+1}=m_{2}\left(a_{n}, b_{n}\right) . \tag{6.4}
\end{equation*}
$$

Corollary 12 (A formula in Theorem 3 in [HKM]) We have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\frac{a}{F\left(1 / 6,1 / 2,7 / 6 ; 1-b^{2} / a^{2}\right)} .
$$

Proof. It is shown in $\S 5$ of $[H K M]$ that the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge and satisfy $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$. By (6.3), we have

$$
\begin{aligned}
& \frac{a}{F\left(1 / 6,1 / 2,7 / 6 ; 1-b^{2} / a^{2}\right)}=\frac{a_{2}}{F\left(1 / 6,1 / 2,7 / 6 ; 1-b_{2}^{2} / a_{2}^{2}\right)} \\
& \quad=\frac{a_{3}}{F\left(1 / 6,1 / 2,7 / 6 ; 1-b_{3}^{2} / a_{3}^{2}\right)}=\cdots \\
& \quad=\frac{a_{n}}{F\left(1 / 6,1 / 2,7 / 6 ; 1-b_{n}^{2} / a_{n}^{2}\right)}=\cdots=\lim _{n \rightarrow \infty} a_{n}
\end{aligned}
$$

since $\lim _{n \rightarrow \infty}\left(b_{n}^{2} / a_{n}^{2}\right)=1$ and $F(1 / 6,1 / 2,7 / 6 ; 0)=1$.
Hence we see that the $(1+\zeta)$-multiple formula (5.2) in Theorem 4 implies this limit formula for the sequences defined by the mean iteration (6.4).

References

[G] Goto Y., Functional equations for Appell's F_{1} arising from transformations of elliptic curves. Funkcial. Ekvac. 56 (2013), 379-396.
[HKM] Hattori R., Kato T. and Matsumoto K., Mean iterations derived from transformation formulas for the hypergeometric function. Hokkaido Math. J. 38 (2009), 563-586.
[I] Igusa J., Theta functions, Springer-Verlag, Berlin, 1972.
[MO] Matsumoto K. and Oikawa T., Limits of iterations of complex maps and hypergeometric functions. Hokkaido Math. J. 41 (2012), 135-155.
[Ma1] Matsumoto K., A transformation formula for Appell's hypergeometric function F_{1} and common limits of triple sequences by mean iterations. Tohoku Math. J. (2), 62 (2010), 263-268.
[Ma2] Matsumoto K., The monodromy representations of local systems associated with Lauricella's F_{D}. Kyushu J. Math. 71 (2017), 329-348.
[Mu] Mumford D., Tata lectures on theta I, Birkhäuser, Boston, 1983.

Yuto Koguchi
Product Actuarial Team
The Gibraltar Life Insurance Co., Ltd.
Keiji Matsumoto
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: matsu@math.sci.hokudai.ac.jp
Fuko Seto
Aomori Prefectural Hachinohe Kita High School
8-3 Machimichi, Ohkubo, Hachinohe 031-0833, Japan

