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Abstract. Let 2n+1 > 5 be a prime number. In this article, we will show G ∼= Cn(2)

if and only if |G| = |Cn(2)| and G has a conjugacy class length |Cn(2)|/(2n + 1).

Furthermore, we will show Thompson’s conjecture is valid under a weak condition for

the symplectic groups Cn(2).
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1. Introduction

In this article, we investigate the possibility of characterizing Cn(2) by
simple conditions when 2n + 1 > 5 is a prime number. In fact, the main
theorem of this paper is as follows:

Main Theorem Let G be a group. Then G ∼= Cn(2) if and only if |G| =
|Cn(2)| and G has a conjugacy class length |Cn(2)|/(2n + 1), where 2n +1 =
p > 5 is a prime number.

For related results, Chen et al. in [6] showed that the projective special
linear groups A1(p) are recognizable by their order and one conjugacy class
length, where p is a prime number. As a consequence of their result, they
showed that Thompson’s conjecture is valid for A1(p).

Put N(G) = {n : G has a conjugacy class of size n}. The well-known
Thompson’s conjecture states that if L is a finite non-abelian simple group,
G is a finite group with a trivial center, and N(G) = N(L), then L ∼= G.
This conjecture is stated in [4], [5] in which the conjecture is verified for a
few finite simple groups.

Similar characterizations have been found in [2] and [11] for the groups:
sporadic simple groups, and simple K3-groups (a finite simple group is called
a simple Kn-group if its order is divisible by exactly n distinct primes) and
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alternating group of prime degree.
The prime graph of a finite group G that is denoted by Γ(G) is the graph

whose vertices are the prime divisors of G and where prime p is defined to
be adjacent to prime q (6= p) if and only if G contains an element of order
pq.

We denote by π(G) the set of prime divisors of |G|. Let t(G) be the
number of connected components of Γ(G) and let π1, π2, . . . , πt(G) be the
connected components of Γ(G). If 2 ∈ π(G), then we always suppose 2 ∈ π1.

We can express |G| as a product of integers m1,m2, . . . , mt(G), where
π(mi) = πi for each i. The numbers mi are called the order components of
G. In particular, if mi is odd, then we call it an odd component of G. Write
OC(G) for the set {m1,m2, . . . , mt(G)} of order components of G and T (G)
for the set of connected components of G. According to the classification
theorem of finite simple groups and [10], [13], [8], we can list the order
components of finite simple groups with disconnected prime graphs as in
Tables 1–4 in [5].

If n is an integer, then denote the r-part of n by nr = ra or by ra ‖ n,
namely, ra | n but ra+1 - n. If q is a prime, then we denote by Sq(G) a
Sylow q-subgroup of G, by Sylq(G) the set of Sylow q-subgroups of G. The
other notation and terminology in this paper are standard, and the reader
is referred to [7] if necessary.

2. Preliminary Results

Definition 2.1 Let a and n be integers greater than 1. Then a Zsigmondy
prime of an−1 is a prime l such that l | (an−1) but l - (ai−1) for 1 ≤ i < n.

Lemma 2.1 ([14]) If a and n are integers greater than 1, then there exists
a Zsigmondy prime of an− 1, unless (a, n) = (2, 6) or n = 2 and a = 2s− 1
for some natural number s.

Remark 2.1 If l is a Zsigmondy prime of an − 1, then Fermat’s little
theorem shows that n | (l − 1). Put Zn(a) = {l : l is a Zsigmondy prime of
an − 1}. If r ∈ Zn(a) and r | am − 1, then n | m.

Lemma 2.2 ([12]) The equation pm − qn = 1, where p and q are primes
and m, n > 1 has only solution, namely, 32 − 23 = 1.

Lemma 2.3 ([9]) Let q be a prime power which is not of the form 3r2s±1,
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where r = 0, 1 and s ≥ 1. Let M = Cn(q), where n = 2m(m ≥ 2) and
OC2 = (qn +1)/(2, q +1). If x ∈ π1(M), xα | |M | and xα−1 ≡ 0mod OC2,
then xα = q2kn, where 1 ≤ k ≤ n/2.

Corollary 2.1 If x ∈ π(Cn(2))− {p} and xα − 1 ≡ 0 mod p, then either
xα - |Cn(2)| or x = 2.

Proof. It follows from Lemma 2.3. ¤

3. Proof of the Main Theorem

By [1, Corollary 2.3], Cn(2) has one conjugacy class length |Cn(2)|/
(2n + 1). Note that since 2n + 1 > 5 is prime, we deduce that n is a power
of 2. Since the necessity of the theorem can be checked easily, we only need
to prove the sufficiency.

By hypothesis, there exists an element x of order p in G such that
CG(x) = 〈x〉 and CG(x) is a Sylow p-subgroup of G. By the Sylow theorem,
we have that CG(y) = 〈y〉 for any element y in G of order p. So, {p} is a
prime graph component of G and t(G) ≥ 2. In addition, p is the maximal
prime divisor of |G| and an odd order component of G.

We are going to prove the main theorem in the following steps:

Step 1. G has a normal series 1 E H E K E G such that H and G/K are
π1-groups, K/H is a non-abelian simple group and H is a nilpotent group.

Let g ∈ G be an element of order p, then CG(g) = 〈g〉. Set H = Op′(G)
(the largest normal p′-subgroup of G). Then H is a nilpotent group since g

acts on H fixed point freely. Let K be a normal subgroup of G such that
K/H is a minimal normal subgroup of G/H. Then K/H is a direct product
of copies of some simple group. Since p | |K/H| and p2 - |K/H|, K/H is a
simple group. Since 〈g〉 is a Sylow p-subgroup of K, G = NG(〈g〉)K by the
Frattini argument and so |G/K| divides p− 1.

If |K/H| = p, then by Lemma 2.1, there is a prime r ∈ Zn−1(2) ∩ π(G)
and so |Cn(2)|r = |2n−1 − 1|r ≤ |G|r. Since π(G) = π(K) ∪ π(H) =
π1(G) ∪ π2(G), then r ∈ (H). Since H is nilpotent, a Sylow r-subgroup is
normal in G. It follows that the Sylow p-subgroup of G acts fixed point
freely on the set of elements of order r and so p | |Cn(2)|r − 1. Thus
p ≤ |Cn(2)|r ≤ 2n−1−1 < p, a contradiction. Therefore G has normal series
1 E H E K E G such that K/H is a non-abelian simple group and p is an
odd order component of K/H.
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Step 2. π(H) ⊆ {2}.
Let r ∈ π(H). Then r 6= p and since H is nilpotent, we deduce that

Sr(H) E G and hence, Sp(G) acts fixed point freely on Sr(H)− {1}. Thus
p | |Sr(H)| − 1. If r 6= 2, then |Sr(H)| | |Cn(2)|r and hence, Corollary 2.1
leads us to get a contradiction. Thus r = 2, as claimed.

According to the classification theorem of finite simple groups and the
results in Tables 1–4 in [5], K/H is an alternating group, sporadic group or
simple group of Lie type.

Step 3. K/H is not a sporadic simple group.
Suppose that K/H is a sporadic simple group. Since one of the odd order

components of K/H is p = 2n +1, we get a contradiction by considering the
odd order components of sporadic simple groups.

Step 4. K/H can not be an alternating group Am, where m ≥ 5.
If K/H ∼= Am with m ≥ 5, then since p ∈ π(K/H), m ≥ 2n + 1. Thus

there is a prime u ∈ π(Am) ⊆ π(G) such that (p− 1)/2 < u < p. Since
|G| = |Cn(2)|, there exists t ∈ {2i, i : 1 < i < n − 1} ∪ {n} such that
u ∈ Zt(2). But u > (2n − 1 + 1)/2 = 2n−1 and so u = 2n−1 + 1 or 2n − 1.
But n is a power of 2 and hence, 3 | 2n−1 + 1 and 2n − 1. Thus 3 | u. This
implies that u = 3 ad hence, n = 2, which is a contradiction.

Step 5. K/H ∼= Cn(2).

By Steps 3 and 4, and the classification theorem of finite simple groups,
K/H is a simple group of Lie type such that t(K/H) ≥ 2 and p ∈ OC(K/H).
Thus K/H is isomorphic to one of the group of Lie type (in the following
cases, r is an odd prime number):

Case 1. Let t(K/H) = 2. Then OC2(K/H) = 2n + 1. Then we have:

1.1. If K/H ∼= Cn′(q), where n′ = 2u > 2, then (qn′ + 1)/(2, q − 1) =
2n +1. If q is odd, then qn′ = 2n+1 +1, which contradicts Lemma 2.2.
Thus q = 2t and hence, qn′ = 2n. But p ∈ Z2n(2) and p ∈ Z2n′t(2).
Thus Remark 2.1 forces n′t = n. We claim that t = 1. If not, then
Zn−1(2) ∩ π(K/H) = ∅. But Lemma 2.1 forces Zn−1(2) 6= ∅ and
hence since |G| = |Cn(2)|, π(G) contains a prime r ∈ Zn−1(2). Since
r - |Out(K/H)| and G/K .Out(K/H), we deduce that r | |H|. Thus
Step 2 shows that r = 2, which is a contradiction. Thus t = 1 and
hence, K/H ∼= Cn(2).
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Arguing as above if K/H ∼= Bn′(q), where n′ = 2u ≥ 4, then n′ = n

and q = 2. Thus K/H ∼= Bn(2) = Cn(2).
1.2. If K/H ∼= Cr(3) or Br(3), then (3r − 1)/2 = 2n+1. Thus 2n + 1 =

3r − 3, which is a contradiction. The same reasoning rules out the
case when K/H ∼= Dr(3) or Dr+1(3).

1.3. If K/H ∼= Cr(2), then 2r − 1 = 2n + 1 and hence, 2r = 2n + 2,
which is a contradiction. The same reasoning rules out the case when
K/H ∼= Dr(2) or Dr+1(2).

1.4. If K/H ∼= Dr(5), where r ≥ 5, then (5r − 1)/4 = (2n + 1). Thus
5r − 5 = 2n+2, which is contradiction.

1.5. If K/H ∼=2 Dn′(3), where 9 ≤ n′ = 2m + 1 and n′ is not prime, then
(3n′ − 1)/2 = 2n+1 and hence, 3n′ − 1 = 2n+1 + 1. Thus Lemma 2.2
forces n + 1 = 3, which is a contradiction.

1.6. If K/H ∼=2 Dn′(2), where n′ = 2m+1 ≥ 5, then 2n′−1+1 = 2n+1 and
hence, n′− 1 = n. Thus K/H ∼=2 Dn+1(2). Then Zn+1(2) ⊆ π(K/H)
and hence, Zn+1(2) ⊆ π(G) = π(Cn(2)), which is a contradiction.
If K/H ∼=2 Dn′(q), where n′ = 2u ≥ 4, then n′ = n and q = 2.
Similarly we can rules out this case.

1.7. If K/H ∼=2 Dr(3), where 5 ≤ r 6= 2m + 1, then (3r + 1)/4 = 2n + 1
and hence, 3r = 2n+2 + 3, which is a contradiction.

1.8. If K/H ∼= G2(q), where 2 < q ≡ ε mod 3 and ε = ±1, then q2−εq+1 =
2n + 1. Thus q(q − ε) = 2n, which is impossible. The same reasoning
rules out the case when K/H ∼= F4(q), where q is odd.

1.9. If K/H ∼=2 F4(2)′, then since |2F4(2)| = 211.33.52.13, 2n + 1 = 13, a
contradiction. Also we can rule out K/H ∼= 2A3(2).

1.10. Let K/H ∼= Ar−1(q), where (r, q) 6= (3, 2), (3, 4). Since (qr − 1)/
((r, q − 1)(q − 1)) = p, p ∈ Zr(q) and hence, Remark 2.1 shows that
r | p − 1 = 2n. Thus r = 2, which is a contradiction. The same
reasoning rules out the case when K/H ∼=2 Ar−1(q).

1.11. Let K/H ∼= Ar(q), where (q−1) | (r+1). Since (qr − 1)/(r, q − 1) = p,
p ∈ Zr(q) and hence, Remark 2.1 shows that r | p − 1 = 2n. Thus
r = 2, which is a contradiction. The same reasoning rules out the case
when (q + 1) | (r + 1), (r, q) 6= (3, 3), (5, 2) and K/H ∼=2 Ar(q).

1.12. If K/H ∼= E6(q), where q = uα, then (q6 + q3 + 1)/(3, q − 1) = p.
Thus p ∈ Z6(q) and hence, Remark 2.1 shows that 6 | p − 1 = 2n,
which is a contradiction. The same reasoning rules out the case when
K/H ∼=2 E6(q), where q > 2.
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Case 2: Let t(K/H) = 3. Then p = 2n + 1 ∈ {OC2(K/H), OC3(K/H)}.
2.1. If K/H ∼= A1(q), where 4 | q +1, then (q − 1)/2 = 2n +1 or q = 2n +1.

If q = 2n + 1, then q + 1 = 2n + 2 and hence, 4 - q + 1, which is
a contradiction. If (q − 1)/2 = p, then q ≡ −1mod 4. Let q = uα,
where u is a prime. Thus p ∈ Zα(u) and hence, Remark 2.1 shows that
α | p − 1 = 2n. So α = 2t and hence, q = uα ≡ 1mod 4, which is a
contradiction.

2.2. If K/H ∼= A1(q), where 4 | q + 1, then q = 2n + 1 or (q + 1)/2 = p.
• If q = 2n + 1, then q = p and hence, |K/H| = p(p2 − 1)/2 =

2np(2n−1 + 1) and since G/K . Out(K/H) ∼= Z2, we deduce that
Zn(2) ⊆ π(H), which is a contradiction with Step 2.

• If (q + 1)/2 = p, then q = 2n−1 + 1. Thus 3 | q and hence, 3α =
2n+1 + 1, which is a contradiction with Lemma 2.2

2.3. If K/H ∼= A1(q), where q > 2 and q is even, then p ∈ {q − 1, q + 1}.
If q − 1 = 2n + 1, then q = 2(2n−1 + 1), which is a contradiction. If
q+1 = 2n +1, then q = 2n and hence, |K/H| = 2n(2n−1)(2n +1). But
G/K . Out(K/H) ∼= Zn, so Zn−1(2) ⊆ π(H), which is a contradiction
with Step 2.

2.4. If K/H ∼=2 A5(2) or A2(2), then |K/H| = 215.36.7.11 or 8.3.7. Clearly,
2n + 1 6= 11 and 2n + 1 6= 7, which is a contradiction.

2.5. If K/H ∼=2 Dr(3), where r = 2t + 1 ≥ 5, then (3r + 1)/4 = 2n + 1 or
(3r − 1)/2 = 2n + 1. If (3r + 1)/4 = 2n + 1, then 3r = 2n+2 + 3, which
is a contradiction. If (3r − 1)/2 = 2n + 1, then 2n+1 + 1 = 3r−1, which
is contradiction with Lemma 2.2.

2.6. If K/H ∼= G2(q), where q ≡ 0mod 3. Then q2 − q + 1 = 2n + 1 or
q2 + q + 1 = 2n + 1 and hence, q(q ± 1) = 2n, which is impossible.
Similarly we can rule out K/H =2 G2(q).

2.7. If K/H ∼= F4(q), where q is even. Then q4 +1 = 2n +1 or q4− q2 +1 =
2n + 1. If q4 − q2 + 1 = 2n + 1, q2(q2 − 1) = 2n, which is impossible.
If q4 + 1 = 2n + 1, then q4 = 2n, so (q12 − 1) = (23n − 1) | |K/H| and
hence, Z3n(2) ⊆ π(G) = π(Cn(2)), which is a contradiction again.

2.8. If K/H ∼=2 F4(q), where q = 22t + 1 > 2. Then q2 +
√

2q3 + q +√
2q + 1 = 2n + 1 or q2 −

√
2q3 + q − √2q + 1 = 2n + 1. Thus 2n +

1 = 22(2t+1) + ε23t+2 + 22t+2 + ε2t+1 + 1, where ε = ±1 and hence,
2n = 2t+1(23t+1 + ε22t+1 + 2t + ε), which is a contradiction.

2.9. If K/H ∼= E7(2), then 2n + 1 ∈ {73, 127}, which is impossible.
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2.10. If K/H ∼= E7(3), then 2n + 1 ∈ {757, 1093}, which is impossible.

Case 3: Let t(K/H) = {4, 5}. Then p = 2n+1 ∈ {OC2(K/H), OC3(K/H),
OC4(K/H), OC5(K/H)}. as follows:

3.1. If K/H ∼= A2(4) or 2E6(2), then 2n + 1 = 7 or 2n + 1 = 19, which is
impossible.

3.2. If K/H ∼=2 B2(q), where q = 22t + 1 and t ≥ 1. Then 2n + 1 ∈
{q − 1, q ± √2q + 1}. If q − 1 = 2n + 1, then 22t + 1 = 2n + 2 and if
q ±√2q + 1 = 2n + 1, then 2t+1(2t ± 1) = 2n, which are impossible.

3.3. If K/H ∼= E8(q), then 2n + 1 ∈ {q8 − q7 + q5 − q4 + q3 − q + 1, q8 +
q7 − q5 − q4 − q3 + q + 1, q8 − q6 + q4 − q2 + 1, q8 − q4 + 1}. Thus
qt = 2n, where t > 1 is a natural number such that (t, q) = 1, which is
a contradiction.

The above cases show that K/H ∼= Cn(2).
Now since |G| = |Cn(2)|, H = 1 and K = G ∼= Cn(2). The main

theorem is proved.

Corollary Thompson’s conjecture holds for the simple groups Cn(2),
where 2n + 1 > 5 prime is a prime number.

Proof. Let G be a group with trivial central and N(G) = N(Cn(2)). Then
it is proved in [3, Lemma 1.4] that |G| = |Cn(2)|. Hence, the corollary
follows from the main theorem. ¤
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