The influence of order and conjugacy class length on the structure of finite groups

Alireza Khalili Asboei, Mohammad Reza Darafsheh and Reza Mohammadyari

(Received March 19, 2015; Revised September 25, 2015)

Abstract

Let $2^{n}+1>5$ be a prime number. In this article, we will show $G \cong C_{n}(2)$ if and only if $|G|=\left|C_{n}(2)\right|$ and G has a conjugacy class length $\left|C_{n}(2)\right| /\left(2^{n}+1\right)$. Furthermore, we will show Thompson's conjecture is valid under a weak condition for the symplectic groups $C_{n}(2)$.

Key words: Finite simple group, conjugacy class length, Thompson's conjecture.

1. Introduction

In this article, we investigate the possibility of characterizing $C_{n}(2)$ by simple conditions when $2^{n}+1>5$ is a prime number. In fact, the main theorem of this paper is as follows:

Main Theorem Let G be a group. Then $G \cong C_{n}(2)$ if and only if $|G|=$ $\left|C_{n}(2)\right|$ and G has a conjugacy class length $\left|C_{n}(2)\right| /\left(2^{n}+1\right)$, where $2^{n}+1=$ $p>5$ is a prime number.

For related results, Chen et al. in [6] showed that the projective special linear groups $A_{1}(p)$ are recognizable by their order and one conjugacy class length, where p is a prime number. As a consequence of their result, they showed that Thompson's conjecture is valid for $A_{1}(p)$.

Put $N(G)=\{n: G$ has a conjugacy class of size $n\}$. The well-known Thompson's conjecture states that if L is a finite non-abelian simple group, G is a finite group with a trivial center, and $N(G)=N(L)$, then $L \cong G$. This conjecture is stated in [4], [5] in which the conjecture is verified for a few finite simple groups.

Similar characterizations have been found in [2] and [11] for the groups: sporadic simple groups, and simple K_{3}-groups (a finite simple group is called a simple K_{n}-group if its order is divisible by exactly n distinct primes) and

[^0]alternating group of prime degree.
The prime graph of a finite group G that is denoted by $\Gamma(G)$ is the graph whose vertices are the prime divisors of G and where prime p is defined to be adjacent to prime $q(\neq p)$ if and only if G contains an element of order $p q$.

We denote by $\pi(G)$ the set of prime divisors of $|G|$. Let $t(G)$ be the number of connected components of $\Gamma(G)$ and let $\pi_{1}, \pi_{2}, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose $2 \in \pi_{1}$.

We can express $|G|$ as a product of integers $m_{1}, m_{2}, \ldots, m_{t(G)}$, where $\pi\left(m_{i}\right)=\pi_{i}$ for each i. The numbers m_{i} are called the order components of G. In particular, if m_{i} is odd, then we call it an odd component of G. Write $O C(G)$ for the set $\left\{m_{1}, m_{2}, \ldots, m_{t(G)}\right\}$ of order components of G and $T(G)$ for the set of connected components of G. According to the classification theorem of finite simple groups and [10], [13], [8], we can list the order components of finite simple groups with disconnected prime graphs as in Tables 1-4 in [5].

If n is an integer, then denote the r-part of n by $n_{r}=r^{a}$ or by $r^{a} \| n$, namely, $r^{a} \mid n$ but $r^{a+1} \nmid n$. If q is a prime, then we denote by $S_{q}(G)$ a Sylow q-subgroup of G, by $^{\operatorname{Syl}}{ }_{q}(G)$ the set of Sylow q-subgroups of G. The other notation and terminology in this paper are standard, and the reader is referred to [7] if necessary.

2. Preliminary Results

Definition 2.1 Let a and n be integers greater than 1 . Then a Zsigmondy prime of $a^{n}-1$ is a prime l such that $l \mid\left(a^{n}-1\right)$ but $l \nmid\left(a^{i}-1\right)$ for $1 \leq i<n$.

Lemma 2.1 ([14]) If a and n are integers greater than 1, then there exists a Zsigmondy prime of $a^{n}-1$, unless $(a, n)=(2,6)$ or $n=2$ and $a=2^{s}-1$ for some natural number s.

Remark 2.1 If l is a Zsigmondy prime of $a^{n}-1$, then Fermat's little theorem shows that $n \mid(l-1)$. Put $Z_{n}(a)=\{l: l$ is a Zsigmondy prime of $\left.a^{n}-1\right\}$. If $r \in Z_{n}(a)$ and $r \mid a^{m}-1$, then $n \mid m$.

Lemma 2.2 ([12]) The equation $p^{m}-q^{n}=1$, where p and q are primes and $m, n>1$ has only solution, namely, $3^{2}-2^{3}=1$.

Lemma 2.3 ([9]) Let q be a prime power which is not of the form $3^{r} 2^{s} \pm 1$,
where $r=0$, 1 and $s \geq 1$. Let $M=C_{n}(q)$, where $n=2^{m}(m \geq 2)$ and $O C_{2}=\left(q^{n}+1\right) /(2, q+1)$. If $x \in \pi_{1}(M), x^{\alpha}| | M \mid$ and $x^{\alpha}-1 \equiv 0 \bmod O C_{2}$, then $x^{\alpha}=q^{2 k n}$, where $1 \leq k \leq n / 2$.

Corollary 2.1 If $x \in \pi\left(C_{n}(2)\right)-\{p\}$ and $x^{\alpha}-1 \equiv 0 \bmod p$, then either $x^{\alpha} \nmid\left|C_{n}(2)\right|$ or $x=2$.

Proof. It follows from Lemma 2.3.

3. Proof of the Main Theorem

By [1, Corollary 2.3], $C_{n}(2)$ has one conjugacy class length $\left|C_{n}(2)\right| /$ $\left(2^{n}+1\right)$. Note that since $2^{n}+1>5$ is prime, we deduce that n is a power of 2 . Since the necessity of the theorem can be checked easily, we only need to prove the sufficiency.

By hypothesis, there exists an element x of order p in G such that $C_{G}(x)=\langle x\rangle$ and $C_{G}(x)$ is a Sylow p-subgroup of G. By the Sylow theorem, we have that $C_{G}(y)=\langle y\rangle$ for any element y in G of order p. So, $\{p\}$ is a prime graph component of G and $t(G) \geq 2$. In addition, p is the maximal prime divisor of $|G|$ and an odd order component of G.

We are going to prove the main theorem in the following steps:
Step 1. G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, K / H is a non-abelian simple group and H is a nilpotent group.

Let $g \in G$ be an element of order p, then $C_{G}(g)=\langle g\rangle$. Set $H=O_{p^{\prime}}(G)$ (the largest normal p^{\prime}-subgroup of G). Then H is a nilpotent group since g acts on H fixed point freely. Let K be a normal subgroup of G such that K / H is a minimal normal subgroup of G / H. Then K / H is a direct product of copies of some simple group. Since $p\left||K / H|\right.$ and $\left.p^{2} \nmid\right| K / H \mid, K / H$ is a simple group. Since $\langle g\rangle$ is a Sylow p-subgroup of $K, G=N_{G}(\langle g\rangle) K$ by the Frattini argument and so $|G / K|$ divides $p-1$.

If $|K / H|=p$, then by Lemma 2.1, there is a prime $r \in Z_{n-1}(2) \cap \pi(G)$ and so $\left|C_{n}(2)\right|_{r}=\left|2^{n-1}-1\right|_{r} \leq|G|_{r}$. Since $\pi(G)=\pi(K) \cup \pi(H)=$ $\pi_{1}(G) \cup \pi_{2}(G)$, then $r \in(H)$. Since H is nilpotent, a Sylow r-subgroup is normal in G. It follows that the Sylow p-subgroup of G acts fixed point freely on the set of elements of order r and so $p\left|\left|C_{n}(2)\right|_{r}-1\right.$. Thus $p \leq\left|C_{n}(2)\right|_{r} \leq 2^{n-1}-1<p$, a contradiction. Therefore G has normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a non-abelian simple group and p is an odd order component of K / H.

Step 2. $\pi(H) \subseteq\{2\}$.
Let $r \in \pi(H)$. Then $r \neq p$ and since H is nilpotent, we deduce that $S_{r}(H) \unlhd G$ and hence, $S_{p}(G)$ acts fixed point freely on $S_{r}(H)-\{1\}$. Thus $p\left|\left|S_{r}(H)\right|-1\right.$. If $r \neq 2$, then $| S_{r}(H)| |\left|C_{n}(2)\right|_{r}$ and hence, Corollary 2.1 leads us to get a contradiction. Thus $r=2$, as claimed.

According to the classification theorem of finite simple groups and the results in Tables 1-4 in [5], K / H is an alternating group, sporadic group or simple group of Lie type.
Step 3. K / H is not a sporadic simple group.
Suppose that K / H is a sporadic simple group. Since one of the odd order components of K / H is $p=2^{n}+1$, we get a contradiction by considering the odd order components of sporadic simple groups.

Step 4. K / H can not be an alternating group A_{m}, where $m \geq 5$.
If $K / H \cong A_{m}$ with $m \geq 5$, then since $p \in \pi(K / H), m \geq 2^{n}+1$. Thus there is a prime $u \in \pi\left(A_{m}\right) \subseteq \pi(G)$ such that $(p-1) / 2<u<p$. Since $|G|=\left|C_{n}(2)\right|$, there exists $t \in\{2 i, i: 1<i<n-1\} \cup\{n\}$ such that $u \in Z_{t}(2)$. But $u>\left(2^{n}-1+1\right) / 2=2^{n-1}$ and so $u=2^{n-1}+1$ or $2^{n}-1$. But n is a power of 2 and hence, $3 \mid 2^{n-1}+1$ and $2^{n}-1$. Thus $3 \mid u$. This implies that $u=3$ ad hence, $n=2$, which is a contradiction.
Step 5. $K / H \cong C_{n}(2)$.
By Steps 3 and 4, and the classification theorem of finite simple groups, K / H is a simple group of Lie type such that $t(K / H) \geq 2$ and $p \in O C(K / H)$. Thus K / H is isomorphic to one of the group of Lie type (in the following cases, r is an odd prime number):

Case 1. Let $t(K / H)=2$. Then $O C_{2}(K / H)=2^{n}+1$. Then we have:
1.1. If $K / H \cong C_{n^{\prime}}(q)$, where $n^{\prime}=2^{u}>2$, then $\left(q^{n^{\prime}}+1\right) /(2, q-1)=$ $2^{n}+1$. If q is odd, then $q^{n^{\prime}}=2^{n+1}+1$, which contradicts Lemma 2.2. Thus $q=2^{t}$ and hence, $q^{n^{\prime}}=2^{n}$. But $p \in Z_{2 n}(2)$ and $p \in Z_{2 n^{\prime} t}(2)$. Thus Remark 2.1 forces $n^{\prime} t=n$. We claim that $t=1$. If not, then $Z_{n-1}(2) \cap \pi(K / H)=\emptyset$. But Lemma 2.1 forces $Z_{n-1}(2) \neq \emptyset$ and hence since $|G|=\left|C_{n}(2)\right|, \pi(G)$ contains a prime $r \in Z_{n-1}(2)$. Since $r \nmid|\operatorname{Out}(K / H)|$ and $G / K \lesssim \operatorname{Out}(K / H)$, we deduce that $r||H|$. Thus Step 2 shows that $r=2$, which is a contradiction. Thus $t=1$ and hence, $K / H \cong C_{n}(2)$.

Arguing as above if $K / H \cong B_{n^{\prime}}(q)$, where $n^{\prime}=2^{u} \geq 4$, then $n^{\prime}=n$ and $q=2$. Thus $K / H \cong B_{n}(2)=C_{n}(2)$.
1.2. If $K / H \cong C_{r}(3)$ or $B_{r}(3)$, then $\left(3^{r}-1\right) / 2=2^{n+1}$. Thus $2^{n}+1=$ $3^{r}-3$, which is a contradiction. The same reasoning rules out the case when $K / H \cong D_{r}(3)$ or $D_{r+1}(3)$.
1.3. If $K / H \cong C_{r}(2)$, then $2^{r}-1=2^{n}+1$ and hence, $2^{r}=2^{n}+2$, which is a contradiction. The same reasoning rules out the case when $K / H \cong D_{r}(2)$ or $D_{r+1}(2)$.
1.4. If $K / H \cong D_{r}(5)$, where $r \geq 5$, then $\left(5^{r}-1\right) / 4=\left(2^{n}+1\right)$. Thus $5^{r}-5=2^{n+2}$, which is contradiction.
1.5. If $K / H \cong \cong^{2} D_{n^{\prime}}(3)$, where $9 \leq n^{\prime}=2^{m}+1$ and n^{\prime} is not prime, then $\left(3^{n^{\prime}}-1\right) / 2=2^{n+1}$ and hence, $3^{n^{\prime}}-1=2^{n+1}+1$. Thus Lemma 2.2 forces $n+1=3$, which is a contradiction.
1.6. If $K / H \cong 2 D_{n^{\prime}}(2)$, where $n^{\prime}=2^{m}+1 \geq 5$, then $2^{n^{\prime}-1}+1=2^{n}+1$ and hence, $n^{\prime}-1=n$. Thus $K / H \cong{ }^{2} D_{n+1}(2)$. Then $Z_{n+1}(2) \subseteq \pi(K / H)$ and hence, $Z_{n+1}(2) \subseteq \pi(G)=\pi\left(C_{n}(2)\right)$, which is a contradiction.
If $K / H \cong{ }^{2} D_{n^{\prime}}(q)$, where $n^{\prime}=2^{u} \geq 4$, then $n^{\prime}=n$ and $q=2$. Similarly we can rules out this case.
1.7. If $K / H \cong{ }^{2} D_{r}(3)$, where $5 \leq r \neq 2^{m}+1$, then $\left(3^{r}+1\right) / 4=2^{n}+1$ and hence, $3^{r}=2^{n+2}+3$, which is a contradiction.
1.8. If $K / H \cong G_{2}(q)$, where $2<q \equiv \varepsilon \bmod 3$ and $\varepsilon= \pm 1$, then $q^{2}-\varepsilon q+1=$ $2^{n}+1$. Thus $q(q-\varepsilon)=2^{n}$, which is impossible. The same reasoning rules out the case when $K / H \cong F_{4}(q)$, where q is odd.
1.9. If $K / H \cong{ }^{2} F_{4}(2)^{\prime}$, then since $\left|{ }^{2} F_{4}(2)\right|=2^{11} .3^{3} .5^{2} .13,2^{n}+1=13$, a contradiction. Also we can rule out $K / H \cong{ }^{2} A_{3}(2)$.
1.10. Let $K / H \cong A_{r-1}(q)$, where $(r, q) \neq(3,2),(3,4)$. Since $\left(q^{r}-1\right) /$ $((r, q-1)(q-1))=p, p \in Z_{r}(q)$ and hence, Remark 2.1 shows that $r \mid p-1=2^{n}$. Thus $r=2$, which is a contradiction. The same reasoning rules out the case when $K / H \cong{ }^{2} A_{r-1}(q)$.
1.11. Let $K / H \cong A_{r}(q)$, where $(q-1) \mid(r+1)$. Since $\left(q^{r}-1\right) /(r, q-1)=p$, $p \in Z_{r}(q)$ and hence, Remark 2.1 shows that $r \mid p-1=2^{n}$. Thus $r=2$, which is a contradiction. The same reasoning rules out the case when $(q+1) \mid(r+1),(r, q) \neq(3,3),(5,2)$ and $K / H \cong{ }^{2} A_{r}(q)$.
1.12. If $K / H \cong E_{6}(q)$, where $q=u^{\alpha}$, then $\left(q^{6}+q^{3}+1\right) /(3, q-1)=p$. Thus $p \in Z_{6}(q)$ and hence, Remark 2.1 shows that $6 \mid p-1=2^{n}$, which is a contradiction. The same reasoning rules out the case when $K / H \cong{ }^{2} E_{6}(q)$, where $q>2$.

Case 2: Let $t(K / H)=3$. Then $p=2^{n}+1 \in\left\{O C_{2}(K / H), O C_{3}(K / H)\right\}$.
2.1. If $K / H \cong A_{1}(q)$, where $4 \mid q+1$, then $(q-1) / 2=2^{n}+1$ or $q=2^{n}+1$. If $q=2^{n}+1$, then $q+1=2^{n}+2$ and hence, $4 \nmid q+1$, which is a contradiction. If $(q-1) / 2=p$, then $q \equiv-1 \bmod 4$. Let $q=u^{\alpha}$, where u is a prime. Thus $p \in Z_{\alpha}(u)$ and hence, Remark 2.1 shows that $\alpha \mid p-1=2^{n}$. So $\alpha=2^{t}$ and hence, $q=u^{\alpha} \equiv 1 \bmod 4$, which is a contradiction.
2.2. If $K / H \cong A_{1}(q)$, where $4 \mid q+1$, then $q=2^{n}+1$ or $(q+1) / 2=p$.

- If $q=2^{n}+1$, then $q=p$ and hence, $|K / H|=p\left(p^{2}-1\right) / 2=$ $2^{n} p\left(2^{n-1}+1\right)$ and since $G / K \lesssim \operatorname{Out}(K / H) \cong Z_{2}$, we deduce that $Z_{n}(2) \subseteq \pi(H)$, which is a contradiction with Step 2.
- If $(q+1) / 2=p$, then $q=2^{n-1}+1$. Thus $3 \mid q$ and hence, $3^{\alpha}=$ $2^{n+1}+1$, which is a contradiction with Lemma 2.2
2.3. If $K / H \cong A_{1}(q)$, where $q>2$ and q is even, then $p \in\{q-1, q+1\}$. If $q-1=2^{n}+1$, then $q=2\left(2^{n-1}+1\right)$, which is a contradiction. If $q+1=2^{n}+1$, then $q=2^{n}$ and hence, $|K / H|=2^{n}\left(2^{n}-1\right)\left(2^{n}+1\right)$. But $G / K \lesssim \operatorname{Out}(K / H) \cong Z_{n}$, so $Z_{n-1}(2) \subseteq \pi(H)$, which is a contradiction with Step 2.
2.4. If $K / H \cong{ }^{2} A_{5}(2)$ or $A_{2}(2)$, then $|K / H|=2^{15} .3^{6} .7 .11$ or 8.3.7. Clearly, $2^{n}+1 \neq 11$ and $2^{n}+1 \neq 7$, which is a contradiction.
2.5. If $K / H \cong^{2} D_{r}(3)$, where $r=2^{t}+1 \geq 5$, then $\left(3^{r}+1\right) / 4=2^{n}+1$ or $\left(3^{r}-1\right) / 2=2^{n}+1$. If $\left(3^{r}+1\right) / 4=2^{n}+1$, then $3^{r}=2^{n+2}+3$, which is a contradiction. If $\left(3^{r}-1\right) / 2=2^{n}+1$, then $2^{n+1}+1=3^{r-1}$, which is contradiction with Lemma 2.2.
2.6. If $K / H \cong G_{2}(q)$, where $q \equiv 0 \bmod 3$. Then $q^{2}-q+1=2^{n}+1$ or $q^{2}+q+1=2^{n}+1$ and hence, $q(q \pm 1)=2^{n}$, which is impossible. Similarly we can rule out $K / H={ }^{2} G_{2}(q)$.
2.7. If $K / H \cong F_{4}(q)$, where q is even. Then $q^{4}+1=2^{n}+1$ or $q^{4}-q^{2}+1=$ $2^{n}+1$. If $q^{4}-q^{2}+1=2^{n}+1, q^{2}\left(q^{2}-1\right)=2^{n}$, which is impossible. If $q^{4}+1=2^{n}+1$, then $q^{4}=2^{n}$, so $\left(q^{12}-1\right)=\left(2^{3 n}-1\right)| | K / H \mid$ and hence, $Z_{3 n}(2) \subseteq \pi(G)=\pi\left(C_{n}(2)\right)$, which is a contradiction again.
2.8. If $K / H \cong{ }^{2} F_{4}(q)$, where $q=2^{2 t}+1>2$. Then $q^{2}+\sqrt{2 q^{3}}+q+$ $\sqrt{2 q}+1=2^{n}+1$ or $q^{2}-\sqrt{2 q^{3}}+q-\sqrt{2 q}+1=2^{n}+1$. Thus $2^{n}+$ $1=2^{2(2 t+1)}+\varepsilon 2^{3 t+2}+2^{2 t+2}+\varepsilon 2^{t+1}+1$, where $\varepsilon= \pm 1$ and hence, $2^{n}=2^{t+1}\left(2^{3 t+1}+\varepsilon 2^{2 t+1}+2^{t}+\varepsilon\right)$, which is a contradiction.
2.9. If $K / H \cong E_{7}(2)$, then $2^{n}+1 \in\{73,127\}$, which is impossible.
2.10. If $K / H \cong E_{7}(3)$, then $2^{n}+1 \in\{757,1093\}$, which is impossible.

Case 3: Let $t(K / H)=\{4,5\}$. Then $p=2^{n}+1 \in\left\{O C_{2}(K / H), O C_{3}(K / H)\right.$, $\left.O C_{4}(K / H), O C_{5}(K / H)\right\}$. as follows:
3.1. If $K / H \cong A_{2}(4)$ or ${ }^{2} E_{6}(2)$, then $2^{n}+1=7$ or $2^{n}+1=19$, which is impossible.
3.2. If $K / H \cong{ }^{2} B_{2}(q)$, where $q=2^{2 t}+1$ and $t \geq 1$. Then $2^{n}+1 \in$ $\{q-1, q \pm \sqrt{2 q}+1\}$. If $q-1=2^{n}+1$, then $2^{2 t}+1=2^{n}+2$ and if $q \pm \sqrt{2 q}+1=2^{n}+1$, then $2^{t+1}\left(2^{t} \pm 1\right)=2^{n}$, which are impossible.
3.3. If $K / H \cong E_{8}(q)$, then $2^{n}+1 \in\left\{q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1, q^{8}+\right.$ $\left.q^{7}-q^{5}-q^{4}-q^{3}+q+1, q^{8}-q^{6}+q^{4}-q^{2}+1, q^{8}-q^{4}+1\right\}$. Thus $q^{t}=2^{n}$, where $t>1$ is a natural number such that $(t, q)=1$, which is a contradiction.

The above cases show that $K / H \cong C_{n}(2)$.
Now since $|G|=\left|C_{n}(2)\right|, H=1$ and $K=G \cong C_{n}(2)$. The main theorem is proved.

Corollary Thompson's conjecture holds for the simple groups $C_{n}(2)$, where $2^{n}+1>5$ prime is a prime number.

Proof. Let G be a group with trivial central and $N(G)=N\left(C_{n}(2)\right)$. Then it is proved in [3, Lemma 1.4] that $|G|=\left|C_{n}(2)\right|$. Hence, the corollary follows from the main theorem.

References

[1] Ahanjideh N., Thompson's conjecture for some finite simple groups with connected prime graph. Algebra Logic. 6 (2013), 451-478.
[2] Asboei K. A. and Mohammadyari R., Recognizing alternating groups by their order and one conjugacy class length. J. Algebra. Appl. 15 (2016), doi:10.1142/S0219498816500213.
[3] Chen G. Y., On Thompson's conjecture. J. Algebra. 185 (1996), 184-193.
[4] Chen G. Y., Further reflections on Thompson's conjecture. J. Algebra. 218 (1999), 276-285.
[5] Chen G. Y., A new characterization of sporadic simple groups. Algebra Colloquium. 3 (1996), 49-58.
[6] Chen Y. and Chen G. Y., Recognizing $A_{1}(p)$ by its order and one special conjugacy class size. J. Inequal. Appl. (2012), doi:10.1186/1029-242X-2012310.
[7] Conway J. H., Curtis R. T., Norton S. P. and Wilson R. A., Atlas of finite groups, Clarendon, Oxford, 1985.
[8] Iiyori N. and Yamaki H., Prime graph components of the simple groups of Lie type over the field of even characteristic. J. Algebra. 155 (1993), 335-343.
[9] Khosravi A. and Khosravi B., r-Recognizability of $B_{n}(q)$ and $C_{n}(q)$, where $n=2^{m} \geq 4$. J. Pure Appli. Algebra. 199 (2005), 149-165.
[10] Kondtratev A. S. and Mazurove V. D., Recognition Of Alternating groups of prime degree from their element orders. Siberian Mathematical Journal. 41 (2000), 294-302.
[11] Li J. B., Finite groups with special conjugacy class sizes or generalized permutable subgroups, PhD thesis, Southwest University, Chongqing, 2012.
[12] Ribenboim R., Classical Theory of Algebraic Numbers, Springer, New York, 2001.
[13] Williams J. S., Prime graph components of finite groups. J. Algebra. 69 (1981), 487-513.
[14] Zsigmondy K., Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265-284.

Alireza Khalili Asboei
Department of Mathematics
Farhangian University
Tehran, Iran
E-mail: khaliliasbo@yahoo.com
Mohammad Reza Darafsheh
School of Mathematics
Statistics and Computer Science
University of Tehran
Tehran, Iran
Reza Mohammadyari
Department of Mathematics
Buinzahra Branch
Islamic Azad University
Buin Zahra, Iran

[^0]: 2010 Mathematics Subject Classification : 20D08, 20D60.

