The influence of order and conjugacy class length on the structure of finite groups

Alireza Khalili ASBOEI, Mohammad Reza DARAFSHEH and Reza MOHAMMADYARI

(Received March 19, 2015; Revised September 25, 2015)

Abstract. Let $2^n + 1 > 5$ be a prime number. In this article, we will show $G \cong C_n(2)$ if and only if $|G| = |C_n(2)|$ and G has a conjugacy class length $|C_n(2)|/(2^n + 1)$. Furthermore, we will show Thompson's conjecture is valid under a weak condition for the symplectic groups $C_n(2)$.

Key words: Finite simple group, conjugacy class length, Thompson's conjecture.

1. Introduction

In this article, we investigate the possibility of characterizing $C_n(2)$ by simple conditions when $2^n + 1 > 5$ is a prime number. In fact, the main theorem of this paper is as follows:

Main Theorem Let G be a group. Then $G \cong C_n(2)$ if and only if $|G| = |C_n(2)|$ and G has a conjugacy class length $|C_n(2)|/(2^n + 1)$, where $2^n + 1 = p > 5$ is a prime number.

For related results, Chen et al. in [6] showed that the projective special linear groups $A_1(p)$ are recognizable by their order and one conjugacy class length, where p is a prime number. As a consequence of their result, they showed that Thompson's conjecture is valid for $A_1(p)$.

Put $N(G) = \{n : G \text{ has a conjugacy class of size } n\}$. The well-known Thompson's conjecture states that if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N(G) = N(L), then $L \cong G$. This conjecture is stated in [4], [5] in which the conjecture is verified for a few finite simple groups.

Similar characterizations have been found in [2] and [11] for the groups: sporadic simple groups, and simple K_3 -groups (a finite simple group is called a simple K_n -group if its order is divisible by exactly *n* distinct primes) and

²⁰¹⁰ Mathematics Subject Classification: 20D08, 20D60.

alternating group of prime degree.

The prime graph of a finite group G that is denoted by $\Gamma(G)$ is the graph whose vertices are the prime divisors of G and where prime p is defined to be adjacent to prime $q \ (\neq p)$ if and only if G contains an element of order pq.

We denote by $\pi(G)$ the set of prime divisors of |G|. Let t(G) be the number of connected components of $\Gamma(G)$ and let $\pi_1, \pi_2, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose $2 \in \pi_1$.

We can express |G| as a product of integers $m_1, m_2, \ldots, m_{t(G)}$, where $\pi(m_i) = \pi_i$ for each *i*. The numbers m_i are called the order components of *G*. In particular, if m_i is odd, then we call it an odd component of *G*. Write OC(G) for the set $\{m_1, m_2, \ldots, m_{t(G)}\}$ of order components of *G* and T(G) for the set of connected components of *G*. According to the classification theorem of finite simple groups and [10], [13], [8], we can list the order components of finite simple groups with disconnected prime graphs as in Tables 1–4 in [5].

If n is an integer, then denote the r-part of n by $n_r = r^a$ or by $r^a \parallel n$, namely, $r^a \mid n$ but $r^{a+1} \nmid n$. If q is a prime, then we denote by $S_q(G)$ a Sylow q-subgroup of G, by $Syl_q(G)$ the set of Sylow q-subgroups of G. The other notation and terminology in this paper are standard, and the reader is referred to [7] if necessary.

2. Preliminary Results

Definition 2.1 Let *a* and *n* be integers greater than 1. Then a Zsigmondy prime of $a^n - 1$ is a prime *l* such that $l \mid (a^n - 1)$ but $l \nmid (a^i - 1)$ for $1 \leq i < n$.

Lemma 2.1 ([14]) If a and n are integers greater than 1, then there exists a Zsigmondy prime of $a^n - 1$, unless (a, n) = (2, 6) or n = 2 and $a = 2^s - 1$ for some natural number s.

Remark 2.1 If l is a Zsigmondy prime of $a^n - 1$, then Fermat's little theorem shows that $n \mid (l-1)$. Put $Z_n(a) = \{l : l \text{ is a Zsigmondy prime of } a^n - 1\}$. If $r \in Z_n(a)$ and $r \mid a^m - 1$, then $n \mid m$.

Lemma 2.2 ([12]) The equation $p^m - q^n = 1$, where p and q are primes and m, n > 1 has only solution, namely, $3^2 - 2^3 = 1$.

Lemma 2.3 ([9]) Let q be a prime power which is not of the form $3^r 2^s \pm 1$,

where r = 0, 1 and $s \ge 1$. Let $M = C_n(q)$, where $n = 2^m (m \ge 2)$ and $OC_2 = (q^n + 1)/(2, q + 1)$. If $x \in \pi_1(M)$, $x^{\alpha} \mid |M|$ and $x^{\alpha} - 1 \equiv 0 \mod OC_2$, then $x^{\alpha} = q^{2kn}$, where $1 \le k \le n/2$.

Corollary 2.1 If $x \in \pi(C_n(2)) - \{p\}$ and $x^{\alpha} - 1 \equiv 0 \mod p$, then either $x^{\alpha} \nmid |C_n(2)|$ or x = 2.

Proof. It follows from Lemma 2.3.

3. Proof of the Main Theorem

By [1, Corollary 2.3], $C_n(2)$ has one conjugacy class length $|C_n(2)|/(2^n + 1)$. Note that since $2^n + 1 > 5$ is prime, we deduce that n is a power of 2. Since the necessity of the theorem can be checked easily, we only need to prove the sufficiency.

By hypothesis, there exists an element x of order p in G such that $C_G(x) = \langle x \rangle$ and $C_G(x)$ is a Sylow p-subgroup of G. By the Sylow theorem, we have that $C_G(y) = \langle y \rangle$ for any element y in G of order p. So, $\{p\}$ is a prime graph component of G and $t(G) \geq 2$. In addition, p is the maximal prime divisor of |G| and an odd order component of G.

We are going to prove the main theorem in the following steps:

Step 1. *G* has a normal series $1 \leq H \leq K \leq G$ such that *H* and *G*/*K* are π_1 -groups, *K*/*H* is a non-abelian simple group and *H* is a nilpotent group.

Let $g \in G$ be an element of order p, then $C_G(g) = \langle g \rangle$. Set $H = O_{p'}(G)$ (the largest normal p'-subgroup of G). Then H is a nilpotent group since gacts on H fixed point freely. Let K be a normal subgroup of G such that K/H is a minimal normal subgroup of G/H. Then K/H is a direct product of copies of some simple group. Since $p \mid |K/H|$ and $p^2 \nmid |K/H|$, K/H is a simple group. Since $\langle g \rangle$ is a Sylow p-subgroup of K, $G = N_G(\langle g \rangle)K$ by the Frattini argument and so |G/K| divides p - 1.

If |K/H| = p, then by Lemma 2.1, there is a prime $r \in Z_{n-1}(2) \cap \pi(G)$ and so $|C_n(2)|_r = |2^{n-1} - 1|_r \leq |G|_r$. Since $\pi(G) = \pi(K) \cup \pi(H) = \pi_1(G) \cup \pi_2(G)$, then $r \in (H)$. Since H is nilpotent, a Sylow r-subgroup is normal in G. It follows that the Sylow p-subgroup of G acts fixed point freely on the set of elements of order r and so $p \mid |C_n(2)|_r - 1$. Thus $p \leq |C_n(2)|_r \leq 2^{n-1} - 1 < p$, a contradiction. Therefore G has normal series $1 \leq H \leq K \leq G$ such that K/H is a non-abelian simple group and p is an odd order component of K/H.

Step 2. $\pi(H) \subseteq \{2\}.$

Let $r \in \pi(H)$. Then $r \neq p$ and since H is nilpotent, we deduce that $S_r(H) \leq G$ and hence, $S_p(G)$ acts fixed point freely on $S_r(H) - \{1\}$. Thus $p \mid |S_r(H)| - 1$. If $r \neq 2$, then $|S_r(H)| \mid |C_n(2)|_r$ and hence, Corollary 2.1 leads us to get a contradiction. Thus r = 2, as claimed.

According to the classification theorem of finite simple groups and the results in Tables 1–4 in [5], K/H is an alternating group, sporadic group or simple group of Lie type.

Step 3. K/H is not a sporadic simple group.

Suppose that K/H is a sporadic simple group. Since one of the odd order components of K/H is $p = 2^n + 1$, we get a contradiction by considering the odd order components of sporadic simple groups.

Step 4. K/H can not be an alternating group A_m , where $m \ge 5$.

If $K/H \cong A_m$ with $m \ge 5$, then since $p \in \pi(K/H)$, $m \ge 2^n + 1$. Thus there is a prime $u \in \pi(A_m) \subseteq \pi(G)$ such that (p-1)/2 < u < p. Since $|G| = |C_n(2)|$, there exists $t \in \{2i, i : 1 < i < n-1\} \cup \{n\}$ such that $u \in Z_t(2)$. But $u > (2^n - 1 + 1)/2 = 2^{n-1}$ and so $u = 2^{n-1} + 1$ or $2^n - 1$. But n is a power of 2 and hence, $3 \mid 2^{n-1} + 1$ and $2^n - 1$. Thus $3 \mid u$. This implies that u = 3 ad hence, n = 2, which is a contradiction.

Step 5. $K/H \cong C_n(2)$.

By Steps 3 and 4, and the classification theorem of finite simple groups, K/H is a simple group of Lie type such that $t(K/H) \ge 2$ and $p \in OC(K/H)$. Thus K/H is isomorphic to one of the group of Lie type (in the following cases, r is an odd prime number):

Case 1. Let t(K/H) = 2. Then $OC_2(K/H) = 2^n + 1$. Then we have:

1.1. If $K/H \cong C_{n'}(q)$, where $n' = 2^u > 2$, then $(q^{n'} + 1)/(2, q - 1) = 2^n + 1$. If q is odd, then $q^{n'} = 2^{n+1} + 1$, which contradicts Lemma 2.2. Thus $q = 2^t$ and hence, $q^{n'} = 2^n$. But $p \in Z_{2n}(2)$ and $p \in Z_{2n't}(2)$. Thus Remark 2.1 forces n't = n. We claim that t = 1. If not, then $Z_{n-1}(2) \cap \pi(K/H) = \emptyset$. But Lemma 2.1 forces $Z_{n-1}(2) \neq \emptyset$ and hence since $|G| = |C_n(2)|, \pi(G)$ contains a prime $r \in Z_{n-1}(2)$. Since $r \nmid |\operatorname{Out}(K/H)|$ and $G/K \leq \operatorname{Out}(K/H)$, we deduce that $r \mid |H|$. Thus Step 2 shows that r = 2, which is a contradiction. Thus t = 1 and hence, $K/H \cong C_n(2)$. Arguing as above if $K/H \cong B_{n'}(q)$, where $n' = 2^u \ge 4$, then n' = nand q = 2. Thus $K/H \cong B_n(2) = C_n(2)$.

- 1.2. If $K/H \cong C_r(3)$ or $B_r(3)$, then $(3^r 1)/2 = 2^{n+1}$. Thus $2^n + 1 = 3^r 3$, which is a contradiction. The same reasoning rules out the case when $K/H \cong D_r(3)$ or $D_{r+1}(3)$.
- 1.3. If $K/H \cong C_r(2)$, then $2^r 1 = 2^n + 1$ and hence, $2^r = 2^n + 2$, which is a contradiction. The same reasoning rules out the case when $K/H \cong D_r(2)$ or $D_{r+1}(2)$.
- 1.4. If $K/H \cong D_r(5)$, where $r \ge 5$, then $(5^r 1)/4 = (2^n + 1)$. Thus $5^r 5 = 2^{n+2}$, which is contradiction.
- 1.5. If $K/H \cong^2 D_{n'}(3)$, where $9 \le n' = 2^m + 1$ and n' is not prime, then $(3^{n'} 1)/2 = 2^{n+1}$ and hence, $3^{n'} 1 = 2^{n+1} + 1$. Thus Lemma 2.2 forces n + 1 = 3, which is a contradiction.
- 1.6. If $K/H \cong^2 D_{n'}(2)$, where $n' = 2^m + 1 \ge 5$, then $2^{n'-1} + 1 = 2^n + 1$ and hence, n' - 1 = n. Thus $K/H \cong^2 D_{n+1}(2)$. Then $Z_{n+1}(2) \subseteq \pi(K/H)$ and hence, $Z_{n+1}(2) \subseteq \pi(G) = \pi(C_n(2))$, which is a contradiction. If $K/H \cong^2 D_{n'}(q)$, where $n' = 2^u \ge 4$, then n' = n and q = 2. Similarly we can rules out this case.
- 1.7. If $K/H \cong^2 D_r(3)$, where $5 \le r \ne 2^m + 1$, then $(3^r + 1)/4 = 2^n + 1$ and hence, $3^r = 2^{n+2} + 3$, which is a contradiction.
- 1.8. If $K/H \cong G_2(q)$, where $2 < q \equiv \varepsilon \mod 3$ and $\varepsilon = \pm 1$, then $q^2 \varepsilon q + 1 = 2^n + 1$. Thus $q(q \varepsilon) = 2^n$, which is impossible. The same reasoning rules out the case when $K/H \cong F_4(q)$, where q is odd.
- 1.9. If $K/H \cong^2 F_4(2)'$, then since $|{}^2F_4(2)| = 2^{11} \cdot 3^3 \cdot 5^2 \cdot 13$, $2^n + 1 = 13$, a contradiction. Also we can rule out $K/H \cong {}^2A_3(2)$.
- 1.10. Let $K/H \cong A_{r-1}(q)$, where $(r,q) \neq (3,2)$, (3,4). Since $(q^r-1)/((r,q-1)(q-1)) = p$, $p \in Z_r(q)$ and hence, Remark 2.1 shows that $r \mid p-1 = 2^n$. Thus r = 2, which is a contradiction. The same reasoning rules out the case when $K/H \cong^2 A_{r-1}(q)$.
- 1.11. Let $K/H \cong A_r(q)$, where $(q-1) \mid (r+1)$. Since $(q^r 1)/(r, q 1) = p$, $p \in Z_r(q)$ and hence, Remark 2.1 shows that $r \mid p - 1 = 2^n$. Thus r = 2, which is a contradiction. The same reasoning rules out the case when $(q+1) \mid (r+1), (r,q) \neq (3,3), (5,2)$ and $K/H \cong^2 A_r(q)$.
- 1.12. If $K/H \cong E_6(q)$, where $q = u^{\alpha}$, then $(q^6 + q^3 + 1)/(3, q 1) = p$. Thus $p \in Z_6(q)$ and hence, Remark 2.1 shows that $6 \mid p - 1 = 2^n$, which is a contradiction. The same reasoning rules out the case when $K/H \cong^2 E_6(q)$, where q > 2.

Case 2: Let t(K/H) = 3. Then $p = 2^n + 1 \in \{OC_2(K/H), OC_3(K/H)\}$.

- 2.1. If $K/H \cong A_1(q)$, where $4 \mid q+1$, then $(q-1)/2 = 2^n + 1$ or $q = 2^n + 1$. If $q = 2^n + 1$, then $q+1 = 2^n + 2$ and hence, $4 \nmid q+1$, which is a contradiction. If (q-1)/2 = p, then $q \equiv -1 \mod 4$. Let $q = u^{\alpha}$, where u is a prime. Thus $p \in Z_{\alpha}(u)$ and hence, Remark 2.1 shows that $\alpha \mid p-1 = 2^n$. So $\alpha = 2^t$ and hence, $q = u^{\alpha} \equiv 1 \mod 4$, which is a contradiction.
- 2.2. If $K/H \cong A_1(q)$, where $4 \mid q+1$, then $q = 2^n + 1$ or (q+1)/2 = p.
 - If $q = 2^n + 1$, then q = p and hence, $|K/H| = p(p^2 1)/2 = 2^n p(2^{n-1} + 1)$ and since $G/K \leq \operatorname{Out}(K/H) \cong Z_2$, we deduce that $Z_n(2) \subseteq \pi(H)$, which is a contradiction with Step 2.
 - If (q+1)/2 = p, then $q = 2^{n-1} + 1$. Thus $3 \mid q$ and hence, $3^{\alpha} = 2^{n+1} + 1$, which is a contradiction with Lemma 2.2
- 2.3. If $K/H \cong A_1(q)$, where q > 2 and q is even, then $p \in \{q 1, q + 1\}$. If $q - 1 = 2^n + 1$, then $q = 2(2^{n-1} + 1)$, which is a contradiction. If $q+1=2^n+1$, then $q=2^n$ and hence, $|K/H|=2^n(2^n-1)(2^n+1)$. But $G/K \leq \operatorname{Out}(K/H) \cong Z_n$, so $Z_{n-1}(2) \subseteq \pi(H)$, which is a contradiction with Step 2.
- 2.4. If $K/H \cong^2 A_5(2)$ or $A_2(2)$, then $|K/H| = 2^{15} \cdot 3^6 \cdot 7 \cdot 11$ or 8.3.7. Clearly, $2^n + 1 \neq 11$ and $2^n + 1 \neq 7$, which is a contradiction.
- 2.5. If $K/H \cong^2 D_r(3)$, where $r = 2^t + 1 \ge 5$, then $(3^r + 1)/4 = 2^n + 1$ or $(3^r 1)/2 = 2^n + 1$. If $(3^r + 1)/4 = 2^n + 1$, then $3^r = 2^{n+2} + 3$, which is a contradiction. If $(3^r 1)/2 = 2^n + 1$, then $2^{n+1} + 1 = 3^{r-1}$, which is contradiction with Lemma 2.2.
- 2.6. If $K/H \cong G_2(q)$, where $q \equiv 0 \mod 3$. Then $q^2 q + 1 = 2^n + 1$ or $q^2 + q + 1 = 2^n + 1$ and hence, $q(q \pm 1) = 2^n$, which is impossible. Similarly we can rule out $K/H = G_2(q)$.
- 2.7. If $K/H \cong F_4(q)$, where q is even. Then $q^4 + 1 = 2^n + 1$ or $q^4 q^2 + 1 = 2^n + 1$. If $q^4 q^2 + 1 = 2^n + 1$, $q^2(q^2 1) = 2^n$, which is impossible. If $q^4 + 1 = 2^n + 1$, then $q^4 = 2^n$, so $(q^{12} - 1) = (2^{3n} - 1) | |K/H|$ and hence, $Z_{3n}(2) \subseteq \pi(G) = \pi(C_n(2))$, which is a contradiction again.
- 2.8. If $K/H \cong^2 F_4(q)$, where $q = 2^{2t} + 1 > 2$. Then $q^2 + \sqrt{2q^3} + q + \sqrt{2q} + 1 = 2^n + 1$ or $q^2 \sqrt{2q^3} + q \sqrt{2q} + 1 = 2^n + 1$. Thus $2^n + 1 = 2^{2(2t+1)} + \varepsilon 2^{3t+2} + 2^{2t+2} + \varepsilon 2^{t+1} + 1$, where $\varepsilon = \pm 1$ and hence, $2^n = 2^{t+1}(2^{3t+1} + \varepsilon 2^{2t+1} + 2^t + \varepsilon)$, which is a contradiction.
- 2.9. If $K/H \cong E_7(2)$, then $2^n + 1 \in \{73, 127\}$, which is impossible.

30

2.10. If $K/H \cong E_7(3)$, then $2^n + 1 \in \{757, 1093\}$, which is impossible.

Case 3: Let $t(K/H) = \{4, 5\}$. Then $p = 2^n + 1 \in \{OC_2(K/H), OC_3(K/H), OC_4(K/H), OC_5(K/H)\}$. as follows:

- 3.1. If $K/H \cong A_2(4)$ or ${}^2E_6(2)$, then $2^n + 1 = 7$ or $2^n + 1 = 19$, which is impossible.
- 3.2. If $K/H \cong^2 B_2(q)$, where $q = 2^{2t} + 1$ and $t \ge 1$. Then $2^n + 1 \in \{q 1, q \pm \sqrt{2q} + 1\}$. If $q 1 = 2^n + 1$, then $2^{2t} + 1 = 2^n + 2$ and if $q \pm \sqrt{2q} + 1 = 2^n + 1$, then $2^{t+1}(2^t \pm 1) = 2^n$, which are impossible.
- 3.3. If $K/H \cong E_8(q)$, then $2^n + 1 \in \{q^8 q^7 + q^5 q^4 + q^3 q + 1, q^8 + q^7 q^5 q^4 q^3 + q + 1, q^8 q^6 + q^4 q^2 + 1, q^8 q^4 + 1\}$. Thus $q^t = 2^n$, where t > 1 is a natural number such that (t, q) = 1, which is a contradiction.

The above cases show that $K/H \cong C_n(2)$.

Now since $|G| = |C_n(2)|$, H = 1 and $K = G \cong C_n(2)$. The main theorem is proved.

Corollary Thompson's conjecture holds for the simple groups $C_n(2)$, where $2^n + 1 > 5$ prime is a prime number.

Proof. Let G be a group with trivial central and $N(G) = N(C_n(2))$. Then it is proved in [3, Lemma 1.4] that $|G| = |C_n(2)|$. Hence, the corollary follows from the main theorem.

References

- Ahanjideh N., Thompson's conjecture for some finite simple groups with connected prime graph. Algebra Logic. 6 (2013), 451–478.
- [2] Asboei K. A. and Mohammadyari R., Recognizing alternating groups by their order and one conjugacy class length. J. Algebra. Appl. 15 (2016), doi:10.1142/S0219498816500213.
- [3] Chen G. Y., On Thompson's conjecture. J. Algebra. 185 (1996), 184–193.
- [4] Chen G. Y., Further reflections on Thompson's conjecture. J. Algebra. 218 (1999), 276–285.
- [5] Chen G. Y., A new characterization of sporadic simple groups. Algebra Colloquium. 3 (1996), 49–58.
- [6] Chen Y. and Chen G. Y., Recognizing A₁(p) by its order and one special conjugacy class size. J. Inequal. Appl. (2012), doi:10.1186/1029-242X-2012-310.

- [7] Conway J. H., Curtis R. T., Norton S. P. and Wilson R. A., Atlas of finite groups, Clarendon, Oxford, 1985.
- [8] Iiyori N. and Yamaki H., Prime graph components of the simple groups of Lie type over the field of even characteristic. J. Algebra. 155 (1993), 335-343.
- [9] Khosravi A. and Khosravi B., *r*-Recognizability of $B_n(q)$ and $C_n(q)$, where $n = 2^m \ge 4$. J. Pure Appli. Algebra. **199** (2005), 149–165.
- [10] Kondtratev A. S. and Mazurove V. D., Recognition Of Alternating groups of prime degree from their element orders. Siberian Mathematical Journal. 41 (2000), 294–302.
- [11] Li J. B., *Finite groups with special conjugacy class sizes or generalized permutable subgroups*, PhD thesis, Southwest University, Chongqing, 2012.
- [12] Ribenboim R., Classical Theory of Algebraic Numbers, Springer, New York, 2001.
- [13] Williams J. S., Prime graph components of finite groups. J. Algebra. 69 (1981), 487–513.
- [14] Zsigmondy K., Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265–284.

Alireza Khalili ASBOEI Department of Mathematics Farhangian University Tehran, Iran E-mail: khaliliasbo@yahoo.com

Mohammad Reza DARAFSHEH School of Mathematics Statistics and Computer Science University of Tehran Tehran, Iran

Reza MOHAMMADYARI Department of Mathematics Buinzahra Branch Islamic Azad University Buin Zahra, Iran