Lowerable vector fields for a finitely \mathcal{L} -determined multigerm

Yusuke MIZOTA and Takashi NISHIMURA

(Received March 11, 2015; Revised October 23, 2015)

Abstract. We show that the module of lowerable vector fields for a finitely \mathcal{L} -determined multigerm is finitely generated in a constructive way.

Key words: Lowerable vector field, finitely \mathcal{L} -determined multigerm, preparation theorem, finitely generated module.

1. Introduction

Let \mathbb{K} denote \mathbb{R} or \mathbb{C} . Throughout this paper, all mappings are of class C^{∞} for $\mathbb{K} = \mathbb{R}$, and are holomorphic for $\mathbb{K} = \mathbb{C}$, unless otherwise stated.

Let S be a finite set consisting of r distinct points in \mathbb{K}^n . A mapgerm $f: (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$ is called a *multigerm*. When r = 1, f is called a *monogerm*. A multigerm $f: (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$ can be identified with $\{f_k: (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0) | 1 \le k \le r\}$. Each f_k is called a *branch* of f.

Let $C_{n,S}$ (resp., $C_{p,0}$) be the K-algebra of all function-germs on (\mathbb{K}^n, S) (resp., $(\mathbb{K}^p, 0)$) and $m_{n,S}$ (resp., $m_{p,0}$) be the ideal of $C_{n,S}$ (resp., $C_{p,0}$) consisting of function-germs $(\mathbb{K}^n, S) \to (\mathbb{K}, 0)$ (resp., $(\mathbb{K}^p, 0) \to (\mathbb{K}, 0)$). For a non-negative integer i, let $m_{n,S}^i$ (resp., $m_{p,0}^i$) denote the ideal of $C_{n,S}$ (resp., $C_{p,0}$) consisting of those function-germs on (\mathbb{K}^n, S) (resp., $(\mathbb{K}^p, 0)$) whose Taylor series vanish up to degree i - 1.

For a multigerm $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$, let $f^* : C_{p,0} \to C_{n,S}$ be the K-algebra homomorphism defined by $f^*(\psi) = \psi \circ f$. Set $Q(f) = C_{n,S}/f^*m_{p,0}C_{n,S}$ and $\delta(f) = \dim_{\mathbb{K}} Q(f)$.

For a map-germ $f : (\mathbb{K}^n, S) \to \mathbb{K}^p$, let $\theta(f)$ be the set of germs of vector fields along f. The set $\theta(f)$ has the natural $C_{n,S}$ -module structure and is identified with the direct sum of p copies of $C_{n,S}$. Set $\theta_S(n) =$ $\theta(\mathrm{id}_{(\mathbb{K}^n,S)})$ and $\theta_0(p) = \theta(\mathrm{id}_{(\mathbb{K}^p,0)})$, where $\mathrm{id}_{(\mathbb{K}^n,S)}$ (resp., $\mathrm{id}_{(\mathbb{K}^p,0)})$ is the germ of the identity mapping of (\mathbb{K}^n, S) (resp., $(\mathbb{K}^p, 0)$). For a multigerm $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$, following Mather [4, p. 141], define $tf : \theta_S(n) \to \theta(f)$ (resp., $\omega f : \theta_0(p) \to \theta(f)$) as $tf(\xi) = df \circ \xi$ (resp., $\omega f(\eta) = \eta \circ f$), where df

²⁰¹⁰ Mathematics Subject Classification : Primary 58K40; Secondary 57R45, 58K20.

is the differential of f. Following Wall [5, p. 485], set $T\mathcal{R}_e(f) = tf(\theta_S(n))$ and $T\mathcal{L}_e(f) = \omega f(\theta_0(p))$. For a multigerm $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$, a vector field $\xi \in \theta_S(n)$ is said to be *lowerable* if $df \circ \xi$ belongs to $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$. Let $\operatorname{Lower}(f)$ be the set of all lowerable vector fields for the multigerm f. Then, $\operatorname{Lower}(f)$ has a $C_{p,0}$ -module structure via f. The notion of lowerable vector field, which was introduced by Arnol'd [1] for studying bifurcations of wave front singularities, is significant in Singularity Theory (for instance, see [3]).

In the paper, we investigate the following problem.

Problem 1 Let $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$ be a multigerm satisfying $\delta(f) < \infty$. Then, is the module Lower(f) finitely generated? In the case that Lower(f) is finitely generated, prove it in a constructive way.

Our first result is the following Proposition 2, which reduces Problem 1 to that of the finite generation on $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$.

Proposition 2 Let $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$ be a multigerm satisfying $\delta(f) < \infty$. Then, tf is injective.

We see that, in the complex analytic case, $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$ is finitely generated, since $C_{p,0}$ is Noetherian and $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$ is a $C_{p,0}$ -submodule of the finitely generated module $\theta(f)$. However, the algebraic argument gives no constructive proof. Moreover, the finite generation of $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$ has been an open problem in the real C^{∞} case, as far as the authors know.

The main purpose of the paper is to give a constructive proof of the following theorem, which works well in both the real C^{∞} case and the complex analytic case.

Theorem 3 Let $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$ be a finitely \mathcal{L} -determined multigerm. Then, $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$ is finitely generated as a $C_{p,0}$ -module via f.

Here, a multigerm $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$ is said to be finitely \mathcal{L} -determined if there exists a positive integer ℓ such that $m_{n,S}^{\ell}\theta(f) \subset T\mathcal{L}_e(f)$ holds. We easily see that $\delta(f)$ is finite if f is finitely \mathcal{L} -determined. Thus, by combining Proposition 2 and Theorem 3, we have the following partial affirmative answer to Problem 1.

Corollary 4 Let $f : (\mathbb{K}^n, S) \to (\mathbb{K}^p, 0)$ be a finitely \mathcal{L} -determined multigerm. Then, Lower(f) is finitely generated as a $C_{p,0}$ -module via f. **Remark 5** According to Theorem 2.5 in [5, p. 494], a monogerm f is finitely \mathcal{L} -determined if and only if f is finitely \mathcal{A} -determined and $2n \leq p$, or f is an immersion-germ. Therefore, it seems impossible to apply our results to the mappings appearing in [1], [3] unfortunately. However, by using the argument of Theorem 3, it is possible even to construct explicit generators of Lower(f) for a multigerm f. For example, we consider the multigerm $f = (f_1, f_2) : (\mathbb{K}, S) \to (\mathbb{K}^2, 0)$ defined by

$$f_1(x) = (x^2, x^3), \quad f_2(x) = (x^3, x^2).$$

It is not hard to show that $m_{1,S}^6\theta(f) \subset T\mathcal{L}_e(f)$ holds. Thus, f is finitely \mathcal{L} -determined. By using the argument of Theorem 3, the $C_{2,0}$ -module Lower(f) is generated by the following two vector fields:

$$((x^3), (3x^4)), ((3x^4), (x^3)).$$

There seems to be no results so far on lowerable vector fields for a multigerm as far as the authors know.

In Section 2 (resp., Section 3), Proposition 2 (resp., Theorem 3) is proved.

2. Proof of Proposition 2

It suffices to show that if a monogerm $f : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ satisfies $\delta(f) < \infty$, then tf is injective.

Suppose that for $\xi \in \theta_0(n)$, we have $tf(\xi) = 0$ on an open set U_1 containing 0. Then, f is constant along any integral curve of ξ on U_1 . Since $\delta(f) < \infty$ holds, each integral curve of ξ on an open set U_2 containing 0 must consist of a single point by Propositions 2.2 and 2.3 in [2, pp. 167–168]. Therefore, we have $\xi = 0$ on $U_1 \cap U_2$. Thus, tf is injective.

3. Proof of Theorem 3

Since f is finitely \mathcal{L} -determined, there exists a positive integer ℓ such that

$$m_{n,S}^{\ell}\theta(f) \subset T\mathcal{L}_e(f) \tag{1}$$

holds and we have $\delta(f) < \infty$. Thus, $Q(f_k)$ is a finite dimensional K-vector space of dimension $\delta(f_k)$ for every k with $1 \leq k \leq r$, where f_k are the branches of f. Then, there exist $\varphi_{k,j} \in C_{n,0}$, $1 \leq j \leq \delta(f_k)$, such that we have

$$Q(f_k) = \left\langle [\varphi_{k,1}], [\varphi_{k,2}], \dots, [\varphi_{k,\delta(f_k)}] \right\rangle_{\mathbb{K}}.$$

We would like to find a finite set of generators for $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$. Let us take any element $\overline{\eta} = (\overline{\eta}_1, \overline{\eta}_2, \dots, \overline{\eta}_r) \in T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$. Let (x_1, x_2, \dots, x_n) (resp., (X_1, X_2, \dots, X_p)) be the standard local coordinates of \mathbb{K}^n (resp., \mathbb{K}^p) around the origin. For every $k = 1, 2, \dots, r$, the vector field $\overline{\eta}_k$ can be expressed as

$$\overline{\eta}_{k} = \begin{pmatrix} \frac{\partial(X_{1} \circ f_{k})}{\partial x_{1}} & \frac{\partial(X_{1} \circ f_{k})}{\partial x_{2}} & \cdots & \frac{\partial(X_{1} \circ f_{k})}{\partial x_{n}} \\ \frac{\partial(X_{2} \circ f_{k})}{\partial x_{1}} & \frac{\partial(X_{2} \circ f_{k})}{\partial x_{2}} & \cdots & \frac{\partial(X_{2} \circ f_{k})}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial(X_{p} \circ f_{k})}{\partial x_{1}} & \frac{\partial(X_{p} \circ f_{k})}{\partial x_{2}} & \cdots & \frac{\partial(X_{p} \circ f_{k})}{\partial x_{n}} \end{pmatrix} \begin{pmatrix} \widetilde{\varphi}_{1,k} \\ \widetilde{\varphi}_{2,k} \\ \vdots \\ \widetilde{\varphi}_{n,k} \end{pmatrix}$$

for some $\widetilde{\varphi}_{1,k}, \widetilde{\varphi}_{2,k}, \dots, \widetilde{\varphi}_{n,k} \in C_{n,0}$.

Then, by the preparation theorem, there exist $\psi_{k,i,j} \in C_{p,0}$ such that we have

$$\widetilde{\varphi}_{i,k} = \sum_{1 \le j \le \delta(f_k)} (\psi_{k,i,j} \circ f_k) \varphi_{k,j}.$$

Thus, $\overline{\eta}_k$ can be simplified as follows:

$$\overline{\eta}_k = \sum_{i,j} (\psi_{k,i,j} \circ f_k) \xi_{k,i,j},$$

where the symbol $\sum_{i,j}$ means the summation taken over all *i* and *j* with $1 \le i \le n$ and $1 \le j \le \delta(f_k)$, respectively, and $\xi_{k,i,j}$ is the transpose of

$$\bigg(\frac{\partial(X_1\circ f_k)}{\partial x_i}\varphi_{k,j},\frac{\partial(X_2\circ f_k)}{\partial x_i}\varphi_{k,j},\ldots,\frac{\partial(X_p\circ f_k)}{\partial x_i}\varphi_{k,j}\bigg).$$

Note that $\xi_{k,i,j} \in T\mathcal{R}_e(f_k)$ holds.

For a *p*-tuple of non-negative integers $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_p)$, set

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_p, \ X^{\alpha} = X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_p^{\alpha_p},$$

and

$$f_k^{\alpha} = (X_1 \circ f_k)^{\alpha_1} (X_2 \circ f_k)^{\alpha_2} \cdots (X_p \circ f_k)^{\alpha_p}.$$

Then, the function-germs $\psi_{k,i,j} \in C_{p,0}$ can be written in the form

$$\psi_{k,i,j}(X_1, X_2, \dots, X_p) = \sum_{0 \le |\alpha| \le \ell - 1} c_{k,i,j,\alpha} X^{\alpha} + \sum_{|\alpha| = \ell} \widetilde{\psi}_{k,i,j,\alpha} X^{\alpha}$$

for some $c_{k,i,j,\alpha} \in \mathbb{K}$ and $\widetilde{\psi}_{k,i,j,\alpha} \in C_{p,0}$. Recall that ℓ is the positive integer given in (1). We have

$$\overline{\eta}_k = \sum_{i,j} \sum_{0 \le |\alpha| \le \ell - 1} c_{k,i,j,\alpha}(f_k^{\alpha} \xi_{k,i,j}) + \sum_{i,j} \sum_{|\alpha| = \ell} \left(\widetilde{\psi}_{k,i,j,\alpha} \circ f_k \right) (f_k^{\alpha} \xi_{k,i,j}).$$

 Set

$$\overline{\xi}_{k,i,j,\alpha} = (\underbrace{0, 0, \dots, 0, f_k^{\alpha} \xi_{k,i,j}}_{k \text{ entries}}, 0, \dots, 0).$$

Note that $\overline{\xi}_{k,i,j,\alpha} \in T\mathcal{R}_e(f)$ holds. Then, we have

$$\overline{\eta} = \sum_{1 \le k \le r} \sum_{i,j} \sum_{0 \le |\alpha| \le \ell - 1} c_{k,i,j,\alpha} \overline{\xi}_{k,i,j,\alpha} + \sum_{1 \le k \le r} \sum_{i,j} \sum_{|\alpha| = \ell} \left(\widetilde{\psi}_{k,i,j,\alpha} \circ f \right) \overline{\xi}_{k,i,j,\alpha}.$$

We define the finite sets L and H of $T\mathcal{R}_e(f)$ as follows:

$$L = \{ \overline{\xi}_{k,i,j,\alpha} \mid 0 \le |\alpha| \le \ell - 1, \ 1 \le k \le r, \ 1 \le i \le n, \ 1 \le j \le \delta(f_k) \},\$$
$$H = \{ \overline{\xi}_{k,i,j,\alpha} \mid |\alpha| = \ell, \ 1 \le k \le r, \ 1 \le i \le n, \ 1 \le j \le \delta(f_k) \}.$$

Then, $H \subset T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$ by (1). Therefore,

Y. Mizota and T. Nishimura

$$\sum_{1 \le k \le r} \sum_{i,j} \sum_{0 \le |\alpha| \le \ell - 1} c_{k,i,j,\alpha} \overline{\xi}_{k,i,j,\alpha}$$

belongs to $V = T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f) \cap L_{\mathbb{K}}$.

The set V is a finite dimensional K-vector space. Set $\dim_{\mathbb{K}} V = m$. Then, there exist $\underline{\xi}_1, \underline{\xi}_2, \ldots, \underline{\xi}_m \in T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$ such that we have

$$V = \left\langle \underline{\xi}_1, \underline{\xi}_2, \dots, \underline{\xi}_m \right\rangle_{\mathbb{K}}.$$

Clearly, we have $V \subset \left\langle \underline{\xi}_1, \underline{\xi}_2, \dots, \underline{\xi}_m \right\rangle_{f^*C_{p,0}}$. Therefore, we see that

$$\overline{\eta} \in \left\langle \underline{\xi}_1, \underline{\xi}_2 \dots, \underline{\xi}_m \right\rangle_{f^* C_{p,0}} + H_{f^* C_{p,0}}.$$

Thus, we have

$$T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f) \subset \left\langle \underline{\xi}_1, \underline{\xi}_2, \dots, \underline{\xi}_m \right\rangle_{f^*C_{p,0}} + H_{f^*C_{p,0}}.$$

The converse inclusion also holds, since $\{\underline{\xi}_1, \underline{\xi}_2, \dots, \underline{\xi}_m\} \cup H$ is contained in $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$. Thus, $T\mathcal{R}_e(f) \cap T\mathcal{L}_e(f)$ is finitely generated as a $C_{p,0}$ module via f.

Acknowledgement The authors would like to thank referees for valuable comments. This work is partially supported by JSPS and CAPES under the Japan-Brazil research cooperative program. Y.M. is a Research Fellow DC2 of Japan Society for the Promotion of Science and supported by Grantin-Aid for JSPS Fellows Grant Number 251998.

References

- Arnol'd V. I., Wave front evolution and equivariant Morse lemma. Comm. Pure Appl. Math. 29 (1976), 557–582.
- Golubitsky M. and Guillemin V., Stable mappings and their singularities. Graduate Texts in Mathematics 14, Springer-Verlag, New York-Heidelberg, 1973.
- [3] Ishikawa G., Openings of differentiable map-germs and unfoldings. Topics on Real and Complex Singularities, Proceedings of the 4th Japanese-Australian Workshop (JARCS4), Kobe 2011, World Scientific, 2014, pp. 87– 113.

22

- [4] Mather J., Stability of C[∞] mappings, III. Finitely determined map-germs.
 Publ. Math. Inst. Hautes tudes Sci. 35 (1968), 127–156.
- [5] Wall C. T. C., Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13 (1981), 481–539.

Yusuke MIZOTA Academic Support Center Kyushu Sangyo University Fukuoka 813-8503, Japan E-mail: mizota@ip.kyusan-u.ac.jp

Takashi NISHIMURA Research Group of Mathematical Sciences Research Institute of Environment and Information Sciences Yokohama National University Yokohama 240-8501, Japan E-mail: nishimura-takashi-yx@ynu.jp