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A remark on modified Morrey spaces on metric measure spaces
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Abstract. Morrey norms, which are originally endowed with two parameters, are

considered on general metric measure spaces. Volberg, Nazarov and Treil showed

that the modified Hardy-Littlewood maximal operator is bounded on Legesgue spaces.

The modified Hardy-Littlewood maximal operator is known to be bounded on Morrey

spaces on Euclidean spaces, if we introduce the third parameter instead of adopting a

natural extension of Morrey spaces. When it comes to geometrically doubling, as long

as an auxiliary parameter is introduced suitably, the Morrey norm does not depend

on the third parameter and this norm extends naturally the original Morrey norm. If

the underlying space has a rich geometric structure, there is still no need to introduce

auxiliary parameters. However, an example shows that this is not the case in general

metric measure spaces. In this paper, we present an example showing that Morrey

spaces depend on the auxiliary parameters.
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1. Introduction

In this paper, we present an example showing that the Morrey space
Mp

q(k, µ) depends on the auxiliary parameter k which we shall define by (1.2)
below. Our construction will supplement [2, Theorem 7], [14, Proposition
1.1] and [16, p. 314]. Based on the metric measure space (X, d, µ) obtained
in [13, Section 2], we shall show that the conclusion of [2, Theorem 7] fails
when we do not assume the metric geometrically doubling condition on X;
see Definition 1.10 for the definition of geometrically doubling metric spaces.

The analysis on a metric measure space (X, d, µ) developed dramati-
cally due to the work of Nazarov, Treil and Volberg [11]. One of the main
contributions is the following:
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Proposition 1.1 ([11, Lemma 3.1]) Let (X, d, µ) be a metric measure
space. Define the modified maximal operator M̃k, k > 0, by

M̃kf(x) := sup
r>0

1
µ(B(x, kr))

∫

B(x,r)

|f(y)| dµ(y).

Then, µ({x ∈ X : M̃3f(x) > λ}) ≤ (1/λ)‖f‖L1(µ) for all µ-measurable
functions f and λ > 0.

The proof of Proposition 1.1 depends on the Vitali covering theorem:

Lemma 1.2 Fix some R > 0. Let E ⊂ X be any finite set, and let
{B(x, rx)}x∈E be a family of balls of radii 0 < rx < R. Then there ex-
ists a countable subfamily {B(xj , rxj

)}∞j=1 of disjoint balls such that E ⊂⋃
j B(xj , 3rxj ).

Terasawa noticed that k = 3 is superfluous; he pointed out that k = 2
suffices.

Proposition 1.3 ([17, Theorem 2.4]) Let (X, d, µ) be a metric measure
space such that, for any x ∈ X, µ(B(x, ·)) : (0,∞) → [0,∞) is a continuous
function. Assume that µ is a Radon measure. Then µ({x ∈ X : M̃2f(x) >

λ}) ≤ (1/λ)‖f‖L1(µ) for all µ-measurable functions f and λ > 0.

After he proved Proposition 1.3, the first author proved the following:

Proposition 1.4 ([12, Theorem 1.2]) Let (X, d, µ) be a separable metric
measure space. Assume that µ is a Radon measure. Then µ({x ∈ X :
M̃2f(x) > λ}) ≤ (1/λ)‖f‖L1(µ) for all µ-measurable functions f and λ > 0.

The proofs of Propositions 1.3 and 1.4 essentially rely on the following
parameterized covering lemma:

Lemma 1.5 ([12, Lemma 2.1]) Fix some R > 0 and δ > 0. Let E ⊂ X

be any compact set and let {B(x, rx)}x∈E be a finite family of balls of radii
0 < rx < R. Then there exists a countable subfamily {B(xj , rxj )}∞j=1 of
disjoint balls such that

⋃

x∈E

B(x, δrx) ⊂
⋃

j

B(xj , (2 + δ)rxj
).

When δ = 1, the lemma above is exactly the Vitali covering lemma.
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Moreover, we have the following (see [12, Remark 2.9] for (1.1)):

Proposition 1.6 ([12, Section 2]) There exists a compact metric measure
space (X, d, µ) such that

sup
{
µ({M̃2f > 1}) : ‖f‖L1(µ) = 1

}
= 1 (1.1)

and, as long as 0 < k < 2,

sup
{
µ({M̃kf > 1}) : ‖f‖L1(µ) = 1

}
= ∞.

Motivated by the above fact, we investigate Morrey spaces, which can be
used to understand the behaviour of the Hardy–Littlewood maximal func-
tion.

Morrey spaces play an important role in harmonic analysis. Let 1 ≤ q ≤
p < ∞ and f a µ-measurable function. On a metric measure space (X, d, µ)
define the modified Morrey space Mp

q(k, µ) of order k > 0 by the norm;

‖f‖Mp
q(k,µ) := sup

B∈B
µ(kB)1/p−1/q

( ∫

B

|f(y)|q dµ(y)
)1/q

, (1.2)

where B denotes the set of all balls: B = {B(x, r) : x ∈ X, r > 0}. In [16],
the following is proved:

Proposition 1.7 ([16, Theorem 2.2]) Let 1 < q ≤ p < ∞. Then there
exists C > 0 such that

‖M̃2f‖Mp
q(6,µ) ≤ C‖f‖Mp

q(2,µ).

When (X, d) is the Euclidean space Rd, more can be said:

Proposition 1.8 ([14, Proposition 1.1]) Let 1 < q ≤ p < ∞. Then, for
any k > 1,

Mp
q(2, µ) = Mp

q(k, µ)

when (X, d) is the Euclidean space Rd.

The conclusion remains valid for any geometrically doubling metric mea-
sure space; see [8, Proposition 5.4 and Theorem 5.6]. We refer to [20] for
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further results on Morrey spaces on quasi-metric measure spaces, where the
authors developed a theory of the HajÃlasz gradient.

Originally, Proposition 1.8 is proved with balls in the definition replaced
by cubes. Here, “by a cube”, we mean a compact cube in Rd whose edges
are parallel to coordinate axes. Denote by kQ the k-times expansion of Q

for k > 1. The proof of Proposition 1.8 depends on the following covering
lemma for cubes:

Lemma 1.9 Let Q be a cube and k > 1. Bisect Q into 2d subcubes and
let R be one of them. Then

(2k − 1)R ⊂ kQ.

We also have an example showing that Mp
q(1, µ) and Mp

q(2, µ) are not
isomorphic, where µ is a Radon measure on the Euclidean space Rd (see [15,
Example 2.3]).

A similar assertion can be obtained for a geometrically doubling metric
measure space (X, d, µ).

Definition 1.10 A metric space is geometrically doubling, if there exists
a constant N such that, for any x ∈ X and R > 0, B(x, 2R) is covered by
N balls of radius R.

With these results in mind, we expect that Mp
q(6, µ) and Mp

q(2, µ) are
the same function spaces even in the general metric measure spaces. How-
ever, Mp

q(6, µ) and Mp
q(2, µ) can be different when (X, d, µ) is not a metric

geometrically doubling measure space. In Section 2 we shall show;

Theorem 1.11 Let 1 ≤ q < p < ∞. Then, it can happen that Mp
q(2, µ)

is a proper subset of Mp
q(6, µ).

When p = q, then the Morrey space Mp
q(k, µ) is the Lebesgue space

Lp(µ) and the parameter k does not come into play in the definition. So,
we are mainly concerned with the case 1 ≤ q < p < ∞.

Theorem 1.11 is a counterpart of the Morrey norm defined by

‖f‖Lq,λ(k,µ)

:= sup
Q:cubes(or balls),µ(Q)>0

`(Q)λµ(k Q)−1/q

( ∫

Q

|f(y)|q dµ(y)
)1/q

(1.3)
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on Rd or (X, d, µ), where `(Q) denotes the side length or diameter of Q,
1 ≤ q < ∞ and λ > 0. This Morrey norm is defined in [9] in which the
Poincaré inequality is obtained (see [9, Section 4]). With this definition in
mind, let us summarize the results on dependence on the parameter k in the
definition of the Morrey space ‖f‖Mp

q(k,µ) given by (1.2) and the Morrey
space ‖f‖Lq,λ(k,µ) given by (1.3).

Morrey spaces results

Mp
q(k, µ) on Rd in [14] positive [14]

Mp
q(k, µ) on (X, d, µ) in [16] negative; see Theorem 1.11 in this paper

Lq,λ(k, µ) on Rd in [9] positive [9]

Lq,λ(k, µ) on (X, d, µ) in [9] negative [13]

In [9, Remark 2.1], on Rd, an example is presented showing that the
norms ‖ · ‖Lq,λ(k,µ) are equivalent for k > 1 but that the norms ‖ · ‖Lq,λ(1,µ)

and ‖ · ‖Lq,λ(2,µ) are not equivalent. Also, a counterpart of Theorem 1.11
for this Morrey norm on general metric measure spaces is obtained in [13,
Section 2]; the norms ‖ · ‖Lq,λ(2,µ) and ‖ · ‖Lq,λ(4,µ) are not equivalent.

Coifman and Weiss pointed out any metric measure space (X, d, µ) is
geometrically doubling if µ is a doubling measure [3, p. 4]. Despite this
fact, the notion of the geometrically doubling spaces itself dates back to
around early 80’s. At that time the geometrically doubling spaces were
called homogeneous metric spaces. Assouad’s embedding theorem asserts
that, a metric space (X, d) is geometrically doubling if and only if there
exist D ∈ N, ε ∈ (0, 1), C > 0 and f : X → RD such that C−1d(x, y)ε ≤
|f(x)− f(y)| ≤ Cd(x, y)ε; see Assouad’s 1983 paper [1]. Recently more and
more people pay attention to geometrically doubling spaces after the advent
of Hytönen’s 2010 paper [6], where Hytönen extended the space of RBMO,
defined by Tolsa [18], to metric measure setting. There still exist many open
problems on function spaces and boundedness of operators; see, for example,
[4], [19].
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2. A counterexample

To prove Theorem 1.11, we need a setup.

2.1. The space we work on
First, we define a set X on which we work. To this end, we define X0.

Definition 2.1 Denote by ∆(z, r) the open ball centered at z ∈ C of
radius r > 0;

∆(z, r) := {w ∈ C : |w − z| < r}. (2.1)

Define Ak to be the boundary of ∆(0, 3−k) for k ∈ N ∪ {0};

Ak := {z ∈ C : |z| = 3−k}. (2.2)

Finally, we let

X0 := {0} ∪
∞⋃

k=0

Ak ⊂ C. (2.3)

We equip X0 with a measure. We denote by H1 denote the Hausdorff
measure on C with the dimension 1 and by B0 the Borel sets in X0.

Definition 2.2 ([13, Definition 2.6])

(1) Let γ ∈ R be such that γ
∞∑

k=0

H1(Ak)
(k!)k

= 1.

(2) One defines a function w0 : X0 → [0,∞) by w0 := γ

∞∑

k=0

1
(k!)k

χAk
.

(3) Define a measure on X0 by µ0 := w0 dH1, so that (X0,B0, µ0) is a
probability space.

Note that Ak is an annulus, that X0 is the union and that X is a
countable product of X0.

We recall a “singular” metric on X given in [13, Definition 2.3]. We
denote by [a] the largest integer not greater than a.

Definition 2.3 ([13, Definition 2.3])

(1) Define X := X0
N ⊂ CN based on (2.1)–(2.3).
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Figure 1. We draw graphs of A0 and X0.

(2) One assumes that N0 > 100 is an integer such that log9 N0 is an integer.
(3) We define, for δ > 0, N(δ) := max(0, [logN0

(δ−1)]).
(4) Define the distance d({xj}∞j=1, {yj}∞j=1) between {xj}∞j=1 and {yj}∞j=1

by

d
({xj}∞j=1, {yj}∞j=1

)
:= inf{δ > 0 : |xj − yj | ≤ δ for all j ≤ N(δ)}.

(5) For each k ∈ N, define a sphere Sk by:

Sk := (Ak)N(3−k) ×X0 ×X0 × · · · .

(6) One also defines o := (0, 0, . . .) ∈ X.

As we have seen in [13, Lemma 2.4], (X, d) is a bounded metric space
such that

dX := sup
x,y∈X

d(x, y) = 2.

Note also that χSk
is µ-measurable. Let r > 0 and x = (x1, x2, . . .) ∈ X.

Then

B(x, r) = ∆(x1, r)×∆(x2, r)× · · · ×∆(xN(r), r)×X0 ×X0 × · · · (2.4)

as we have seen in [13, Lemma 2.5]. Note that (2.4) is valid no matter where
x lies.
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Now we make (X, d) into a probability space.

Definition 2.4 ([13, Definition 2.1])

(1) For j = 1, 2, . . ., denote by pj the jth projection from X to X0.
(2) By using Definition 2.2, make X into a probability space (X,B, µ) such

that {pj}∞j=1 is an independent and identically distributed sequence with
the distribution µ0, or equivalently, for all Borel sets A ⊂ X0 and j =
1, 2, . . .,

µ(X0 × · · · ×X0︸ ︷︷ ︸
(j−1)−fold

×A×X0 ×X0 × · · · ) = µ0(A).

In Section 2, we adopt the following convention: We shall denote by z

without subindex the point in C. The bold letters such as x,y, z stand for
points in X. When we add j and we write xj , yj , zj and so on, they denote
complex numbers of the jth component of elements in X.

We recall two important quantitative estimates on µ.

Lemma 2.5 ([13, Lemma 2.11]) We have

µ(B(o, r)) ≤ µ(B(x, 10r))

for all x ∈ X and r > 0.

Lemma 2.6 ([13, Lemma 2.12]) Suppose that 2a = log3 N0. There exists
C > 0 such that

µ(B(o, 2.2× 3−(2j−1)a)) ≤ Cµ(S(2j−1)a)

for all j ∈ N.

To prove our main result, we will need two other auxiliary estimates,
which can not be found in [13]:

Lemma 2.7 Let 1 ≤ q < p < ∞. Suppose that 2a = log3 N0. Then

lim inf
k→∞

(
1
π

cos−1 2
3

)N(3−k+1)(1/p−1/q)(
µ(Sk−1)
µ(Sk)

)1/p−1/q

= 0 (2.5)
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Proof. By [13, (2.21)], we have

µ(Sk) =
(

2πγ

(3 · k!)k

)N(3−k)

.

Recall that we are assuming N0 > 100. If k ∈ N ∩ [3a,∞) is such that k/a

is an odd multiple of positive integers, then

N(3−k) = max(1, [logN0
3k]) = max

(
1,

[
k

2a

])
=

k − a

2a

N(3× 3−k) = max(1, [logN0
3k − logN0

3])

= max
(

1,

[
k

2a
− logN0

3
])

=
k − a

2a
.

This implies

0 ≤ lim inf
k→∞

(
1
π

cos−1 2
3

)N(3−k+1)(1/p−1/q)(
µ(Sk−1)
µ(Sk)

)1/p−1/q

≤ lim
k→∞

(
1
π

cos−1 2
3

)N(3−(2k−1)a+1)(1/p−1/q)(µ(S(2k−1)a−1)
µ(S(2k−1)a)

)1/p−1/q

= lim
k→∞

(
1
π

cos−1 2
3

)N(3−(2k−1)a+1)(1/p−1/q)

×
(

(3 · [(2k − 1)a]!)(2k−1)a

(3 · [(2k − 1)a− 1]!)(2k−1)a−1

)N(3−(2k−1)a)(1/p−1/q)

= 0.

So, (2.5) follows. ¤

Lemma 2.8 Let R > 3 and (x0, y0) ∈ R2. In R2, suppose that two circles
x2 + y2 = 1 and (x− x0)2 + (y − y0)2 = R2 intersect. Then the arclength L

of the arc given by

{(x, y) : x2 + y2 = 9, (x− x0)2 + (y − y0)2 ≤ R2}

is greater than or equal to
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6 cos−1 2
3
.

Proof. A rotation allows us to assume y0 = 0 < x0. Two circles x2+y2 = 1
and (x− x0)2 + y2 = R2 intersect if and only if

R− 1 < x0 < R + 1.

Let us set

Θ(x0, R) := |{θ ∈ [−π, π] : (3 cos θ − x0)2 + (3 sin θ)2 ≤ R2}|.

Then L is given by

L = 3Θ(x0, R). (2.6)

An arithmetic shows that

Θ(x0, R) = 2 cos−1

(
x0

2 + 9−R2

6x0

)
.

Since x0 < R + 1 and R > 3, we have

Θ(x0, R) ≥ 2 cos−1

(
2R + 10
6(R + 1)

)

= 2 cos−1

(
1
3

+
4

3(R + 1)

)
≥ 2 cos−1

(
2
3

)
. (2.7)

(2.6) and (2.7) yield the desired lower bound of L. ¤

2.2. Conclusion of the proof of Theorem 1.11
Assume that Mp

q(2, µ) = Mp
q(6, µ). Then by the closed graph theorem,

there exists a constant C > 0 such that

‖f‖Mp
q(2,µ) ≤ C‖f‖Mp

q(6,µ) (2.8)

for all f ∈ Mp
q(2, µ) = Mp

q(6, µ). In fact, let T be a mapping given by
f ∈ Mp

q(6, µ) 7→ f ∈ Mp
q(2, µ). Suppose that {fn}∞n=1 is a sequence

in Mp
q(6, µ) which is convergent to f in Mp

q(6, µ) and that {Tfn}∞n=1

is a sequence in Mp
q(2, µ) which is convergent to g in Mp

q(2, µ). Since
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{fn}∞n=1 = {Tfn}∞n=1 converges to g in Mp
q(2, µ), we can say that {fn}∞n=1

is a sequence in Mp
q(6, µ) which is convergent to g in Mp

q(6, µ). Since
Mp

q(6, µ) is a normed space, we have f = g. Hence T is a closed operator.
Since Mp

q(6, µ) and Mp
q(2, µ) are Banach spaces, T is a continuous operator.

So (2.8) follows.
Let k be a fixed integer of the form (2j−1)a with j ∈ N and a := log9 N0.

We need estimates of ‖χSk
‖Mp

q(2,µ) and ‖χSk
‖Mp

q(6,µ). The estimate we need
for ‖χSk

‖Mp
q(2,µ) is as follows:

‖χSk
‖Mp

q(2,µ) ≥ µ(B(o, 2.2 · 3−k))1/p−1/qµ(B(o, 1.1 · 3−k) ∩ Sk)1/q

= µ(B(o, 2.2 · 3−k))1/p−1/qµ(Sk)1/q

≥ Cµ(Sk)1/p,

where for the last inequality we have used Lemma 2.6. As a consequence,

‖χSk
‖Mp

q(2,µ) ≥ Cµ(Sk)1/p. (2.9)

Meanwhile, we need an estimate for ‖χSk
‖Mp

q(6,µ). Let B = B(x, r) be
a ball which intersects Sk.

We distinguish two cases.

(1) If r ≤ 2−1 · 3−k, then 6B ⊃ B ⊃ B ∩ Sk and hence

µ(6B)1/p−1/qµ(B ∩ Sk)1/q ≤ µ(B ∩ Sk)1/p.

Write x = (x1, x2, . . . , xN(3−k), . . .). Recall that

B = ∆(x1, r)×∆(x2, r)× · · · ×∆(xN(r), r)×X0 ×X0 × · · ·

according to (2.4). Thus,

µ(B ∩ Sk)

= µ
(
(∆(x1, r)×∆(x2, r)

× · · · ×∆(xN(3−k), r)×X0 ×X0 × · · · ) ∩ Sk

)

= µ0(∆(x1, r) ∩Ak)µ0(∆(x2, r) ∩Ak) · · ·µ0(∆(xN(3−k), r) ∩Ak).
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We shall estimate µ0(∆(xj , r) ∩ Ak) for j = 1, 2, . . . , N(3−k). Suppose
that ∆(xj , r) and Ak meet at a point yj . Then ∆(xj , r) ⊂ ∆(yj , 2r) and
hence ∆(xj , r) ∩ Ak ⊂ ∆(yj , 2r) ∩ Ak. Since r ≤ 2−1 · 3−k, it follows
that

µ(∆(xj , r) ∩Ak) ≤ µ(∆(yj , 2r) ∩Ak) ≤ µ(∆(yj , 3−k) ∩Ak) =
1
3
µ(Ak).

Using this geometric observation, we have

µ(B ∩ Sk) ≤ 1
3
µ0(Ak) · 1

3
µ0(Ak) · · · 1

3
µ0(Ak)

︸ ︷︷ ︸
N(3−k) times

= 3−N(3−k)µ(Sk).

Hence we have

µ(6B)1/p−1/qµ(B ∩ Sk)1/q ≤ 3−(N(3−k))/pµ(Sk)1/p.

(2) If r > 2−1 · 3−k, then Lemma 2.8 yields

µ(6B ∩ Sk−1) ≥
(

1
π

cos−1 2
3

)N(3−k+1)

µ(Sk−1).

Hence

µ(6B)1/p−1/qµ(B ∩ Sk)1/q

≤ µ(6B ∩ Sk−1)1/p−1/qµ(B ∩ Sk)1/q

≤
(

1
π

cos−1 2
3

)N(3−k+1)(1/p−1/q)

µ(Sk−1)1/p−1/qµ(Sk)1/q.

Consequently, it follows that

µ(6B)1/p−1/qµ(B ∩ Sk)1/q

≤ max
(

3−(N(3−k))/p,

(
1
π

cos−1 2
3

)N(3−k+1)(1/p−1/q)(
µ(Sk−1)
µ(Sk)

)1/p−1/q)
µ(Sk)1/p.
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Since the ball B is arbitrary, we obtain

‖χSk
‖Mp

q(6,µ)

≤ C max
(

3−(N(3−k))/p,

(
1
π

cos−1 2
3

)N(3−k+1)(1/p−1/q)(
µ(Sk−1)
µ(Sk)

)1/p−1/q)
‖χSk

‖Mp
q(2,µ)

thanks to (2.9). This is a contradiction to (2.8), since

lim inf
k→∞

max
(

3−(N(3−k))/p,

(
1
π

cos−1 2
3

)N(3−k+1)(1/p−1/q)(
µ(Sk−1)
µ(Sk)

)1/p−1/q)
= 0

by Lemma 2.7.

Acknowledgement The authors are grateful to the anonymous ref-
eree for his/her careful reading, which increased readability of the paper.

References

[ 1 ] Assouad P., Plongements lipschitziens dans Rn. Bulletin de la S. M. F. 111

(1983), 429–448.

[ 2 ] Cao Y. H. and Zhou J., Morrey spaces for nonhomogeneous metric measure

spaces, Abstr. Appl. Anal. 2013, Art. ID 196459, 8 pp.

[ 3 ] Coifman R. R. and Weiss G., gAnalyse harmonique non-commutative sur
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