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Growth of meromorphic solutions

of some linear differential equations
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Abstract. In this paper, we investigate the order and the hyper-order of meromor-

phic solutions of the linear differential equation

f
(k)

+

k−1X

j=1

(Dj + Bje
Pj(z)

)f
(j)

+ (D0 + A1e
Q1(z)

+ A2e
Q2(z)

)f = 0,

where k ≥ 2 is an integer, Q1(z), Q2(z), Pj(z) (j = 1, . . . , k − 1) are nonconstant

polynomials and As(z) ( 6≡ 0) (s = 1, 2), Bj(z) ( 6≡ 0) (j = 1, . . . , k − 1), Dm(z)

(m = 0, 1, . . . , k − 1) are meromorphic functions. Under some conditions, we prove

that every meromorphic solution f ( 6≡ 0) of the above equation is of infinite order

and we give an estimate of its hyper-order. Furthermore, we obtain a result about the

exponent of convergence and the hyper-exponent of convergence of a sequence of zeros

and distinct zeros of f − ϕ, where ϕ ( 6≡ 0) is a meromorphic function and f ( 6≡ 0) is

a meromorphic solution of the above equation.

Key words: Linear Differential Equation, Meromorphic function, Hyper-order, Expo-

nent of convergence, hyper-exponent of convergence.

1. Introduction and statement of results

In this paper, we assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna’s value distribution
theory of meromorphic functions (see [11], [15]). In addition, we use the
notation σ(f) to denote the order of growth of a meromorphic function
f , λ(f) and λ(f) to denote respectively the exponent of convergece of a
sequence of zeros and a sequence of distinct zeros of f . We also denote by
σ2(f) the hyper-order of f which is defined by (see [15])

σ2(f) = lim sup
r→+∞

log log T (r, f)
log r

,

where T (r, f) is the Nevanlinna characteristic function of f .
The hyper-exponent of convergence of a sequence of zeros and distints
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zeros of f are respectively defined by

λ2(f) = lim sup
r→+∞

log log N(r, 1/f)
log r

and

λ2(f) = lim sup
r→+∞

log log N(r, 1/f)
log r

,

where N(r, 1/f) and N(r, 1/f) are respectively the counting functions of
zeros and distinct zeros of f .

For the second order linear differential equation

f ′′ + e−zf ′ + B(z)f = 0, (1.1)

where B(z) is an entire function of finite order, it is well known that every
solution of (1.1) is an entire function and most solutions of (1.1) have an
infinite order. Thus, a natural question is: what conditions on B(z) will
guarantee that every solution f (6≡ 0) of (1.1) has an infinite order? Ozawa
[13], Gundersen [8], Amemiya and Ozawa [1], and Langley [12] have studied
the problem, where B(z) is a nonconstant polynomial or a transcendental
entire function with order σ(B) 6= 1. Recently in [14], Peng and Chen have
investigated the order and the hyper-order of solutions of equation (1.1) and
have proved the following result:

Theorem A ([14]) Let Aj(z) ( 6≡ 0) (j = 1, 2) be entire functions with
σ(Aj) < 1, a1, a2 be complex numbers such that a1a2 6= 0 and a1 6= a2

(suppose that |a1| ≤ |a2|). If arg a1 6= π or a1 < −1, then every solution
f(6≡ 0) of the equation

f ′′ + e−zf ′ + (A1e
a1z + A2e

a2z)f = 0 (1.2)

has an infinite order and σ2(f) = 1.

Recently in [9], the authors have extended Theorem A to some higher
order linear differential equations as follows:

Theorem B ([9]) Let As (6≡ 0) (s = 1, 2), Bj (6≡ 0) (j = 1, . . . , k−1), Dm

(m = 0, 1, 2, . . . , k−1) be entire functions with max{σ(As), σ(Bj), σ(Dm)} <
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1, bl (l = 1, . . . , k− 1) be complex numbers such that (i) arg bl = arg a1 and
bl = cla1 (0 < cl < 1) (l ∈ I1) and (ii) bl is a real constant such that bl ≤ 0
(l ∈ I2), where I1 6= ∅, I2 6= ∅, I1 ∩ I2 = ∅ and I1 ∪ I2 = {1, . . . , k− 1} and
a1, a2 are complex numbers such that a1a2 6= 0 and a1 6= a2 (suppose that
|a1| ≤ |a2|). If arg a1 6= π or a1 is a real number such that a1 < b/(1 − c),
where c = max{cl : l ∈ I1} and b = min{bl : l ∈ I2}, then every solution
f(6≡ 0) of equation

f (k) +
k−1∑

j=1

(Dj + Bje
bjz)f (j) + (D0 + A1e

a1z + A2e
a2z)f = 0 (1.3)

satisfies σ(f) = +∞ and σ2(f) = 1.

In this paper, we continue the research in this type of problems. So, the
main purpose of this paper is to extend and improve the above results to
some higher order linear differential equations. We will prove the following
results:

Theorem 1.1 Let k ≥ 2 be an integer, Qs(z) =
∑n

i=0 ai,sz
i (s = 1, 2)

and Pj(z) =
∑n

i=0 bi,jz
i (j = 1, . . . , k − 1) be nonconstant polynomials,

where a0,s, . . . , an,s (s = 1, 2), b0,j , . . . , bn,j (j = 1, . . . , k − 1) are complex
numbers such that an,s = |an,s|eiθs 6= 0 (s = 1, 2), θs ∈ [−π/2, 3π/2) and
an,1 6= an,2 (suppose that |an,1| ≤ |an,2|). Let As(z) ( 6≡ 0) (s = 1, 2), Bj(z)
(6≡ 0) (j = 1, . . . , k − 1) and Dm(z) (m = 0, 1, . . . , k − 1) be meromorphic
functions with max{σ(As), σ(Bj), σ(Dm)} < n. Let I and J be two sets
satisfying I 6= ∅, J 6= ∅, I ∩ J = ∅ and I ∪ J = {1, . . . , k− 1} such that for
j ∈ I, bn,j = cjan,1 (0 < cj < 1) and for j ∈ J , bn,j < 0.

If θ1 6= π or an,1 is a real number such that (1 − c)an,1 < b, where
c = max{cj : j ∈ I} and b = min{bn,j : j ∈ J}, then every meromorphic
solution f(6≡ 0) of equation

f (k) +
k−1∑

j=1

(Dj + Bje
Pj(z))f (j) +

(
D0 + A1e

Q1(z) + A2e
Q2(z)

)
f = 0 (1.4)

is of infinite order and satisfies σ2(f) ≥ n. In addition, if λ(1/f) < +∞,
then σ2(f) = n.

Theorem 1.2 Let k ≥ 2 be an integer, Qs(z) =
∑n

i=0 ai,sz
i (s = 1, 2) and
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Pj(z) =
∑n

i=0 bi,jz
i (j = 1, . . . , k − 1) be nonconstant polynomials, where

a0,s, . . . , an,s (s = 1, 2), b0,j , . . . , bn,j (j = 1, . . . , k−1) are complex numbers
such that an,s = |an,s|eiθs 6= 0 (s = 1, 2), θs ∈ [−π/2, 3π/2) and an,1 6= an,2.
Let As(z) ( 6≡ 0) (s = 1, 2), Bj(z) ( 6≡ 0) (j = 1, . . . , k − 1) and Dm(z) (m =
0, 1, . . . , k−1) be meromorphic functions with max{σ(As), σ(Bj), σ(Dm)} <

n. Let I and J be two sets satisfying I 6= ∅, J 6= ∅, I ∩ J = ∅ and
I ∪ J = {1, . . . , k − 1} such that for j ∈ I, bn,j = αjan,1 (0 < αj < 1)
and for j ∈ J , bn,j = βjan,2 (0 < βj < 1). Set α = max{αj : j ∈ I} and
β = max{βj : j ∈ J}.

Suppose that one of the following statements holds:

(1) θ1 6= π and θ1 6= θ2.
(2) θ1 6= π, θ1 = θ2 and (i) |an,1| < (1−β)|an,2| or (ii) |an,2| < (1−α)|an,1|.
(3) an,1 and an,2 are real number such that (i) (1 − β)an,2 < an,1 < 0 or

(ii) (1− α)an,1 < an,2 < 0.

Then every meromorphic solution f(6≡ 0) of equation (1.4) is of infinite order
and satisfies σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then σ2(f) = n.

Theorem 1.3 Let k ≥ 2 be an integer, Qs(z) =
∑n

i=0 ai,sz
i (s = 1, 2) and

Pj(z) =
∑n

i=0 bi,jz
i (j = 1, . . . , k − 1) be nonconstant polynomials, where

a0,s, . . . , an,s (s = 1, 2), b0,j , . . . , bn,j (j = 1, . . . , k−1) are complex numbers
such that an,s = |an,s|eiθs 6= 0 (s = 1, 2), θs ∈ [−π/2, 3π/2) and an,1 6= an,2.
Let As(z) ( 6≡ 0) (s = 1, 2), Bj(z) ( 6≡ 0) (j = 1, . . . , k − 1) and Dm(z) (m =
0, 1, . . . , k−1) be meromorphic functions with max{σ(As), σ(Bj), σ(Dm)} <

n. Let I and J be two sets satisfying I 6= ∅, J 6= ∅, I ∩ J = ∅ and
I ∪ J = {1, . . . , k − 1} such that for j ∈ I, bn,j = αjan,1 + βjan,2 (0 <

αj < 1) (0 < βj < 1) and for j ∈ J , bn,j < 0. Set α = max{αj : j ∈ I},
β = max{βj : j ∈ I} and b = min{bn,j : j ∈ J}.

Suppose that one of the following statements holds:

(1) θ1 6= π and θ1 6= θ2.
(2) θ1 6= π, θ1 = θ2 and (i) |an,1| < (1−β)|an,2| or (ii) |an,2| < (1−α)|an,1|.
(3) an,1 and an,2 are real numbers such that (i) (1− β)an,2 − b < an,1 < 0

or (ii) (1− α)an,1 − b < an,2 < 0.

Then every meromorphic solution f(6≡ 0) of equation (1.4) is of infinite order
and satisfies σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then σ2(f) = n.

Theorem 1.4 Let k ≥ 2 be an integer, As(z) (6≡ 0), an,s (s = 1, 2), Bj(z)
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(6≡ 0), bn,j (j = 1, . . . , k − 1) and Dm(z) (m = 0, 1, . . . , k − 1) satisfy the
additional hypotheses of Theorem 1.1 or Theorem 1.2 or Theorem 1.3. If ϕ

(6≡ 0) is a meromorphic function of finite order, then every meromorphic
solution f(6≡ 0) of equation (1.4) satisfies λ(f − ϕ) = λ(f − ϕ) = +∞ and
λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then
λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) = n.

2. Preliminary Lemmas

Lemma 2.1 ([6]) Let f(z) be a transcendental meromorphic function and
let α > 1 be a given constant. Then there exists a set E1 ⊂ (1,+∞) having
finite logarithmic measure and a constant B > 0 that depends only on i,
j (i, j positive integers with 0 ≤ i < j ≤ k) such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E1, we have

∣∣∣∣
f (j)(z)
f (i)(z)

∣∣∣∣ ≤ B

[
T (αr, f)

r
(logα r) log T (αr, f)

]j−i

. (2.1)

Lemma 2.2 ([5]) Let g(z) be a meromorphic function of order σ(g) =
σ < +∞. Then for any given ε > 0, there exists a set E2 ⊂ (1,+∞) that
has finite logarithmic measure such that

|g(z)| 6 exp{rσ+ε} (2.2)

holds for |z| = r /∈ [0, 1] ∪ E2, r → +∞.

Lemma 2.3 ([14]) Suppose that n ≥ 1 is an integer, Qj(z) = ajnzn + · · ·
(j = 1, 2) be noncostant polynomials, where ajq (q = 1, 2, . . . , n) are complex
numbers and a1na2n 6= 0. Set z = reiθ, ajn = |ajn|eiθj , θj ∈ [−π/2, 3π/2),
δ(Qj , θ) = |ajn| cos(θj + nθ), then there is a set E3 ⊂ [−π/2n, 3π/2n) that
has linear measure zero. If θ1 6= θ2, then there exists a ray arg z = θ,
θ ∈ (−π/2n, π/2n)/(E3 ∪ E4) such that

δ(Q1, θ) > 0, δ(Q2, θ) < 0 (2.3)

or

δ(Q1, θ) < 0, δ(Q2, θ) > 0, (2.4)
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where E4 = {θ ∈ [−π/2n, 3π/2n) : δ(Qj , θ) = 0} is a finite set which has
linear measure zero.

Remark 2.1 ([14]) In Lemma 2.3, if θ ∈ (−π/2n, π/2n)/(E3 ∪ E4) is
replaced by θ ∈ (π/2n, 3π/2n)/(E3 ∪ E4), then we obtain the same result.

Lemma 2.4 ([10]) Let P (z) = (α + iβ)zn + · · · (α, β are real num-
bers, |α| + |β| 6= 0) be a polynomial with degree n ≥ 1 and A(z) be a
meromorphic function with σ(A) < n. Set f(z) = A(z)eP (z), z = reiθ,
δ(P, θ) = α cos(nθ) − β sin(nθ). Then for any given ε > 0, there exists
a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for any
θ ∈ [−π/2, 3π/2)/H and |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have

(i) if δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rn} ≤ |f(reiθ)| ≤ exp{(1 + ε)δ(P, θ)rn}, (2.5)

(ii) if δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} ≤ |f(reiθ)| ≤ exp{(1− ε)δ(P, θ)rn}, (2.6)

where H = {θ ∈ [−π/2, 3π/2) : δ(P, θ) = 0}.
Lemma 2.5 ([2]) Suppose that k ≥ 2 and A0, A1, . . . , Ak−1 are meromor-
phic functions of finite order. Let ρ = max{σ(Aj) : j = 0, 1, . . . , k − 1} and
let f be a transcendental meromorphic solution with λ(1/f) < +∞ of the
equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = 0. (2.7)

Then σ2(f) ≤ ρ.

Lemma 2.6 ([2]) Let Pj(z) (j = 0, 1, . . . , k) be polynomials with deg P0(z)
= n (n ≥ 1) and deg Pj(z) ≤ n (j = 1, 2, . . . , k). Let Aj(z) (j =
0, 1, . . . , k) be meromorphic functions with finite order and max{σ(Aj) : j =
0, 1, . . . , k} < n such that A0(z) 6≡ 0. We denote

F (z) = Ak(z)ePk(z)+Ak−1(z)ePk−1(z)+· · ·+A1(z)eP1(z)+A0(z)eP0(z). (2.8)

If deg(P0(z)− Pj(z)) = n for all j = 1, . . . , k, then F is a nontrivial mero-
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morphic function with finite order and satisfies σ(F ) = n.

Lemma 2.7 ([7]) Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
non-decreasing functions such that ϕ(r) 6 ψ(r) for all r /∈ E6 ∪ [0, 1], where
E6 ⊂ (1,+∞) is a set of finite logarithmic measure. Let α > 1 be a given
constant. Then there exists an r0 = r0(α) > 0 such that ϕ(r) 6 ψ(αr) for
all r > r0.

Lemma 2.8 ([4]) Let A0(z), A1(z), . . . , Ak−1(z), F (6≡ 0) be finite order
meromorphic functions. If f is an infinite order meromorphic solution of
equation

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f + A0(z)f = F, (2.9)

then f satisfies λ(f) = λ(f) = σ(f) = +∞.

Lemma 2.9 ([3]) Let A0(z), A1(z), . . . , Ak−1(z), F (6≡ 0) be finite order
meromorphic functions. If f is a meromorphic solution of equation (2.9)
with σ(f) = +∞ and σ2(f) = σ, then f satisfies λ2(f) = λ2(f) = σ2(f) =
σ.

3. Proof of Theorem 1.1

First we prove that every meromorphic solution f(6≡ 0) of equation (1.4)
is transcendental. Assume that f(6≡ 0) is a polynomial or a rational solution
of equation (1.4). Then σ(f) = 0. We write equation (1.4) in the form

(A1(z)f)eQ1(z) + (A2(z)f)eQ2(z) +
k−1∑

j=1

Bj(z)f (j)ePj(z) = B(z), (3.1)

where B(z) = −(
f (k) +

∑k−1
j=1 Dj(z)f (j) + D0(z)f

)
, Asf (s = 1, 2) and

Bjf
(j) (j = 1, 2, . . . , k − 1) are meromorphic functions of finite order with

Asf 6≡ 0 (s = 1, 2), σ(B) < n, σ(Asf) < n (s = 1, 2) and σ(Bjf
(j)) < n

(j = 1, . . . , k−1). If θ1 6= π or an,1 is a real number such that (1−c)an,1 < b,
it follows that deg(Q1(z) − Q2(z)) = n and deg(Q1(z) − Pj(z)) = n (j =
1, . . . , k − 1). Thus from (3.1) and by Lemma 2.6, we have σ(B) = n, this
contradicts the fact σ(B) < n. Hence every meromorphic solution f(6≡ 0)
of equation (1.4) is transcendental.
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Set max{σ(As), σ(Bj), σ(Dm)} = ρ < n, where (s = 1, 2), (j =
1, . . . , k− 1) and (m = 0, . . . , k− 1). Assume that f(6≡ 0) is a meromorphic
solution of equation (1.4). By Lemma 2.1, there exists a set E1 ⊂ (1,+∞)
having finite logarithmic measure and a constant B > 0 such that for all z

satisfying |z| = r /∈ [0, 1] ∪ E1, we have

∣∣∣∣
f (j)(z)
f(z)

∣∣∣∣ ≤ B[T (2r, f)]j+1 (j = 1, . . . , k). (3.2)

By Lemma 2.2, for any given ε (0 < ε < n − ρ), there exists a set E2 ⊂
(1,+∞) that has finite logarithmic measure such that

|Dm(z)| ≤ exp{rρ+ε} (m = 0, . . . , k − 1) (3.3)

holds for |z| = r /∈ [0, 1] ∪ E2, r → +∞.

Case (1). θ1 6= π.

(i) Suppose that θ1 6= θ2. By Lemma 2.3, there exists a ray arg z = θ,
such that θ ∈ (−π/2n, π/2n)\(E3 ∪E4), where E3 and E4 are defined as in
Lemma 2.3, and satisfying

δ(Q1, θ) > 0, δ(Q2, θ) < 0 or δ(Q1, θ) < 0, δ(Q2, θ) > 0.

a) When δ(Q1, θ) > 0, δ(Q2, θ) < 0, by Lemma 2.4, for any given ε (0 <

ε < min{n− ρ, (1− c)/(2(1 + c))}), there exists a set E5 ⊂ [1,+∞) having
finite logarithmic measure such that for |z| = r /∈ [0, 1] ∪ E5, r → +∞, we
have

∣∣A1(z)eQ1(z)
∣∣ ≥ exp{(1− ε)δ(Q1, θ)rn} (3.4)

and

|A2(z)eQ2(z)| ≤ exp{(1− ε)δ(Q2, θ)rn} < 1. (3.5)

By (3.4) and (3.5), we have

∣∣A1(z)eQ1(z) + A2(z)eQ2(z)
∣∣ ≥ ∣∣A1(z)eQ1(z)| − |A2(z)eQ2(z)

∣∣

≥ exp{(1− ε)δ(Q1, θ)rn} − 1
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≥ (1− o(1)) exp{(1− ε)δ(Q1, θ)rn}. (3.6)

By (1.4), we get

∣∣A1(z)eQ1(z) + A2(z)eQ2(z)
∣∣

≤
∣∣∣∣
f (k)(z)
f(z)

∣∣∣∣ +
(|Dk−1(z)|+ ∣∣Bk−1(z)ePk−1(z)

∣∣)
∣∣∣∣
f (k−1)(z)

f(z)

∣∣∣∣

+ · · ·+ (|D1(z)|+ ∣∣B1(z)eP1(z)
∣∣)

∣∣∣∣
f ′(z)
f(z)

∣∣∣∣ + |D0(z)|. (3.7)

For j ∈ I, we have δ(Pj , θ) = cjδ(Q1, θ) > 0. Thus

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1 + ε)cjδ(Q1, θ)rn} ≤ exp{(1 + ε)cδ(Q1, θ)rn}. (3.8)

For j ∈ J , we have δ(Pj , θ) = −|bn,j | cos(nθ) < 0. Thus

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1− ε)δ(Pj , θ)rn} < 1. (3.9)

Substituting (3.2), (3.3), (3.6), (3.8) and (3.9) into (3.7), for all z satisfying
arg z = θ ∈ (−{π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5,
r → +∞, we obtain

(1− o(1)) exp{(1− ε)δ(Q1, θ)rn}
≤ M1 exp{rρ+ε} exp{(1 + ε)cδ(Q1, θ)rn}[T (2r, f)]k+1, (3.10)

where M1 > 0 is a constant. From (3.10) and 0 < ε < (1− c)/(2(1 + c)), we
get

(1− o(1)) exp
{

(1− c)
2

δ(Q1, θ)rn

}
≤ M1 exp{rρ+ε}[T (2r, f)]k+1. (3.11)

By δ(Q1, θ) > 0 and ρ + ε < n, then by using Lemma 2.7 and (3.11), we
obtain σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by
Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

b) When δ(Q1, θ) < 0, δ(Q2, θ) > 0, by Lemma 2.4, for the above ε, there
exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for
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|z| = r /∈ [0, 1] ∪ E5, r → +∞, we have

∣∣A1(z)eQ1(z)
∣∣ ≤ exp{(1− ε)δ(Q1, θ)rn} < 1 (3.12)

and
∣∣A2(z)eQ2(z)

∣∣ ≥ exp{(1− ε)δ(Q2, θ)rn}. (3.13)

By (3.12) and (3.13), we have

∣∣A1(z)eQ1(z) + A2(z)eQ2(z)
∣∣ ≥ (1− o(1)) exp{(1− ε)δ(Q2, θ)rn}. (3.14)

For j ∈ I, we have δ(Pj , θ) < 0. Thus

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1− ε)cjδ(Q1, θ)rn} < 1. (3.15)

Substituting (3.2), (3.3), (3.9), (3.14) and (3.15) into (3.7), for all z satisfying
arg z = θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5, r →
+∞, we obtain

(1− o(1)) exp{(1− ε)δ(Q2, θ)rn} ≤ M2 exp{rρ+ε}[T (2r, f)]k+1, (3.16)

where M2 > 0 is a constant. By δ(Q2, θ) > 0 and ρ + ε < n, then by using
Lemma 2.7 and (3.16), we obtain σ(f) = +∞ and σ2(f) ≥ n. In addition,
if λ(1/f) < +∞, then by Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

(ii) Suppose that θ1 = θ2. By Lemma 2.3, there is a ray arg z = θ such
that θ ∈ (−π/2n, π/2n)\(E3 ∪ E4) and δ(Q1, θ) > 0. Since |an,1| ≤
|an,2|, an,1 6= an,2 and θ1 = θ2, it follows that |an,1| < |an,2|. Thus
δ(Q2, θ) > δ(Q1, θ) > 0. By Lemma 2.4, for any given ε (0 < ε < min{n −
ρ, (|an,2| − |an,1|)/(2(|an,2|+ |an,1|))}), there exists a set E5 ⊂ (1,+∞) hav-
ing finite logarithmic measure such that for |z| = r /∈ [0, 1] ∪ E5, r → +∞,
we have (3.13) and

∣∣A1(z)eQ1(z)
∣∣ ≤ exp{(1 + ε)δ(Q1, θ)rn}. (3.17)

By (3.13) and (3.17), we get
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∣∣A1(z)eQ1(z) + A2(z)eQ2(z)
∣∣

≥ ∣∣A2(z)eQ2(z)
∣∣− ∣∣A1(z)eQ1(z)

∣∣

≥ exp{(1− ε)δ(Q2, θ)rn} − exp{(1 + ε)δ(Q1, θ)rn}
= exp{(1 + ε)δ(Q1, θ)rn}[exp{γrn} − 1], (3.18)

where

γ = (1− ε)δ(Q2, θ)− (1 + ε)δ(Q1, θ).

Since 0 < ε < (|an,2| − |an,1|)/(2(|an,2|+ |an,1|)), then

γ = (1− ε)|an,2| cos(θ2 + nθ)− (1 + ε)|an,1| cos(θ1 + nθ)

= (|an,2| − |an,1| − ε(|an,2|+ |an,1|)) cos(θ1 + nθ)

>
|an,2| − |an,1|

2
cos(θ1 + nθ) > 0.

Then, by γ > 0 and from (3.18), we get

∣∣A1(z)eQ1(z) + A2(z)eQ2(z)
∣∣

≥ (1− o(1)) exp{(1 + ε)δ(Q1, θ)rn} exp{γrn}. (3.19)

Substituting (3.2), (3.3), (3.8), (3.9) and (3.19) into (3.7), for all z satisfying
arg z = θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5, r →
+∞, we obtain

(1− o(1)) exp{(1 + ε)δ(Q1, θ)rn} exp{γrn}
≤ M3 exp{rρ+ε} exp{(1 + ε)cδ(Q1, θ)rn}[T (2r, f)]k+1, (3.20)

where M3 > 0 is a constant. By (3.20), we have

(1− o(1)) exp{[(1 + ε)(1− c)δ(Q1, θ) + γ]rn}
≤ M3 exp{rρ+ε}[T (2r, f)]k+1. (3.21)

By δ(Q1, θ) > 0, γ > 0 and ρ + ε < n, then by using Lemma 2.7 and (3.21),
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we obtain σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then
by Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

Case (2). an,1 is a real number such that (1− c)an,1 < b, which is θ1 = π.

(i) Assume that θ1 6= θ2, then θ2 6= π. By Lemma 2.3, there is a ray
arg z = θ such that θ ∈ (−π/2n, π/2n)\(E3 ∪ E4) and δ(Q2, θ) > 0. Since
cos(nθ) > 0, we have δ(Q1, θ) = |an,1| cos(θ1 + nθ) = −|an,1| cos(nθ) < 0.
By Lemma 2.4, for any given ε (0 < ε < min{n − ρ, (1 − c)/(2(1 + c))}),
there exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that
for |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have (3.12) and (3.13). Using the
same reasoning as in Case 1(i) b), we obtain σ(f) = +∞ and σ2(f) ≥ n. In
addition, if λ(1/f) < +∞, then by Lemma 2.5, we have σ2(f) ≤ n. Hence
σ2(f) = n.

(ii) Assume that θ1 = θ2, then θ1 = θ2 = π. By Lemma 2.3, there is a
ray arg z = θ such that θ ∈ (π/2n, 3π/2n)\(E3 ∪ E4). Then cos(nθ) < 0,
δ(Q1, θ) = |an,1| cos(θ1+nθ) = −|an,1| cos(nθ) > 0, δ(Q2, θ) = |an,2| cos(θ2+
nθ) = −|an,2| cos(nθ) > 0. Since |an,1| ≤ |an,2|, an,1 6= an,2 and θ1 = θ2,
then |an,1| < |an,2|. Thus δ(Q2, θ) > δ(Q1, θ) > 0. By Lemma 2.4, for
any given ε (0 < ε < min{n− ρ, (|an,2| − |an,1|)/(2(|an,2|+ |an,1|))}), there
exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for
|z| = r /∈ [0, 1] ∪ E5, r → +∞, we have (3.13), (3, 17) and (3.19) holds. For
j ∈ J , we have δ(Pj , θ) = −|bn,j | cos(nθ) > 0. Thus

|Bj(z)ePj(z)| ≤ exp{(1 + ε)δ(Pj , θ)rn}
≤ exp{(1 + ε)brn cos(nθ)}. (3.22)

Substituting (3.2), (3.3), (3.8), (3.19) and (3.22) into (3.7), for all z satisfying
arg z = θ ∈ (π/2n, 3π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5, r →
+∞, we obtain

(1− o(1)) exp{(1 + ε)δ(Q1, θ)rn} exp{γrn}
≤ M4 exp{rρ+ε} exp{(1 + ε)cδ(Q1, θ)rn}
× exp{(1 + ε)brn cos(nθ)}[T (2r, f)]k+1, (3.23)

where M4 > 0 is a constant. Hence
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(1− o(1)) exp{drn} ≤ M4 exp{rρ+ε}[T (2r, f)]k+1, (3.24)

where

d = (1 + ε)[(1− c)δ(Q1, θ)− b cos(nθ)] + γ.

Since γ > 0, cos(nθ) < 0, δ(Q1, θ) = −|an,1| cos(nθ), (1 − c)an,1 < b and
b < 0, we have

d = −(1 + ε)[(1− c)|an,1|+ b] cos(nθ) + γ

> −(1 + ε)[|b|+ b] cos(nθ) + γ = γ > 0.

By ρ + ε < n and d > 0, then by using Lemma 2.7 and (3.24), we obtain
σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

4. Proof of Theorem 1.2

First we prove that every meromorphic solution f(6≡ 0) of equation
(1.4) is transcendental. Assume that f(6≡ 0) is a polynomial or a rational
solution of equation (1.4). Then σ(f) = 0. We write equation (1.4) in
the form (3.1), where B(z) = −(

f (k) +
∑k−1

j=1 Dj(z)f (j) + D0(z)f
)
, Asf

(s = 1, 2) and Bjf
(j) (j = 1, 2, . . . , k − 1) are meromorphic functions of

finite order with Asf 6≡ 0 (s = 1, 2), σ(B) < n, σ(Asf) < n (s = 1, 2) and
σ(Bjf

(j)) < n (j = 1, . . . , k − 1).
If case (1) or case (2)(i) or case (3)(i) holds, it follows that deg(Q2(z)−

Q1(z)) = n and deg(Q2(z)− Pj(z)) = n (j = 1, . . . , k− 1). Thus from (3.1)
and by Lemma 2.6, we have σ(B) = n, this contradicts the fact σ(B) < n.
Hence every meromorphic solution f(6≡ 0) of equation (1.4) is transcenden-
tal.

If case (2)(ii) or case (3)(ii) holds, it follows that deg(Q1(z)−Q2(z)) = n

and deg(Q1(z) − Pj(z)) = n (j = 1, . . . , k − 1). Thus from (3.1) and by
Lemma 2.6, we have σ(B) = n, this contradicts the fact σ(B) < n. Hence
every meromorphic solution f(6≡ 0) of equation (1.4) is transcendental.

Set max{σ(As), σ(Bj), σ(Dm)} = ρ < n, where (s = 1, 2), (j =
1, . . . , k− 1) and (m = 0, . . . , k− 1). Assume that f(6≡ 0) is a meromorphic
solution of equation (1.4). By Lemma 2.1, there exist a set E1 ⊂ (1,+∞)
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having finite logarithmic measure and a constant B > 0 such that for all z

satisfying |z| = r /∈ [0, 1] ∪ E1, we have (3.2). By Lemma 2.2, for any given
ε (0 < ε < n−ρ), there exists a set E2 ⊂ (1+∞) that has finite logarithmic
measure, such that (3.3) holds for |z| = r /∈ [0, 1] ∪ E2, r → +∞.

Case (1). Suppose that θ1 6= π and θ1 6= θ2. By Lemma 2.3, there exists a
ray arg z = θ such that θ ∈ (−π/2n, π/2n)\(E3 ∪E4), where E3 and E4 are
defined as in Lemma 2.3 and satisfying

δ(Q1, θ) > 0, δ(Q2, θ) < 0 or δ(Q1, θ) < 0, δ(Q2, θ) > 0.

a) When δ(Q1, θ) > 0, δ(Q2, θ) < 0, by Lemma 2.4, for any given ε (0 <

ε < min{n− ρ, (1− α)/(2(1+α))}), there exists a set E5 ⊂ (1,+∞) having
finite logarithmic measure such that for |z| = r /∈ [0, 1] ∪ E5, r → +∞, we
have (3.4) and (3.5). By (3.4) and (3.5), we have (3.6).

For j ∈ I, we have δ(Pj , θ) = αjδ(Q1, θ) > 0. Thus

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1+ ε)αjδ(Q1, θ)rn} ≤ exp{(1+ ε)αδ(Q1, θ)rn}. (4.1)

For j ∈ J , we have δ(Pj , θ) = βjδ(Q2, θ) < 0. Thus

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1− ε)βjδ(Q2, θ)rn} < 1. (4.2)

Substituting (3.2), (3.3), (3.6), (4.1) and (4.2) into (3.7), for all z satisfying
arg z = θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5,
r → +∞, we obtain

(1− o(1)) exp{(1− ε)δ(Q1, θ)rn}
≤ M1 exp{rρ+ε} exp{(1 + ε)αδ(Q1, θ)rn}[T (2r, f)]k+1, (4.3)

where M1 > 0 is a constant. From (4.3) and 0 < ε < (1−α)/(2(1 + α)), we
get

(1− o(1)) exp
{

(1− α)
2

δ(Q1, θ)rn

}
≤ M1 exp{rρ+ε}[T (2r, f)]k+1. (4.4)

By δ(Q1, θ) > 0 and ρ + ε < n, then by using Lemma 2.7 and (4.4), we
obtain σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by
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Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

b) When δ(Q1, θ) < 0, δ(Q2, θ) > 0, by Lemma 2.4, for any given ε (0 <

ε < min{n− ρ, (1− β)/(2(1 + β))}), there exists a set E5 ⊂ [1,+∞) having
finite logarithmic measure such that for |z| = r /∈ [0, 1] ∪ E5, r → +∞, we
have (3.12) and (3.13). By (3.12) and (3.13), we have we have (3.14).

For j ∈ I, we have δ(Pj , θ) < 0. Thus

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1 + ε)αjδ(Q1, θ)rn} < 1. (4.5)

For j ∈ J , we have δ(Pj , θ) > 0. Thus

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1+ ε)βjδ(Q2, θ)rn} ≤ exp{(1+ ε)βδ(Q2, θ)rn}. (4.6)

Substituting (3.2), (3.3), (3.14), (4.5) and (4.6) into (3.7), for all z satisfying
arg z = θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5, r →
+∞, we obtain

(1− o(1)) exp{(1− ε)δ(Q2, θ)rn}
≤ M2 exp{rρ+ε} exp{(1 + ε)βδ(Q2, θ)rn}[T (2r, f)]k+1, (4.7)

where M2 > 0 is a constant. From (4.7) and 0 < ε < (1− β)/(2(1 + β)), we
get

(1− o(1)) exp
{

(1− β)
2

δ(Q2, θ)rn

}
≤ M2 exp{rρ+ε}[T (2r, f)]k+1. (4.8)

By δ(Q2, θ) > 0 and ρ + ε < n, then by using Lemma 2.7 and (4.8), we
obtain σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by
Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

Case (2). Suppose that θ1 6= π and θ1 = θ2. By Lemma 2.3, there is a ray
arg z = θ such that θ ∈ (−π/2n, π/2n)\(E3 ∪ E4) and δ(Q1, θ) > 0. Since
θ1 = θ2, it follows that δ(Q2, θ) > 0.

(i) If |an,1| < (1 − β)|an,2|, by Lemma 2.4, for any given ε (0 < ε <

min{n−ρ, ((1− β)|an,2| − |an,1|)/(2[(1 + β)|an,2|+ |an,1|])}), there exists a
set E5 ⊂ (1,+∞) having finite logarithmic measure such that for |z| = r /∈
[0, 1] ∪ E5, r → +∞, we have (3.13) and (3.17).
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By (1.4), we get

∣∣A2(z)eQ2(z)
∣∣ ≤

∣∣∣∣
f (k)(z)
f(z)

∣∣∣∣ +
(|Dk−1(z)|+ ∣∣Bk−1(z)ePk−1(z)

∣∣)
∣∣∣∣
f (k−1)(z)

f(z)

∣∣∣∣

+ · · ·+ (|D1(z)|+
∣∣B1(z)eP1(z)

∣∣)
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣

+
∣∣A1(z)eQ1(z)

∣∣ + |D0(z)|. (4.9)

Substituting (3.2), (3.3), (3.13), (3.17), (4.1) and (4.6) into (4.9), for all z

satisfying arg z = θ ∈ (−π/2n, π/2n)\(E3∪E4), |z| = r /∈ [0, 1]∪E1∪E2∪E5,
r → +∞, we obtain

exp{(1− ε)δ(Q2, θ)rn}
≤ k exp{rρ+ε} exp{(1 + ε)αδ(Q1, θ)rn}
× exp{(1 + ε)βδ(Q2, θ)rn}[T (2r, f)]k+1,

+ exp{(1 + ε)δ(Q1, θ)rn}+ exp{rρ+ε}
≤ M3 exp{rρ+ε} exp{(1 + ε)δ(Q1, θ)rn}
× exp{(1 + ε)βδ(Q2, θ)rn}[T (2r, f)]k+1, (4.10)

where M3 > 0 is a constant. By (4.10), we have

exp{d1r
n} ≤ M3 exp{rρ+ε}[T (2r, f)]k+1, (4.11)

where

d1 = (1− ε)δ(Q2, θ)− (1 + ε)δ(Q1, θ)− (1 + ε)βδ(Q2, θ).

Since

0 < ε <
(1− β)|an,2| − |an,1|

2[(1 + β)|an,2|+ |an,1|] ,

θ1 = θ2 and cos(θ1 + nθ) > 0, we have
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d1 = [1− β − ε(1 + β)]δ(Q2, θ)− (1 + ε)δ(Q1, θ)

= [1− β − ε(1 + β)]|an,2| cos(θ1 + nθ)− (1 + ε)|an,1| cos(θ1 + nθ)

= {(1− β)|an,2| − |an,1| − ε[(1 + β)|an,2|+ |an,1|]} cos(θ1 + nθ)

>
(1− β)|an,2| − |an,1|

2
cos(θ1 + nθ) > 0.

Since d1 > 0 and ρ + ε < n, then by using Lemma 2.7 and (4.11), we obtain
σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

(ii) If |an,2| < (1 − α)|an,1|, by Lemma 2.4, for any given ε (0 < ε <

min{n−ρ, ((1− α)|an,1| − |an,2|)/(2[(1 + α)|an,1|+ |an,2|])}), there exists a
set E5 ⊂ (1,+∞) having finite logarithmic measure such that for |z| = r /∈
[0, 1] ∪ E5, r → +∞, we have (3.4) and

∣∣A2(z)eQ2(z)
∣∣ ≤ exp{(1 + ε)δ(Q2, θ)rn}. (4.12)

By (1.4), we get

∣∣∣∣A1(z)eQ1(z)

∣∣∣∣ ≤
∣∣∣∣
f (k)(z)
f(z)

∣∣∣∣ +
(|Dk−1(z)|+

∣∣Bk−1(z)ePk−1(z)
∣∣)

∣∣∣∣
f (k−1)(z)

f(z)

∣∣∣∣

+ · · ·+ (|D1(z)|+ ∣∣B1(z)eP1(z)
∣∣)

∣∣∣∣
f ′(z)
f(z)

∣∣∣∣

+
∣∣A2(z)eQ2(z)

∣∣ + |D0(z)|. (4.13)

Substituting (3.2), (3.3), (3.4), (4.1), (4.6) and (4.12) into (4.13), for all z

satisfying arg z = θ ∈ (−π/2n, π/2n)\(E3∪E4), |z| = r /∈ [0, 1]∪E1∪E2∪E5,
r → +∞, we obtain

exp{(1− ε)δ(Q1, θ)rn}
≤ k exp{rρ+ε} exp{(1 + ε)αδ(Q1, θ)rn}
× exp{(1 + ε)βδ(Q2, θ)rn}[T (2r, f)]k+1,
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+ exp{(1 + ε)δ(Q2, θ)rn}+ exp{rρ+ε}
≤ M4 exp{rρ+ε} exp{(1 + ε)αδ(Q1, θ)rn}
× exp{(1 + ε)δ(Q2, θ)rn}[T (2r, f)]k+1, (4.14)

where M4 > 0 is a constant. By (4.14), we have

exp{d2r
n} ≤ M4 exp{rρ+ε}[T (2r, f)]k+1, (4.15)

where

d2 = (1− ε)δ(Q1, θ)− (1 + ε)δ(Q2, θ)− (1 + ε)αδ(Q1, θ).

Since

0 < ε <
(1− α)|an,1| − |an,2|

2[(1 + α)|an,1|+ |an,2|] ,

θ1 = θ2 and cos(θ1 + nθ) > 0, we obtain

d2 = {(1− α)|an,1| − |an,2| − ε[(1 + α)|an,1|+ |an,2|]} cos(θ1 + nθ)

>
(1− α)|an,1| − |an,2|

2
cos(θ1 + nθ) > 0.

Since d2 > 0 and ρ + ε < n, then by using Lemma 2.7 and (4.15), we obtain
σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

Case (3). Suppose that an,1 and an,2 are real numbers such that (1 −
β)an,2 < an,1 < 0 or (1 − α)an,1 < an,2 < 0, which is θ1 = θ2 = π. By
Lemma 2.3, there is a ray arg z = θ such that θ ∈ (π/2n, 3π/2n)\(E3 ∪E4).
Then cos(nθ) < 0, δ(Q1, θ) = |an,1| cos(θ1 + nθ) = −|an,1| cos(nθ) > 0 and
δ(Q2, θ) = |an,2| cos(θ2 + nθ) = −|an,2| cos(nθ) > 0.

(i) If (1− β)an,2 < an,1 < 0, by using the same reasoning as in case (2) (i),
we get σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by
Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

(ii) If (1 − α)an,1 < an,2 < 0, by using the same reasoning as in case (2)
(ii), we get σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then
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by Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

5. Proof of Theorem 1.3

Using the same reasoning as in the proof of Theorem 1.2, we obtain that
every meromorphic solution f(6≡ 0) of equation (1.4) is transcendental.

Set max{σ(As), σ(Bj), σ(Dm)} = ρ < n, where (s = 1, 2), (j =
1, . . . , k− 1) and (m = 0, . . . , k− 1). Assume that f(6≡ 0) is a meromorphic
solution of equation (1.4). By Lemma 2.1, there exist a set E1 ⊂ (1,+∞)
having finite logarithmic measure and a constant B > 0 such that for all z

satisfying |z| = r /∈ [0, 1]∪E1,we have (3.2). By Lemma 2.2, for any given ε

(0 < ε < n− ρ), there exists a set E2 ⊂ (1,+∞) that has finite logarithmic
measure, such that (3.3) holds for |z| = r /∈ [0, 1] ∪ E2, r → +∞.

Case (1). Suppose that θ1 6= π and θ1 6= θ2. By Lemma 2.3, there exists
a ray arg z = θ, such that θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), where E3 and E4

are defined as in Lemma 2.3 and satisfying

δ(Q1, θ) > 0, δ(Q2, θ) < 0 or δ(Q1, θ) < 0, δ(Q2, θ) > 0.

a) When δ(Q1, θ) > 0, δ(Q2, θ) < 0, by Lemma 2.4, for any given ε (0 <

ε < min{n− ρ, (1−α)/(2(1 + α))}), there exists a set E5 ⊂ (1,+∞) having
finite logarithmic measure such that for |z| = r /∈ [0, 1] ∪ E5, r → +∞, we
have (3.4) and (3.5). By (3.4) and (3.5), we have (3.6).

For j ∈ I, we have

δ(αjan,1z
n, θ) = αjδ(Q1, θ) > 0 and δ(Pj(z)−αjan,1z

n, θ) = βjδ(Q2, θ) < 0.

Thus
∣∣Bj(z)eαjan,1zn∣∣ ≤ exp{(1 + ε)αjδ(Q1, θ)rn}

≤ exp{(1 + ε)αδ(Q1, θ)rn} (5.1)

and
∣∣ePj(z)−αjan,1zn ∣∣ ≤ exp{(1− ε)βjδ(Q2, θ)rn} < 1. (5.2)

By (5.1) and (5.2), we obtain
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∣∣Bj(z)ePj(z)
∣∣ =

∣∣Bj(z)eαjan,1zn∣∣∣∣ePj(z)−αjan,1zn ∣∣

≤ exp{(1 + ε)αδ(Q1, θ)rn}. (5.3)

Substituting (3.2), (3.3), (3.6), (3.9) and (5.3) into (3.7), for all z satisfying
arg z = θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E5,
r → +∞, we obtain (4.3). From (4.3) and 0 < ε < (1 − α)/(2(1 + α)), we
get (4.4). By δ(Q1, θ) > 0 and ρ + ε < n, then by using Lemma 2.7 and
(4.4), we obtain σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞,
then by Lemma 2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

b) When δ(Q1, θ) < 0, δ(Q2, θ) > 0, by Lemma 2.4, for any given ε (0 <

ε < min{n− ρ, (1− β)/(2(1 + β))}), there exists a set E5 ⊂ (1,+∞) having
finite logarithmic measure such that for |z| = r /∈ [0, 1] ∪ E5, r → +∞, we
have (3.12) and (3.13). By (3.12) and (3.13), we have (3.14).

For j ∈ I, we have

δ(βjan,2z
n, θ) = βjδ(Q2, θ) > 0 and δ(Pj(z)−βjan,2z

n, θ) = αjδ(Q1, θ) < 0.

Thus
∣∣Bj(z)eβjan,2zn ∣∣ ≤ exp{(1 + ε)βjδ(Q2, θ)rn}

≤ exp{(1 + ε)βδ(Q2, θ)rn} (5.4)

and
∣∣ePj(z)−βjan,2zn ∣∣ ≤ exp{(1− ε)αjδ(Q1, θ)rn} < 1. (5.5)

By (5.4) and (5.5), we obtain

∣∣Bj(z)ePj(z)
∣∣ =

∣∣Bj(z)eβjan,2zn∣∣∣∣ePj(z)−βjan,2zn ∣∣

≤ exp{(1 + ε)βδ(Q2, θ)rn}. (5.6)

Substituting (3.2), (3.3), (3.9), (3.14) and (5.6) into (3.7), for all z satisfying
arg z = θ ∈ (−π/2n, π/2n)\(E3∪E4), |z| = r /∈ [0, 1]∪E1∪E2∪E5, r → +∞,
we obtain (4.7). From (4.7) and 0 < ε < (1−β)/(2(1+β)), we get (4.8). By
δ(Q2, θ) > 0 and ρ + ε < n, then by using Lemma 2.7 and (4.8), we obtain
σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
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2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

Case (2). Suppose that θ1 6= π and θ1 = θ2. By Lemma 2.3, there is a ray
arg z = θ such that θ ∈ (−π/2n, π/2n)\(E3 ∪ E4) and δ(Q1, θ) > 0. Since
θ1 = θ2, it follows that δ(Q2, θ) > 0.

(i) If |an,1| < (1 − β)|an,2|, by Lemma 2.4, for any given ε (0 < ε <

min{n−ρ, ((1− β)|an,2| − |an,1|)/(2[(1 + β)|an,2|+ |an,1|])}), there exists a
set E5 ⊂ (1,+∞) having finite logarithmic measure such that for |z| = r /∈
[0, 1] ∪ E5, r → +∞, we have (3.13) and (3.17).

For j ∈ I, we have

δ(αjan,1z
n, θ) = αjδ(Q1, θ) > 0 and δ(Pj(z)−αjan,1z

n, θ) = βjδ(Q2, θ) > 0.

Thus (5.1) holds and

∣∣ePj(z)−αjan,1zn ∣∣ ≤ exp{(1 + ε)βjδ(Q2, θ)rn}
≤ exp{(1 + ε)βδ(Q2, θ)rn}. (5.7)

By (5.1) and (5.7), we get

∣∣Bj(z)ePj(z)
∣∣ ≤ exp{(1 + ε)αδ(Q1, θ)rn} exp{(1 + ε)βδ(Q2, θ)rn}. (5.8)

Substituting (3.2), (3.3), (3.9), (3.13), (3.17) and (5.8) into (4.9), for all z

satisfying arg z = θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪
E2 ∪ E5, r → +∞, we obtain (4.10). By (4.10), we have (4.11). Using
similar reasoning as in case (2) (i) in the proof of Theorem 1.2, we obtain
σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

(ii) If |an,2| < (1 − α)|an,1|, by Lemma 2.4, for any given ε (0 < ε <

min{n−ρ, ((1− α)|an,1| − |an,2|)/(2[(1 + α)|an,1|+ |an,2|])}), there exists a
set E5 ⊂ (1,+∞) having finite logarithmic measure such that for |z| = r /∈
[0, 1] ∪ E5, r → +∞, we have (3.4) and (4.12).

Substituting (3.2), (3.3), (3.4), (3.9), (4.12) and (5.8) into (4.13), for all
z satisfying arg z = θ ∈ (−π/2n, π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪
E2 ∪ E5, r → +∞, we obtain (4.14). By (4.14), we have (4.15). Using
similar reasoning as in case (2) (ii) in the proof of Theorem 1.2, we obtain
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σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

Case (3). Suppose that an,1 and an,2 are real numbers such that (1 −
β)an,2 − b < an,1 < 0 or (1 − α)an,1 < an,2 < 0, which is θ1 = θ2 = π. By
Lemma 2.3, there is a ray arg z = θ such that θ ∈ (π/2n, 3π/2n)\(E3 ∪E4).
Then cos(nθ) < 0, δ(Q1, θ) = |an,1| cos(θ1 + nθ) = −|an,1| cos(nθ) > 0 and
δ(Q2, θ) = |an,2| cos(θ2 + nθ) = −|an,2| cos(nθ) > 0. For j ∈ J , we have
δ(Pj , θ) = −|bn,j | cos(nθ) > 0.

(i) If (1 − β)an,2 − b < an,1 < 0, by Lemma 2.4, for any given ε (0 < ε <

min{n− ρ, ((1− β)|an,2| − |an,1|+ b)/(2[(1 + β)|an,2|+ |an,1| − b])}), there
exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that for
|z| = r /∈ [0, 1] ∪ E5, r → +∞, we have (3.13) and (3.17).

Substituting (3.2), (3.3), (3.13), (3.17), (3.22) and (5.8) into (4.9), for
all z satisfying arg z = θ ∈ (π/2n, 3π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪
E2 ∪ E5, r → +∞, we obtain

exp{(1− ε)δ(Q2, θ)rn}
≤ M5 exp{rρ+ε} exp{(1 + ε)[δ(Q1, θ) + βδ(Q2, θ)

+ b cos(nθ)]rn}[T (2r, f)]k+1, (5.9)

where M5 > 0 is a constant. By (5.9), we have

exp{d3r
n} ≤ M5 exp{rρ+ε}[T (2r, f)]k+1, (5.10)

where

d3 = (1− ε)δ(Q2, θ)− (1 + ε)[δ(Q1, θ) + βδ(Q2, θ) + b cos(nθ)].

From 0 < ε < ((1− β)|an,2| − |an,1|+ b)/(2[(1 + β)|an,2|+ |an,1| − b]), θ1 =
θ2 = π and cos(nθ) < 0, we obtain

d3 = [1− β − ε(1 + β)]δ(Q2, θ)− (1 + ε)[δ(Q1, θ) + b cos(nθ)]

= −[1− β − ε(1 + β)]|an,2| cos(nθ) + (1 + ε)[|an,1| − b] cos(nθ)

= −{(1− β)|an,2| − |an,1|+ b− ε[(1 + β)|an,2|+ |an,1| − b]} cos(nθ)
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> − [(1− β)|an,2| − |an,1|+ b]
2

cos(nθ) > 0.

Since d3 > 0 and ρ + ε < n, then by using Lemma 2.7 and (5.10), we obtain
σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

(ii) If (1 − α)an,1 − b < an,2 < 0, by Lemma 2.4, for any given ε (0 <

ε < min{n − ρ, ((1− α)|an,1| − |an,2|+ b)/(2[(1 + α)|an,1|+ |an,2| − b)])}),
there exists a set E5 ⊂ (1,+∞) having finite logarithmic measure such that
for |z| = r /∈ [0, 1] ∪ E5, r → +∞, we have (3.4) and (4.12).

Substituting (3.2), (3.3), (3.4), (3.22), (4.12) and (5.8) into (4.13), for
all z satisfying arg z = θ ∈ (π/2n, 3π/2n)\(E3 ∪ E4), |z| = r /∈ [0, 1] ∪ E1 ∪
E2 ∪ E5, r → +∞, we obtain

exp{(1− ε)δ(Q1, θ)rn}
≤ M6 exp{rρ+ε} exp{(1 + ε)[δ(Q2, θ) + αδ(Q1, θ)

+ b cos(nθ)]rn}[T (2r, f)]k+1, (5.11)

where M6 > 0 is a constant. By (5.11), we have

exp{d4r
n} ≤ M6 exp{rρ+ε}[T (2r, f)]k+1, (5.12)

where

d4 = (1− ε)δ(Q1, θ)− (1 + ε)[δ(Q2, θ) + αδ(Q1, θ) + b cos(nθ)].

From 0 < ε < ((1− α)|an,1| − |an,2|+ b)/(2[(1 + α)|an,1|+ |an,2| − b]), θ1 =
θ2 = π and cos(nθ) < 0, we obtain

d3 = [1− α− ε(1 + α)]δ(Q1, θ)− (1 + ε)[δ(Q2, θ) + b cos(nθ)]

= −[1− α− ε(1 + α)]|an,1| cos(nθ) + (1 + ε)[|an,2| − b] cos(nθ)

= −{(1− α)|an,1| − |an,2|+ b− ε[(1 + α)|an,1|+ |an,2| − b]} cos(nθ)

> − [(1− α)|an,1| − |an,2|+ b]
2

cos(nθ) > 0.

Since d4 > 0 and ρ + ε < n, then by using Lemma 2.7 and (5.12), we obtain
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σ(f) = +∞ and σ2(f) ≥ n. In addition, if λ(1/f) < +∞, then by Lemma
2.5, we have σ2(f) ≤ n. Hence σ2(f) = n.

6. Proof of Theorem 1.4

Assume that f (6≡ 0) is a solution of equation (1.4). Set g = f − ϕ.
Then we have σ(g) = σ(f) = +∞. Substituting f = g + ϕ into (1.4), we
obtain

g(k) +
k−1∑

j=1

(Dj + Bje
Pj(z))g(j) +

(
D0 + A1e

Q1(z) + A2e
Q2(z)

)
g = H, (6.1)

where H = −[
ϕ(k)+

∑k−1
j=1 (Dj+Bje

Pj(z))ϕ(j)+(D0+A1e
Q1(z)+A2e

Q2(z))ϕ
]
.

Now we prove that H 6≡ 0. In fact if H ≡ 0, then

ϕ(k) +
k−1∑

J=1

(
Dj + Bje

Pj(z)
)
ϕ(j) +

(
D0 + A1e

Q1(z) + A2e
Q2(z)

)
ϕ = 0. (6.2)

Hence ϕ (6≡ 0) is a solution of equation (1.4). Thus σ(ϕ) = +∞ by the
hypotheses of Theorem 1.4, which is a contradiction. Hence H 6≡ 0. By
Lemma 2.8 and Lemma 2.9, we have

λ(g) = λ(g) = σ(g) = σ(f) = +∞ and λ2(g) = λ2(g) = σ2(f) ≥ n,

i.e.,

λ(f −ϕ) = λ(f −ϕ) = σ(f) = +∞ and λ2(f −ϕ) = λ2(f −ϕ) = σ2(f) ≥ n.

In addition, if λ(1/f) < +∞, then λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) = n.
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