
Hokkaido Mathematical Journal Vol. 46 (2017) p. 423–471

Spectral analysis of a massless charged scalar field with cutoffs
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Abstract. A quantum system of a massless charged scalar field with a self-interaction

is investigated. By introducing a spacial cut-off function, a Hamiltonian of the quan-

tum system is realized as a linear operator on a boson Fock space. Under certain

conditions, it is proven that the Hamiltonian is bounded below, self-adjoint and has a

ground state for an arbitrary coupling constant. Moreover the Hamiltonian strongly

commutes with the total charge operator. This fact implies that the state space of

the charged scalar field is decomposed into the infinite direct sum of fixed total charge

spaces. A total charge of an eigenstate is discussed.
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1. Introduction

Let us consider a quantum system of a charged scalar field φ(x̃) which
interacts with itself on the 1 + d dimensional space-time R1+d := {x̃ =
(x0, x1, . . . , xd) : xν ∈ R, ν = 0, . . . , d} with the Minkowski metric g = (gµν),
g00 = 1, gjj = −1, (j = 1, . . . , d), gµν = 0 (µ 6= ν). The Lagrangian L of a
complex Klein-Gordon equation with a self-interaction term is given by

L = (∂νφ)(∂νφ)∗ −m2φφ∗ − λ

4!
(φφ∗)2,

(
∂ν :=

∂

∂xν
, ∂ν := gνρ∂ρ

)
,

where the Einstein convention for the sum on repeated Greek induces is used,
A∗ denotes the complex conjugate of A, m ≥ 0 is the mass of a particle and
λ > 0 is a coupling constant. Let us consider the following Lagrangian L′:

L′ = (∂νφ)(∂νφ)∗ + µ2φφ∗ − λ

4!
(φφ∗)2, (1)

where µ > 0 is merely a parameter. L′ is the deformation of L by the
replacement m2 → −µ2. As is well known, the formal quantization of φ

yields particles and anti-particles. We denote by a+(k) (resp. a−(k)) the
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formal distribution kernel of the annihilation operator for the particle (resp.
anti-particle). The formal adjoint a+(k)∗ (resp. a−(k)∗) represents the
formal distribution kernel of the creation operator for the particle (resp.
anti-particle). We denote by φ(x) (x ∈ Rd) the time-zero charged scalar
field of φ. Then the Hamiltonian derived from (1) is formally given by

Hformal =
∫

Rd

|k|(a+(k)∗a+(k) + a−(k)∗a−(k)
)
dk

+
∫

Rd

(
− µ2φ(x)φ(x)∗ +

λ

4!
(φ(x)φ(x)∗)2

)
dx. (2)

The integrand of the second term on the right hand side of (2) is of the
form of the so-called Higgs potential. The Lagrangian L′ is introduced as an
example of spontaneous symmetry breaking in quantum field theory (see, e.g.,
[18], [23]). It is interesting to study about it from an operator theoretical
point of view. However we can not analyze (2) directly as a linear operator
on a boson Fock space, since the second term on the right hand side of (2)
always diverges even if a vector belongs to a nice class. Therefore we need
modifications.

Let ω be a multiplication operator of a non-negative function on Rd

denoting a one-boson Hamiltonian. Then the free Hamiltonian H0 of a
charged scalar field is defined by the second quantization of ω ⊕ ω:

H0 := dΓb(ω ⊕ ω)

on a suitable boson Fock space (see Section 2). Let χsp be a non-negative
function on Rd which plays a role as a spacial cut-off. For x ∈ Rd, let φ(fx)
be a field operator smeared by a function fx on Rd. The Hamiltonian H we
consider is of the following form:

H = dΓb(ω ⊕ ω) + µ

∫

Rd

χsp(x)φ(fx)∗φ(fx)dx

+ λ

∫

Rd

χsp(x)(φ(fx)∗φ(fx))2dx, (3)

where µ ∈ R and λ > 0 are coupling constants. A rigorous definition of H

is given in Section 2. The integral on the right hand side of (3) is taken
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in the sense of strong Bochner integral. By introducing a spacial cut-off,
the quantum system we want to study loses translation invariance. Thus
H does not have relativistic covariance. However we are able to analyze H

as an approximation version of Hformal by virtue of a spacial cut-off. We
expect that the study of H will be also a first step towards understanding
spontaneous symmetry breaking. In this paper we study properties of H

via operator theoretical methods. In related works, it is assumed the space
dimension to be one. However we assume the space dimension to be d ∈ N for
a mathematical generalization. If µ < 0, H describes a cut-off Hamiltonian
of a charged scalar field with a Higgs type potential. If µ = 0, H becomes
a complex-λφ4 model with cut-offs. Hence H unifies two important models.
Properties of H0 are already known. In particular, it is self-adjoint and
has a ground state. It is not trivial, however, whether H still holds these
properties even if µ ≥ 0 and λ = 0. In view of perturbation theory of
linear operators, it is interesting to find the condition that H is still self-
adjoint and has a ground state. Since the third term on the right hand
side of (3) is not “small “with respect to H0, we need careful treatment
to analyze H. Moreover, we certainly meet a perturbation problem for an
embedded eigenvalue since the mass of boson to be zero. Therefore it makes
spectral analysis more difficult. As is seen below, the quantum system holds
the charge conservation. It means that the Hamiltonian H and the total
charge operator strongly commute. In the physical context, this property
corresponds to the global U(1)-gauge symmetry. Note that this structure is
not seen in a real scalar Bose field model.

There are several models similar to (3), which have been studied so
far. Glimm-Jaffe [13] considered the real φ4

2 model which describes a real
scalar Bose field with quartic interaction in the 2-dimensional space-time.
Dereziński-Gérard [8] considered the scattering theory for the real P (ϕ)2
model. Gérard-Panati [12] considered the spectral and scattering theory for
an abstract Hamiltonian which include the real P (φ)2 model. Gérard [11]
considered the charged P (φ)2 model which describes the charged scalar Bose
field with a self-interaction in the 2-dimensional space-time. In these studies,
the infimum of ω is assumed to be strictly positive but ultraviolet cut off
is not imposed. On the other hand, we consider the case of the infimum
of ω is 0 and ultraviolet cut off is imposed. An interaction model between
quantum mechanical particles and a real scalar Bose field is also established.
Recently, some singular perturbed models are studied. Miyao and Sasaki [20]
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considered the generalized spin-boson model (GSB model) with quadratic
interaction. They gave a criteria for the existence of the ground state.
Teranishi [27] also considered the same model in terms of the self-adjointness.
Takaesu [26] considered the GSB model with φ4-perturbation. He showed
the existence of a ground state and the existence of asymptotic fields for
sufficiently small coupling constants. Hidaka [16] considered the Nelson
model with perturbation of a form

∑4
j=1 cjφ

j with c4 > 0. He showed the
existence of a ground state for arbitrary coupling constants. The study
about the total charge operator is already done by Takaesu [25], who treats
a model of the quantum electrodynamics. To our best knowledge, there are
few results about the charged scalar field with the infimum of ω being zero.

We give our strategy comparing with some related works.
Self-adjointness: To show the self-adjointness of H, we apply the

method in [16] and [26]. A key lemma is that the interaction term is H-
bounded. To prove this lemma, we need the fact that the second term on
the right hand side of (3) is infinitesimally small with respect to the third
term of it. We need some technical treatments because of strong Bochner
integral.

Existence of ground states: First of all, we show the existence of a ground
state of a massive Hamiltonian. After that, we consider the mass zero limit
of massive ground states. In the massive case, we apply methods used in
[7], [8], [16] and references therein. In these methods, the so-called Number-
Energy Estimate (NEE) is important to show the existence of ground states
for the massive case. However, it is difficult to prove this lemma in our
Hamiltonian since the interaction term is singular. As is seen below, we
study the massive case without using a NEE (see Lemma5.1 and 5.2). To
show that the mass zero limit of massive ground states is not zero, we apply
methods in [14], [24] and references therein.

Total charge of eigenstates: First of all, we show the strong commu-
tativity of H and the total charge operator (Theorem 2.4). After that we
show that the total charge of eigenstates are zero under certain conditions
(Theorem 2.5). To prove Theorem 2.5, symmetry between particles and
anti-particles plays important roles.

The contents of this paper are as follows. In Section 2, we recall several
notations and symbols about the abstract boson Fock space. After that,
we introduce the Hamiltonian H rigorously and state main results. The
self-adjointness of H is discussed in Section 3. In Section 4, the spectrum
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of H is specified. The existence of a ground state is proved in Section 5.
The total charge in eigenstates is discussed in Section 6. In Appendix A,
some results which are used in this paper are collected. In Appendix B, we
summarize the results of [2], [5] which we use in Section 3 and Section 4.

2. A charged scalar field with spacial cut-off

2.1. Preliminaries
Let us recall some notations and symbols about the abstract boson Fock

space. For a Hilbert spaceH, we denote its inner product and norm by 〈·, ·〉H
(linear in the right vector) and ‖ · ‖H respectively. But, if there is no danger
of confusion, then we often omit the subscript H of them.

Let K be a separable Hilbert space over C. Then the boson Fock space
over K is given by

Fb(K ) :=
∞⊕

n=0

n⊗
s

K ,

where
⊗n

s denotes the n-fold symmetric tensor product with
⊗0

s K := C.
The Fock vacuum in Fb(K ) is denoted by Ω and

Ω := {1, 0, 0, . . . } ∈ Fb(K ).

Let us introduce the finite particle subspace Fb,0(K ) as follows:

Fb,0(K ) :=
{
Ψ = {Ψ(n)}∞n=0 ∈ Fb(K ) :

∃N such that Ψ(n) = 0 for all n ≥ N + 1
}
.

Note that Fb,0(K ) is dense in Fb(K ). For each u ∈ K , the creation
operator A(u)† is defined as follows:

D(A(u)†) :=
{

Ψ={Ψ(n)}∞n=0∈Fb(K ) :
∞∑

n=1

n
∥∥Sn(u⊗Ψ(n−1))

∥∥2

⊗n
s K

<∞
}

,

(A(u)†Ψ)(n) :=
√

nSn(u⊗Ψ(n−1)), Ψ ∈ D(A(u)†), (n ≥ 1),

and (A(u)†Ψ)(0) := 0. Here D(T ) denotes the domain of a linear operator
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T , and Sn denotes the symmetrization operator on ⊗nK . The annihilation
operator with u is given by the adjoint of A(u)†:

A(u) := (A(u)†)∗.

Then, for all u, v ∈ K , the annihilation and creation operators satisfy the
following canonical commutation relations on Fb,0(K ):

[A(u), A(v)] = [A(u)†, A(v)†] = 0, [A(u), A(v)†] = 〈u, v〉K ,

where [X, Y ] := XY −Y X. For a subspace D of K , the subspace Fb,fin(D)
is introduced as follows,

Fb,fin(D) := L.H.{Ω, A(u1)† · · ·A(un)†Ω : n ∈ N, uj ∈ D, j = 1, . . . , n},

where L.H{· · · } denotes the linear hull of a set {· · · }. Note that, if D is
dense in K , then Fb,fin(D) is dense in Fb(K ).

Let T be a densely defined closable operator on K . We denote the
closure of T by T . Then the second quantization of T is given by

dΓb(T ) := 0⊕
∞⊕

n=1

n∑

j=1

I ⊗ · · · ⊗ I⊗ j−th

T ⊗I · · · ⊗ I ¹ ⊗̂n
s D(T ),

where I is the identity on K , S ¹ D is the restriction of S to D and
⊗̂n

s denotes the n-fold algebraic symmetric tensor product. It is seen that
dΓb(T ) is closed. If T is self-adjoint, so is dΓb(T ). Associated with T ,
another operator Γb(T ) is also defined as follows:

Γb(T ) := 1⊕
∞⊕

n=1

T ⊗ · · · ⊗ T ¹ ⊗̂n
s D(T ).

Note that, if T is bounded with the operator norm ‖T‖ ≤ 1, then Γb(T ) is
also bounded with ‖Γb(T )‖ ≤ 1.

2.2. A Hamiltonian of a charged scalar field and main results
For a subspace D of a Hilbert space K , we use a notation

[D] := D ⊕D ⊂ K ⊕K .
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For d ∈ N, the state space H of a charged scalar field is given by

H := Fb([L2(Rd)]),

the boson Fock space over [L2(Rd)]. In the physical context under con-
sideration, [L2(Rd)] describes the state space of pairs of a particle and an
anti-particle. For u ∈ L2(Rd), the operators a±(u) and a±(u)† on H are
defined as follows:

a+(u) := A((u, 0)), a+(u)† := A((u, 0))†,

a−(u) := A((0, u)), a−(u)† := A((0, u))†.

The operators a+(u) and a−(u) are called the annihilation operator of a
particle and an anti-particle with a state function u, respectively. On the
other hand, a+(u)† and a−(u)† are called the creation operator of a particle
and an anti-particle, respectively. These operators satisfy the canonical
commutation relations on the finite particle subspace Fb,0([L2(Rd)]):

[a±(u), a±(v)] = [a±(u), a∓(v)] = [a±(u)†, a±(v)†]

= [a±(u)†, a∓(v)†] = [a±(u), a∓(v)†] = 0, (4)

[a±(u), a±(v)†] = 〈u, v〉L2(Rd).

We denote the field operator with a state function u ∈ L2(Rd) by

φ(u) :=
1√
2

(
a+(u) + a−(u)†

)
.

It is easy to see that φ(u) is densely defined and closable. We denote the
closure of φ(u) by the same symbol. By von Neumann’s theorem, φ(u)∗φ(u)
is non-negative self-adjoint operator on H . Note that a concrete action of
φ(u)∗ is as follows:

φ(u)∗ =
1√
2

(
a+(u)† + a−(u)

)
,

(
on Fb,0([L2(Rd)])

)
.

By (4), the field operators satisfy the following commutation relations on
Fb,0([L2(Rd)]):
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[φ(u), φ(v)] = [φ(u)∗, φ(v)∗] = 0, [φ(u), φ(v)∗] = iIm〈u, v〉L2(Rd),

where Im z denotes the imaginary part of z ∈ C. Let ω be the multiplication
operator on L2(Rd) by the function

ω(k) := |k| (k ∈ Rd).

For a linear operator T on L2(Rd), we use a notation

[T ] := T ⊕ T.

Then the free Hamiltonian of the charged scalar field H0 is defined by the
second quantization of [ω]:

H0 := dΓb([ω]).

The number operator Nb is introduced as

Nb := dΓb([1]).

Note that H0 and Nb are non-negative self-adjoint on H . For q ∈ R \ {0},
the total charge operator Q is defined as follows:

Q := dΓb((q ⊕−q)).

For x ∈ Rd, a function fx is defined as follows:

fx(k) :=
ϕ(k)√
ω(k)

e−ikx (a.e. k ∈ Rd)

with kx := k1x1+· · ·+kdxd, for k = (k1, . . . , kd) ∈ Rd and x = (x1, . . . , xd) ∈
Rd. Here ϕ is a function which satisfies following assumption.

Assumption 2.1 ϕ ∈ D(ω−1/2) ∩ D(ω1/2), |ϕ(k)| = |ϕ(−k)| (a.e. k ∈
Rd).

Remark 2.1 By ϕ ∈ D(ω−1/2), we have fx ∈ L2(Rd) and the Hamiltonian
H (defined below) is symmetric. As is seen in Lemma 3.1, H is essentially
self-adjoint. To show the self-adjointness of H, ϕ ∈ D(ω1/2) is needed.
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From |ϕ(k)| = |ϕ(−k)|, we have [φ(fx), φ(fy)∗] = 0 on Fb,0([L2(Rd)]). This
commutativity is important in our analysis (see e.g. Lemma 3.2 or Lemma
4.1).

Before introduce the Hamiltonian, we pick a function χsp which satisfies
following conditions.

Assumption 2.2 χsp is a non-negative function and χsp ∈ L1(Rd).

The Hamiltonian we study in this paper is as follows:

H := H0 + µH1 + λH2. (5)

Here, µ ∈ R and λ > 0 are coupling constants and

H1 :=
∫

Rd

χsp(x)φ(fx)∗φ(fx)dx, H2 :=
∫

Rd

χsp(x)
(
φ(fx)∗φ(fx)

)2dx. (6)

The integrals on the right hand sides of (6) are taken in the sense of H -
valued strong Bochner integral. Namely, the domain and the action of H1

and H2 are defined as follows:

D(Hi) :=
{

Ψ ∈ H : Ψ ∈
⋂

x∈supp χsp

D((φ(fx)∗φ(fx))i),

(
φ(fx)∗φ(fx)

)iΨ is measurable,
∫

Rd

χsp(x)
∥∥(

φ(fx)∗φ(fx)
)iΨ

∥∥dx < ∞
}

, (i = 1, 2),

HiΨ :=
∫

Rd

χsp(x)
(
φ(fx)∗φ(fx)

)iΨdx.

By using χsp ∈ L1(Rd), Proposition A.1 and Proposition A.2, it follows that
Fb,fin([L2(Rd)]) ⊂ D(H1) ∩ D(H2). Thus H1 and H2 are densely defined
and symmetric.

Remark 2.2 In [8], [11], [12] and [13], there are used “Wick ordering”
: · :, which is defined in a product of annihilation and creation operators
by moving the creation operators to the left and the annihilation operators
to the right without canonical commutation relations. For u ∈ L2(Rd), by
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using the commutation relations for creation and annihilation operators, it
follows that

:
(
φ(u)∗φ(u)

)2 :=
(
φ(u)∗φ(u)

)2 − 1
2
‖u‖2φ(u)∗φ(u) +

1
2
‖u‖2

on Fb,0([L2(Rd)]).

Therefore if we want to know the property of Hamiltonian with Wick order-
ing, it suffices to study (5).

Our first task is to find a condition for the self-adjointness of H. Let
us denote the set of infinitely differentiable functions on Rd with compact
support by C∞0 (Rd).

Theorem 2.1 Under Assumption 2.1 and 2.2, H is bounded from below,
self-adjoint with D(H) = D(H0) ∩ D(H2) and essentially self-adjoint on
Fb,fin([C∞0 (Rd)]) for arbitrary µ ∈ R and λ > 0.

For a self-adjoint operator T , σ(T ) denotes the spectrum of T and
σess(T ), the essential spectrum of T . If T is bounded from below and
self-adjoint, then we define

E0(T ) := inf σ(T ).

Theorem 2.2 Under Assumption 2.1 and 2.2,

σ(H) = σess(H) = [E0(H),∞).

Let T be a bounded from below self-adjoint operator. In general, we
say that T has ground states if E0(T ) is an eigenvalue of T . To prove the
existence of ground states of H for arbitrary coupling constants, we need
more assumptions which are based on [14] and [24].

Assumption 2.3

(1) ϕ is a rotation-invariant function and has a compact support.
(2) There exists an open set V ⊂ Rd such that V = suppϕ and ϕ is contin-

uously differentiable on V . Here for A ⊂ Rd, A denotes the closure of
A.

(3) ϕ ∈ D(ω−3/2).
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(4) ω−5/2ϕ ∈ Lp(Rd) and ω−3/2(∂ϕ/∂kj) ∈ Lp(Rd) (j = 1, . . . , d) for all
1 ≤ p < 2.

(5)
∫
Rd(1 + |x|2)χsp(x)dx < ∞.

Remark 2.3 We give some comments about (1), (2), (3) and (4) of As-
sumption 2.3. A rotation invariance of ϕ implies that V has a cone property.
This property and compactness of supp ϕ are needed to employ ”Rellich-
Kondrachov theorem”. (3) is required to get a boson number bound (see
Lemma 5.6). (4) is important to show that a sequence of ground states
belongs to suitable Sobolev spaces and its norm are uniformly bounded (see
Lemma 5.10). We note that Assumption 2.3 implies Assumption 2.1 and
Assumption 2.2.

Remark 2.4 We remark on the assumption of spacial cut-off function χsp.
To show the existence of ground states of massive Hamiltonian Hm (defined
in Section 5), we only use the condition χsp ∈ L1(Rd). On the other hand,
in the case of H, more faster decay of χsp is required to control a behavior
of derivatives in ground states (see Lemma 5.7). Therefore as a sufficient
condition, Assumption 2.3-(5) is needed.

Theorem 2.3 Under Assumption 2.3, H has ground states for arbitrary
µ ∈ R and λ > 0.

Remark 2.5 (1) As is seen in [6], [24], [25], it is shown that there exists a
ground state for sufficiently small coupling constants under the assumption
of ϕ ∈ D(ω−3/2). It is expected that similar statements follow in the case of
H. But it has not been proved yet because of a singular perturbation. We
explain a reason in detail after Lemma 5.6.

(2) We expect that if ground states of H exists, it is unique (i.e.
dimker(H − E0(H)) = 1). However we have not been solved yet. We left
this problem for a future study.

The next theorem is not seen in the case of the real scalar Bose field
and it corresponds to the charge conservation of the quantum system.

Theorem 2.4 Under Assumption 2.1 and 2.2, H and Q strongly commute.

By Theorem 2.4, H is decomposed with respect to the spectrum of the
total charge operator Q as
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H =
⊕

z∈Z
Hq(z),

where Hq(z) := Ker(Q− qz).
To describe Theorem 2.5, we introduce a linear transform τ on [L2(Rd)]

by

τ(f, g) := (g, f) for (f, g) ∈ [L2(Rd)].

In the physical context under consideration, Γb(τ) changes particles for anti-
particles and anti-particles for particles simultaneously. Some properties of
Γb(τ) are discussed in Section 6. If a self-adjoint operator A and Γb(τ) are
strongly commute (i,e, Γb(τ)AΓb(τ) = A), we say that A has a symmetry
with respect to Γb(τ). Following theorem says that a total charge of a non-
degenerate eigenstate is automatically zero if a self-adjoint operator has
symmetry with respect to Γb(τ).

Theorem 2.5 Let A be a self-adjoint operator on H which satisfies fol-
lowing conditions:

(1) A and Q strongly commute.
(2) There exists an eigenvalue λ such that dimKer(A− λ) = 1.
(3) A and Γb(τ) strongly commute.

Then for any Ψ ∈ Ker(A− λ) \ {0}, Ψ ∈ Hq(0).

It is easy to see that H and Γb(τ) strongly commute. From this fact,
Theorem 2.3 and Theorem 2.4, we have the following consequence.

Corollary 2.1 Suppose that the ground state of H is unique. Then for
any Ψ ∈ ker(H − E0(H)) \ {0}, Ψ ∈ Hq(0).

Remark 2.6 (1) Let T be injective self-adjoint on L2(Rd). As an example,
dΓb([T ]) satisfies assumptions of Theorem 2.5.

(2) Theorem 2.5 is not only applicable to H but also other models
which are similar to H. Hm (see Section 5) and an operator whose form
is dΓb([T ]) + P (φ(f)∗φ(f)) are these examples. Here, f ∈ L2(Rd), T is a
non-negative self-adjoint operator on L2(Rd) and P (·) is a bounded from
below real polynomial. If the ground state is unique in these models, then
we can conclude that the total charge of the ground state is zero.
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3. Self-adjointness of H

In this section, we prove Theorem 2.1. The following lemma is important
to show the self-adjointness of H.

Lemma 3.1 Assume that ϕ ∈ D(ω−1/2) and Assumption 2.2, then H is
bounded from below essentially self-adjoint on Fb,fin([C∞0 (Rd)]).

Proof. First of all, we check that H satisfies a criterion of essential self-
adjointness on D(H0) ∩Fb,0([L2(Rd)]) (see Proposition B.1). Since µH1 +
λH2 maps

⊗n
s ([L2(Rd)]) to

⊕4
j=−4

⊗n+j
s ([L2(Rd)]), we see that

〈Ψ(n), (µH1 + λH2)Ψ(m)〉 = 0 (whenever |n−m| ≥ 5).

If µ ≥ 0, then it is obvious that H is bounded from below on D(H0) ∩
Fb,0([L2(Rd)]). The case where µ < 0, for any Ψ ∈ D(H0)∩Fb,0([L2(Rd)]),
we see that

〈Ψ,HΨ〉 = 〈Ψ,H0Ψ〉+
∫

Rd

χsp(x)〈Ψ, {µφ(fx)∗φ(fx)+λ(φ(fx)∗φ(fx))2}Ψ〉dx

≥
∫

Rd

∫

t≥0

χsp(x)(µt + λt2)d‖Ex(t)Ψ‖2dx

≥ −µ2

4λ

∥∥Ψ
∥∥2∥∥χsp

∥∥
L1 > −∞,

where Ex(·) is the spectral measure of φ(fx)∗φ(fx). The relative bounded-
ness of µH1 + λH2 with respect to (Nb + 1)2 is seen by using Proposition
A.1. Therefore H is essentially self-adjoint on D(H0) ∩Fb,0([L2(Rd)]).

Since Fb,fin([C∞0 (Rd)]) is a core of H0, for any Ψ ∈ D(H0) ∩
Fb,0([L2(Rd)]), there exist an N ∈ N and a sequence {Ψj}∞j=1 ⊂
Fb,fin([C∞0 (Rd)]) such that Ψj → Ψ, H0Ψj → H0Ψ (j →∞) and Ψ(n) = 0,
whenever n > N . Since (µH1 + λH2) ¹ (

⊕N
l=0

⊗l
s[L

2(Rd)]) is bounded ,
we see that Ψj → Ψ and HΨj → HΨ (j → ∞). Thus the desired result
follows. ¤

Let ε and η be arbitrary positive constants with λ2 − 2ε− λ2µ2η/ε > 0.
Then we define a constant C(µ, λ, ε, η) as follows:
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C(µ, λ, ε, η)

:= (λ2 − 2ε− λ2µ2η/ε)−1/2

(
λ2µ2

4εη

∥∥χsp

∥∥2

L1 +
‖χsp‖2L1

4ε
+ λ2‖ϕ‖4L2 + 1

)1/2

.

Lemma 3.2 Suppose that Assumption 2.1 and 2.2 are satisfied. Then for
all Ψ ∈ D(H),

∥∥H1Ψ
∥∥ ≤ θC(µ, λ, ε, η)

∥∥HΨ
∥∥ +

(
θC(µ, λ, ε, η) +

1
2θ
‖χsp‖L1

)∥∥Ψ
∥∥, (7)

∥∥H2Ψ
∥∥ ≤ C(µ, λ, ε, η)

(∥∥HΨ
∥∥ +

∥∥Ψ
∥∥)

, (8)

where θ is an arbitrary positive constant.

Proof. Since |ϕ(k)| = |ϕ(−k)|, we have [φ(fx), φ(fy)∗] = 0 on
Fb,0([L2(Rd)]) for all x, y ∈ Rd. For any Ψ ∈ Fb,fin([C∞0 (Rd)]), it follows
that

∥∥H1Ψ
∥∥2 =

∫∫

Rd×Rd

χsp(x)χsp(y)〈φ(fx)∗φ(fx)Ψ, φ(fy)∗φ(fy)Ψ〉dxdy

≤
∫∫

Rd×Rd

χsp(x)χsp(y)
∥∥Ψ

∥∥∥∥φ(fx)∗φ(fx)φ(fy)∗φ(fy)Ψ
∥∥dxdy

≤ ε

∫∫

Rd×Rd

χsp(x)χsp(y)
∥∥φ(fx)∗φ(fx)φ(fy)∗φ(fy)Ψ

∥∥2dxdy

+
1
4ε

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2 (9)

= ε

∫∫

Rd×Rd

χsp(x)χsp(y)〈(φ(fx)∗φ(fx))2Ψ, (φ(fy)∗φ(fy))2Ψ〉dxdy

+
1
4ε

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2

= ε
∥∥H2Ψ

∥∥2 +
1
4ε

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2

. (10)

Here, to get (9), we used the following elementary inequality:

ab ≤ εa2 +
1
4ε

b2 (for a, b ≥ 0, ε > 0). (11)



Spectral analysis of a massless charged scalar field with cutoffs 437

Thus, H1 is infinitesimally small with respect to H2. Next we show that H2

is H-bounded. For all Ψ ∈ Fb,fin([C∞0 (Rd)]),

∥∥λH2Ψ
∥∥2 =

∥∥(H −H0 − µH1)Ψ
∥∥2

=
∥∥HΨ

∥∥2 − 〈HΨ, (H0 + µH1)Ψ〉 − 〈(H0 + µH1)Ψ,HΨ〉
+

∥∥(H0 + µH1)Ψ
∥∥2

=
∥∥HΨ

∥∥2 − λ〈H2Ψ,H0Ψ〉 − λ〈H0Ψ,H2Ψ〉 − 2λµRe〈H1Ψ,H2Ψ〉
− ∥∥(H0 + µH1)Ψ

∥∥2

≤ ∥∥HΨ
∥∥2−λ〈H2Ψ,H0Ψ〉−λ〈H0Ψ,H2Ψ〉+2λ|µ||Re〈H1Ψ,H2Ψ〉|,

where Re z denotes the real part of z ∈ C. By using (10) and (11),
2λ|µ||Re〈H1Ψ,H2Ψ〉| is estimated as follows:

2λ|µ||Re〈H1Ψ,H2Ψ〉| ≤ 2λ|µ|∥∥H1Ψ
∥∥∥∥H2Ψ

∥∥

≤ ε
∥∥H2Ψ

∥∥2 +
λ2µ2

ε

∥∥H1Ψ
∥∥2

≤ ε
∥∥H2Ψ

∥∥2 +
λ2µ2

ε

(
η
∥∥H2Ψ

∥∥2 +
1
4η

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2

)
,

where ε and η are arbitrary positive constants. Therefore we have

∥∥λH2Ψ
∥∥2 ≤

∥∥HΨ
∥∥2 − λ

∫

Rd

χsp(x)
〈
Ψ,

{(
φ(fx)∗φ(fx)

)2
,H0

}
Ψ

〉
dx

+
(

ε +
λ2µ2η

ε

)∥∥H2Ψ
∥∥2 +

λ2µ2

4εη

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2

,

where {X, Y } := XY +Y X. By using the identity X2Y +Y X2 = 2XY X +
[X, [X, Y ]] and the fact that H0 is non-negative, we see that

∥∥λH2Ψ
∥∥2 ≤ ∥∥HΨ

∥∥2 − λ

∫

Rd

χsp(x)〈Ψ, [φ(fx)∗φ(fx), [φ(fx)∗φ(fx),H0]]Ψ〉dx

+
(

ε +
λ2µ2η

ε

)∥∥H2Ψ
∥∥2 +

λ2µ2

4εη

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2

.
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By applying Proposition A.2, we have

[φ(fx)∗φ(fx), [φ(fx)∗φ(fx),H0]] = −2
∥∥ϕ

∥∥2

L2φ(fx)∗φ(fx).

Hence it follows that
∥∥λH2Ψ

∥∥2 ≤
∥∥HΨ

∥∥2 + 2λ
∥∥ϕ

∥∥2

L2〈Ψ,H1Ψ〉

+
(

ε +
λ2µ2η

ε

)∥∥H2Ψ
∥∥2 +

λ2µ2

4εη

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2

. (12)

By using (10) and (11), we have

2λ
∥∥ϕ

∥∥2

L2〈Ψ,H1Ψ〉 ≤ 2λ‖ϕ‖2L2‖Ψ‖‖H1Ψ‖

≤ ∥∥H1Ψ
∥∥2 + λ2‖ϕ‖4L2‖Ψ‖2

≤ ε
∥∥H2Ψ

∥∥2 +
(‖χsp‖2L1

4ε
+ λ2‖ϕ‖4L2

)
‖Ψ‖2. (13)

From (12) and (13), it is seen that

∥∥λH2Ψ
∥∥2 ≤ ∥∥HΨ

∥∥2 +
(

2ε +
λ2µ2η

ε

)∥∥H2Ψ
∥∥

+
(

λ2µ2

4εη

∥∥χsp

∥∥2

L1 +
‖χsp‖2L1

4ε
+ λ2‖ϕ‖4L2

)∥∥Ψ
∥∥2

.

By choosing constants ε and η such that 2ε + λ2µ2η/ε < λ2, we have the
following inequality:

(λ2 − 2ε− λ2µ2η/ε)
∥∥H2Ψ

∥∥2

≤ ∥∥HΨ
∥∥2 +

(
λ2µ2

4εη

∥∥χsp

∥∥2

L1 +
‖χsp‖2L1

4ε
+ λ2‖ϕ‖4L2

)∥∥Ψ
∥∥2

.

Thus (8) holds for all Ψ ∈ Fb,fin([C∞0 (Rd)]). Since Fb,fin([C∞0 (Rd)]) is a
core of H, (8) follows for all Ψ ∈ D(H) from a limiting argument. (7)
immediately follows from (8), (10) and (11). ¤
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Proof of Theorem 2.1. We show H = H as an operator equality. Then we
can conclude that H is self-adjoint since H is self-adjoint by Lemma 3.1.
H ⊃ H is trivial. To show the inverse, it suffices to show that D(H) ⊂ D(H).
For any Ψ ∈ D(H), there exists a sequence {Ψn}∞n=1 ⊂ Fb,fin([C∞0 (Rd)])
such that

Ψn → Ψ, HΨn → HΨ, (n →∞).

By Lemma 3.2, H0 is H-bounded on Fb,fin([C∞0 (Rd)]). Indeed we note that
the following inequality holds:

∥∥H0Φ
∥∥ =

∥∥(H − µH1 − λH2)Φ
∥∥ ≤ ∥∥HΦ

∥∥ + |µ|∥∥H1Φ
∥∥ + λ

∥∥H2Φ
∥∥,

(
Φ ∈ Fb,fin([C∞0 (Rd)])

)
.

Therefore, {H0Ψn}∞n=1 and {H2Ψn}∞n=1 are Cauchy sequences. By the
closedness of H0 and the closability of H2, it follows that Ψ ∈ D(H0) ∩
D(H2) = D(H). Reminder assertions follow from Lemma 3.1. ¤

4. Identification of σ(H)

In this section, we prove Theorem 2.2. Throughout this section,
we always assume Assumption 2.1 and 2.2. Let us calculate [µH1 +
λH2, A((u, v))†] with u, v ∈ L2(Rd). For all Ψ ∈ Fb,fin([C∞0 (Rd)]), we see
that

[
µH1 + λH2, A((u, v))†

]
Ψ =

1√
2
(µT1 + µT2 + 2λT3 + 2λT4)Ψ,

where,

T1 :=
∫

Rd

χsp(x)〈fx, v〉φ(fx)dx,

T2 :=
∫

Rd

χsp(x)〈fx, u〉φ(fx)∗dx,

T3 :=
∫

Rd

χsp(x)〈fx, v〉φ(fx)φ(fx)∗φ(fx)dx,

T4 :=
∫

Rd

χsp(x)〈fx, u〉φ(fx)∗φ(fx)φ(fx)∗dx.
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Note that integrals on the right hand side are taken in the sense of H -valued
strong Bochner integral.

Lemma 4.1 Tj (j = 1, 2, 3, 4) are H-bounded on Fb,fin([C∞0 (Rd)]).

Proof. Let Ψ ∈ Fb,fin([C∞0 (Rd)]). Then

∥∥T1Ψ
∥∥2 ≤

∫

Rd×Rd

χsp(x)χsp(y)|〈fx, v〉〈fy, v〉|〈Ψ, φ(fy)∗φ(fx)Ψ〉|dxdy

≤ 1
2

∥∥ω−1/2ϕ
∥∥2∥∥v

∥∥2
∫

Rd×Rd

χsp(x)χsp(y)

× 〈φ(fy)∗φ(fy)Ψφ(fx)∗φ(fx)Ψ〉dxdy

+
1
2

∥∥ω−1/2ϕ
∥∥2∥∥v

∥∥2∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2

=
1
2

∥∥ω−1/2ϕ
∥∥2∥∥v

∥∥2(∥∥H1Ψ
∥∥2 +

∥∥χsp

∥∥2

L1

∥∥Ψ
∥∥2)

.

By applying Lemma 3.2, T1 is H-bounded. It is shown that T2 is also
H-bounded. Next, we show the H-boundedness of T3. It follows that

∥∥T3Ψ
∥∥2 ≤

∫

Rd×Rd

χsp(x)χsp(y)
∣∣〈fx, v〉∣∣∣∣〈fy, v〉∣∣

× ∣∣〈φ(fy)∗φ(fx)Ψ, φ(fx)∗φ(fx)φ(fy)∗φ(fy)Ψ〉∣∣dxdy

≤ 1
2

∥∥ω−1/2ϕ
∥∥2∥∥v

∥∥2
∫

Rd×Rd

χsp(x)χsp(y)

× 〈φ(fy)∗φ(fx)Ψ, φ(fy)∗φ(fx)Ψ〉dxdy

+
1
2

∥∥ω−1/2ϕ
∥∥2∥∥v

∥∥2
∫

Rd×Rd

χsp(x)χsp(y)

× 〈φ(fx)∗φ(fx)φ(fy)∗φ(fy)Ψ, φ(fx)∗φ(fx)φ(fy)∗φ(fy)Ψ〉dxdy

=
1
2

∥∥ω−1/2ϕ
∥∥2∥∥v

∥∥2(∥∥H1Ψ
∥∥2 +

∥∥H2Ψ
∥∥2)

.

Thus T3 is H-bounded by Lemma 3.2. The case of T4 is also estimated
similarly. Thus the desired results follow. ¤
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Let {un}∞n=1 and {vn}∞n=1 ⊂ D(ω) ∩ D(ω−1/2) be arbitrary sequences
such that

w-lim
n→∞

un = 0, w-lim
n→∞

vn = 0, ‖un‖2 + ‖vn‖2 = 1, (n ∈ N),

where w-lim denotes weak limit. It is seen that

Fb,fin([C∞0 (Rd)]) ⊂ D((µH1 + λH2)A((un, vn))†)

∩D(A((un, vn))†(µH1 + λH2)) ∩D((µH1 + λH2)∗A((un, vn)))

∩D(A((un, vn))(µH1 + λH2)∗).

By applying Proposition B.3 as A = µH1 + λH2, B = A((un, vn))†, C =
H and D = EC = Fb,fin([C∞0 (Rd)]), we see that the weak commutator
[µH1 + λH2, A((un, vn))]w,D(H) exists and

[µH1 + λH2, A((un, vn))†]w,D(H)

=
1√
2

(
µT1.n + µT2.n + 2λT3.n + 2λT4.n

)
¹ D(H), (14)

where

T1.n :=
∫

Rd

χsp(x)〈fx, vn〉φ(fx)dx,

T2.n :=
∫

Rd

χsp(x)〈fx, un〉φ(fx)∗dx,

T3.n :=
∫

Rd

χsp(x)〈fx, vn〉φ(fx)φ(fx)∗φ(fx)dx,

T4.n :=
∫

Rd

χsp(x)〈fx, un〉φ(fx)∗φ(fx)φ(fx)∗dx.

Proof of Theorem 2.2. We apply Proposition B.4. Hence we need only to
show that for all Ψ ∈ D(H),

lim
n→∞

[µH1 + λH2, A((un, vn))†]w,D(H)Ψ = 0.
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By (14), we have

lim
n→∞

[µH1 + λH2, A((un, vn))]w,D(H)Ψ

= lim
n→∞

1√
2

(
µT1.n + µT2.n + 2λT3.n + 2λT4.n

)
Ψ.

Thus it suffices to show that limn→∞ ‖Tj.nΨ‖ = 0 (j = 1, 2, 3, 4). First, we
consider T1.n. Since Fb,fin([C∞0 (Rd)]) is a core of H, there exists a sequence
{Ψk}k ⊂ Fb,fin([C∞0 (Rd)]) such that Ψk → Ψ, HΨk → HΨ, (k → ∞).
Then T1.nΨk → T1.nΨ (k →∞) by Lemma 4.1. For any k ∈ N, we have

∥∥T1.nΨ
∥∥ ≤ ∥∥T1.nΨ− T1.nΨk

∥∥ +
∥∥T1.nΨk

∥∥

≤ C
∥∥H(Ψ−Ψk)

∥∥ + D
∥∥Ψ−Ψk

∥∥

+ E
∥∥(Nb + 1)1/2Ψk

∥∥
∫

Rd

χsp(x)|〈fx, vn〉|dx,

where C, D and E are positive constants independent of n and k. By the
property of vn, it follows that

lim
n→∞

|〈fx, vn〉| = 0, (for x ∈ Rd),

and

χsp(x)|〈fx, vn〉| ≤ χsp(x)
∥∥ω−1/2ϕ

∥∥
L2

is integrable on Rd. Hence, by applying the Lebesgue dominated convergence
theorem, we have

lim sup
n→∞

∥∥T1.nΨ
∥∥ ≤ C

∥∥H(Ψ−Ψk)
∥∥ + D

∥∥Ψ−Ψk

∥∥.

Since k ∈ N is arbitrary, we have limn→∞ ‖T1.nΨ‖ = 0 by taking k → ∞.
In the same manner, we can show that limn→∞ ‖Tj.nΨ‖ = 0 (j = 2, 3, 4). ¤

5. Existence of ground states

In this section, we prove Theorem 2.3. Throughout this section, we
always suppose that Assumption 2.1 and 2.2 hold. For a positive constant
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m > 0, we define the function ωm by

ωm(k) :=
√

k2 + m2 (k ∈ Rd).

The constant m > 0 is regarded as the mass of a boson. Let us introduce a
massive Hamiltonian Hm as follows:

Hm := dΓb([ωm]) + µH1 + λH2.

In the same way as in the proof of Theorem 2.1, one can show that
Hm is self-adjoint, bounded from below and essentially self-adjoint on
Fb,fin([C∞0 (Rd)]).

Remark 5.1 The operators H1 and H2 are Hm-bounded with

∥∥H1Ψ
∥∥ ≤ θCm(µ, λ, ε, η)

∥∥HmΨ
∥∥ +

(
θCm(µ, λ, ε, η) +

1
2θ
‖χsp‖L1

)∥∥Ψ
∥∥,

∥∥H2Ψ
∥∥ ≤ Cm(µ, λ, ε, η)

(∥∥HmΨ
∥∥ +

∥∥Ψ
∥∥)

, Ψ ∈ D(Hm),

where θ is arbitrary positive constant and

Cm(µ, λ, ε, η) := (λ2 − 2ε− λ2µ2η/ε)−1/2

×
(

λ2µ2

4εη

∥∥χsp

∥∥2

L1 +
‖χsp‖2L1

4ε
+ λ2‖ω1/2

m ω−1/2ϕ‖4L2 + 1
)1/2

,

with ε > 0 and η > 0 being arbitrary such that λ2 > 2ε + λ2µ2η/ε. Note
that dΓb([ωm]) is also Hm-bounded.

Let us introduce the extended Hilbert space H e defined by

H e := H ⊗H .

Then the extended Hamiltonian He
m is defined as follows:

He
m := Hm ⊗ 1H + 1H ⊗ dΓb([ωm]),

He
0,m := dΓb([ωm])⊗ 1H + 1H ⊗ dΓb([ωm]).

Let us introduce a partition of unity. Let j0 and j∞ be R-valued functions
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such that j0, j∞ ∈ C∞(Rd), j2
0 + j2

∞ = 1, 0 ≤ j0, j∞ ≤ 1 and

j0(x) =

{
1 |x| ≤ 1,

0 |x| ≥ 2,

where C∞(Rd) denotes the set of infinitely differentiable functions on Rd.
We set for R > 0, j0,R := j0(·/R), j∞,R := j∞(·/R), ĵ0,R := j0,R(−i∇k)

and ĵ∞,R := j∞,R(−i∇k), where ∇k := (∂/∂k1, . . . , ∂/∂kd). We introduce
an operator ĵR which maps ⊕2L2(Rd) into ⊕4L2(Rd) as follows:

ĵR(u, v) :=
(
ĵ0,Ru, ĵ0,Rv, ĵ∞,Ru, ĵ∞,Rv

)
, (u, v) ∈ [L2(Rd)].

Note that ĵR is isometry. Let us denote the unitary operator which maps
Fb(⊕4L2(Rd)) to H e by U[L2(Rd)],[L2(Rd)] (see Proposition A.3). We define
an operator Γ̌(ĵR) : H → H e by

Γ̌(ĵR) := U[L2(Rd)],[L2(Rd)]Γb(ĵR). (15)

As mentioned in the introduction, the following lemma is important to avoid
making use of Number-Energy estimate. We set N0 := Nb⊗1H and N∞ :=
1H ⊗Nb.

Lemma 5.1 There exists a constant C > 0 independent of R such that
the following inequality holds.

∥∥(N0 + N∞ + 1)−1
(
Hj ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)Hj

)
(Nb + 1)−1

∥∥

≤ C

∫

Rd

χsp(x)
(∥∥(1− ĵ0,R)fx

∥∥ +
∥∥ĵ∞,Rfx

∥∥)
dx, (j = 1, 2).

Proof. We only show the case of j = 2. The case of j = 1 is proven
similarly and we omit the proof. For any Ψ ∈ Fb,fin([C∞0 (Rd)]), we have

(N0 + N∞ + 1)−1
(
H2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)H2

)
(Nb + 1)−1Ψ

=
∫

Rd

χsp(x)(N0 + N∞ + 1)−1
((

φ(fx)∗φ(fx)2
)⊗ 1H Γ̌(ĵR)

− Γ̌(ĵR)
(
φ(fx)∗φ(fx)

)2
)
(Nb + 1)−1Ψdx. (16)
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The integrand on the right hand side of (16) is decomposed as follows:

(N0 + N∞ + 1)−1
((

φ(fx)∗φ(fx)2
)⊗ 1H Γ̌(ĵR)

− Γ̌(ĵR)
(
φ(fx)∗φ(fx)

)2
)
(Nb + 1)−1Ψ

=
3∑

k=0

(N0 + N∞ + 1)−1R̃k

(
φ
(
(1− ĵ0,R)fx

)]k ⊗ 1H

− 1H ⊗ φ
(
ĵ0,∞fx

)]k
)
Γ̌(ĵR)R3−k(Nb + 1)−1Ψ, (17)

where R0 := 1H , R1 := φ(fx), R2 := φ(fx)∗φ(fx), R3 := φ(fx)φ(fx)∗φ(fx),
R̃k := R∗k ⊗ 1H (k = 0, 1, 2, 3), φ(u)]k := φ(u)∗ if k = 0, 2, and φ(u)]k :=
φ(u) if k = 1, 3. To get (17), we used the following property:

Γ̌(ĵR)φ(u)] =
(
φ(ĵ0,Ru)] ⊗ 1H + 1H ⊗ φ(ĵ∞,Ru)]

)
Γ̌(ĵR), (18)

where φ(u)] denotes φ(u) or φ(u)∗. To estimate (17), we divide the quartic
products of field operators into two quadratic products of field operators.
After that we apply the later assertion of Proposition A.1 as T = 1H or
T = 1H e . To explain more precisely, we consider k = 0 term of (17). For
simplicity, we introduce following operators

G0 := (N0 + N∞ + 1)−1
(
φ
(
(1− ĵ0,R)fx

)∗ ⊗ 1H − 1H ⊗ φ
(
ĵ0,∞fx

)∗)

×
(
φ(ĵ0,Rfx)⊗ 1H + 1H ⊗ φ(ĵ∞,Rfx)

)
,

G1 :=
(
φ(ĵ0,Rfx)∗ ⊗ 1H + 1H ⊗ φ(ĵ∞,Rfx)∗

)

×
(
φ
(
(1− ĵ0,R)fx

)⊗ 1H − 1H ⊗ φ
(
ĵ0,∞fx

))
(N0 + N∞ + 1)−1,

G2 := φ(fx)∗φ(fx)(Nb + 1)−1.

By applying Proposition A.1, G1 and G2 are bounded. In particular, ‖G2‖ is
dominated by a constant independent of x. Moreover, there exists a constant
C0 > 0 independent of x and R such that

∥∥G1

∥∥ ≤ C0

(‖(1− ĵ0,R)fx‖+ ‖ĵ0,∞fx‖
)
. (19)
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By the general theory of adjoint operators, G∗1 is also bounded and ‖G∗1‖ =
‖G1‖. Since G∗1 ⊃ G0 and Γ̌(ĵR)G2Ψ ∈ D(G0), we have

∥∥(k = 0 term of (17))
∥∥ (18)

=
∥∥G0Γ̌(ĵR)G2Ψ

∥∥ =
∥∥G∗1Γ̌(ĵR)G2Ψ

∥∥

≤ ∥∥G∗1
∥∥∥∥G2

∥∥∥∥Ψ
∥∥

≤ C0

(‖(1− ĵ0,R)fx + ‖ĵ∞,Rfx‖‖
)∥∥G2

∥∥‖Ψ‖.

Similarly, the other terms in (17) are also estimated. By combining these
results, there exists a constant C > 0 independent of R such that

∥∥(N0 + N∞ + 1)−1
(
H2 ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)H2

)
(Nb + 1)−1Ψ

∥∥

≤ C
∥∥Ψ

∥∥
∫

Rd

χsp(x)
(‖(1− ĵ0,R)fx‖+ ‖ĵ0,∞fx‖

)
dx.

Since Fb,fin([C∞0 (Rd)]) is dense in H , the desired result follows by make
use of extension theorem of bounded operators. ¤

Lemma 5.2 For any χ ∈ C∞0 (R),

lim
R→∞

∥∥χ(He
m)Γ̌(ĵR)− Γ̌(ĵR)χ(Hm)

∥∥ = 0.

Proof. By the Helffer-Sjöstrand formula [9], [15], it is seen that

χ(He
m)Γ̌(ĵR)− Γ̌(ĵR)χ(Hm)

=
−i

2π

∫

C
∂zχ̃(z)(z −He

m)−1
(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(z −Hm)−1dzdz,

(20)

where χ̃ is an almost analytic extension of χ and ∂z = (1/2)(∂x + i∂y),
(z = x + iy). Let us estimate the integrand on the left hand side of (20). It
follows that

(z −He
m)−1

(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(z −Hm)−1

= (z −He
m)−1(N0 + N∞ + 1)(N0 + N∞ + 1)−1

× (
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(Nb + 1)−1(Nb + 1)(z −Hm)−1.
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It is easy to see that (z−He
m)−1(N0 +N∞+1) is bounded on D(N0 +N∞)

with the operator norm
∥∥(z −He

m)−1(N0 + N∞ + 1)
∥∥ ≤ C

(
1 + (1 + |z|)|Im z|−1

)
,

where C > 0 is a constant independent of z and we used the fact that Nb

is dΓb([ωm]) -bounded and the fact that if a linear operator S is bounded,
so is S∗. Similarly one can show that (Nb + 1)(z −Hm)−1 is also bounded
with the operator norm

∥∥(Nb + 1)(z −Hm)−1
∥∥ ≤ D

(
1 + (1 + |z|)|Im z|−1

)
,

where D > 0 is a constant independent of z. Thus we have

∥∥(z −He
m)−1

(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(z −Hm)−1

∥∥

≤ CD
(
1 + (1 + |z|)|Im z|−1

)2

× ∥∥(N0 + N∞ + 1)−1
(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(Nb + 1)−1

∥∥.

By the property of χ̃, it suffices to show that

lim
R→∞

∥∥(N0 + N∞ + 1)−1
(
He

mΓ̌(ĵR)− Γ̌(ĵR)Hm

)
(Nb + 1)−1

∥∥ = 0. (21)

We have following decomposition.

He
mΓ̌(ĵR)− Γ̌(ĵR)Hm

=
{

He
0,mΓ̌(ĵR)− Γ̌(ĵR)dΓb([ωm])

}

+
{

(µH1 + λH2)⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)(µH1 + λH2)
}

. (22)

By the similar argument as in [7, Proof of Lemma 3.4], [16, Lemma IV.4],
one can show that

lim
R→∞

∥∥(N0 + N∞ + 1)−1(He
0,mΓ̌(ĵR)− Γ̌(ĵR)dΓb([ωm])

)
(Nb + 1)−1

∥∥ = 0.

Next we estimate (N0 + N∞ + 1)−1(Hj ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR))Hj)(Nb + 1)−1
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(j = 1, 2). By Lemma 5.1, there exists C > 0 such that

∥∥(N0 + N∞ + 1)−1
(
Hj ⊗ 1H Γ̌(ĵR)− Γ̌(ĵR)Hj

)
(Nb + 1)−1

∥∥

≤ C

∫

Rd

χsp(x)
(∥∥(1− ĵ0,R)fx

∥∥ +
∥∥ĵ∞,Rfx

∥∥
)
dx, (j = 1, 2).

By definitions of ĵ0,R and ĵ∞,R, we have

lim
R→∞

∥∥(1− ĵ0,R)fx

∥∥ = lim
R→∞

∥∥ĵ∞,Rfx

∥∥ = 0,

∥∥(1− ĵ0,R)fx

∥∥ ≤ ∥∥ω−1/2ϕ
∥∥,

∥∥(1− ĵ∞,R)fx

∥∥ ≤ ∥∥ω−1/2ϕ
∥∥. (23)

By χsp ∈ L1(Rd) and an application of Lebesgue dominated convergence
theorem, it is seen that

lim
R→∞

∫

Rd

χsp(x)
(∥∥(1− ĵ0,R)fx

∥∥ +
∥∥ĵ∞,Rfx

∥∥
)
dx = 0.

Therefore the desired result follows. ¤

Lemma 5.3 For any χ ∈ C∞0 (R) such that suppχ ⊂ (−∞, E0(Hm)+m),
χ(Hm) is a compact operator. In particular, Hm has a ground state.

Proof. Let ENb be the spectral measure of Nb. For any n ∈ N, it follows
that

ENb({n})Γb([ĵ2
0,R])χ(Hm)

= ENb({n})Γb([ĵ2
0,R])(dΓb([ωm]) + 1)−1(dΓb([ωm]) + 1)χ(Hm) = J1J2,

where

J1 := ENb({n})Γb([ĵ2
0,R])(dΓb([ωm]) + 1)−1,

J2 := (dΓb([ωm]) + 1)χ(Hm).

Since J1 is compact (see [7, Lemma 4.2]) and J2 is bounded,
ENb({n})Γb([ĵ2

0,R])χ(Hm) is compact. Note that
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∥∥∥∥Γb([ĵ2
0,R])χ(Hm)−

N∑
n=0

ENb({n})Γb([ĵ2
0,R])χ(Hm)

∥∥∥∥

≤ 1
N + 1

∥∥Γb([ĵ2
0,R])(Nb + 1)χ(Hm)

∥∥ → 0, (N →∞).

Thus Γb([j2
0,R])χ(Hm) is compact. Next we show that χ(Hm) is compact.

Since suppχ ⊂ (−∞, E0(Hm) + m), it follows that

χ(He
m) = (1H ⊗ P0)χ(He

m), (24)

where P0 is the orthogonal projection onto the subspace {zΩ : z ∈ C}.
Furthermore, the following properties also hold:

Γ̌(ĵR)∗Γ̌(ĵR) = 1H , Γ̌(ĵR)∗(1H ⊗ P0)Γ̌(ĵR) = Γb([ĵ2
0,R]).

By applying Lemma 5.2, we have

χ(Hm) = Γ̌(ĵR)∗Γ̌(ĵR)χ(Hm)

= Γ̌(ĵR)∗χ(He
m)Γ̌(ĵR) + o(R0)

= Γ̌(ĵR)∗(1H ⊗ P0)χ(He
m)Γ̌(ĵR) + o(R0)

= Γ̌(ĵR)∗(1H ⊗ P0)Γ̌(ĵR)χ(Hm) + o(R0)

= Γb([ĵ2
0,R])χ(Hm) + o(R0),

where o(R0) denotes a bounded operator tending to 0 as R → ∞ in the
operator norm topology. Thus χ(Hm) is compact. By applying a general
theorem [22, Theorem XIII-77], one sees that σ(Hm) ∩ (−∞, E0(Hm) + m)
is purely discrete. In particular, E0(Hm) is an eigenvalue of Hm. ¤

For m > 0, let Φm be a ground state of Hm with ‖Φm‖ = 1.

Lemma 5.4 Hm → H (m → 0) in the strong resolvent sense. In partic-
ular, E0(Hm) → E0(H) (m → 0).

Proof. For any Ψ ∈ Fb,fin([C∞0 (Rd)]), we have HmΨ → HΨ (m → 0)
by a direct calculation. This fact implies the strong resolvent convergence
[21, Theorem VIII 25 (a)]. The strong resolvent convergence implies that
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lim supm→0 E0(Hm) ≤ E0(H). For any m > 0, we have

E0(Hm) = 〈Φm,HmΦm〉 ≥ 〈Φm,HΦm〉 ≥ E0(H). (25)

By taking lim infm→0 on the both sides of (25), we obtain the desired result.
¤

For each n ∈ N, we denote the permutation group of {1, . . . , n} by Sn.
We can identify H as follows:

H =
∞⊕

n,n′=0

L2
sym(Rdn × Rdn′),

where

L2
sym(Rdn) :=

{
f ∈ L2(Rdn) : f(kπ(1), . . . , kπ(n)) = f(k1, . . . , kn)

for a.e. k1, . . . , kn ∈ Rd and π ∈ Sn

}
,

L2
sym(Rdn × Rdn′) :=

{
f ∈ L2(Rd(n+n′)) : for a.e. k1, . . . kn, l1, . . . ln′ ∈ Rd,

σ ∈ Sn, τ ∈ Sn′ ,

f(kσ(1), . . . , kσ(n) : lτ(1), . . . , lτ(n′))

= f(k1, . . . , kn : l1, . . . , ln′)
}
.

L2
sym(Rdn × R0) := L2

sym(Rdn), L2
sym(R0 × Rdn′) := L2

sym(Rdn′),

L2
sym(R0 × R0) := C,

For k ∈ Rd, let us introduce linear operators a+(k) and a−(k) act on H are
defined as follows:

(a+(k)Ψ)(n,n′)(k1, . . . , kn : l1, . . . , ln′)

:=
√

n + 1Ψ(n+1,n′)(k, k1, . . . , kn : l1, . . . , ln′), a.e.,

(a−(k)Ψ)(n,n′)(k1, . . . , kn : l1, . . . , ln′)

:=
√

n′ + 1Ψ(n,n′+1)(k1, . . . , kn : k, l1, . . . , ln′), a.e..

a+(·) and a−(·) are called the annihilation kernel of particle and anti-
particle, respectively. For each u ∈ L2(Rd), a+(u) and a−(u) are represented
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by using the annihilation kernel as follows:

a±(u) =
∫

Rd

u(k)∗a±(k)dk, (26)

where the integrals on the right hand side of (26) are taken in the sense
of H -valued strong Bochner integral. For k ∈ Rd, let us introduce the
following operators:

S1(k) :=
∫

Rd

χsp(x)e−ikxφ(fx)dx,

S2(k) :=
∫

Rd

χsp(x)e−ikxφ(fx)φ(fx)∗φ(fx)dx,

L1(k) :=
∫

Rd

χsp(x)e−ikxφ(fx)∗dx,

L2(k) :=
∫

Rd

χsp(x)e−ikxφ(fx)∗φ(fx)φ(fx)∗dx.

Note that these operators are also taken in the sense of H -valued strong
Bochner integral.

Lemma 5.5 For almost every k ∈ Rd, we have

a+(k)Φm =
ϕ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µS1(k) + 2λS2(k)

)
Φm,

a−(k)Φm =
ϕ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µL1(k) + 2λL2(k)

)
Φm.

(27)

Proof. Here, we prove only the first equation . The second one is
proven similarly, and we omit the proof. Let Θ ∈ Fb,fin([C∞0 (Rd)]) and
g ∈ C∞0 (Rd). Since Φm ∈ Ker(Hm − E0(Hm)), we have

〈(Hm − E0(Hm))Θ, a+(g)Φm〉
= 〈[a+(g)†,Hm − E0(Hm)]Θ,Φm〉
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= −〈a+(ωmg)†Θ,Φm〉

− 1√
2

∫

Rd

χsp(x)〈g, fx〉〈
(
µφ(fx)∗ + 2λφ(fx)∗φ(fx)φ(fx)∗

)
Θ,Φm〉dx

= −〈a+(ωmg)†Θ,Φm〉

−
∫

Rd

∫

Rd

g(k)∗
ϕ(k)√
2ω(k)

χsp(x)e−ikx

× 〈(µφ(fx)∗ + 2λφ(fx)∗φ(fx)φ(fx)∗
)
Θ,Φm〉dxdk. (28)

Here to get the last equality of (28), we used Fubini’s theorem. By using
(26), we have

∫

Rd

g(k)∗〈(E0(Hm)−Hm − ωm(k))Θ, a+(k)Φm〉dk

=
∫

Rd

∫

Rd

g(k)∗
ϕ(k)√
2ω(k)

χsp(x)e−ikx

× 〈(
µφ(fx)∗ + 2λφ(fx)∗φ(fx)φ(fx)∗

)
Θ,Φm

〉
dxdk,

Since g ∈ C∞0 (Rd) is arbitrary, we obtain

〈(E0(Hm)−Hm − ωm(k))Θ, a+(k)Φm〉

=
ϕ(k)√
2ω(k)

∫

Rd

χsp(x)e−ikx
〈(

µφ(fx)∗ + 2λφ(fx)∗φ(fx)φ(fx)∗
)
Θ,Φm

〉
dx.

Since Φm ∈ D(Hm), there exists a sequence {Φj
m}∞j=1 ⊂ Fb,fin([C∞0 (Rd)])

such that Φj
m → Φm, HmΦj

m → HmΦm (j →∞). Therefore we have

〈(E0(Hm)−Hm − ωm(k))Θ, a+(k)Φm〉

=
ϕ(k)√
2ω(k)

〈Θ, µS1(k)Φm〉+
ϕ(k)√
2ω(k)

lim
j→∞

〈Θ, 2λS2(k)Φj
m〉,

where we used the Hm-boundedness of S1(k). We show that for any k ∈ Rd,
S2(k) is Hm-bounded on Fb,fin([C∞0 (Rd)]). For Ψ ∈ Fb,fin([C∞0 (Rd)]), It
follows that
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∥∥S2(k)Ψ
∥∥2 ≤

∫

Rd×Rd

χsp(x)χsp(y)

× ∣∣〈φ(fx)∗φ(fx)φ(fy)∗φ(fy)Ψ, φ(fy)φ(fx)∗Ψ〉∣∣dxdy

≤ 1
2

∫

Rd×Rd

χsp(x)χsp(y)

× 〈(φ(fy)∗φ(fy)
)2Ψ,

(
φ(fx)∗φ(fx)

)2Ψ〉dxdy

+
1
2

∫

Rd×Rd

χsp(x)χsp(y)〈φ(fy)∗φ(fy)Ψ, φ(fx)∗φ(fx)Ψ〉dxdy

=
1
2
(∥∥H2Ψ

∥∥2 +
∥∥H1Ψ

∥∥2)
.

Therefore S2(k) is Hm-bounded by Remark 5.1. This fact implies that
{S2(k)Φj

m}∞j=1 is a Cauchy sequence. By the closability of S2(k), we have

〈(E0(Hm)−Hm − ωm(k))Θ, a+(k)Φm〉

=
ϕ(k)√
2ω(k)

{〈Θ, µS1(k)Φm〉+ 〈Θ, 2λS2(k)Φm〉
}
.

Thus we see that a+(k)Φm ∈ D(E0(Hm)−Hm − ωm(k)) and

(E0(Hm)−Hm − ωm(k))a+(k)Φm =
ϕ(k)√
2ω(k)

(
µS1(k) + 2λS2(k)

)
Φm.

Since E0(Hm) − Hm − ωm(k) has a bounded inverse, the first equation of
(24) follows. ¤

Lemma 5.6 Suppose that ϕ ∈ D(ω−3/2). Then,

lim sup
m→0

‖N1/2
b Φm‖ < ∞.

Proof. By Proposition A.3 and Proposition A.5, we see that

∥∥N
1/2
b Φm

∥∥2 =
∫

Rd

∥∥a+(k)Φm

∥∥2dk +
∫

Rd

∥∥a−(k)Φm

∥∥2dk.
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Note that S1(k), S2(k), L1(k) and L2(k) are Hm-bounded uniformly in k.
By Remark 5.1, Lemma 5.5 and

∥∥(E0(Hm) − Hm − ωm(k))−1
∥∥ ≤ ω(k)−1,

we have

∥∥N
1/2
b Φm

∥∥2 ≤
∫

Rd

|ϕ(k)|2
2ω(k)

∥∥(
E0(Hm)−Hm − ωm(k)

)−1

× (
µS1(k) + 2λS2(k)

)
Φm

∥∥2dk

+
∫

Rd

|ϕ(k)|2
2ω(k)

∥∥(
E0(Hm)−Hm − ωm(k)

)−1

× (
µL1(k) + 2λL2(k)

)
Φm

∥∥2dk

≤ 2(|µ|2 + 4λ2)
(∥∥H1Φm

∥∥2 +
∥∥H2Φm

∥∥2∥∥ +
∥∥χsp

∥∥2

L1

∥∥Φm

∥∥2)

×
∫

Rd

|ϕ(k)|2
ω(k)3

dk

= Dm(µ, λ, ε, η, θ)(|µ|2 + 4λ2)
(
E0(Hm)2 + 1

)∥∥ω−3/2ϕ
∥∥2

L2 ,

where for any θ > 0, Dm(µ, λ, ε, η, θ) is defined by

Dm(µ, λ, ε, η, θ)

:= 2Cm(µ, λ, ε, η)2(θ2 + 2) + 2
(

θCm(µ, λ, ε, η) +
1
2θ
‖χsp‖L1

)2

.

Thus the desired result follows by Remark 5.1, Lemma 5.4 and taking the
limit superior. ¤

Remark 5.2 To show the existence of ground states for sufficiently small
coupling constants under ϕ ∈ D(ω−3/2), it is important that ‖N1/2

b Φm‖
tends to zero when µ and λ tend to 0. Now, we fix µ = 0 and con-
sider the behavior of ‖N1/2

b Φm‖ as λ → 0. Then we cannot conclude that
limλ→0 λ2Dm(0, λ, ε, η, θ) = 0. Since λ2(λ2 − 2ε)−1 > 1, it is not expected
that λ2Cm(0, λ, ε, η)2 → 0 (as λ → 0). As a result, we cannot apply the idea
of proof in [6]. Therefore it is interesting to show the existence of ground
state for sufficiently small coupling constants under conditions weaker than
Assumption 2.3.

Lemma 5.7 Suppose that ϕ is differentiable and
∫
Rd(1 + |x|2)χsp(x)dx <
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∞. Then, Rd \ {0} 3 k 7→ a±(k)Φm ∈ H is strongly differentiable. More-
over, for k 6= 0,

(Dja+)(k)Φm

=
{

1√
2ω(k)1/2

∂ϕ

∂kj
(k)− ϕ(k)kj

2
√

2ω(k)5/2

}

× (E0(Hm)−Hm − ωm(k))−1(µS1(k) + 2λS2(k))Φm

+
kjϕ(k)

ωm(k)
√

2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−2(µS1(k) + 2λS2(k))Φm

− iϕ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µS1.j(k) + 2λS2.j(k)

)
Φm,

(Dja−)(k)Φm

=
{

1√
2ω(k)1/2

∂ϕ

∂kj
(k)− ϕ(k)kj

2
√

2ω(k)5/2

}

× (E0(Hm)−Hm − ωm(k))−1(µL1(k) + 2λL2(k))Φm

+
kjϕ(k)

ωm(k)
√

2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−2(µL1(k) + 2λL2(k))Φm

− iϕ(k)√
2ω(k)

(
E0(Hm)−Hm − ωm(k)

)−1(
µL1.j(k) + 2λL2.j(k)

)
Φm,

where

S1.j(k) :=
∫

Rd

xjχsp(x)e−ikxφ(fx)dx,

S2.j(k) :=
∫

Rd

xjχsp(x)e−ikxφ(fx)φ(fx)∗φ(fx)dx,

L1.j(k) :=
∫

Rd

xjχsp(x)e−ikxφ(fx)∗dx,

L2.j(k) :=
∫

Rd

xjχsp(x)e−ikxφ(fx)∗φ(fx)φ(fx)∗dx,

and Dj is the strong differential operator in the j-th variable kj.
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Proof. Since (E0(Hm) − Hm − ωm(·))−1 is differentiable in the operator
norm topology and ϕ/

√
ω is differentiable for any k 6= 0, it suffices to show

the strong differentiability of S1, S2, L1 and L2. Here we only show the
case of S2. Since Φm ∈ D(Hm), we can take a sequence {Φj

m}∞j=1 ⊂
Fb,fin([C∞0 (Rd)]) such that Φj

m → Φm and HmΦj
m → HmΦm (j → ∞).

Since S2(k) and S2.l(k) are Hm-bounded, we have S2(k)Φj
m → S2(k)Φm

and S2.l(k)Φj
m → S2.l(k)Φm (j →∞). Let {el}d

l=1 be the standard orthog-
onal basis of Rd and h ∈ R \ {0}. It is seen that

∥∥∥∥
S2(k + hel)− S2(k)

h
Φm + iS2,l(k)Φm

∥∥∥∥
2

= lim
j→∞

∥∥∥∥
S2(k + hel)− S2(k)

h
Φj

m + iS2,l(k)Φj
m

∥∥∥∥
2

≤ lim
j→∞

∫

Rd×Rd

χsp(x)χsp(y)
∣∣∣∣
eihxl − 1

h
− ixl

∣∣∣∣
∣∣∣∣
e−ihyl − 1

h
+ iyl

∣∣∣∣
×

∣∣〈φ(fx)φ(fx)∗φ(fx)Φj
m, φ(fy)φ(fy)∗φ(fy)Φj

m〉
∣∣dxdy

≤ lim
j→∞

∫

Rd

χsp(x)
∣∣∣∣
eihxl − 1

h
− ixl

∣∣∣∣
2

dx

×
( ∫

Rd×Rd

χsp(x)χsp(y)
∣∣〈φ(fx)φ(fy)∗Φj

m,

φ(fx)∗φ(fx)φ(fy)∗φ(fy)Φj
m〉

∣∣2dxdy

)1/2

(29)

≤ lim
j→∞

C‖(dΓb([ωm]) + 1)Φj
m‖

∫

Rd

χsp(x)
∣∣∣∣
eihxl − 1

h
− ixl

∣∣∣∣
2

dx

×
( ∫

Rd×Rd

χsp(x)χsp(y)〈(φ(fx)∗φ(fx)
)2Φj

m,
(
φ(fy)∗φ(fy)

)2Φj
m〉dxdy

)1/2

≤ lim
j→∞

C
∥∥(dΓb([ωm]) + 1)Φj

m

∥∥∥∥H2Φj
m

∥∥
∫

Rd

χsp(x)
∣∣∣∣
eihxl − 1

h
− ixl

∣∣∣∣
2

dx.

(30)

Here to get (29), we used the Schwartz inequality. Since dΓb([ωm]) and H2

are Hm-bounded, the limit in (30) exists. Note that |(eihxl − 1)/h− ixl|2 ≤
4x2

l and
∫
Rd χsp(x)x2

l < ∞. From the Lebesgue dominated convergence the-
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orem, we see that S2(k)Φm is strongly differentiable and its strong derivative
is −iS2.l(k)Φm. By using the Leibniz rule for (27), we obtain the desired
results. ¤

Lemma 5.8 Suppose that the same assumption as in Lemma 5.7 holds.
Then there exist positive constants C1, C2 and C3 independent of m and k

such that

∥∥Dja±(k)Φm

∥∥
H
≤ C1

|ϕ(k)|
ω(k)3/2

+ C2
|ϕ(k)|

ω(k)5/2
+ C3

1
ω(k)3/2

∣∣∣∣
∂ϕ

∂kj
(k)

∣∣∣∣,

(for k 6= 0). (31)

Moreover, we suppose that Assumption 2.3 holds. For any p ∈ [1, 2), it
follows that

sup
0<m≤1

d∑

j=1

∫

Rd

∥∥Dja±(k)Φm

∥∥p

H
dk < ∞. (32)

Proof. For k 6= 0, it is seen that
∥∥(E0(Hm)−Hm − ωm(k))−1

∥∥ ≤ ω(k)−1.
Since S1(k), S2(k), L1(k), L2(k), S1.j(k), S2.j(k), L1.j(k) and L2.j(k) are
uniformly Hm-bounded in k, we have (31). (32) is immediately follows from
(31). ¤

We set Φm = {Φ(n,n′)
m }∞n,n′=0. Note that Φ(n,n′)

m is a d(n + n′)-variable
function. We denote kj = (kj.1, . . . , kj.d) and lj = (lj.1, . . . , lj.d).

Lemma 5.9 For 1 ≤ i ≤ n and 1 ≤ j ≤ d, let ∂i.j be the distributional
derivative in ki.j in V (see Assumption 2.3) and for n + 1 ≤ i ≤ n + n′

and 1 ≤ j ≤ d, ∂i.j be the distributional derivative with respect to li.j in V .
Suppose that Assumption 2.3 holds. Then,

(∂i.jΦ(n,n′)
m )(k1, . . . , kn : l1, . . . , ln′)

=





1√
n

Dja+(ki)Φ
(n−1,n′)
m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′),

1 ≤ i ≤ n,

1√
n′

Dja−(li−n)Φ(n,n′−1)
m (k1, . . . , kn : l1, . . . , l̂i, . . . , ln′),

n + 1 ≤ i ≤ n + n′,
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where k̂ denotes omitting of k.

Proof. Here, we consider only the case of 1 ≤ i ≤ n and 1 ≤ j ≤ d. The
other case is proven in a similar manner. Let f ∈ C∞0 (V n+n′). Then it
suffices to show that
∫

Rd(n+n′)
Φ(n,n′)

m (k1, . . . , kn : l1, . . . , ln)(∂i.jf)(k1, . . . , kn, l1, . . . , ln′)dnkdn′ l

+
1√
n

∫

Rd(n+n′)
Dja+(ki)Φ(n−1,n′)

m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′)

× f(k1, . . . , kn, l1, . . . , ln′)dnkdn′ l = 0, (33)

where dnk := dk1 · · ·dkn, dn′ l := dl1 · · ·dln′ . We denote the standard
orthogonal basis of Rd by {ej}d

j=1. By the definition of classical derivative,
the absolute value of the left hand side of (33) is calculated as follows:

lim
h→0

∣∣∣∣∣
∫

Rd(n+n′)

Φ
(n,n′)
m (k1, . . . , ki + hej , . . . , kn : l1, . . . , ln′ )

−Φ
(n,n′)
m (k1, . . . , kn : l1, . . . , ln′ )

h

× f(k1, . . . , kn, l1, . . . , ln′)dnkdn′ l

− 1√
n

∫

Rd(n+n′)
Dja+(ki)Φ(n−1,n′)

m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′)

× f(k1, . . . , kn, l1, . . . , ln′)dnkdn′ l

∣∣∣∣∣ .

Since Φ(n,n′)
m ∈ L2

sym(Rdn × Rdn′), we have

lim
h→0

1√
n

∣∣∣∣∣
∫

Rd(n+n′)

`
a+(ki + hej)− a+(ki)

´
Φ

(n−1,n′)
m

(k1, . . . , ki−1, ki+1, . . . , kn : l1, . . . , ln′ )

h

× f(k1, . . . , kn, l1, . . . , ln′)dnkdn′ l

−
∫

Rd(n+n′)
Dja+(ki)Φ(n−1,n′)

m (k1, . . . , k̂i, . . . , kn : l1, . . . , ln′)
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× f(k1, . . . , kn, l1, . . . , ln′)dnkdn′ l

∣∣∣∣∣ .

By applying the Schwarz inequality with respect to dk1 · · ·dki−1dki+1 · · ·
dkndn′ l, we see that it is dominated by

lim
h→0

1√
n

Z

Rd

‚‚‚‚
`
a+(ki + hej)− a+(ki)

´
Φ

(n−1,n′)
m

h
−Dja+(ki)Φ

(n−1,n′)
m

‚‚‚‚
L2(Rd(n+n′−1))

×
‚‚f(·, ki, ·)

‚‚
L2(Rd(n+n′−1))

dki. (34)

Since the function k 7→ a+(k)Φ(n−1,n′)
m is strongly continuously differen-

tiable in V , the first factor of the integrand of (34) is bounded on V uni-
formly in h. Therefore, we can apply the Lebesgue dominated convergence
theorem and the desired result follows. ¤

Let us denote the Sobolev space of order 1 and index p on an open set
U in Rd(n+n′) by W 1,p(U).

Lemma 5.10 Suppose that Assumption 2.3 holds. Then for any n+n′ ≥ 1,
m ≥ 0 and 1 ≤ p < 2 , Φ(n,n′)

m ∈ W 1,p(V n+n′) and

sup
0<m≤1

∥∥Φ(n,n′)
m

∥∥
W 1,p(V n+n′ ) < ∞.

Proof. Similar to the proof of [14, Proof of Theorem 2.1, Step2]. To prove
this, we need Lemma 5.8 and Lemma 5.9 ¤

Proof of Theorem 2.3. Since {Φm}0<m≤1 is a bounded set on H , there
exists a sequence {Φmj

}∞j=1 and a vector Φ ∈ H such that mj → 0, (j →∞)
and

w-lim
j→∞

Φmj
= Φ.

Let z ∈ C \ R and Ψ ∈ H be arbitrary. Then

〈Ψ, (Hmj − z)−1Φmj 〉 = 〈Ψ, (E0(Hmj )− z)−1Φmj 〉. (35)

By taking limj→∞ on the both sides of (35) and Lemma 5.4, we have,
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〈Ψ, (H − z)−1Φ〉 = 〈Ψ, (E0(H)− z)−1Φ〉.

This fact implies that Φ ∈ D(H) and

HΦ = E0(H)Φ.

Hence Φ is a ground state of H if Φ 6= 0. Now we assume that Φ = 0. Then
we have

∥∥Φmj

∥∥2 =
∑

n+n′≤N

∥∥Φ(n,n′)
mj

∥∥2 +
∑

n+n′>N

∥∥Φ(n,n′)
mj

∥∥2

≤
∑

n+n′≤N

∥∥Φ(n,n′)
mj

∥∥2 +
1
N

∥∥N
1/2
b Φmj

∥∥2
, (36)

where N ∈ N is arbitrary. Now we show that for any n and n′, Φ(n,n′)
mj

converges to Φ(n,n′) = 0 strongly in L2(Rd(n+n′)) sense. By applying Lemma
5.5 and the definition of the annihilation kernel, we have

suppΦ(n,n′)
mj

= V n+n′ ,

since Φ(n,n′)
mj ∈ L2

sym(Rdn × Rdn′) (see, e.g., [14, Proof of Theorem 2.1,
Step2]). Since the Lebesgue measure of V n+n′ is finite, we have Ls(V n+n′) ⊂
L2(V n+n′) for all s ≥ 2. Thus, Φ(n,n′)

mj weakly converges to Φ(n,n′) = 0 in the
Lp(V n+n′) sense. By Lemma 5.10, a subsequence of {Φ(n,n′)

mj }∞j=1 converges
to a vector Φ̂(n,n′) ∈ W 1,p(V n+n′) in the W 1,p(V n+n′)∗ sense. It means that
for any f0, f1, . . . , fd(n+n′) ∈ Lp(V n+n′)∗ = Lr(V n+n′) with 1/r + 1/p = 1,

∫

V n+n′
f0

(
Φ(n,n′)

mj
− Φ̂(n,n′))dnkdn′ l

+
d(n+n′)∑

i=1

∫

V n+n′
fi∂i

(
Φ(n,n′)

mj
− Φ̂(n,n′))dnkdn′ l → 0, (j →∞).

Hence we have

0 = Φ(n,n′)(k1, . . . , kn : l1, . . . , ln′) = Φ̂(n,n′)(k1, . . . , kn : l1, . . . , ln′), a.e..
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Thus we have for all 1 ≤ p < 2, Φ(n,n′)
mj → 0, (j → ∞) in the weak sense

of W 1,p(V n+n′). By applying the Rellich-Kondrachov theorem (see, e.g., [1,
Theorem 6.3], [19, Theorem 8.9]), we have

lim
j→∞

∥∥Φ(n,n′)
mj

∥∥
Lq(V n+n′ ) = 0,

for all q < (d(n + n′)p)/(d(n + n′)− p), since V has a cone property. To get
q = 2, we choose p as





2d(n + n′)
d(n + n′) + 2

< p < 2, if 2 ≤ d(n + n′),

p = 1, if d(n + n′) = 1.

Thus, by taking lim supj→∞ in (36), we have

1 = lim sup
j→∞

∥∥Φmj

∥∥2 ≤ 1
N

lim sup
j→∞

∥∥N
1/2
b Φmj

∥∥2
.

By Lemma 5.6, this is a contradiction since N is arbitrary. Hence Φ 6= 0. ¤

6. Total charge of eigenstates

In this section, we discus the total charge of eigenstates.

Proof of Theorem 2.4. It is trivial that H0 and e−itQ commute (see Propo-
sition A.4). By Proposition A.2-(2) and Proposition A.4-(2), the following
relations hold:

e−itQa+(u)eitQ = a+(e−itqu), e−itQa−(u)eitQ = a−(eitqu),

e−itQa+(u)†eitQ = a+(e−itqu)†, e−itQa−(u)†eitQ = a−(eitqu)†,
(
u ∈ L2(Rd)

)
.

Let Ψ ∈ Fb,fin([C∞0 (Rd)]). Then, eitQΨ ∈ Fb,fin([C∞0 (Rd)]) and we have

e−itQH1e
itQΨ =

∫

Rd

χsp(x)e−itQ(φ(fx)∗φ(fx))eitQΨdx,
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e−itQH2e
itQΨ =

∫

Rd

χsp(x)e−itQ(φ(fx)∗φ(fx))2eitQΨdx.

It follows that on Fb,fin([C∞0 (Rd)]):

e−itQφ(fx)∗φ(fx)eitQ

=
1
2
(a+(e−itqfx)† + a−(eitqfx))(a+(e−itqfx) + a−(eitqfx)†)

= e−itqφ(fx)∗eitqφ(fx) = φ(fx)∗φ(fx).

Therefore for any Ψ ∈ Fb,fin([C∞0 (Rd)]), we see that

e−itQHeitQΨ = HΨ.

Since e−itQ is unitary and Fb,fin([C∞0 (Rd)]) is a core of H, the above equality
can be extended to the operator equality. By the functional calculus, we have

e−itQe−isHeitQ = e−isH , (s, t ∈ R).

Hence the desired result follows. ¤

Remark 6.1 Also the massive Hamiltonian Hm strongly commutes with
Q. The proof is quite similar to that of Theorem 2.4.

The following result is a slight generalization of [25, Theorem 1.7].

Proposition 6.1 Let A be a self-adjoint operator on H which satisfies
following conditions:

(1) A and Q strongly commute.
(2) There exists an eigenvalue λ such that dimker(A− λ) = 1.
(3) Ψ ∈ ker(A−λ)\{0} satisfies ‖Ψ‖ = 1, Ψ ∈ D(N1/2

b ) and ‖N1/2
b Ψ‖2 < n0

for some n0 ∈ N.

Then Ψ /∈ Hq(z) for all |z| ≥ n0. In particular, if we can choose n0 as 1,
then Ψ ∈ Hq(0).

Proof. An idea is quite similar to [25, Proof of Theorem 1.7] thus we omit
the proof. ¤
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Remark 6.2 The later assertion of Proposition 6.1 is originally established
in the case of ground states in [25]. Proposition 6.1 says that the total charge
of a non-degenerate eigenvector is dominated by the expectation of number
operator. This is natural in the following sense. If there is a state which is
constructed by N -bosons, then it is impossible that the absolute value of a
total charge of this state is more than N . By virtue of this proposition, we
can reduce where the total charge of eigenstate are localized.

Next we discus properties of Γb(τ). For n,m ∈ N ∪ {0}, we define

W (n,m) := L.H.{a+(f1)∗ · · · a+(fn)∗a−(g1)∗ · · · a−(gm)∗Ω :

f1, . . . , fn, g1, . . . gm ∈ L2(Rd)},
W (0,m) := L.H.{a−(g1)∗ · · · a−(gm)∗Ω : g1, . . . gm ∈ L2(Rd)},
W (n, 0) := L.H.{a+(f1)∗ · · · a+(fn)∗Ω : f1, . . . , fn ∈ L2(Rd)},
W (0, 0) := {cΩ : c ∈ C}.

Proposition 6.2

(1) Γb(τ) is unitary, self-adjoint and Γb(τ)2 = 1H .
(2) For any n,m ∈ N ∪ {0}, Γb(τ)W (n,m) = W (m,n).
(3) For any z ∈ Z, Γb(τ)Hq(z) = Hq(−z).
(4) As an operator equality, Γb(τ)QΓb(τ) = −Q holds.

Proof. (1) It is seen that τ is unitary, self-adjoint and τ2 = 1 on [L2(Rd)].
By the property of Γb(·), Γb(τ) is unitary, self-adjoint and Γb(τ)2 = 1H .

(2) By the definition of a±, canonical commutation relations and Propo-
sition A.2 (2), it follows that

Γb(τ)a+(f1)∗ · · · a+(fn)∗a−(g1)∗ · · · a−(gm)∗Ω

= a−(f1)∗ · · · a−(fn)∗a+(g1)∗ · · · a+(gm)∗Ω

= a+(g1)∗ · · · a+(gm)∗a−(f1)∗ · · · a−(fn)∗Ω ∈ W (m,n).

By the limiting argument, we have Γb(τ)W (n,m) = W (m,n).
(3) For z ∈ Z, we can identify Hq(z) as follows:
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Hq(z) =
⊕

n−m=z

W (n,m).

By Proposition 6.2-(2), we have Γb(τ)Hq(z) = Hq(−z).
(4) For any Ψ ∈ Fb, fin([L2(Rd)]), Ψ is decomposed as {Ψ(z)}z∈Z with

Ψ(z) ∈ Hq(z). By Proposition 6.2-(1) and (3), we have Γb(τ)QΓb(τ)Ψ(z) =
−zΨ(z). Thus we have Γb(τ)QΓb(τ)Ψ = −QΨ. Since Γb(τ) is unitary and
Fb,fin([L2(Rd)]) is a core of Q, the desired result follows. ¤

To prove Theorem 2.5, we prepare the following Lemma:

Lemma 6.1 Let A be a self-adjoint operator strongly commute with Q.
Suppose that A has an eigenvalue λ and Nλ := dimKer(A − λ) < ∞. We
denote the orthogonal projection onto Hq(z) by Pz. Then for any Ψ ∈
Ker(A− λ) \ {0},

1 ≤ ]{z ∈ Z : PzΨ 6= 0} ≤ Nλ,

where ]A denotes the number of elements of a set A.

Proof. Since Ψ 6= 0, 1 ≤ ]{z ∈ Z : PzΨ 6= 0} is trivial. Suppose that there
are z1, . . . , zN ∈ Z such that N > Nλ, zi 6= zj if i 6= j and PziΨ 6= 0. Since
A and Q strongly commute, Pzi

Ψ ∈ Ker(A − λ) \ {0}. On the other hand,
we have 〈Pzi

Ψ, Pzj
Ψ〉H = 0 if (i 6= j). Thus Pz1Ψ, . . . , PzN

Ψ are linearly
independent. As a result, we have Nλ ≥ N . But it is a contradiction. ¤

Proof of Theorem 2.5. Let Ψ ∈ Ker(A−λ)\{0}. Since dimKer(A−λ) = 1,
there is a unique z0 ∈ Z such that Pz0Ψ 6= 0 by Lemma 6.1. Now we
set z0 6= 0. By assumptions of Theorem 2.5, it follows that Γb(τ)Pz0Ψ ∈
Ker(A−λ)\{0}. Since Pz0Ψ ∈ Hq(z0) and Γb(τ)Pz0Ψ ∈ Hq(−z0), we have
〈Pz0Ψ,Γb(τ)Pz0Ψ〉 = 0. In particular Pz0Ψ and Γb(τ)Pz0Ψ are linearly
independent. Thus we have dimKer(A − λ) ≥ 2. But it is a contradiction.
Therefore we have Ψ ∈ Hq(0). ¤

APPENDIX A

In this section, we introduce some facts which are often used in this
paper and are well known. We use the same notations and symbols as in
Section 2. Let X and Y be Hilbert spaces.
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Proposition A.1 ([3, Proposition 4.24], [4, Lemma 6.32]) Let T be a
non-negative self-adjoint operator on X with ker T = {0}. If u ∈ D(T−1/2),
then

∥∥A(u)Ψ
∥∥ ≤ ∥∥T−1/2u

∥∥∥∥dΓb(T )1/2Ψ
∥∥,

∥∥A(u)†Ψ
∥∥ ≤ ∥∥T−1/2u

∥∥∥∥dΓb(T )1/2Ψ
∥∥ +

∥∥u
∥∥∥∥Ψ

∥∥,

for all Ψ ∈ D(dΓb(T )1/2). Moreover if u, v ∈ D(T ) ∩D(T−1/2), then

∥∥A(u)]A(v)]Ψ
∥∥ ≤ C

∥∥(dΓb(T ) + 1)Ψ
∥∥(∥∥T−1/2u)

∥∥ +
∥∥u

∥∥)

× (∥∥T−1/2v
∥∥ +

∥∥v
∥∥ +

∥∥Tv
∥∥ +

∥∥T 1/2v
∥∥)

,

for all Ψ ∈ D(dΓb(T )). Here A(·)] denotes A(·) or A(·)† and C > 0 is a
constant independent of u, v, T and Ψ.

Proposition A.2 ([3, Proposition 4.26], [7, Lemma 2.7 and Lemma 2.8])
Let T be a densely defined closable operator on X and u ∈ D(T ) ∩D(T ∗).
Then:

(1) [dΓb(T ), A(u)] = −A(T ∗u), [dΓb(T ), A(u)†] = A(Tu)†,

on Fb,fin(D(T )).

(2) If u ∈ D(T ), then

Γb(T )A(u)† = A(Tu)†Γb(T ), on Fb,fin(D(T )).

Moreover, if T is isometry, then

Γb(T )A(u) = A(Tu)Γb(T ).

Proposition A.3 ([3, Theorem 4-55 and Theorem 4-56]) Let X and Y be
Hilbert spaces. Then there exists a unique unitary operator UX ,Y : Fb(X ⊕
Y) → Fb(X )⊗Fb(Y) satisfying the following (1) and (2) :

(1) UX ,YΩX⊕Y = ΩX ⊗ ΩY ,

where ΩX is the Fock vacuum in Fb(X ).
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(2)
UX ,YA(u⊕ v)]U−1

X ,Y = A(u)] ⊗ I + I ⊗A(v)],
(
u ∈ X , v ∈ Y)

,

and

UX ,YFb,fin(X ⊕ Y) = Fb,fin(X )⊗̂Fb,fin(Y).

Moreover, for all self-adjoint operators T on X and S on Y,

UX ,YdΓb(T ⊕ S)U−1
X ,Y = dΓb(T )⊗ I + I ⊗ dΓb(S).

Remark If T and S are non-negative in the above, then

dΓb(T )⊗ I + I ⊗ dΓb(S) = dΓb(T )⊗ I + I ⊗ dΓb(S).

Proposition A.4 ([3, Theorem 4-17 and Theorem 4-20]) Let A and B be
self-adjoint operators on K .

(1) A and B strongly commute if and only if dΓb(A) and dΓb(B) strongly
commute.

(2) Γb(e−itA) = e−itdΓb(A).

Let K = L2(Rd). Then Fb(L2(Rd)) is rewritten as follows:

Fb(L2(Rd)) = C⊕
∞⊕

n=1

L2
sym(Rdn),

where

L2
sym(Rdn) :=

{
f ∈ L2(Rdn) : f(kπ(1), . . . , kπ(n)) = f(k1, . . . , kn)

for a.e. k1, . . . , kn ∈ Rd and π ∈ Sn

}
.

For a.e. k ∈ Rd, an annihilation kernel a(k) act on Fb(L2(Rd)) is defined
as follows.

(a(k)Ψ)(n)(k1, . . . , kn) :=
√

n + 1Ψ(n+1)(k, k1, . . . , kn).

Proposition A.5 ([3, Proposition 8]) Let f be a measurable function such
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that 0 ≤ f(k) < ∞ for a.e. k ∈ Rd. Then Ψ ∈ D(dΓb(f)1/2) if and only if

∫

Rd

f(k)
∥∥a(k)Ψ

∥∥2dk < ∞.

In that case

∥∥dΓb(f)1/2Ψ
∥∥2 =

∫

Rd

f(k)
∥∥a(k)Ψ

∥∥2dk.

APPENDIX B

In this section, we introduce some facts about essential self-adjointness
and essential spectrum which are used in Section 3 and Section 4.

For n ∈ N ∪ {0}, let Xn be a Hilbert space and X :=
⊕∞

n=0 Xn. We set

Xfin :=
{
Ψ = {Ψ(n)}∞n=0 ∈ X : ∃N such that Ψ(n) = 0 for all n ≥ N + 1

}
.

The number operator NX is defined by

D(NX ) :=
{

Ψ ∈ X :
∞∑

n=0

n2
∥∥Ψ(n)

∥∥2

Xn
< ∞

}
,

(NXΨ)(n) := nΨ(n),
(
Ψ ∈ D(NX ), n ∈ N ∪ {0}).

For n ∈ N ∪ {0}, let An be a self-adjoint operator on Xn, and set A :=⊕∞
n=0 An. Let B be a symmetric operator on X . We identify Ψ(n) ∈ Xn as

Ψ(n) = {0, . . . , 0,Ψ(n), 0, . . . } ∈ X .

Proposition B.1 ([2]) Suppose that the following (1)–(3) hold :

(1) Xfin ⊂ D(B) and A + B is bounded from below on D(A) ∩ Xfin.
(2) There exists a p ∈ N such that

〈Ψ(n), BΨ(m)〉X = 0,
(
Ψ ∈ Xfin, whenever |n−m| ≥ p

)
.

(3) There exist a constant c > 0 and a linear operator L on X such that
D(((A + B) ¹ D(A) ∩ Xfin)∗) ⊂ D(L), Ran(L ¹ D(L) ∩ Xn) ⊂ Xn and
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|〈Φ, BΨ〉| ≤ c
∥∥LΦ

∥∥∥∥(NX + 1)2Ψ
∥∥,

(
Ψ ∈ Xfin, Φ ∈ D(L)

)
.

Then A + B is essentially self-adjoint on D(A) ∩ Xfin.

Let K and X be Hilbert spaces. We consider the Hilbert space K ⊗
Fb(X ). Let A be a bounded from below self-adjoint operator on K and S

be a non-negative self-adjoint operator on X with Ker S = {0}. Then

H0 := A⊗ 1 + 1⊗ dΓb(S)

is self-adjoint on D(A⊗1)∩D(1⊗dΓb(S)). Let HI be a symmetric operator
on K ⊗Fb(X ) and

H := H0 + HI .

Let us recall the notion of a weak commutator.

Definition B.2 ([5]) Let X be a Hilbert space. Let A and B be densely
defined linear operators on X . If there exists a dense subspace Y and a
linear operator K such that Y ⊂ D(K) ∩ D(A) ∩ D(A∗) ∩ D(B) ∩ D(B∗)
and

〈A∗ψ, Bφ〉 − 〈B∗ψ, Aφ〉 = 〈ψ, Kφ〉, (
ψ, φ ∈ Y

)
,

then we say that the couple 〈A,B〉 has the weak commutator on Y defined
by

[A,B]w,Y := K ¹ Y .

The next proposition gives a sufficient condition for 〈A,B〉 to have a weak
commutator.

Proposition B.3 ([5]) Let X be a Hilbert space and D be a dense subspace
of X . Let A and B be densely defined linear operators on X such that
D ⊂ D(A) ∩ D(B) ∩ D(A∗) ∩ D(B∗). Assume that there exist a densely
defined closed linear operator C on X and a core EC of C with the following
properties:

(1) EC ⊂ D ⊂ D(C).
(2) A and B are C-bounded on EC .
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(3) EC ⊂ D(AB) ∩D(BA) and K := [A,B] ¹ EC is C-bounded on EC .
(4) D(A∗B∗) ∩D(B∗A∗) is dense in X .

Then K is closable with D(C) ⊂ D(K) and 〈A,B〉 has a weak commutator
on D which is given by

[A,B]w,D = K ¹ D.

Proposition B.4 ([5]) Suppose that following (1) and (2) hold.

(1) H is self-adjoint and bounded below.
(2) For any u ∈ D(S) ∩D(S−1/2), the couple 〈HI , I ⊗A(u)†〉 has the weak

commutator [HI , I⊗A(u)†]w,D(H) on D(H). Furthermore, for any Ψ ∈
D(H), and any sequences {un}∞n=1 ⊂ D(S)∩D(S−1/2) such that

∥∥un

∥∥ =
1, w-limn→∞ un = 0, and

lim
n→∞

[HI , I ⊗A(un)†]w,D(H)Ψ = 0.

If σ(S) = [0,∞), then

σ(H) = σess(H) = [E0(H),∞).
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