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On the class of projective surfaces of general type
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Abstract. Let S be a smooth complex projective surface of general type, H be a

very ample divisor on S and m(S, H) be the class of (S, H). In this paper, we study

a lower bound for m(S, H)− 3H2 and we improve an inequality obtained by Lanteri.

We also study (S, H) with each value of m(S, H)− 3H2 and exhibit some examples.

Key words: Class, surfaces of general type, very ample divisor, sectional genus, ∆-

genus.

1. Introduction

Let S be a smooth complex projective surface, H be a very ample divisor
on S, and m(S,H) be its class, i.e. the degree of the dual variety of S

(embedded via H). Then some relations between m(S,H) and H2 have
been studied by many authors (for example, [7], [8], [12], [13] and [16]). For
example, the following facts are known:

( i ) m(S,H) ≥ H2 − 1 holds. Moreover this equality holds if and only if
(S,H) is isomorphic to either (P2,OP2(1)) or (P2,OP2(2)).

( ii ) m(S,H) = H2 holds if and only if (S,H) is a scroll over a smooth
projective curve.

(iii) If m(S,H) ≤ 3H2 + 2, then one of the following is satisfied.
(a) S is ruled.
(b) m(S,H) = 3H2 and S is a minimal hyperelliptic or abelian sur-

face.
(iv) If S is a smooth elliptic surface with κ(S) = 1, then m(S,H) ≥ 3H2+6

holds.
( v ) If S is of general type, then m(S,H) ≥ 3H2 + 17.

In this paper we consider the case when S is of general type. We improve
the inequality in (v). Furthermore we study the structure of surfaces for
small values of m(S,H) − 3H2 and exhibit some examples. In Section 4,
we study (S,H) with m(S,H) − 3H2 ≤ 24 first of all. Here we note that
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by using the method in this paper we can also get possible (S,H) with
m(S,H)− 3H2 ≥ 25.

The authors would like to thank Kakeru Hashimoto for his assistance
and the referee for giving some useful comments.

2. Preliminaries

In this paper, we work over the field of complex numbers C. We use
the customary notation in algebraic geometry. The words “line bundles”
and “(Cartier) divisors” are used interchangeably. For a smooth projective
surface S and a very ample divisor H on S, let g(S,H) be the sectional
genus of (S,H), KS be the canonical divisor of S, m(S,H) be the class of
(S,H), and χ(S) be the topological Euler characteristic. Let q(S) be the
irregularity of S and pg(S) be the geometric genus of S.

It is known that these invariants satisfy the following (see [12, (1.3)]):

χ(S) = 4(1− g(S,H)) + m(S,H)−H2.

By using the genus formula and Noether’s formula, we also have

m(S,H) = 3H2 + χ(S) + 2KSH

= 3H2 + 12χ(OS)−K2
S + 2KSH. (2.1)

In this paper, we will only consider the case when S is of general type.
Then we have the well-known inequalities for S, namely, χ(OS) ≥ 1 (Castel-
nuovo’s inequality [1, X.4]) and K2

S ≤ 9 χ(OS) (Miyaoka-Yau inequality [18],
[21]). By using these inequalities and Noether’s formula, we have

χ(S) = 12χ(OS)−K2
S ≥ 3χ(OS) ≥ 3. (2.2)

Furthermore we see from [20] that

H2 ≥ 5. (2.3)

Lemma 2.1 Let H be a very ample divisor on a smooth projective surface
S of general type. Then KSH ≥ 3.

Proof. See [12, (1.9)]. ¤
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Lemma 2.2 Let H be an ample divisor on a smooth projective surface S

of general type. If KSH ≤ 2, then S is minimal.

Proof. Suppose that S is not minimal. Let π : S → S̃ be the minimaliza-
tion of S. Set H̃ = π∗(H). Then H̃ is ample on S̃. So by the assumption
we have 2 ≥ KSH > KS̃H̃ ≥ 1. Therefore KS̃H̃ = 1, and hence π is the
blow-up at a point on S̃. So letting E be the exceptional curve, we have

H = π∗(H̃)− E, KS = π∗(KS̃) + E.

Since H̃2 = 1 by the Hodge index theorem, this implies H2 = H̃2+E2 =
0. But this contradicts the assumption that H is ample. ¤

Lemma 2.3 Let S be a smooth projective surface of general type and H

be a very ample line bundle on S. If χ(OS) ≤ 4, then h0(H) ≥ 5.

Proof. Since S is of general type, we have h0(H) ≥ 4. Moreover H2 ≥ 5 by
(2.3). If h0(H) = 4, then S becomes a hypersurface in P3 via the morphism
defined by |H|. But then q(S) = 0 and pg(S) =

(
H2−1

3

) ≥ 4. Hence
χ(OS) ≥ 5 and this contradicts the assumption that χ(OS) ≤ 4. So we get
the assertion. ¤

The ∆-genus We will use the ∆-genus theory in the following sections.
Let (X, L) be a polarized variety, which is a pair consisting of a projective
variety X of dimension n, and an ample line bundle L on it. Then the
∆-genus of (X, L) is defined to be ∆(X, L) = n + Ln − h0(L). We will use
the following theorem ([6, Chapter I, (3.5))]):

Theorem 2.1 Let (S,H) be a polarized surface. Assume that (S,H) has
a ladder and g(S,H) ≥ ∆(S,H). If H2 ≥ 2∆(S,H) + 1, then g(S,H) =
∆(S,H).

Remark 2.1 If S is smooth and H is very ample, then (S,H) always has
a ladder ([6]).

We also use the following theorem, which is called the double point
formula.

Theorem 2.2 Let L be a very ample line bundle on a smooth connected
projective surface S. Let d = L2. Assume that Γ(L) embeds S in PN with
N ≥ 4. Then
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d(d− 5)− 10(g(S,L)− 1) + 12χ(OS) ≥ 2K2
S

with equality if N = 4.

Proof. See [2, Lemma 8.2.1]. ¤

Definition 2.1 A smooth projective surface S is called a numerical
Godeaux surface (resp. numerical Campedelli surface) if S is a minimal
surface of general type with q(S) = pg(S) = 0 and K2

S = 1 (resp. K2
S = 2).

3. Inequality for the class of surfaces of general type

In this section we are going to prove the following.

Theorem 3.1 Let S be a smooth projective surface of general type and H

be a very ample divisor. Then the following hold.

( i ) If m(S,H)− 3H2 is odd, then m(S,H)− 3H2 ≥ 19.
( ii ) If m(S,H)− 3H2 is even, then m(S,H)− 3H2 ≥ 22.

Proof. From (2.1) we have m(S,H) − 3H2 = χ(S) + 2KSH. It is known
that m(S,H)− 3H2 ≥ 17 ([12, (1.10)]).

(a) First assume that m(S,H)−3H2 = 17. Then χ(S)+2KSH = 17. Since
κ(S) = 2, we have 3 ≤ χ(S) ≤ 11 and 3 ≤ KSH ≤ 7 by (2.2) and Lemma
2.1.

If KSH = 3, then χ(S) = 11 and 1 ≤ χ(OS) ≤ 3 by (2.2) again. If
χ(OS) = 1, then K2

S = 1 by Noether’s formula. So we have 5 ≤ H2 ≤ 9
from (2.3) and the Hodge index theorem for H and KS . Since KSH + H2

is even by genus formula, we get H2 = 5, 7 or 9. Similarly if χ(OS) = 2 or
3, then K2

S = 13 or 25 respectively. But in either cases, it is impossible by
the Hodge index theorem because H2 ≥ 5.

In this way, we can also study the case of 4 ≤ KSH ≤ 7, and we get
only the following possibilities:

KSH χ(S) χ(OS) K2
S H2

3 11 1 1 5, 7, 9
5 7 1 5 5
7 3 1 9 5
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(a.1) Consider the case H2 = 5. Then by Lemma 2.3 we get h0(H) ≥ 5,
and ∆(S,H) = 7 − h0(H) ≤ 2. Since g(S,H) ≥ 5 for the case H2 = 5 in
the above table, we have g(S,H) > ∆(S,H) and H2 ≥ 2∆(S,H) + 1. This
implies g(S,H) = ∆(S,H) by Theorem 2.1, but it’s a contradiction.

(a.2) For the case H2 = 7, we have h0(H) ≥ 5 by Lemma 2.3. By the same
argument as in (a.1), the case of h0(H) ≥ 6 cannot occur. So it remains to
consider the case when h0(H) = 5. Since KSH = 3, we can show that S

is minimal. Actually assume that S is not minimal. Let π : S → S̃ be the
blow-down of a (−1)-curve E and let H̃ = π∗(H). Then

H = π∗(H̃)− aE, KS = π∗(KS̃) + E

for some a ≥ 1. In particular, we have KS̃H̃ ≤ 2, (H̃)2 ≥ 8 and K2
S̃

= 2.
But this is impossible by the Hodge index theorem. So we see that S is a
minimal surface of degree 7 in P4. For such surfaces, there is a classification
(see [9]) and we see that this case also cannot occur.

(a.3) Finally we consider the case H2 = 9. Then (KSH)2 = K2
SH2, so by

the Hodge index theorem, H is numerically equivalent to some multiples of
KS . Clearly H ≡num 3KS . Thus KS is ample. It follows that h1(H) =
h1(KS −H) = 0 and h2(H) = h0(KS −H) = 0 by the Kodaira vanishing
theorem. Hence χ(H) = h0(H). On the other hand, the Riemann-Roch
theorem gives χ(H) = 1 + (1/2)(9 − 3) = 4. We conclude that h0(H) = 4.
But this case cannot occur by Lemma 2.3 since χ(OS) = 1.

(b) Assume that m(S,H) − 3H2 = 18. By the same argument as in (a)
above, we get the following six possibilities:

KSH χ(S) χ(OS) K2
S H2

(b.1) 3 12 1 0 2k + 5 with k ≥ 0
(b.2) 4 10 1 2 6
(b.3) 4 10 1 2 8
(b.4) 5 8 1 4 5
(b.5) 6 6 1 6 6
(b.6) 7 4 1 8 5
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The case (b.1): Since K2
S = 0, S is not a minimal. Let π : S → S̃ be the

blow-down of a (−1)-curve E, and set H̃ = π∗(H). Then KS̃H̃ ≤ 2, H̃2 ≥ 6
and K2

S̃
= 1. But it contradicts the Hodge index theorem for H̃ and KS̃ .

The case (b.4) or (b.6): Then H2 = 5. The same argument as in the case
(a.1) above shows that there are no surfaces satisfying each conditions in
the table.

The case (b.2) or (b.5): Then H2 = 6 and g(S,H) = 6 or 7. Suppose
that h0(H) ≥ 6. Then ∆(S,H) ≤ 2, and hence H2 > 2∆(S,H) + 1 and
g(S,H) > ∆(S,H). This implies g(S,H) = ∆(S,H) by Theorem 2.1, which
is a contradiction. Thus h0(H) = 5, so that S is a surface of degree 6 in P4.
But there are also no surfaces of general type by the classification (see [9]).
Hence the case of h0(H) = 5 also cannot occur.

The case (b.3): Using the Hodge index theorem, we have H ≡num 2KS .
Especially KS is ample. It follows that h1(H) = h1(KS − H) = 0 and
h2(H) = h0(KS−H) = 0 by the Kodaira vanishing theorem. Hence χ(H) =
h0(H). On the other hand, the Riemann-Roch theorem gives χ(H) = 3. We
conclude that h0(H) = 3, but this is impossible because κ(S) = 2.

Therefore we see that m(S,H)−3H2≥19 and we get the assertion of (i).

(c) Assume that m(S,H)−3H2 is even. Then by the above argument we see
that m(S,H)− 3H2 ≥ 20. We consider the case when m(S,H)− 3H2 = 20.
In this case we get only the following possibilities:

KSH χ(S) χ(OS) K2
S H2

(c.1) 3 14 1 −2 2k + 5 with k ≥ 0
(c.2) 4 12 1 0 2k + 6 with k ≥ 0
(c.3) 5 10 1 2 5, 7, 9, 11
(c.4) 6 8 1 4 6, 8
(c.5) 7 6 1 6 5, 7
(c.6) 8 4 1 8 6, 8

The case (c.1): Clearly S is not minimal. Let π : S → S̃ be the blow-down
of a (−1)-curve E and let H̃ = π∗(H). Then 3 = KSH > KS̃H̃. Moreover
since H̃ is ample, S̃ is minimal by Lemma 2.2. But since K2

S̃
= −1, this is

impossible.
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The case (c.2): Clearly S is not minimal. Let π : S → S̃ be the blow-down
of a (−1)-curve E, and set H̃ = π∗(H). Then we have

(KS̃H̃)2 ≤ 9, H̃2 ≥ H2 + 1 and K2
S̃

= 1.

By the Hodge index theorem for H̃ and KS̃ , we see that H2 = 6 or 8.
Consider the case H2 = 6. Then g(S,H) = 6. We see from Lemma 2.3 that
h0(H) ≥ 5 since χ(OS) = 1. Now we check whether this satisfies the double
point formula (see Theorem 2.2). We have

H2(H2 − 5)− 10(g(S,H)− 1) + 12χ(OS)− 2K2
S

= 6 · (6− 5)− 10 · (6− 1) + 12 · 1− 2 · 0 = −32 < 0.

Hence this case cannot occur. Similarly the case H2 = 8 does not satisfy
the double point formula. Hence (c.2) is impossible.

Moreover we see from Theorem 2.2 that all of the cases in the above table
cannot occur. Therefore there are no surfaces (S,H) with m(S,H)−3H2 =
20. This completes the proof. ¤

4. Polarized surfaces (S,H) with 19 ≤ m(S,H) − 3H2 ≤ 24

Let S be a smooth projective surface of general type and H be a very
ample line bundle on S. In this section, we study (S,H) with 19 ≤ m(S,H)−
3H2 ≤ 24.

4.1. The case of m(S,H) − 3H2 = 19
By the same arguments as in the proof of Theorem 3.1, we first get the

following possibilities:
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KSH χ(S) χ(OS) K2
S H2

(d.1) 3 13 1 −1 2k + 5 with k ≥ 0
(d.2) 4 11 1 1 6
(d.3) 4 11 1 1 8
(d.4) 4 11 1 1 10
(d.5) 4 11 1 1 12
(d.6) 4 11 1 1 14
(d.7) 4 11 1 1 16
(d.8) 5 9 1 3 5
(d.9) 5 9 1 3 7
(d.10) 6 7 1 5 6
(d.11) 7 5 1 7 5
(d.12) 7 5 1 7 7
(d.13) 8 3 1 9 6

The case (d.1): This is impossible by the same argument as (c.1) in the
proof of Theorem 3.1.

The case (d.2): We see from Lemma 2.3 that h0(H) ≥ 5 since χ(OS) = 1.
We check whether this case satisfies the double point formula. We have

H2(H2 − 5)− 10(g(S,H)− 1) + 12χ(OS)− 2K2
S

= 6 · (6− 5)− 10 · (6− 1) + 12 · 1− 2 · 1 = −34 < 0.

Hence this case cannot occur.
Similarly all of the case except for (d.5), (d.6) and (d.7) are impossible.

For the cases (d.5), (d.6) and (d.7), we see that S is minimal by the
Hodge index theorem. If q(S) > 0, then K2

S ≥ 2pg(S) ≥ 2q(S) ≥ 2 holds
by [4, Théorème 6.1]. Hence K2

S = 1 implies q(S) = 0. Therefore S is a
numerical Godeaux surface because χ(OS) = 1.

4.2. The case of m(S,H) − 3H2 = 21
The same argument as in 4.1 above shows that there are the following

possibilities:
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KSH χ(S) χ(OS) K2
S H2

(e.1) 3 15 1 −3 2k + 5 with k ≥ 0
(e.2) 4 13 1 −1 2k + 6 with k ≥ 0
(e.3) 5 11 1 1 2k + 13 with 0 ≤ k ≤ 6
(e.4) 6 9 1 3 12

The case (e.1): As in (c.1), this is impossible.

The case (e.2): Since K2
S = −1, S can be blown down at least twice. But

then the Hodge index theorem shows that this case cannot occur.

The case (e.3): We see that S is a numerical Godeaux surface.

The case (e.4): We have H ≡num 2KS . Then h0(H) = χ(H) = 4, so that S

is in P3. But this is impossible by Lemma 2.3 since χ(OS) = 1.

4.3. The case of m(S,H) − 3H2 = 22
We get the following possibilities:

KSH χ(S) χ(OS) K2
S H2

(f.1) 3 16 1 −4 2k + 5 with k ≥ 0
(f.2) 4 14 1 −2 2k + 6 with k ≥ 0
(f.3) 5 12 1 0 2k + 5 with k ≥ 0
(f.4) 6 10 1 2 12, 14, 16, 18

The case (f.1): As in (c.1), this case cannot occur.

The case (f.2): In view of Lemma 2.2, S can be blown down at most twice.
But then the self-intersection number of the canonical divisor on the blow-
down surface is not positive. Hence this case is impossible.

The case (f.3): Using (2.3), the Hodge index theorem and Theorem 2.2, we
get H2 = 13 or 15 by the same argument as in (c.2). We investigate the
structure of S. Clearly S is not minimal. Let π : S → S̃ be the blow-down of
a (−1)-curve E and put H̃ = π∗(H). We see that S̃ is minimal by the Hodge
index theorem. Since χ(OS̃) = 1 and K2

S̃
= 1, we get q(S̃) = pg(S̃) = 0.

Therefore S̃ is a numerical Godeaux surface.

The case (f.4): We see that S is minimal by the Hodge index theorem.
Moreover, if q(S) > 0, then K2

S ≥ 2pg(S) ≥ 2q(S) holds by [4, Théorème
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6.1]. So we get pg(S) = 1 and q(S) = 1 if q(S) > 0. Hence S is a numerical
Campedelli surface or minimal surface with q(S) = pg(S) = 1.

4.4. The case of m(S,H) − 3H2 = 23
We get the following possibilities:

KSH χ(S) χ(OS) K2
S H2

(g.1) 3 17 1 −5 2k + 5 with k ≥ 0
(g.2) 4 15 1 −3 2k + 6 with k ≥ 0
(g.3) 5 13 1 −1 2k + 5 with k ≥ 0
(g.4) 6 11 1 1 2k + 12 with 0 ≤ k ≤ 12
(g.5) 7 9 1 3 13 or 15

The case (g.1) (resp. (g.2)): As in (c.1) (resp. (f.2)), this is impossible.

The case (g.3): In this case, S can be blown down twice. Then we have
H2 = 5 or 7 by the Hodge index theorem. But both cases are impossible by
Theorem 2.2.

The case (g.4): We see that S is a numerical Godeaux surface.

The case (g.5): S is minimal by the Hodge index theorem.

4.5. The case of m(S,H) − 3H2 = 24
We get the following possibilities:

KSH χ(S) χ(OS) K2
S H2

(h.1) 3 18 1 −6 2k + 5 with k ≥ 0
(h.2) 4 16 1 −4 2k + 6 with k ≥ 0
(h.3) 5 14 1 −2 2k + 5 with k ≥ 0
(h.4) 6 12 1 0 2k + 6 with k ≥ 0
(h.5) 7 10 1 2 2k + 13 with 0 ≤ k ≤ 5
(h.6) 8 8 1 4 14 or 16

The case (h.1) (resp. (h.2) and (h.3)): As in (c.1) (resp. (f.2) and (e.2)),
this is impossible.

The case (h.4): As in (c.2), we get H2 = 2k + 12 with 0 ≤ k ≤ 6. The
structure of S is the same as (f.3).
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The case (h.5): We see that S is a numerical Campedelli surface or minimal
surface with q(S) = pg(S) = 1 as in (f.4).

The case (h.6): Consider the case of H2 = 16. Then we have H ≡num 2KS .
It follows that h0(H) = χ(H) = 5, so that S is in P4. But this is impossible
by Theorem 2.2.

For the case of H2 = 14, we see that S is minimal.

4.6. Summary
From the above results, we get the following (Table).

m(S, H)− 3H2 KSH χ(S) χ(OS) K2
S H2 structure of S

19 4 11 1 1 12, 14, 16 numerical Godeaux
surface

21 5 11 1 1 2k + 13 numerical Godeaux
(0 ≤ k ≤ 6) surface

22 5 12 1 0 13, 15 blow-up of a numerical
Godeaux surface

at a point

6 10 1 2 2k + 12 numerical Campedelli
(0 ≤ k ≤ 3) surface or

minimal surface with
q(S) = pg(S) = 1

23 6 11 1 1 2k + 12 numerical Godeaux
(0 ≤ k ≤ 12) surface

7 9 1 3 13, 15 minimal surface

24 6 12 1 0 2k + 12 blow-up of a numerical
(0 ≤ k ≤ 6) Godeaux surface

at a point

7 10 1 2 2k + 13 numerical Campedelli
(0 ≤ k ≤ 5) surface or

minimal surface with
q(S) = pg(S) = 1

8 8 1 4 14 minimal surface
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5. Some examples

5.1. Examples of the case where m(S,H) − 3H2 is odd
First we will give some examples of (S,H) with odd m(S,H)− 3H2.

(5.1.1) Let S be a numerical Godeaux surface which is torsion free and
has an ample canonical bundle (see e.g. [5], [14, Example 7.4]). Then we
can show that 4KS is very ample by Reider’s theorem ([19]). In fact, if 4KS

is not very ample, then there exists an effective divisor Z on S such that
Z2 = 1 and 3KS ≡num 3Z. Then KS ≡num Z and since S is torsion free,
we have KS = Z, which is a contradiction because pg(S) = 0. In this case
we get

m(S, 4KS)− 3 · (4KS)2 = 12χ(OS)−K2
S + 2KS(4KS) = 19.

(5.1.2) Let S be a numerical Godeaux surface with KS ample (e.g. the
Godeaux surface [1, Examples X.3 (4)]). It is known that nKS is very
ample for any n ≥ 5 ([3]). So we have

m(S, nKS)− 3 · (nKS)2 = 11 + 2n ≥ 21.

5.2. Examples of the case where m(S,H) − 3H2 is even
Next we shall show that there exists an example of (S,H) such that

m(S,H)− 3H2 is even. First we prove the following proposition.

Proposition 5.1 Let M be a numerical Godeaux surface with KM ample.
Then there exists the blow-up π : S → M at a point with (−1)-curve E such
that H := π∗(mKM )−E is very ample for m ≥ 6. Moreover if M is torsion
free, then π∗(5KM )− E is also very ample.

Proof. First we see from [17, Lemma 6] that |2KM | has no fixed part and
has an irreducible and reduced member. We also note that (2KM )2 > 2
and g(M, 2KM ) = 4 > 0 = q(M). Hence by [22, (1.8)], there is the blow-up
π : S → M at a point on M with (−1)-curve E such that 2π∗(KM ) − E

is ample. Since KM is ample, π∗(KM ) is nef and big. Here we set H :=
π∗(mKM )− E. Then we have
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H = π∗(mKM )− E

= π∗(KM ) + E + (m− 1)π∗(KM )− 2E

= KS + (m− 1)π∗(KM )− 2E.

Let D = (m − 1)π∗(KM ) − 2E. Then D2 > 9 for every m ≥ 5 and we
have

D = (m− 1)π∗(KM )− 2E = (m− 5)π∗(KM ) + 2(2π∗(KM )− E).

Therefore D is ample for m ≥ 5.

(a) First assume that m ≥ 6. For any effective divisor Z on S, we have

DZ = (m− 5)π∗(KM )Z + 2(2π∗(KM )− E)Z ≥ 2.

If H is not very ample, then there exists an effective divisor Z such that
DZ = 2 and Z2 = 0 by Reider’s theorem. Then KMπ∗(Z) = π∗(KM )Z = 0
and (2π∗(KM ) − E)Z = 1. It follows that π∗(Z) = 0 and Z is irreducible
and reduced. This implies that Z is (−1)-curve, but Z2 = 0 and this is a
contradiction. So we conclude that H = π∗(mKM ) − E is very ample for
m ≥ 6.

(b) Finally we consider the case m = 5. Then D = 2(2π∗(KM ) − E).
For any effective divisor Z on S, we have DZ ≥ 2. Suppose that there
exists an effective divisor Z on S such that DZ = 2 and Z2 = 0. Then
(2π∗(KM )−E)Z = 1 and hence Z is irreducible and reduced but not (−1)-
curve. This implies π∗(KM )Z = KMπ∗(Z) > 0. Since 2π∗(KM )Z = 1+EZ,
we have EZ ≥ 1 and we can write Z = π∗(π∗(Z)) − aE with a ≥ 1. Thus
EZ = a and 2π∗(KM )Z = 1 + EZ = 1 + a. It follows that

KMπ∗(Z) = π∗(KM )Z =
1 + a

2
, π∗(Z)2 = Z2 + a2 = a2.

By using the Hodge index theorem for KM and π∗(Z), we have ((1 +
a)/2)2 ≥ 1 · a2. This implies a = 1 and therefore KM ≡num π∗(Z).

By the assumption that M is torsion free, KM = π∗(Z) holds, but this
contradicts the assumption that pg(M) = 0.

Thus H = π∗(5KM )− E is very ample by Reider’s theorem. ¤
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(5.2.1) By [10] there exists an example of a minimal surface S of general
type such that q(S) = pg(S) = 0, πalg

1 (S) ∼= Z/2Z, K2
S = 2 and KS is ample.

So we see from [11, Theorem 0.4] that 3KS is very ample. Then we get

m(S, 3KS)− 3 · (3KS)2 = 22.

(5.2.2) Let S be a numerical Campedelli surface with KS ample. It is
known that such a surface exists (see e.g. [10], [15, Proposition 4.1]). Then
nKS is very ample if n ≥ 4 (see [11, Corollary 0.1]). Since χ(OS) = 1 and
K2

S = 2, we have

m(S, nKS)− 3 · (nKS)2 = 10 + 4n ≥ 26.

(5.2.3) Again let M be the numerical Godeaux surface as (5.1.1). Then
there exists the blow-up π : S → M at a point of M such that H =
π∗(mKM )− E is very ample for m ≥ 5 by Proposition 5.1, where E is the
(−1)-curve. Since χ(OS) = 1, K2

S = 0 and KSH = mK2
M + 1 = m + 1, we

get

m(S,H)− 3H2 = 12 + 2(m + 1) ≥ 24.
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