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The extended zero-divisor graph of a commutative ring II
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Abstract. Let R be a commutative ring with identity, and let Z(R) be the set of

zero-divisors of R. The extended zero-divisor graph of R is the undirected (simple)

graph Γ′(R) with the vertex set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and

y are adjacent if and only if either Rx ∩ Ann(y) 6= (0) or Ry ∩ Ann(x) 6= (0). In this

paper, we continue our study of the extended zero-divisor graph of a commutative ring

that was introduced in [4]. We show that the extended zero-divisor graph associated

with an Artinian ring is weakly perfect, i.e., its vertex chromatic number equals its

clique number. Furthermore, we classify all rings whose extended zero-divisor graphs

are planar.

Key words: Extended zero-divisor graph, Clique number, Chromatic number, Planar

graph.

1. Introduction

The study of algebraic structures, using the properties of graphs, became
an exciting research topic in the past 20 years, leading to many fascinating
results and questions. There are many papers on assigning a graph to a
ring, for instance, see [1], [3], [7], [8] and [10].

Throughout this paper, R denotes a unitary commutative ring which is
not an integral domain. We denote by Max(R), Min(R), Nil(R) and U(R),
the set of all maximal ideals of R, the set of all minimal prime ideals of R,
the set of all nilpotent elements of R and the set of all invertible elements
of R, respectively. Two ideals I and J of a ring R are called coprime if
I + J = R. The ring R is said to be reduced if it has no non-zero nilpotent
element. For every subset A of R, we denote the annihilator of A by Ann(A).
Moreover, for the subset A of R we let A∗ = A \ {0}. For any undefined
notation or terminology in ring theory, we refer the reader to [2], [5].

Let G = (V, E) be a graph, where V = V (G) is the set of vertices and
E = E(G) is the set of edges. The graph H = (V0, E0) is a subgraph of
G if V0 ⊆ V and E0 ⊆ E. Moreover, H is called an induced subgraph by
V0, denoted by G[V0], if V0 ⊆ V and E0 = {{u, v} ∈ E | u, v ∈ V0}. Let
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G1 and G2 be two disjoint graphs. The join of G1 and G2, denoted by
G1 ∨G2, is a graph with the vertex set V (G1 ∨G2) = V (G1) ∪ V (G2) and
edge set E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}.
Also G is called a null graph if it has no edge. A graph G is said to be
planar if it can be drawn on the plane in such a way that its edges intersect
only at their endpoints. A complete bipartite graph of part sizes m,n is
denoted by Km,n. If m = 1, then the complete bipartite graph is called
a star graph. Also, a complete graph of n vertices is denoted by Kn. A
clique of G is a maximal complete subgraph of G and the number of vertices
in the largest clique of G, denoted by ω(G), is called the clique number of
G. For a graph G, let χ(G) denote the vertex chromatic number of G, i.e.,
the minimal number of colors which can be assigned to the vertices of G in
such a way that every two adjacent vertices have different colors. Clearly,
for every graph G, ω(G) ≤ χ(G). A graph G is said to be weakly perfect if
ω(G) = χ(G). For any undefined notation or terminology in graph theory,
we refer the reader to [11].

The extended zero-divisor graph of a commutative ring R is the undi-
rected (simple) graph Γ′(R) with the vertex set Z(R)∗ = Z(R)\{0}, and two
distinct vertices x and y are adjacent if and only if either Rx∩Ann(y) 6= (0)
or Ry ∩ Ann(x) 6= (0). This graph was first introduced and studied in [4].
In this paper, we continue our study of the extended zero-divisor graph of
a commutative ring. We show that the extended zero-divisor graph associ-
ated with an Artinian ring is weakly perfect. Moreover, we give an explicit
formula for the vertex chromatic number of Γ′(R). Furthermore, we classify
all rings whose extended zero-divisor graphs are planar.

2. The Extended Zero-Divisor Graph of an Artinian Ring Is
Weakly Perfect

The goal of this section is to study the coloring of the extended zero-
divisor graphs of Artinian rings. For an Artinian ring R, it is shown that the
graph Γ′(R) is weakly perfect. Moreover, the exact value of the χ(Γ′(R)) is
given. Our starting result will be used frequently.

Lemma 2.1 Let R ∼= D1×· · ·×Dn, where n ≥ 2 be a positive integer and
Di be an integral domain, for every 1 ≤ i ≤ n. Then Γ′(R) is a complete
(2n − 2)-partite graph.
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Proof. Let X, Y ∈ V (Γ′(R)). Then X = (x1, . . . , xn) and Y = (y1, . . . , yn),
where xi, yi ∈ Di for every 1 ≤ i ≤ n. Define the relation ∼ on V (Γ′(R))
as follows: X ∼ Y , whenever “xi = 0 if and only if yi = 0”, for every
1 ≤ i ≤ n. It is easily seen that ∼ is an equivalence relation on V (Γ′(R)).
By [X], we mean the equivalence class of X. Let X = (x1, . . . , xn) be an
arbitrary vertex of V (Γ′(R)). Then for every component xi, 1 ≤ i ≤ n, we
have either xi = 0 or xi 6= 0. Hence, the number of all selections for X is
2n − 2 (the other selections for X are not vertices). This implies that the
number of equivalence classes is 2n − 2. Suppose that [X] and [Y ] are two
distinct arbitrary equivalence classes. It is enough to show that there is no
adjacency between two vertices of [X] and every vertex of [X] is adjacent
to all vertices of [Y ]. To see this, let X1 and X2 be two vertices of [X]
and Y1 be a vertex of [Y ]. So there exist elements xi, yi and zi of Di, such
that X1 = (x1, . . . , xn), X2 = (y1, . . . , yn) and Y1 = (z1, . . . , zn), for all
1 ≤ i ≤ n. Thus xi = 0 if and only if yi = 0, for every 1 ≤ i ≤ n. This
implies that Ann(X1) = Ann(X2), and so by Part (2) of [4, Lemma 2.2 ],
X1 and X2 are not adjacent. Also, since X1 � Y1, xi = 0 and zi 6= 0, for
some 1 ≤ i ≤ n. Hence Ann(X1) 6= Ann(Y1). By Part (2) of [4, Lemma
2.2], X1 is adjacent to Y1, as desired. ¤

In view of Lemma 2.1, we have the following corollaries.

Corollary 2.2 Let R be a reduced ring with |Min(R)| < ∞ and suppose
that p, q are coprime, for every two distinct p, q ∈ Min(R). Then the follow-
ing statements are equivalent :
(1) |Min(R)| = n

(2) Γ′(R) is a complete (2n − 2)-partite graph.

Proof. The proof is obtained by Lemma 2.1 and [9, Theorem 1.4]. ¤

Corollary 2.3 Let R be a ring such that R ∼= D1× · · · ×Dn, where Di is
an integral domain, for every 1 ≤ i ≤ n. Then

ω(Γ′(R)) = χ(Γ′(R)) = 2n − 2.

Proof. The proof follows from Lemma 2.1. ¤

By [2, Theorem 8.7], every Artinian reduced ring is a direct product of
finitely many fields. Thus, we may state the following corollary.
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Corollary 2.4 Let R be a reduced Artinian ring. Then

ω(Γ′(R)) = χ(Γ′(R)) = 2|Max(R)| − 2.

To state our main result in this section, we need to fix some notations.

Notation Let R be a ring such that R = R1 × · · · × Rn, where Ri is a
local ring, for every 1 ≤ i ≤ n. We define an n× n matrix M(Γ′(R)) whose
entries aij are given by

aij =





|Rj | if i < j,

|Nil(Rj)| − 1 if i = j,

|U(Rj)|+ 1 if i > j.

In other notation, we have

M(Γ′(R)) =




|Nil(R1)| − 1 |R2| · · · |Rn|
|U(R1)|+ 1 |Nil(R2)| − 1 · · · |Rn|

...
...

...
...

|U(R1)|+ 1 |U(R2)|+ 1 · · · |Nil(Rn)| − 1




.

Let Vi = (ai1, . . . , ain) be the i-th row of M(Γ′(R)). Put Λi = Λ(Vi) =
ai1 · · · ain and Λ(Γ′(R)) =

∑n
i=1 Λi.

Now, we are ready to prove that ω(Γ′(R)) is weakly perfect, for every
Artinian ring R.

Theorem 2.5 Let R be an Artinian ring. Then

ω(Γ′(R)) = χ(Γ′(R)) = Λ(Γ′(R)) + 2|Max(R)| − 2.

Proof. By [2, Theorem 8.7], one can deduce that there exists a positive
integer n such that R = R1 × · · · × Rn, where Ri is an Artinian local ring,
for every 1 ≤ i ≤ n. We put:

A := {(x1, . . . , xn) ∈ R | xi ∈ Nil(Ri)∗, for some 1 ≤ i ≤ n} and
B := {(x1, . . . , xn) ∈ R | (x1, . . . , xn) ∈ Z(R)∗ and xi 6∈

Nil(Ri)∗, for all 1 ≤ i ≤ n}. One may easily check that V (Γ′(R)) = A ∪B,
A ∩ B = ∅ and so {A,B} is a partition of V (Γ′(R)). We Show that



The extended zero-divisor graph of a commutative ring II 399

Γ′(R) = Γ′(R)[A] ∨ Γ′(R)[B]. Indeed, we have the following claims:
Claim 1. Every vertex of Γ′(R)[A] is adjacent to the other vertices of

Γ′(R). Let x = (x1, . . . , xn) be a vertex of Γ′(R)[A]. Then xi ∈ Nil(Ri)∗

for some 1 ≤ i ≤ n and hence there exists a positive integer n, such that
xn

i = 0, xn−1
i 6= 0. Since (0, . . . , xn−1

i , . . . , 0) ∈ Rx ∩Ann(x), by Part (4) of
[4, Lemma 2.2], we conclude that x is adjacent to the other vertices.

Claim 2. Γ′(R)[A] is a complete subgraph of Γ′(R). It is easily seen
by the Claim 1.

Claim 3. Γ′(R)[B] is a complete (2n − 2)-partite subgraph of Γ′(R).
Let (x1, . . . , xn) be a vertex of Γ′(R)[B]. Then xi ∈ {0} ∪ U(Ri), for every
1 ≤ i ≤ n and (x1, . . . , xn) is not unit. By a similar argument to that of
proof of Lemma 2.1 one may partition V (Γ′(R)[B]) into (2n−2) equivalence
classes and show that Γ′(R)[B] is a complete (2n − 2)-partite subgraph of
Γ′(R).

Therefore, Γ′(R) = Γ′(R)[A] ∨ Γ′(R)[B] and so

ω(Γ′(R)) = χ(Γ′(R)) = ω(Γ′(R)[A]) + ω(Γ′(R)[B]) = |A|+ 2|Max(R)| − 2.

To complete the proof, we show that Λ(Γ′(R)) = |A|. Let

Ai = {(x1, . . . , xn) ∈ A | xi ∈ Nil(Ri)∗ and xj ∈ {0}∪U(Rj) for every j < i},

for every 1 ≤ i ≤ n. Clearly, A =
⋃n

i=1 Ai and Ai ∩ Aj = ∅, for every
1 ≤ i, j ≤ n and i 6= j. It is not hard to check that Λi = |Ai|, for every
1 ≤ i ≤ n. Thus |A| = ∑n

i=1 |Ai| =
∑n

i=1 Λi = Λ(Γ′(R)). ¤

The following corollary immediately follows from Theorem 2.5.

Corollary 2.6 Let R be an Artinian ring. Then

(1) R is local which is not a field if and only if Λ(Γ′(R)) 6= 0 and 2|Max(R)|−
2 = 0.

(2) R is reduced if and only if Λ(Γ′(R)) = 0.
(3) R is non-local and non-reduced if and only if Λ(Γ′(R)) 6= 0 and

2|Max(R)| − 2 6= 0.

Following [6], we know that Z(R) is finite if and only if either R is finite
or an integral domain. So for an Artinian local ring R if |Nil(R)| 6= 1, then
R is finite if and only if Nil(R) is finite. Also, for an Artinian ring R, R is
finite if and only if U(R) is finite. We use these facts to prove the following
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theorem which characterizes Artinian rings for which the clique number of
the extended zero-divisor graph is finite.

Theorem 2.7 Let R be an Artinian ring. Then ω(Γ′(R)) = χ(Γ′(R)) < ∞
if and only if one of the following statements holds:
(1) R is a reduced ring.
(2) R is a finite ring.

Proof. One side is clear. To prove the converse, suppose that ω(Γ′(R)) =
χ(Γ′(R)) < ∞. By Theorem 2.5, ω(Γ′(R)) = χ(Γ′(R)) = Λ(Γ′(R)) +
2|Max(R)| − 2. So 0 6 Λ(Γ′(R)) < ∞. Now, if Λ(Γ′(R)) = 0, then by
Corollary 2.6, R is a reduced ring. Also, if 0 < Λ(Γ′(R)) < ∞, then we
show that |R| < ∞. By [2, Theorem 8.7], R ∼= R1 × · · · × Rn, where Ri is
an Artinian local ring for every 1 ≤ i ≤ n. Therefore, it suffices to show
that |Ri| < ∞, for every 1 ≤ i ≤ n. Since 0 < Λ(Γ′(R)) < ∞, we deduce
that 0 < Λi < ∞, for some 1 ≤ i ≤ n. Since Λi = (|U(R1)| + 1) · · ·
(|U(Ri−1)| + 1)(|Nil(Ri)| − 1)|Ri+1| · · · |Rn|, one may easily check that
|Ri| < ∞, for every 1 ≤ i ≤ n. ¤

In what follow we describe our method to find the clique number and
the chromatic number of the extended zero-divisor graphs, for some finite
rings. Recall that the notations are the same as the notations in the proof
of Theorem 2.5.

Example 2.8 (1). Let R ∼= Z3 × Z9. Then A = {(0, 3), (0, 6), (1, 3),
(1, 6), (2, 3), (2, 6)} and B = {(1, 0), (2, 0), (0, 1), (0, 2), (0, 4), (0, 5), (0, 7),
(0, 8)}.

We have V (Γ′(R)) = A ∪B and A ∩B = ∅.
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Then Γ′(R) = Γ′(R)[A] ∨ Γ′(R)[B] and ω(Γ′(R)) = χ(Γ′(R)) = 8. On
the other hand, by Theorem 2.5,

M(Γ′(R)) =
[

0 9
3 2

]
.
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So Λ1 = 0, Λ2 = 6 and Λ(Γ′(R)) =
∑2

i=1 Λi = 6. Thus we have ω(Γ′(R)) =
χ(Γ′(R)) = Λ(Γ′(R)) + 2|Max(R)| − 2 = 6 + 22 − 2 = 8.

(2). Let R ∼= Z25. Then A = {5, 10, 15, 20} and B = ∅. So Γ′(R) =
Γ′(R)[A] and so ω(Γ′(R)) = χ(Γ′(R)) = 4.
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Also, by Theorem 2.5, we have

M(Γ′(R)) = [ 4 ].

So Λ1 = 4 and Λ(Γ′(R)) = Λ1 = 4. Thus we again obtain ω(Γ′(R)) =
χ(Γ′(R)) = Λ(Γ′(R)) + 2|Max(R)| − 2 = 4 + 21 − 2 = 4.

(3). Let R ∼= Z2 × Z5. Then A = ∅ and B = {(0, 1), (0, 2), (0, 3),
(0, 4), (1, 0)}. So Γ′(R) = Γ′(R)[B] and so ω(Γ′(R)) = χ(Γ′(R)) = 2.

s

s

s

s s

Γ′(Z2 × Z5)

On the other hand, by Theorem 2.5, we have

M(Γ′(R)) =
[

0 5
2 0

]
.

Thus, we again obtain Λ1 = 0, Λ2 = 0, Λ(Γ′(R)) =
∑2

i=1 Λi = 0 and
ω(Γ′(R)) = χ(Γ′(R)) = Λ(Γ′(R)) + 2|Max(R)| − 2 = 0 + 22 − 2 = 2.

3. When The Extended Zero-Divisor Graph is Planar?

As the planarity is an important invariant in graph theory, our concen-
tration in this section is on the planarity of the extended zero-divisor graphs.
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Indeed, we characterize all rings whose extended zero-divisor graphs are pla-
nar. We first study the case when R is reduced.

We begin with the following lemma.

Lemma 3.1 Let R be a reduced ring. If xn = xm for some x ∈ Z(R)∗,
where n,m are distinct positive integers, then R is decomposable.

Proof. With no loss of generality, assume that n < m. Since xn = xm for
some x ∈ Z(R)∗, we have xn(1− xm−n) = 0. Thus (1− xm−n) ∈ Ann(xn).
This implies that Rx + Ann(x) = R. As R is reduced, we conclude that R

is decomposable. ¤

To prove our results in this section, we need a celebrated theorem due
to Kuratowski.

Theorem 3.2 ([11, Theorem 6.2.2]) A graph is planar if and only if it
contains no subdivision of either K5 or K3,3.

Theorem 3.3 Let R be a ring. Then the following statements hold :
(1) If R ∼= R1 ×R2 ×R3, then Γ′(R) is not planar.
(2) If R ∼= R1 ×R2 and |Min(R)| ≥ 3, then Γ′(R) is not planar.

Proof. (1) Obviously, the vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) and
(1, 0, 1) forms K5 as a subgraph of Γ′(R).

(2) Let R ∼= R1 × R2. With no loss of generality, we may assume that
|Min(R2)| ≥ 2 and so Z(R2) 6= (0). If R2 is decomposable, then by Part
(1) the proof is complete. If R2 is indecomposable, then by Lemma 3.1, for
every x ∈ Z(R2)∗ xn 6= xm where n,m are distinct positive integers. So
|Rx| = |Ann(x)| = ∞, for every x ∈ Z(R2)∗. Since Rx ∩ Ann(x) = (0), we
deduce that Γ′(R) is not planar. ¤

Theorem 3.4 Let R be a reduced ring. Then the following statements are
equivalent :

(1) Γ′(R) is planar.
(2) |Min(R)| = 2 and one of minimal prime ideals of R has at most three

distinct elements.

Proof. (1) ⇒ (2) Suppose that Γ′(R) is planar. We show that |Min(R)| =
2. Suppose to the contrary, |Min(R)| ≥ 3. Let a ∈ Z(R)∗. If |Ra| =
|Ann(a)| = ∞, then Γ′(R) is not planar, a contradiction. Otherwise, R
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has a minimal ideal and so it is decomposable which contradicts Part (2) of
Theorem 3.3. So |Min(R)| = 2. Now, let p1 and p2 be two distinct minimal
prime ideals of R such that |p1| ≥ 4, |p2| ≥ 4. Since p1p2 = (0), we find K3,3

as a subgraph of Γ′(R),which is impossible. Thus one of the minimal prime
ideal of R must has at most three distinct elements.

(2) ⇒ (1) It is obtained by proof of [4, Theorem 4.1]. ¤

In the rest of this paper, we assume that R is non-reduced. But we first
note that by Part (5) of [4, Lemma 2.2 ], the subgraph induced by Nil(R)∗

is complete in Γ′(R). Therefore, to seek for planar extended zero-divisor
graphs associated with non-reduced rings we study non-reduced rings with
at most five nilpotent elements.

Lemma 3.5 Let R be a non-reduced ring and Γ′(R) is planar. Then the
following statements hold :
(1) If Γ′(R) is an infinite graph, then R is indecomposable.
(2) If R ∼= R1 ×R2, then |Nil(R)| = 2.

Proof. (1) Assume to the contrary, R ∼= R1 × R2, for some rings R1 and
R2. With no loss of generality, assume that a ∈ Nil(R1)∗. If |Z(R2)| =
∞, then the vertices of the set {(1, 0), (a, 0), (a, 1)} and the vertices of the
set {(0, 1), (0, b), (0, c)} form K3,3, where b, c ∈ Z(R2)∗, a contradiction.
If |Z(R1)| = ∞, then the vertices of the set {(0, 1), (a, 0), (a, 1)} and the
vertices of the set {(1, 0), (b, 0), (c, 0)} form K3,3, where b, c ∈ Z(R1)∗, a
contradiction.

(2) Suppose to the contrary, and with no loss of generality, |Nil(R)| ≥ 3,
a ∈ Nil(R)∗, b ∈ Nil(R1)∗ and a 6= b. It is easily seen that {(1, 0), (0, 1),
(b, 1), (b, 0), a} forms K5 in Γ′(R), a contradiction. ¤

Theorem 3.6 Let R be a non-reduced ring and |Nil(R)| = 2. Suppose
that R is not ring-isomorphic to either Z4 or Z2[X]/(X2). Then

(1) If |Z(R)| < ∞, then the following statements are equivalent :
(i) Γ′(R) is planar.

(ii) R is ring-isomorphic to either Z2 × Z4 or Z2 × Z2[X]/(X2).
(2) If |Z(R)| = ∞, then the following statements are equivalent :

(i) Γ′(R) is planar.
(ii) Ann(Z(R)) is a prime ideal of R.

Proof. (1) (i) ⇒ (ii) Since |Z(R)| < ∞, R is an Artinian ring (Indeed R
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is finite). By [2, Theorem 8.7], there exists a positive integer n such that
R = R1 × · · · × Rn, where each Ri, 1 ≤ i ≤ n, is an Artinian local ring.
The planarity of Γ′(R) implies that n = 2, by Part (1) of Theorem 3.3.
With no lost of generality, assume that |Nil(R2)| = 2. Thus |U(R2)| ≥ 2.
We show that |U(R2)| = 2. If |U(R2)| > 2, then the vertices of the set
{(1, 0), (0, a), (1, a)} and the vertices of the set {(0, 1), (0, u), (0, v)} form
K3,3, where a ∈ Nil(R2)∗ and 1 6= u, 1 6= v, u 6= v, u, v ∈ U(R2), a contradic-
tion. Thus |U(R2)| = 2. Similarly, the cases |U(R1)| ≥ 2 and |Z(R1)| ≥ 2
lead to a contradiction. Thus R1

∼= Z2 and R2
∼= Z4 or R2

∼= Z2[X]/(X2).
(ii) ⇒ (i) is clear.
(2) (ii) ⇒ (i) is clear, by [4, Corollary 4.5].
(i) ⇒ (ii). Let a ∈ Nil(R)∗. We show that xy 6= 0 for every x, y ∈

Z(R)\{0, a}. Suppose to the contrary, xy = 0 for some x, y ∈ Z(R)\{0, a}.
By Lemma 3.5, R is indecomposable and so xi 6= xi+1 and yi 6= yi+1, for
0 ≤ i ≤ 2. Thus the vertices of the set {x, x2, x3} and the vertices of the
set {y, y2, y3} form K3,3, a contradiction. Therefore, Ann(Z(R)) = Nil(R)
and Ann(x) = {0, a}, for every x ∈ Z(R) \ {0, a}. Hence Γ(R) = Γ′(R) =
K1 ∨Km and so by [4, Corollary 4.5], the result holds. ¤

To prove Theorem 3.8, the following lemma is needed.

Lemma 3.7 Let R be a ring and x− y be an edge of Γ′(R). Then either
x− z is an edge or y− z is an edge of Γ′(R), for every z ∈ Z(R) \ {0, x, y}.
Proof. Suppose that x − y is an edge of Γ′(R). If x − z is not an edge of
Γ′(R), then by Part (2) of [4, Lemma 2.2], Ann(x) = Ann(z). If Ann(y) 6=
Ann(z), then y − z is an edge of Γ′(R), by Part (3) of [4, Lemma 2.2 ], and
if Ann(y) = Ann(z), y − z is an edge of Γ′(R). ¤

Theorem 3.8 Let R be a non-reduced ring and |Nil(R)| = 3. Then the
following statements are equivalent :
(1) Ann(Z(R)) is a prime ideal of R.
(2) Γ′(R) is planar.

Proof. (1) ⇒ (2) is clear, by [4, Corollary 4.5].
(2) ⇒ (1) Suppose that Γ′(R) is planar. If Z(R) = Nil(R), there is

nothing to prove. So let Z(R) 6= Nil(R). If |Z(R)| < ∞, then R is an
Artinian ring and so by Part (2) of Lemma 3.5, Z(R) = Nil(R), a contra-
diction. Thus |Z(R)| = ∞. We now show that Γ′(R)[Z(R) \Nil(R)] is null.
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Suppose to the contrary, x − y is an edge of Γ′(R)[Z(R) \ Nil(R)]. Thus
every vertex of Z(R) \ Nil(R) is adjacent to x or y, by Lemma 3.7. This
together with Part (4) of [4, Lemma 2.2] imply that Γ′(R) contains K3,3 as
a subgraph, a contradiction. Hence Γ′(R)[Z(R) \ Nil(R)] is null. Now, we
easily see that Γ(R) = Γ′(R) = K2 ∨Km. Now, by [4, Corollary 4.5], the
result holds. ¤

We close this paper with the following result.

Theorem 3.9 Let R be a non-reduced ring. Then
(1) If |Nil(R)| ≥ 6, then Γ′(R) is not planar.
(2) If 4 ≤ |Nil(R)| ≤ 5, then Γ′(R) is planar if and only if Z(R) = Nil(R).

Proof. (1) It is clear by Part (5) of [4, Lemma 2.2].
(2) Let Γ′(R) be planar and suppose that 4 ≤ |Nil(R)| ≤ 5. By Part

(4) of [4, Lemma 2.2], |Z(R)| < ∞ and hance R is an Artinian ring. Now,
by Part (2) of Lemma 3.5, R is local and so Z(R) = Nil(R). The converse
is clear. ¤
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