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Abstract. Decaying properties of the local energy for the dissipative wave equations

with the Dirichlet boundary conditions in exterior domains are discussed. For the

dissipation coefficient, natural conditions ensuring that waves trapped by obstacles

may lose their energy are considered. Under this setting, two sufficient conditions for

getting the decay estimates for the energy in bounded regions (i.e. the local energy)

are given. These conditions bring some relaxation on classes of the dissipation coeffi-

cient which uniformly decaying estimates for the local energy hold. Further, decaying

properties of the total energy are also discussed.
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1. Introduction

Let Ω ⊂ Rn (n ≥ 2) be an exterior domain of a bounded obstacle
O = Rn \ Ω. Assume that the boundary ∂Ω is C∞ and compact, and Ω is
connected. Consider the mixed problem of the usual wave equation with a
dissipation term and the Dirichlet condition:





(∂2
t −4+ a(x)∂t)u(t, x) = 0 in (0,∞)× Ω,

u(t, x) = 0 on (0,∞)× ∂Ω,

u(0, x) = f1(x), ∂tu(0, x) = f2(x) on Ω.

(1.1)

Since O is compact, O ⊂ BR0 holds for some fixed constant R0 > 0, where
BR0 = BR0(0), and BR0(a) = {x ∈ Rn | |x − a| < R0}. Throughout
this paper, we always assume that a(x) ≥ 0, which means that the term
a(x)∂tu(t, x) in (1.1) works as a dissipation.
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For initial data {f1, f2} ∈ H1
0 (Ω)×L2(Ω) problem (1.1) has the unique

solution u(t, x) ∈ C([0,∞); Ḣ1(Ω)) with ∂tu(t, x) ∈ C([0,∞);L2(Ω)) in the
weak sense. For any domain D ⊂ Rn, we put

e(t, x;u) =
1
2
{|∂tu(t, x)|2+|∇xu(t, x)|2} and E(u,D, t) =

∫

D

e(t, x;u)dx.

We call E(u,D, t) the local energy in D of the solutions of (1.1). Note that
total energy E(u, Ω, t) satisfies

E(u, Ω, t) +
∫ t

0

∫

Ω

a(x)|∂tu(s, x)|2dxds = E(u, Ω, 0) (t ≥ 0). (1.2)

This identity is given by multiplying ∂tu(t, x) by the equation in (1.1), and
using integration by parts. Since a(x) ≥ 0, it follows that E(u, Ω, t) ≤
E(u, Ω, 0) (t ≥ 0). Thus, the term a(x)∂tu in (1.1) may work as a dissipation.

When the equation in (1.1) is a usual wave equation, (i.e., a(x) ≡ 0),
many authors investigate whether the uniform decay estimates are obtained
or not. For star shaped obstacles, Morawetz [21] gives the following uniform
decay estimate of the local energy for solutions of (1.1) (with a ≡ 0):

E(u, Ω∩BR0 , t) ≤ C(1 + t)−1E(u, Ω, 0) (1.3)

for any t ≥ 0 and (f1, f2) ∈ H1
0 (Ω)×L2(Ω) with supp f1∪supp f2 ⊂ Ω∩BR0 .

Note that the constant C > 0 in (1.3) depends only on the obstacle O, the
radius R0 of the supports of initial data and the dimension n. When initial
data have noncompact supports, Ikehata [5] gives the same decay estimate
of local energy as (1.3) even for the variable coefficients case.

To describe decay estimates of local energy, we introduce the following
uniform decay rate pm,R(t) of the local energy of solutions u(t, x) for usual
wave equation (i.e. (1.1) with a(x) ≡ 0):

pm,R0(t) = sup
{

E(u, Ω ∩BR0 , t)
‖∇xf1‖2Hm(Ω) + ‖f2‖2Hm(Ω)

∣∣∣∣ 0 6= f1, f2 ∈ C∞0 (Ω ∩BR0)

such that u ∈ C∞(R× Ω)
}

,

where R0 > 0 is a constant satisfying O ⊂ BR0 , and m ≥ 0 is an integer.
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Note that (1.3) given by Morawetz [21] is the same as p0,R0(t) ≤ C(1+ t)−1

for some fixed constant C > 0 depending only on O, R0 and n. From now
on, the above estimate is written as p0,R0(t) = O(t−1) for brief descriptions.

The rate p0,R0(t) is the uniform decay rate in the sense of Morawetz [22].
From (1.3), it follows that p0,R0(t) = O(e−αt) if n ≥ 3 is odd, where α > 0 is
a fixed constant depending only on O. If n is even, p0,R0(t) = O(tn−1) holds.
For odd n case, in [22] Morawetz shows that p0,R0(t) = O(e−αt) holds if only
limt→∞ p0,R0(t) = 0 holds. This result is given by using Huygens’ principle.
For even dimensional case, we only have Huygens’ principle of weak type.
Hence, for even n, limt→∞ p0,R0(t) = 0 implies p0,R0(t) = O(tn−1) only (see
[8] for n ≥ 4 and Vodev [35] for n ≥ 2).

On the other hand, when there are trapping rays of geometrical optics,
which is called trapping case, as is shown in Ralston [28], limt→∞ p0,R0(t) =
0 never occurs. For example, O consists of two convex bodies, the line giving
the distance of two convex obstacles gives a trapped ray. This is a typical
example for the trapping case. Note that there is no trapped ray in the
exterior of star shaped obstacle. Thus, star shaped obstacles are one of the
examples of non-trapping case.

In the case that there is no dissipation, the uniform decay estimates
depend on the geometry of the obstacles. In this case, when there is no
trapped ray of geometrical optics, we can get the decay estimate of p0,R0(t)
(see e.g. [11], [23], [29] and [34]). The energy for high frequency waves
propagates along the rays of geometrical optics. As a result in Ralston [28],
we can not obtain such decay estimates if there is a trapped ray. Hence, it
is important to investigate propagation of singularietes for wave equations
(about that, see e.g. [12] and [13] and references given there).

On the contrary, when m > 0, that is the case that initial data f1 and f2

have additional regularities than usual energy of physical sense (i.e.(f1, f2) ∈
H1(Ω)×L2(Ω)), we encounter different aspects. When m ≥ 1, Walker [36]
shows that limt→∞ pm,R0(t) = 0 always holds. Hence, the problems is how
fast pm,R0(t) decays if m ≥ 1. For the case that n = 3 and O consists of two
convex bodies, Ikawa [2] obtains p5,R0(t) = O(e−αt) for some fixed constant
α > 0. This result is imploved by Ikawa [3] as p2,R0(t) = O(e−αt) even when
O consists of finite many convex bodies with two additional conditions. One
condition is that there is no other body inside of the convex hull of each two
bodies. It is hard to say the other one correctly in here, but, this condition
holds if each body is a ball and they separetes well each other.
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About pm,R0(t) with m > 0, a logarithmic upper bound, i.e. pm,R0(t) =
O((log(1+t))−m) is given by Burq [1]. Note that to obtain this bound, there
is no assumption for the obstacle O. Hence, for arbitrary obstacle O, energy
decays at least logarithmically if initial data has additional regularities.

In this article, we discuss whether energy decay estimates can be given
or not in dissipative case (i.e. a(x) 6≡ 0). When the dissipative term works
well, even the total energy decays uniformly. On the other hand, if the
term is not so effective, the total energy remains, and scattering theory are
developed. These phenomena are clarified by many authors. We can not
give complete guide of it, however, let us mention some of the results before
going to the main problem in this article.

In the case where Ω = Rn, all waves go out to far field since there is
no trapped rays. Hence, decaying properties are closely connected with the
asymptotic behavior of the dissipation term a(x) as |x| → ∞. Matsumura
[14] and Mochizuki [17] gave decay estimates of the total energy when a0(1+
|x|)−1 ≤ a(x) ≤ a1 and the initial data have compact support or have an
appropriate decaying property as |x| → ∞ respectively. Oppositely, when
0 ≤ a(x) ≤ a2(1 + |x|)−1−δ for some δ > 0, Mochizuki [16, 17] showed that
scattering phenomena occurs, that is, every solution of (1.1) is close to some
solution of the free space problem (i.e. the case where a(x) ≡ 0 in Ω = Rn)
as t →∞. Thus, in this case, the total energy never decay.

From the results introduced above, we can see that the critical order
dividing the decaying or non-decaying phenomena is a(x) = O(|x|−1).
About the critical order, Mochizuki and Nakazawa [19] introduce finer order
like as a(x) ∼ {(e + |x|) log(e + |x|) · log(log(e + |x|)) · · · log(log · · · (log(e +
|x|)) · · · ))}−1 and discuss decaying and non-decaying properties even for the
case of exterior domains. All works describing in the above are discussed the
case that dissipation coefficients depend also on the time variable t. Note
also that Mochizuki and Nakazawa [20] treat decaying property for the case
of star shaped obstacles even if the dissipation coefficient is localized near
infinity. Mochizuki [18] also develops the scattering theory even in the case
containing such a fine critical order.

In the case where Ω = Rn in problem (1.1), Nakazawa [26] shows that
non-decaying property and the scattering phenomena if a(x) satisfies 0 ≤
a(x) ≤ ã(|x|) (x ∈ Rn) with some non-increasing ã ∈ L1((0,∞)) such
that ‖ã‖L1((0,∞)) is small enough. Only for getting non-decaying property,
it suffices to assume that

∫∞
0

a(x0 + sω)ds < ∞ for some x0 ∈ Ω and
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ω ∈ Sn−1. Modifying the argument in Kawashita, Nakazawa and Soga [9],
we can obtain this fact. Note that the half line x0 + sω (s ≥ 0) is the ray
of geometrical optics, and the above condition means that the amplitude of
high frequency waves propagating along this ray does not decay as t →∞.
This is why the total energy does not decay. For general wave equations
with dissipation terms, using microlocal defect measures, Nishiyama [27]
investigates the relation between the rays of geometrical optics and the total
energy, and gives a lower bound of the uniform decay rate causing by high
frequency waves.

Let ν(x) = t(ν1(x), ν2(x), . . . , νn(x)) be the unit outer normal vector of
∂Ω at x ∈ ∂Ω pointing into the outside of Ω. If the obstacle O is star shaped
with respect to a point x0, i.e. ν(x) · (x− x0) ≤ 0 (x ∈ ∂Ω = ∂O), there is
no trapped ray. Thus, a part causing trapping phenomena of the boundary
∂Ω is included by the set Γ defined by

Γ = {x ∈ ∂Ω | ν(x) · (x− x0) > 0}.

Hence, we can expect to obtain local decay estimate (1.3) if we make the
following assumptions:

(A.1) a ∈ L∞(Ω), a(x) ≥ 0 a.e. x ∈ Ω.
(A.2) There exist a bounded open set ω ⊂ Rn and a constant ε0 > 0 such

that Γ ⊂ ω, and a(x) ≥ ε0 a.e. x ∈ ω ∩ Ω.

In what follows, we may assume that x0 = 0 ∈ O without loss of gener-
arity.

About this expectation, assuming (A.1) and (A.2), and supp a ⊂ Ω∩BR

for some R > 0 as an additional assumption, Nakao [24] shows the decay
estimate given by replacing C(1 + t)−1 in (1.3) by Cδ(1 + t)−1+δ for any
δ > 0. Note that this constant Cδ may depend not only O, R0, n and the
dissipation coefficient a(x) but also δ > 0 chosen arbitrary, and be large
when δ → 0.

In [24], support compactness of the initial data is also assumed. This
restriction is removed in Ikehata [4]. To describe this result (and a part of
the main theorems of this paper), we introduce the following notations:
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K(f1, f2) =
∫

Ω

(1 + |x|){|∇xf1(x)|2 + |f2(x)|2}dx

+ ‖dn(·)(f2 + a(·)f1)‖2L2(Ω) + ‖f1‖2L2(Ω).

In the above, dn(x) are defined by dn(x) = |x| (n ≥ 3) and d(x) =
|x| log(B|x|) (n = 2), where B > 0 is a constant satisfying B infx∈Ω |x| ≥ 2.

In [4], for any δ > 0, Ikehata gives the following local energy decay
estimate for solutions u of (1.1):

E(u, Ω∩BR0 , t) ≤ Cδ(1 + t)−1+δK(f1, f2) (1.4)

for any t ≥ 0 and (f1, f2) ∈ H1
0 (Ω) × L2(Ω) with K(f1, f2) < ∞. The con-

stant Cδ in (1.4) depends not only on O, n and the dissipation coefficient
a(x) but also δ > 0 chosen arbitorary. Note that in (1.4), support compact-
ness of the initial data is removed. For non dissipative case, serial works of
Ikehata show that δ in the above estimate can be taken as δ = 0. In these
works of Ikehata, the argument is simpler than the original one of Morawetz
[21], and also remove the restriction that the support of the initial data is
compact (see e.g. Ikehata [5] and the references therein).

In this article, we give sufficient conditions for the local energy decay
estimates. Throughout this paper, we put

J(s, x;u) =
1
2

∣∣∣∣∇xu(s, x) +
x

|x|∂tu(s, x)
∣∣∣∣
2

.

Theorem 1.1 Assume that (A.1), (A.2) and there exists a functional
L(f1, f2, t) such that one of the following estimates holds for every solution
u of (1.1) with initial data f1, f2 ∈ C∞0 (Ω):

(S.1)
∫ t

0

∫

Ω

J(s, x;u)dsdx ≤ L(f1, f2, t) (t ≥ 0),

(S.2)
∫ t

0

∫

Ω

(a(x)|x|)2 |∂tu(s, x)|2 dsdx ≤ L(f1, f2, t) (t ≥ 0).

Then, there exists a constant C > 0 depending only on the space dimension
n, Ω and a(x) such that
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(t−R)E(u, Ω∩BR, t) ≤ C{K(f1, f2) + L(f1, f2, t)}
(t, R ≥ 0, f1, f2 ∈ C∞0 (Ω)). (1.5)

Remark 1.2 (1) From (1.5) and (1.2), it follows that

(1 + t−R)E(u, Ω∩BR, t) ≤ C{K(f1, f2) + L(f1, f2, t)}
(t, R ≥ 0, f1, f2 ∈ C∞0 (Ω)).

Note that the constant C > 0 in the above estimate does not depend on
R > 0. Thus, for example, we can choose R = t/2, and obtain

E(u, Ω∩Bt/2, t) ≤ 2C(1 + t)−1{K(f1, f2) + L(f1, f2, t)}
(t ≥ 0, f1, f2 ∈ C∞0 (Ω)).

(2) The local energy decay estimate in Theorem 1.1 implies that

tE(u, Ω∩BR, t) ≤ C{K(f1, f2) + L(f1, f2, t)}+ RE(u, Ω, 0)

(t ≥ 0, f1, f2 ∈ C∞0 (Ω))

since it follows that E(u, Ω ∩BR, t) ≤ E(u, Ω, 0).

(3) If a functional L(f1, f2, t) in (S.1) or (S.2) can be taken as it is less than
linear order of growth in t, (1.5) gives a decay estimate of the local energy.

(4) Throughout this article, only the case of the Dirichlet problems is treated.
This restriction comes from the Hardy inequality. For n ≥ 3 or n = 2 with
the Dirichlet boundary condition, there exists a constant Cn > 0 depending
on the dimension n such that

∫

Ω

|f(x)|2
(dn(x))2

dx ≤ Cn

∫

Ω

|∇xf(x)|2dx, (1.6)

holds. This is called the Hardy inequality. Hence, when n ≥ 3, even for
the case of the Cauchy problems (i.e. Ω = Rn and there is no boundary
condition), the same result as Theorem 1.1 can be obtained.

In what follows, two applications of Theorem 1.1 are given. The first one
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is to remove the restriction δ > 0 and the support compactness assumptions
of a(x) in the decay estimate (1.4). About this problem, in the Master thesis
of Suzuki [30] these restrictions are removed by introducing the following
conditions on the dissipation coefficient a(x): there exists a constant C0 > 0
such that a(x)|x| ≤ C0, |∇a(x)| ≤ C0a(x), 4a(x)|x| ≤ C0a(x) (x ∈ Ω).
In [10], these additional conditions on a(x) are little bit relaxed. Using
Theorem 1.1, we can extend the results in [10]. In what follows, we use the
notation 〈x〉 = (1 + |x|2)1/2.

Theorem 1.3 Let n ≥ 2 and assume that (A.1) and (A.2) hold. Then
there exists a constant C > 0 such that

E(u, Ω∩BR0 , t) ≤ C(1 + t)−1K(f1, f2) (1.7)

for any t ≥ 0 and (f1, f2) ∈ H1
0 (Ω) × L2(Ω) with K(f1, f2) < ∞ if the one

of the following properties are assumed :

(A.3) a ∈ W 1,∞(Ω), and there exists a constant C > 0 such that

|∇xa(x)| ≤ C
√

a(x)〈x〉−1 a.e. x ∈ Ω.

(A.4) There exist constants C > 0 and R0 > 0 such that

a(x)|x|2 ≤ C a.e. x ∈ Ω, |x| ≥ R0.

Examlpes satsifying (A.1), (A.2) and (A.3) are systematically made. We
choose a function F ∈ C1(Rn \ {0}) satisfying supx∈Rn(−F (x)) < ∞ and

|∇xF (x)| ≤ C0e
(|F (x)|/2)〈x〉−1 (x 6= 0)

for some fixed constant C0 > 0. For this F , we put a(x) = e−F (x). Since

sup
x∈Rn

e−F (x)/2e(|F (x)|/2) ≤ max{1, esupx∈Rn (−F (x))} = C < ∞,

a satisfies (A.1), (A.2) and (A.3). For example, a1(x) = e−(1+|x|)δ

and
a2(x) = (1+|x|)−δ = e−δ log(1+|x|) with δ ≥ 0 satisfy (A.1)-(A.3). These have
rather fast decaying property as |x| → ∞. There are also many examples
satisfying (A.1)-(A.3) with weaker decaying property, for example, a3(x) =
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(log(e + |x|))−δ = e−δ log(log(e+|x|)), a4(x) = (log(log(e + |x|)))−δ with δ ≥ 0
and so forth.

In comparison with (A.3), assumption (A.4) has strong restrictions
about decaying property as |x| → ∞. The function a1 with δ = 0, a2

with δ < 2, and the functions a3 and a4 with any δ ≥ 0 do not satisfy (A.4).
Instead of that, (A.4) does not contain any condition on regularities of a(x).
This is the advantage of (A.4). For example, the compact supported case is
covered by (A.4). Further for any b ∈ L∞(Ω) having positive lower bound
near the boundary ∂Ω, the function a5(x) = b(x)(1 + |x|)−2 satisfies (A.1),
(A.2) and (A.4).

Next is an example not satisfying both (A.3) and (A.4). Consider
a6(x) = ecos(|x|). It seems that a6(x) gives a strong dissipation since
a6(x) ≥ e−1 (x ∈ Rn). Despite of that, Theorem 1.3 can not conclude
whether estimate (1.7) holds or not. Of course, in this case, (1.7) holds.
Indeed, Nakao [25] shows that the following total energy decay:

E(u, Ω, t) ≤ C(1 + t)−1E(u, Ω, 0) (t ≥ 0, (f1, f2) ∈ H1
0 (Ω)× L2(Ω))

when (A.1), (A.2) and a(x) ≥ ε0 (x ∈ Ω, |x| ≥ R0) for some constant ε0 > 0
and R0 > 0 hold. Note that the above constant C depends on O, n and
a(x).

The second application is for decay property of total energy decay if the
dissipation satisfies the following condition:

(A.5) There exist constants a0 > 0 and R0 > 0 such that

a(x)|x| ≥ a0 a.e. x ∈ Ω∩(BR0)
c.

Theorem 1.4 Let n ≥ 2 and assume that (A.1), (A.2) and (A.5) hold.
Then there exists a constant C > 0 such that

E(u, Ω, t) ≤ C(1 + t)−µK(f1, f2) (1.8)

for any t ≥ 0 and (f1, f2) ∈ H1
0 (Ω) × L2(Ω) with K(f1, f2) < ∞, where

µ = min{1, a0}.
Assumption (A.5) is weaker than that “a(x) ≥ ε0 > 0 a.e. in Ω”

in Nakao [25], however, we need additional condition K(f1, f2) < ∞ on
the initial data. Note also that Mochizuki and Nakazawa [19] investigate
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the similar case to (A.5) with time dependent dissipation. They show the
estimate

E(u, Ω, t) ≤ O(t−min{1, β0/2})

if the dissipation coefficient b(t, x) depending also in time satisfies

β0(e + r + t)−1 ≤ b(t, x) ≤ b1 (t ≥ 0, x ∈ Ω). (1.9)

Note that decay rate in (1.8) is better than that in [19]. Instead of that
advantage, we need K(f1, f2) < ∞, which is stronger than that in [19].
When a0 ≤ 1, the decay rate O(t−a0) is the same as in the lower bound
estimates given by Nishiyama [27]. Thus, in this case, estimate (1.8) is
optimal. Note also that Matsumura [15] and Uesaka [33] give estimates
corresponding to E(u, Ω, t) = O(t−min{1,β0}) for compact supported initial
data if (1.9) holds.

If a0 > 1, the situation is different. For the case of the Cauchy problem
(i.e. Ω = Rn and there is no boundary condition), Ikehata, Todorova and
Yordanov [7] give the optimal decay estimates of the total energy for com-
pactly supported initial data. They assume that the dissipation coefficient
a ∈ L∞(Rn)∩C(Rn) and there exist constants 0 < a0 5 a1 such that

a0

(1 + |x|2)1/2
≤ a(x) ≤ a1

(1 + |x|2)1/2
(x ∈ Rn).

In the above setting, they show that for any fixed δ > 0, E(u, Ω, t) =
O(t−min{a0,n−δ}) (n ≥ 3) and E(u, Ω, t) = O(t−min{a0−δ,2}) (n = 2) hold.
Thus, they find another threshold a0 = n, which comes from the aspect cor-
responding to the heat equations (i.e. the low frequency parts of solutions).
On the other hand, optimality of estimate (1.8) reflects on high frequency
parts of waves. Thus, there are differences between (1.8) and the estimates
of Ikehata, Todorova and Yordanov [7]. Note that in [7], the upper bound
estimate of a(x) in the above assumption is needed. If a decays more slowly
like a(x) ∼ (1 + |x|)−α with 0 ≤ α < 1, as is in Todorova and Yordanov
[32], for any fixed ε > 0, E(u, Ω, t) = O(tε−(n−α)/(2−α)−1) holds. Thus,
decay rates of the total energy change although this is also caused by the
low frequency parts.
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2. Preliminaries

We begin by introducing basic identities and estimates to obtain theo-
rems describing in introduction. In what follows, only for the solutions u of
problem (1.1) with f1, f2 ∈ C∞0 (Ω) are treated. Every solution u of (1.1) in
the space

⋂1
j=0 C1−j([0,∞);Hj

0(Ω)) can be approximated by a sequence of
solutions uj (j = 1, 2, . . .) of (1.1) with uj(0, ·), ∂tuj(0, ·) ∈ C∞0 (Ω). Thus,
we can always assume that f1, f2 ∈ C∞0 (Ω). From usual existence theorems
and the finite propagation property of the solutions of wave equation, we can
see that u ∈ ⋂1

j=0 C2−j([0,∞);Hj(Ω)) and suppu is compact in [0, T ]× Ω
for any T > 0.

We choose any η ∈ C1(Ω) of real-valued. Multiplying t∂tu, η∂tu, ηu,
x · ∂xu by the equation in (1.1) respectively, and integrating by parts, we
obtain the following identities:

tE(u, Ω, t) +
∫ t

0

∫

Ω

sa(x)|∂tu|2dxds =
∫ t

0

E(u, Ω, s)ds, (2.1)

∫

Ω

η(x)e(t, x;u)dx +
∫ t

0

∫

Ω

a(x)η(x) |∂tu|2 dxds

+ Re
∫ t

0

∫

Ω

(∇xη · ∇xu)∂tudxds =
∫

Ω

η(x)e(0, x;u)dx, (2.2)

∫ t

0

∫

Ω

η
(|∇xu|2 − |∂tu|2

)
dxds + Re

[ ∫

Ω

ηu∂tudx

]t

0

= −1
2

[ ∫

Ω

a(x)η|u|2dx

]t

0

− Re
∫ t

0

∫

Ω

(∇xη · ∇xu)udxds, (2.3)

n

2

∫ t

0

∫

Ω

(|∂tu|2 − |∇xu|2)dxds +
∫ t

0

∫

Ω

|∇xu|2dxds

+ Re
[ ∫

Ω

∂tu(x · ∇xu)dx

]t

0

= −Re
∫ t

0

∫

Ω

a(x)∂tu(x · ∇xu)dxds +
1
2

∫ t

0

∫

∂Ω

x · ν(x)|∂νu|2dSxds,

(2.4)

where [f ]t0 = f(t)− f(0). Note that identities (2.2) and (2.3) hold even for
η ∈ W 1,∞

loc (Ω). For any f1 and f2 ∈ C∞0 (Ω) and any t ≥ 0, there exists
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R > 0 such that suppu ⊂ [0, t] × (Ω∩BR) since the propagation speed is
less than 1. Noting W 1,∞

loc (Ω) ⊂ W 1,1
loc (Ω), we can choose a seqence {ηj} in

C1(Ω) satisfying ηj → η in W 1,1(Ω∩BR) as j → ∞. Using this sequence
{ηj}, we can show the above mentioned facts.

Adding (2.4) to the equality obtained by multiplying (n− 1)/2 by (2.3)
with η = 1, we have

∫ t

0

E(u, Ω, s)ds

=− n− 1
2

Re
[ ∫

Ω

u∂tudx

]t

0

− n− 1
4

[ ∫

Ω

a(x)|u|2dx

]t

0

− Re
[ ∫

Ω

∂tu(x · ∇xu)dx

]t

0

− Re
∫ t

0

∫

Ω

a(x)∂tu(x · ∇xu)dxds

+
1
2

∫ t

0

∫

∂Ω

x · ν(x)|∂νu|2dSxds. (2.5)

To handle the boundary integral in (2.5), we need assumption (A.2). As
is in Ikehata [4] and Nakao [24], (A.2) implies the following estimate:

∫ t

0

∫

Γ

x · ν(x)
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dSxds ≤ CE(u, Ω, 0) + C

∫ t

0

∫

ω

a(x)|u|2dxds

+ C‖u(t, ·)‖2L2(Ω) + C ‖u(0, ·)‖2L2(Ω) . (2.6)

Thus we need to control ‖u(t, ·)‖2L2(Ω). Here, we use a variation of
Lemma 2.6 in Ikehata [4] originated in Ikehata and Matsuyama [6].

Lemma 2.1 There exists a constant C > 0 such that every solution u(t, x)
of (1.1) with the inital data f1, f2 ∈ C∞0 (Ω) satisfies the following estimate:

‖u(t, ·)‖2L2(Ω) +
∫ t

0

∫

Ω

a(x) |u(s, x)|2 dxds

≤ C
(‖dn(·)(f2 + a(·)f1)‖2L2(Ω) + ‖f1‖2L2(Ω)

)
(t ≥ 0).

Note that in this article, the Hardy inequality (1.6) is needed only for getting
Lemma 2.1. This is the reason why only the Dirichlet problem (1.1) is
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treated and the case of the Cauchy problems are excluded for n = 2.
Identity (2.5), estimate (2.6) and Lemma 2.1 imply that there exists

a constant C > 0 depending only on the space dimension n, Ω and a(x)
satisfying

∫ t

0

E(u, Ω, s)ds +
n− 1

4

∫

Ω

a(x)|u(t, x)|2dx

≤ CK(f1, f2) +
∫

Ω

|x|e(t, x;u)dx + I(t;u) (t ≥ 0), (2.7)

where

I(t;u) = −Re
[ ∫ t

0

∫

Ω

a(x)∂tu(s, x)x · ∇xu(s, x)dxds

]
.

We also need the following estimates for |x| ≥ t, i.e. the outside of the
propagation cone:

∫

Ω

(|x| − t)+e(t, x;u)dx ≤
∫

Ω

|x|e(0, x;u)dx, (2.8)

∫ t

0

∫

Ω

a(x)(|x| − s)+ |∂tu(s, x)|2 dxds ≤
∫

Ω

|x|e(0, x;u)dx, (2.9)

where (|x| − t)+ = max{|x| − t, 0}. As is in Ikehata [4], (2.8) is obtained by
using the idea showing weighted estimates given in Todorova and Yordanov
[31]. In [30] and [10], we also need estimate (2.9), which is given by the
same manner as for (2.8).

Noting 〈x〉 ≤ 1 + |x| and |x| ≤ t + (|x| − t)+ for |x| ≥ R and |x| ≤
s + (|x| − s)+, we can obtain the following estimates:

∫

Ω

〈x〉e(t, x;u)dx ≤ CK(f1, f2) + tE(u, Ω, t)− (t−R)E(u, Ω ∩BR, t),

(2.10)
∫ t

0

∫

Ω

a(x)〈x〉 |∂tu|2 dxds ≤ CK(f1, f2) +
∫ t

0

∫

Ω

a(x)s |∂tu|2 dxds. (2.11)

Concluding this section, we introduce another identity which is also
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useful to show Theorems 1.1, 1.3 and 1.4. Choosing η(x) = (〈x〉δ)β(=
(δ + |x|2)β/2) (δ > 0) in identity (2.2), we have

∫

Ω

(〈x〉δ)βe(t, x;u)dx +
∫ t

0

∫

Ω

a(x)(〈x〉δ)β |∂tu|2 dxds

+ Re
∫ t

0

∫

Ω

(β(〈x〉δ)β−2x · ∇xu)∂tudxds =
∫

Ω

(〈x〉δ)βe(0, x;u)dx.

We add
∫ t

0

∫
Ω

β(〈x〉δ)β−2|x|e(s, x;u)dxds to the both side of the above iden-
tity. Since

e(t, x;u) + Re
(

x

|x| · ∇xu

)
∂tu =

1
2

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

,

it follows that
∫

Ω

(〈x〉δ)βe(t, x;u)dx +
∫ t

0

∫

Ω

a(x)(〈x〉δ)β |∂tu|2 dxds

+ β

∫ t

0

∫

Ω

(〈x〉δ)β−2|x|J(s, x;u)dsdx

=
∫

Ω

(〈x〉δ)βe(0, x;u)dx + β

∫ t

0

∫

Ω

(〈x〉δ)β−2|x|e(s, x;u)dxds. (2.12)

Taking the limit as δ → +0 in (2.12), we obtain

∫

Ω

|x|βe(t, x;u)dx +
∫ t

0

∫

Ω

a(x)|x|β |∂tu|2 dxds

+ β

∫ t

0

∫

Ω

|x|β−1J(s, x;u)dsdx

=
∫

Ω

|x|βe(0, x;u)dx + β

∫ t

0

∫

Ω

|x|β−1e(s, x;u)dxds. (2.13)

Note that even for the case of the Cauchy problems (i.e. Ω = Rn), (2.13)
is vaild for β > −n + 1. Since |〈x〉β−1 − 〈x〉β−2|x|| ≤ 〈x〉β−2/(〈x〉 + |x|) ≤
〈x〉β−3, from (2.12) with δ = 1, it follows that
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∫

Ω

〈x〉βe(t, x;u)dx +
∫ t

0

∫

Ω

a(x)〈x〉β |∂tu|2 dxds

+ β

∫ t

0

∫

Ω

〈x〉β−1J(s, x;u)dsdx

≤
∫

Ω

〈x〉βe(0, x;u)dx + β

∫ t

0

∫

Ω

〈x〉β−1e(s, x;u)dxds

+ 2β

∫ t

0

∫

Ω

〈x〉β−3e(s, x;u)dxds (β ≥ 0). (2.14)

3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. First we show (1.5)
assuming (S.1). Choosing β = 1 in (2.13), we have

∫

Ω

|x|e(t, x;u)dx +
∫ t

0

∫

Ω

a(x)|x| |∂tu|2 dxds +
∫ t

0

∫

Ω

J(s, x;u)dsdx

=
∫

Ω

|x|e(0, x;u)dx +
∫ t

0

E(u, Ω, s)ds. (3.1)

From assumption (S.1) and (3.1), it follows that

∫ t

0

E(u, Ω, s)ds ≤ L(f1, f2, t) +
∫

Ω

|x|e(t, x;u)dx +
∫ t

0

∫

Ω

a(x)|x| |∂tu|2 dxds.

Combining this estimate with (2.10), (2.11) and (2.1) we obtain

∫ t

0

E(u, Ω, s)ds

≤ L(f1, f2, t) + CK(f1, f2)

+ tE(u, Ω, t)− (t−R)E(u, Ω ∩BR, t) +
∫ t

0

∫

Ω

a(x)s |∂tu|2 dxds

= L(f1, f2, t) + CK(f1, f2) +
∫ t

0

E(u, Ω, s)ds− (t−R)E(u, Ω ∩BR, t),
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where C > 0 is a constant in (2.10) and (2.11). The above estimate implies
that

(t−R)E(u, Ω ∩BR, t) ≤ CK(f1, f2) + L(f1, f2, t)

(t, R ≥ 0, f1, f2 ∈ C∞0 (Ω)).

Hence we obtain estimate (1.5) in Theorem 1.1 if we assume (S.1).
Next we show (1.5) assuming (S.2). We begin by estimating I(t;u) in

(2.7). Since it follows that

∣∣a(x)∂tu(s, x)x · ∇xu(s, x)
∣∣

=
∣∣∣∣a(x)|x|∂tu

x

|x| · ∇xu

∣∣∣∣

= a(x)|x|
∣∣∣∣
(
∇xu +

x

|x|∂tu

)
· x

|x|∂tu− x

|x| ·
x

|x| |∂tu|2
∣∣∣∣

≤ 1
4

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

+
(
(a(x)|x|)2 + a(x)|x|)|∂tu|2,

assumption (S.2) and (1.2) implies that

I(t;u) ≤ 1
2

∫ t

0

∫

Ω

J(s, x;u)dxds +
∫ t

0

∫

Ω

(a(x)|x|+ (a(x)|x|)2)|∂tu|2dxds

≤ 1
2
A(t) + B(t) + L(f1, f2, t),

where we put

A(t) =
∫ t

0

∫

Ω

J(s, x;u)dxds and B(t) =
∫ t

0

∫

Ω

a(x)|x||∂tu|2dxds. (3.2)

From the above estimate, (2.7) and (3.1), it follows that

∫

Ω

|x|e(t, x;u)dx + B(t) + A(t)

≤
∫

Ω

|x|e(0, x;u)dx +
∫ t

0

E(u, Ω, s)ds
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≤ CK(f1, f2) +
∫

Ω

|x|e(t, x;u)dx + I(t;u)

≤
∫

Ω

|x|e(t, x;u)dx +
1
2
A(t) + B(t) + CK(f1, f2) + L(f1, f2, t),

which implies that A(t) ≤ 2CK(f1, f2)+2L(f1, f2, t). This means that (S.1)
is satisfied if we take L(f1, f2, t) in (S.1) as 2CK(f1, f2)+2L(f1, f2, t). This
completes the proof of Theorem 1.1. ¤

4. Proof of Theorem 1.3

We give a proof of Theorem 1.3. First assuming (A.1), (A.2) and (A.4),
we show the local decay estimate (1.7). In this case, since it follows that

a(x)|x|2 ≤ a(x){(|x|2 −R2
0)+ + R2

0} ≤ C + R2
0‖a‖L∞(Ω) (x ∈ Ω),

from (1.2), we obatin

∫ t

0

∫

Ω

(a(x)|x|)2 |∂tu(s, x)|2 dsdx

≤ (C + R2
0‖a‖L∞(Ω))

∫ t

0

∫

Ω

a(x) |∂tu(s, x)|2 dsdx

≤ (C + R2
0‖a‖L∞(Ω))E(u, Ω, 0).

Since E(u, Ω, 0) ≤ K(f1, f2), it follows that (S.2) in Theorem 1.1 holds for
L(f1, f2, t) = (C + R2

0‖a‖L∞(Ω))K(f1, f2). Thus, using Theorem 1.1 we get
(1.7).

Next assume that (A.1), (A.2) and (A.3) hold. From (3.1) and (2.7), it
follows that
∫

Ω

|x|e(t, x;u)dx +
∫ t

0

∫

Ω

a(x)|x| |∂tu|2 dxds +
∫ t

0

∫

Ω

J(s, x;u)dsdx

≤ CK(f1, f2) +
∫

Ω

|x|e(t, x;u)dx +
1
2

∫ t

0

∫

Ω

a(x)|x|(|∂tu|2 + |∇xu|2)dxds,

which implies that
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1
2
B(t) + A(t) ≤ CK(f1, f2) +

1
2

∫ t

0

∫

Ω

a(x)|x| |∇xu|2 dxds, (4.1)

where and in what follows, we use the notations given in (3.2).
To give estimate for the integral in the right hand side of (4.1), we use

identity (2.3) with η(x) = a(x)|x|. Since identity (2.3) still valids even for
η ∈ W 1,∞

loc (Ω), we obtain

∫ t

0

∫

Ω

a(x)|x|(|∇xu|2 − |∂tu|2)dxds + Re
[ ∫

Ω

a(x)|x|u∂tudx

]t

0

= −1
2

[ ∫

Ω

(a(x))2|x||u|2dx

]t

0

− Re
∫ t

0

∫

Ω

{
a(x)

(
x

|x| · ∇xu

)
u + |x|(∇xa · ∇xu)u

}
dxds.

Since
∣∣∣a(x)|x|f1(x)f2(x)

∣∣∣ ≤ |x| |f2(x) + a(x)f1(x)| |f2(x)|+ |x| |f2(x)|2

≤ dn(x)2 |f2(x) + a(x)f1(x)|2 + (1 + |x|) |f2(x)|2 ,

and

(a(x))2|x| |f1(x)|2 ≤ 2|x|{|f2(x) + a(x)f1(x)|2 + |f2(x)|2}
≤ 2dn(x)2 |f2(x) + a(x)f1(x)|2

+ 4‖a‖2L∞(Ω) |f1(x)|2 + 4(1 + |x|) |f2(x)|2 ,

from the definition of K(f1, f2), it follows that

∣∣∣∣
∫

Ω

a(x)|x|u(0, x)∂tu(0, x)dx

∣∣∣∣ +
∣∣∣∣
∫

Ω

(a(x))2|x||u(0, x)|2dx

∣∣∣∣

≤ 5(1 + ‖a‖2L∞(Ω))K(f1, f2).

The above equality and estimate imply that
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∫ t

0

∫

Ω

a(x)|x| |∇xu|2 dxds

≤ B(t) + q(t) + CK(f1, f2)

− Re
∫ t

0

∫

Ω

{
a(x)

(
x

|x| · ∇xu

)
u + |x|(∇xa · ∇xu)u

}
dxds, (4.2)

where

q(t) = −Re
∫

Ω

a(x)|x|u(t, x)∂tu(t, x)dx.

Next, we treat the last integral of the right hand side of (4.2). Noting
that

a(x)
(

x

|x| · ∇xu

)
u = a(x)

x

|x| ·
(
∇xu +

x

|x|∂tu

)
u− a(x)

(
x

|x| ·
x

|x|∂tu

)
u,

we get

−Re
[
a(x)

(
x

|x| · ∇xu

)
u

]
≤ a(x)

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣|u|+
a(x)∂t|u|2

2
.

For the term |x|(∇xa · ∇xu)u, we use assumption (A.3) and get

− Re
[|x|(∇xa · ∇xu)u

]

= −Re
[
|x|∇xa ·

(
∇xu +

x

|x|∂tu

)
u− |x|∇xa · x

|x| (∂tu)u
]
,

≤ C
√

a

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣|u|+
x · ∇xa

2
∂t|u|2.

Adding them, we obtain

− Re
[
a(x)

(
x

|x| · ∇xu

)
u + |x|(∇xa · ∇xu)u

]

≤ 1
2

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

+ (‖a‖L∞(Ω) + C2)a(x)|u|2 +
a(x) + x · ∇xa

2
∂t(|u|2).
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Hence noting (A.3) and a ∈ L∞(Ω) again, and using Lemma 2.1 we obtain

− Re
∫ t

0

∫

Ω

{
a(x)

(
x

|x| · ∇xu

)
u + |x|(∇xa · ∇xu)u

}
dxds

≤
∫ t

0

∫

Ω

J(s, x;u)dxds + C

∫ t

0

∫

Ω

a(x)|u|2dxds

+
[ ∫

Ω

a(x) + x · ∇xa

2
|u|2dx

]t

0

≤ A(t) + CK(f1, f2)

with different constants C > 0 from that in (A.3). This estimate and (4.2)
imply that

∫ t

0

∫

Ω

a(x)|x| |∇xu|2 dxds ≤ B(t) + CK(f1, f2) + q(t) + A(t).

Hence (4.1) and the above estimate yield

1
2
B(t) + A(t) ≤ CK(f1, f2) +

1
2
{
q(t) + A(t) + B(t) + CK(f1, f2)

}
,

which implies that

A(t) ≤ 3CK(f1, f2) + q(t) (t ≥ 0). (4.3)

From the definition of q, it follows that

∫ t

0

q(s)ds = −
∫ t

0

∫

Ω

a(x)|x|
2

∂t|u|2dsdx

=
∫

Ω

a(x)|x|
2

{|f1(x)|2 − |∂tu(t, x)|2}dx

≤
∫

Ω

a(x)|x|
2

|f1(x)|2dx < ∞ (t ≥ 0),

since f1 ∈ C∞0 (Ω). Choose τ > 0 arbitrary. Since A(t) is non-negative and
increasing for t ≥ 0, (4.3) and the above estimate imply
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A(τ) ≤ 1
t− τ

∫ t

τ

A(s)ds ≤ 3CK(f1, f2) +
1

t− τ

∫

Ω

a(x)|x|
2

|f1(x)|2dx

for any t > τ . Taking t → ∞, we obtain A(τ) ≤ 3CK(f1, f2). Thus, (S.1)
in Theorem 1.1 is satisfied if L(f1, f2, t) in (S.1) is chosen by L(f1, f2, t) =
3CK(f1, f2). Thus, Theorem 1.1 and (2) of Remark 1.2 imply Theorem 1.3.

¤

5. Proof of Theorem 1.4

In the beginning, we introduce the following lemma which implies decay
estimates for the total energy:

Lemma 5.1 Assume that there exist constants 0 < µ ≤ 1 and C0 > 0
such that

∫

Ω

〈x〉µe(t, x;u)dx +
∫ t

0

∫

Ω

〈x〉µ−1J(s, x;u)dsdx ≤ C0K(f1, f2)

(t ≥ 0), (5.1)

then there exists a constant C1 > 0 such that

E(u, Ω, t) ≤ C1(1 + t)−µK(f1, f2) (t ≥ 0, f1, f2 ∈ C∞0 (Ω)).

Proof. Assuming (5.1), we show (S.1) in Theorem 1.1 holds if we take
L(f1, f2, t) = C ′K(f1, f2)(1 + t)1−µ for some constant C ′ > 0 independent
of f1, f2 and t. Note that 〈t〉µ−1 ≤ 〈x〉µ−1 for |x| ≤ t. This and (5.1) imply
that

〈t〉µ−1

∫ t

0

∫

Ω∩Bs

J(s, x;u)dxds ≤
∫ t

0

∫

Ω∩Bt

〈t〉µ−1J(s, x;u)dxds

≤
∫ t

0

∫

Ω

〈x〉µ−1J(s, x;u)dsdx ≤ C0K(f1, f2).

On the othe hand, since µ > 0, from (5.1), it follows that

〈t〉µ
∫

Ω∩(Bt)c

e(t, x;u)dx ≤
∫

Ω∩(Bt)c

〈x〉µe(s, x;u)dx ≤ C0K(f1, f2), (5.2)
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which yields

∫ t

0

∫

Ω∩(Bs)c

J(s, x;u)dxds ≤ 2
∫ t

0

∫

Ω∩(Bs)c

e(s, x;u)dxds

≤
∫ t

0

C0K(f1, f2)〈s〉−µds

≤ 2C0

1− µ
K(f1, f2)(1 + t)1−µ

if 0 < µ < 1. Combining these estimates, for 0 < µ < 1, we obtain

∫ t

0

∫

Ω

J(s, x;u)dxds ≤ CK(f1, f2)(1 + t)1−µ

for some constant C > 0. Note that for µ = 1, the above estimate is given
by assumption (5.1) itself.

Thus, when 0 < µ ≤ 1, assumption (S.1) in Theorem 1.1 is satisfied for
L(f1, f2, t) = CK(f1, f2)(1 + t)1−µ for some constant C > 0. Theorem 1.1
and (1) of Remark 1.2 imply that there exists a constant C > 0 independent
of t such that

E(u, Ω∩Bt/2, t) ≤ CK(f1, f2)(1 + t)−µ (t ≥ 0, f1, f2 ∈ C∞0 (Ω)).

Similarly to (5.2), we also have

∫

Ω∩(Bt/2)c

e(t, x;u)dx ≤ CK(f1, f2)(1 + t)−µ

for any t ≥ 0 and f1, f2 ∈ C∞0 (Ω). Combining the above two estimates with

E(u, Ω, t) = E(u, Ω∩Bt/2, t) +
∫

Ω∩(Bt/2)c

e(t, x;u)dx,

we obtain

E(u, Ω, t) ≤ CK(f1, f2)(1 + t)−µ (t ≥ 0, f1, f2 ∈ C∞0 (Ω)),

which completes the proof of Lemma 5.1. ¤
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From Lemma 5.1, to obtain Theorem 1.4, it suffices to show (5.1). We
need the following lemma converting energy estimates for space derivatives
to ones for time derivative:

Lemma 5.2 Assume that the dissipation coefficient a(x) satisfies (A.5).
For R0 in assumption (A.5), we take arbitrary r0 > R0 and function η ∈
C∞(Rn) with 0 ≤ η ≤ 1, η = 1 (|x| ≥ r0 + 2) and η = 0 (|x| ≤ r0 + 1).
We also choose a non-positive α ≤ 0 arbitrarily. For these fixed r0, η and
α ≤ 0, there exists a constant Cη,α > 0 such that

∣∣∣∣
∫ t

0

∫

Ω

η(x)〈x〉α(|∇xu|2 − |∂tu|2
)
dxds

∣∣∣∣

≤ ε

∫ t

0

∫

Ω∩Bc
r0+1

〈x〉α−1

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds +
Cη,α

ε
K(f1, f2)

holds for any t ≥ 0 and 0 < ε ≤ 1.

Proof. Changing η in identity (2.3) with η(x)〈x〉α, we obtain

∫ t

0

∫

Ω

η(x)〈x〉α(|∇xu|2 − |∂tu|2
)
dxds + Re

[ ∫

Ω

η(x)〈x〉αu∂tudx

]t

0

= −1
2

[ ∫

Ω

a(x)η(x)〈x〉α|u|2dx

]t

0

− Re
∫ t

0

∫

Ω

(∇x(η(x)〈x〉α) · ∇xu
)
udxds.

Since η(x)〈x〉α is bounded for α ≤ 0, from (1.2) and Lemma 2.1, it follows
that

∣∣∣∣
∫

Ω

η(x)〈x〉αu∂tudx

∣∣∣∣ ≤ C‖u(t, ·)‖L2(Ω)‖∂tu(t, ·)‖L2(Ω) ≤ CK(f1, f2)

(t ≥ 0),
∣∣∣∣
∫

Ω

η(x)〈x〉αa(x)u2dx

∣∣∣∣ ≤ C‖a‖L∞(Ω)‖u(t, ·)‖2L2(Ω) ≤ CK(f1, f2) (t ≥ 0),

which implies that
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∣∣∣∣
∫ t

0

∫

Ω

η(x)〈x〉α(|∇xu|2 − |∂tu|2
)
dxds

∣∣∣∣

≤ CK(f1, f2) +
∣∣∣∣
∫ t

0

∫

Ω

(∇x(η(x)〈x〉α) · ∇xu)udxds

∣∣∣∣. (5.3)

Noting that

(∇x(η(x)〈x〉α) · ∇xu
)
u

=
(

(∇xη)〈x〉α + αη〈x〉α−1 x

〈x〉
)
· (∇xu

)
u

=
(

(∇xη)〈x〉α + αη〈x〉α−1 x

〈x〉
)
·
{(

∇xu +
x

|x|∂tu

)
u− x

|x|u∂tu

}

and 2Re(∂tuu) = ∂t

(|u|2), we have

∫ t

0

∫

Ω

(∇x(η〈x〉α) · ∇xu)udxds

=
∫ t

0

∫

Ω

(
(∇xη)〈x〉α + αη〈x〉α−1 x

〈x〉
)
·
(
∇xu +

x

|x|∂tu

)
udxds

−
[ ∫

Ω

〈x〉|x|−1x · ∇xη + αη|x|〈x〉−1

2
〈x〉α−1|u|2dx

]t

0

.

From Lemma 2.1 it follows that
∣∣∣∣
[ ∫

Ω

(〈x〉|x|−1x · ∇xη + αη|x|〈x〉−1
)〈x〉α−1|u|2dx

]t

0

∣∣∣∣ ≤ CαK(f1, f2)

since α ≤ 0 yields supx∈Rn

∣∣(〈x〉|x|−1x · ∇xη + αη|x|〈x〉−1
)〈x〉α−1

∣∣ ≤ Cα <

∞. Noting supp η ⊂ Rn \Br0+1, we get

∣∣∣∣
∫ t

0

∫

Ω

(
(∇xη)〈x〉α + αη〈x〉α−1 x

〈x〉
)
·
(
∇xu +

x

|x|∂tu

)
udxds

∣∣∣∣

≤ ε

∫ t

0

∫

Ω∩Bc
r0+1

〈x〉α−1

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds
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+
C

ε

∫ t

0

∫

Ω∩Bc
r0+1

〈x〉α−1
{
((1 + |x|)|∇xη(x)|)2|u|2 + |α|2|η(x)|2|u|2}dxds.

Since supp∇xη ⊂ Br0+2 \ Br0+1 and a(x)|x|a−1
0 ≥ 1 on supp η which is

given by assumption (A.5), we obtain

∫ t

0

∫

Ω

〈x〉α−1
{
(〈x〉|∇xη(x)|)2|u|2 + |α|2|η(x)|2|u|2}dxds

≤ a−1
0

∫ t

0

∫

Ω

a(x)|x|〈x〉α−1
{
(〈x〉|∇xη(x)|)2 + |α|2|η(x)|2}|u|2dxds

≤ a−1
0 sup

x∈Rn

〈x〉α{|∇xη(x)|2〈x〉2 + |α|2|η(x)|2}
∫ t

0

∫

Ω

a(x)|u|2dxds.

From α ≤ 0 and Lemma 2.1, it follows that

∫ t

0

∫

Ω

〈x〉α−1
{
(〈x〉|∇xη(x)|)2|u|2 + |α|2|η(x)|2|u|2}dxds ≤ CαK(f1, f2).

Summarizing the above estimates, we obtain

∣∣∣∣
∫ t

0

∫

Ω

(∇x(η(x)〈x〉α) · ∇xu)udxds

∣∣∣∣

≤ ε

∫ t

0

∫

Ω∩Bc
r0+1

〈x〉α−1

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds +
Cα,η

ε
K(f1, f2).

Combining this estimate with (5.3), we obtain Lemma 5.2. ¤

To show Theorem 1.4, we need more precise estimate than (2.7). Recall
the Morawetz identity originally given by Morawetz [21].

Proposition 5.3 For any v ∈ H2
loc(R × Ω) and a real valued function

F ∈ C2(Rn \ {0}), we have the following identity :

Re
[
F

(
x · ∇xv +

n− 1
2

v

)
(∂2

t −4)v
]

= ∂t(X(t, x; v)) + div(Y (t, x; v)) + Z(t, x; v)
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+
(

2−1div(Fx)− n− 1
2

F

)(|∂tv|2 − |∇xv|2) + F |∇xv|2

+ Re[(∇xF · ∇xv)x · ∇xv],

where

X(t, x; v) = Re
[
F (x)∂tv(t, x)

(
x · ∇xv(t, x) +

n− 1
2

v(t, x)
)]

,

Y (t, x; v) = 2−1
(|∇xv|2 − |∂tv|2

)
Fx

− Re
[
F (x · ∇xv)∇xv +

n− 1
2

Fv∇xv − n− 1
4

|v|2∇xF

]
,

Z(t, x; v) = −n− 1
4

(4F )(x)|v(t, x)|2.

The case of F = 1 in Proposition 5.3 is just (2.5).
Now, let us choose F (x) in Proposition 5.3 as

F (x) = χ(r) =
1
r

∫ r

0

(g(s)− g̃(s))ds, (r = |x|),

where g and g̃ ∈ C∞0 ([0,∞)) satisfy the following properties:

( i ) 0 ≤ g ≤ 1, g is non-increace in [0,∞), g(r) = 1 (r ≤ R0 + 3) and
g(r) = 0 (r ≥ R0 + 4).

(ii) 0 ≤ g̃(r) ≤ (1 + r)−1, supp g̃ ⊂ (R0 + 5,∞) and
∫∞
0

g(s)ds =∫∞
0

g̃(s)ds.

We can take g, g̃ as follows: First we make g satisfying (i). Noting that

∫ r

R0+5

(1 + s)−1ds = log(1 + r)− log(R0 + 6) →∞ (r →∞),

for g, we can choose a function h̃ ∈ C∞0 ((R0 + 5,∞)) satisfying 0 ≤
h̃(r) ≤ (1 + r)−1 and

∫∞
0

g(s)ds <
∫∞
0

h̃(s)ds. If we put g̃(x) =( ∫∞
0

g(s)ds
)( ∫∞

0
h̃(s)ds

)−1
h̃(r), then g̃ satisfies property (ii) in the above.

Lemma 5.4 The function χ satisfies the following properties:
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( i ) χ ∈ C∞0 ([0,∞)), χ(r) = 1 (r ≤ R0 + 3), χ′(r) ≤ 0 (r ≥ 0).
(ii) rχ′(r) + χ(r) = (rχ(r))′ = g(r)− g̃(r) (r ≥ 0).

Proof. From definition of χ, we have χ ∈ C∞([0,∞)) and

χ(r) =
1
r

∫ r

0

(g(s)− g̃(s))ds =
1
r

∫ r

0

1ds = 1 (r ≤ R0 + 3).

For any R1 > 0 with supp g̃ ⊂ (R0+5, R1), it follows that χ(r) = 0 (r ≥ R1)
since

χ(r) = r−1

∫ r

0

(g(s)− g̃(s))ds = r−1

∫ ∞

0

(g(s)− g̃(s))ds = 0 (r > R1).

Thus we obtain χ ∈ C∞0 ([0,∞)). Note that we also have

rχ′(r) + χ(r) = (rχ(r))′ = g(r)− g̃(r) (r ≥ 0).

Last, we show χ′(r) ≤ 0 (r ≥ 0). For r < R0 + 5, we have

χ′(r) =
−1
r2

∫ r

0

g(s)ds+
g(r)
r

=
−1
r2

( ∫ r

0

g(s)ds−rg(r)
)
≤ 0 (r < R0 +5)

since g is non-increasing. Since g̃ ≥ 0 and g = 0 for r ≥ R0 + 5, it follows
that

∫ r

0

g(s)ds−
∫ r

0

g̃(s)ds ≥
∫ ∞

0

g(s)ds−
∫ ∞

R0+5

g̃(s)ds = 0 (r ≥ R0 + 5).

This implies that

χ′(r) =
−1
r2

∫ r

0

(g(s)− g̃(s))ds +
g(r)− g̃(r)

r

=
−1
r2

( ∫ ∞

0

g(s)ds−
∫ r

R0+5

g̃(s)ds

)
− g̃(r)

r
≤ 0 (r ≥ R0 + 5).

This completes the proof of Lemma 5.4. ¤

From ∇xF = χ′(|x|)(x/|x|), it follows that
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2−1div(Fx)− n− 1
2

F =
1
2
(|x|χ′(|x|) + χ(|x|))

Re[(∇xF · ∇xu)x · ∇xu] =
(

χ′(|x|) x

|x| · ∇xu

)
x · ∇xu = |x|χ′(|x|)

∣∣∣∣
x

|x| · ∇xu

∣∣∣∣
2

4F = div
(

χ′(|x|) x

|x|
)

= χ′′(|x|) +
n− 1
|x| χ′(|x|).

Hence Proposition 5.3, equation (1.1) and (ii) of Lemma 5.4 imply

Re
[
− χ(|x|)a(x)

(
x · ∇xu +

n− 1
2

u

)
∂tu

]

= ∂t(X(t, x;u)) + div(Y (t, x;u)) + (g(|x|)− g̃(|x|))e(t, x;u)

− |x|χ′(|x|)
(
|∇xu|2 −

∣∣∣∣
x

|x| · ∇xu

∣∣∣∣
2)

− n− 1
4

(
χ′′(|x|) +

n− 1
|x| χ′(|x|)

)
|u|2 . (5.4)

We integrate (5.4) in [0, t] × Ω. As is in Morawetz [21], integration by
parts implies

∫ t

0

∫

Ω

divY dxds =
∫ t

0

∫

∂Ω

ν(x) · Y dSxds = −1
2

∫ t

0

∫

∂Ω

Fν · x|∂νu|2dSxds

since from the Dirichlet condition, it follows that ∇xu(t, x) = ν(x)∂νu(t, x)
on R× ∂Ω. Noting Lemma 5.4 and |∇xu|2 − |x/|x| · ∇xu|2 ≥ 0, we obtain

∫ t

0

∫

Ω

g(|x|)e(s, x;u)dxds−
∫ t

0

∫

Ω

g̃(|x|)e(s, x;u)dxds

≤ −Re
∫ t

0

∫

Ω

χ(|x|)a(x)
(

x · ∇xu +
n− 1

2
u

)
∂tudxds

− Re
[ ∫

Ω

χ(|x|)∂tu

(
x · ∇xu +

n− 1
2

u

)
dx

]t

0

+
1
2

∫ t

0

∫

∂Ω

x · ν(x) |∂νu|2 dSxds
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+
n− 1

4

∫ t

0

∫

Ω

{
χ′′(|x|) +

n− 1
|x| χ′(|x|)

}
|u|2dxds

From (2.6) and Lemma 2.1, the boundary integral in the above are estimated
as

∫ t

0

∫

∂Ω

x · ν(x) |∂νu|2 dSxds ≤ CK(f1, f2) (t ≥ 0).

Since χ′(r) ≤ 0 (r ≥ 0), for any r ≥ 0, it follows that 1 = χ(0) ≥ χ(r) ≥
limr→∞ χ(r) = 0. Thus Lemma 2.1 implies that

∣∣∣∣2Re
∫ t

0

∫

Ω

χ(|x|)a(x)u∂tudxds

∣∣∣∣ =
∣∣∣∣
∫ t

0

∫

Ω

χ(|x|)a(x)∂t|u|2dxds

∣∣∣∣

=
∣∣∣∣
[ ∫

Ω

χ(|x|)a(x)|u|2dx

]t

0

∣∣∣∣ ≤ ‖a‖L∞(Ω)K(f1, f2) (t ≥ 0).

From (1.2) and Lemma 2.1 and boundness of |x|χ(|x|) in Rn, it also follows
that
∣∣∣∣
∫

Ω

χ(|x|)∂tu

(
x · ∇xu +

n− 1
2

u

)
dx

∣∣∣∣ ≤ C

∫

Ω

( |∂tu|2 + |∇xu|2 + |u|2 )
dx

≤ CK(f1, f2) (t ≥ 0).

For the integral of Reχ(|x|)a(x)(x · ∇xu)∂tu in [0, t]× Ω, noting

χ(|x|)a(x)(x · ∇xu)∂tu

= χ(|x|)a(x)|x|
(
∇xu +

x

|x|∂tu

)
· x

|x|∂tu− χ(|x|)a(x)|x||∂tu|2

and |x|χ(|x|) = 0 (|x| ≥ R1) for some R1 > R0 +5, for any β ≤ 1, we obtain

∣∣χ(|x|)a(x)(x · ∇xu)∂tu
∣∣

≤ C

{
〈R1〉(1−β)/2〈x〉(β−1)/2a(x)

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣|∂tu|+ a(x)|∂tu|2
}
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≤ ε〈x〉β−1

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

+ Cε{1 + 〈R1〉1−β‖a‖L∞(Ω)}a(x)|∂tu|2.

This and (1.2) imply

∣∣∣∣ Re
∫ t

0

∫

Ω

χ(|x|)a(x)(x · ∇xu)∂tudxds

∣∣∣∣

≤ ε

∫ t

0

∫

Ω

〈x〉β−1

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds + Cε,βK(f1, f2) (t ≥ 0, ε > 0).

Summarizing the above estimates, we obtain for any β ≤ 1, 0 < ε,

∫ t

0

∫

Ω

g(|x|)e(s, x;u)dxds

≤ ε

∫ t

0

∫

Ω

〈x〉β−1

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds + Cε,βK(f1, f2)

+
∫ t

0

∫

Ω

g̃(|x|)e(s, x;u)dxds

+
n− 1

4

∫ t

0

∫

Ω

{
χ′′(|x|) +

n− 1
|x| χ′(|x|)

}
|u|2dxds. (5.5)

Using (5.5), we show the following lemma:

Lemma 5.5 Assume that the dissipation coefficient a(x) satisfies (A.5).
Then for any ε > 0 and β ≤ 1 there exists a constant Cβ,ε > 0 such that

∫ t

0

∫

Ω

g(|x|)e(s, x;u)dxds

≤ ε

∫ t

0

∫

Ω

〈x〉β−1

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds + Cβ,εK(f1, f2)

(t ≥ 0, 0 < ε ≤ 1, β ≤ 1).

Proof. Since χ′(|x|) 6= 0 implies R0 + 3 ≤ |x|, from (A.5), it follows that
a(x)|x|a−1

0 ≥ 1 for x ∈ Ω with χ′(|x|) 6= 0. Combining this with Lemma 2.1,
we get
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∫ t

0

∫

Ω

{
χ′′(|x|) +

n− 1
|x| χ′(|x|)

}
|u|2dxds

≤ sup
r≥0

∣∣rχ′′(r) + (n− 1)χ′(r)
∣∣
∫ t

0

∫

Ω∩(BR0+3)c

1
|x|a

−1
0 a(x)|x||u|2dxds

≤ C

∫ t

0

∫

Ω

a(x)|u|2dxds ≤ CK(f1, f2).

Since g̃ is chosen satisfying 0 ≤ g̃(r) (r ≥ 0) and supp g̃ ⊂ (R0 + 5, R1) for
some R0 + 5 < R1, it follows that

∫ t

0

∫

Ω

g̃(|x|)e(s, x;u)dxds ≤ 〈R1〉2−β

∫ t

0

∫

Ω∩(BR0+5)c

〈x〉β−2e(s, x;u)dxds

for β ≤ 1. From these estimates and (5.5), to obtain Lemma 5.5, it suffices
to show for any 0 < β ≤ 1, 0 < ε,

∫ t

0

∫

Ω∩(BR0+5)c

〈x〉β−2e(s, x;u)dxds

≤ ε

∫ t

0

∫

Ω

〈x〉β−3

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds + Cβ,εK(f1, f2). (5.6)

We use Lemma 5.2 with r0 = R0 + 3 and α = β − 2 ≤ −1. Since η

in Lemma 5.2 satisfies supp η ⊂ (BR0+4)c, 0 ≤ η ≤ 1 and η(x) = 1 for
|x| ≥ R0 + 5, we obtain

∫ t

0

∫

Ω∩(BR0+5)c

〈x〉β−2|∇xu|2dxds

≤
∫ t

0

∫

Ω

η(x)〈x〉β−2|∇xu|2dxds

≤
∫ t

0

∫

Ω∩(BR0+4)c

〈x〉β−2|∂tu|2dxds + CεK(f1, f2)

+ ε

∫ t

0

∫

Ω∩(BR0+4)c

〈x〉β−3

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds.
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From this estimate, it follows that for any β ≤ 1

∫ t

0

∫

Ω∩(BR0+5)c

〈x〉β−2e(s, x;u)dxds

≤
∫ t

0

∫

Ω∩(BR0+4)c

〈x〉β−2|∂tu|2dxds

+ ε

∫ t

0

∫

Ω∩(BR0+4)c

〈x〉β−3

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds + Cβ,εK(f1, f2).

From (A.5), it follows that a(x)|x|a−1
0 ≥ 1 (|x| ≥ R0). Hence (1.2) yields

∫ t

0

∫

Ω∩(BR0+4)c

〈x〉β−2
∣∣∂tu

∣∣2dxds

≤
∫ t

0

∫

Ω∩(BR0+4)c

a(x)|x|a−1
0 〈x〉β−2|∂tu|2dxds

≤ a−1
0

∫ t

0

∫

Ω

a(x)|∂tu|2dxds ≤ a−1
0 E(u, Ω, 0) (β ≤ 1).

These estimates give (5.6), which completes the proof of Lemma 5.5. ¤

Next, we consider
∫ t

0

∫
Ω
〈x〉β−1(1 − g(|x|))e(s, x;u)dxds for β ≤ 1. We

put η(x) = 1 − g(|x|), r0 = R0 + 2 and α = β − 1 in Lemma 5.2. Then it
follows that

∫ t

0

∫

Ω

〈x〉β−1(1− g(|x|))e(s, x;u)dxds

=
∫ t

0

∫

Ω

〈x〉β−1(1− g(|x|)) |∂tu|2 dxds

+
1
2

∫ t

0

∫

Ω

〈x〉β−1(1− g(|x|))( |∇xu|2 − |∂tu|2
)
dxds

≤
∫ t

0

∫

Ω

〈x〉β−1(1− g(|x|)) |∂tu|2 dxds

+ ε

∫ t

0

∫

Ω

〈x〉β−2
∣∣∇xu +

x

|x|∂tu
∣∣2dxds + Cβ,εK(f1, f2).
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Note that we also have
∫ t

0

∫

Ω

〈x〉β−1(1− g(|x|)) |∂tu|2 dxds

≤ a−1
0

∫ t

0

∫

Ω

(1− g(|x|))a(x)〈x〉β |∂tu|2 dxds

since 0 ≤ g ≤ 1, a−1
0 a(x)|x| ≥ 1 for |x| ≥ R0 and 1− g(|x|) 6= 0 implies that

R0 + 3 ≤ |x|. These estimates yield

∫ t

0

∫

Ω

〈x〉β−1(1− g(|x|))e(s, x;u)dxds

≤ a−1
0

∫ t

0

∫

Ω

(1− g(|x|))a(x)〈x〉β |∂tu|2 dxds

+ ε

∫ t

0

∫

Ω

〈x〉β−2

∣∣∣∣∇xu +
x

|x|∂tu

∣∣∣∣
2

dxds + Cβ,εK(f1, f2)

(t ≥ 0, 0 < ε ≤ 1, β ≤ 1).

Combining this estimate with Lemma 5.5, we arrive at the following esti-
mates:

Lemma 5.6 Assume that the dissipation coefficient a(x) satisfies (A.5).
Then for any 1 ≥ ε > 0 and 1 ≥ β, there exists a constan Cβ,ε > 0 such
that

∫ t

0

∫

Ω

〈x〉β−1e(s, x;u)dxds

≤ a−1
0

∫ t

0

∫

Ω

(1− g(|x|))a(x)〈x〉β |∂tu|2 dxds

+ ε

∫ t

0

∫

Ω

〈x〉β−1J(s, x;u)dxds + Cβ,εK(f1, f2) (t ≥ 0).

From Lemma 5.6, it follows that

∫ t

0

∫

Ω

〈x〉β−2e(s, x;u)dxds ≤ CβK1(f1, f2) (t ≥ 0, β ≤ 1). (5.7)



310 M. Kawashita

Indeed, for β ≤ 1, taking β and ε in Lemma 5.6 as β − 1(≤ 0) and ε = 1/4,
and using (1.2), we get

∫ t

0

∫

Ω

〈x〉β−2e(s, x;u)dxds ≤ a−1
0

∫ t

0

∫

Ω

(1− g(|x|))a(x)〈x〉β−1 |∂tu|2 dxds

+
1
2

∫ t

0

∫

Ω

〈x〉β−2e(s, x;u)dxds + CβK(f1, f2)

≤ 1
2

∫ t

0

∫

Ω

〈x〉β−2e(s, x;u)dxds + CβK(f1, f2)

(t ≥ 0).

This implies (5.7).
We continue the proof of Theorem 1.4. From Lemma 5.6, (5.7) and

(2.14), it follows that

∫

Ω

〈x〉βe(t, x;u)dx +
∫ t

0

∫

Ω

a(x)〈x〉β |∂tu|2 dxds

+ β

∫ t

0

∫

Ω

〈x〉β−1J(s, x;u)dsdx

≤
∫

Ω

〈x〉βe(0, x;u)dx + β

∫ t

0

∫

Ω

〈x〉β−1e(s, x;u)dxds

+ 2β

∫ t

0

∫

Ω

〈x〉β−3e(s, x;u)dxds

≤ βa−1
0

∫ t

0

∫

Ω

(1− g(|x|))a(x)〈x〉β |∂tu|2 dxds

+ βε

∫ t

0

∫

Ω

〈x〉β−1J(s, x;u)dxds + Cβ,εK(f1, f2)

since 〈x〉β−3 ≤ 〈x〉β−2 (0 < β ≤ 1). This implies that

∫

Ω

〈x〉βe(t, x;u)dx +
∫ t

0

∫

Ω

(1− βa−1
0 + βa−1

0 g(|x|))a(x)〈x〉β |∂tu|2 dxds

+ β(1− ε)
∫ t

0

∫

Ω

〈x〉β−1J(s, x;u)dsdx ≤ Cβ,εK(f1, f2) (t ≥ 0)
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for any fixed 1 ≥ ε > 0 and 0 < β ≤ 1. Choosing ε = 1/2 in the above, we
obtain the following key estimate:

∫

Ω

〈x〉βe(t, x;u)dx +
∫ t

0

∫

Ω

(1− βa−1
0 + βa−1

0 g(|x|))a(x)〈x〉β |∂tu|2 dxds

+
β

2

∫ t

0

∫

Ω

〈x〉β−1J(s, x;u)dsdx ≤ CβK(f1, f2) (t ≥ 0, 0 < β ≤ 1).

(5.8)

Now, we are in the position to show (5.1). For µ = min{1, a0}, we take
β = µ in (5.8). Since 0 < µ ≤ 1 and

1− µa−1
0 + µa−1

0 g(|x|) ≥ 1− µa−1
0 ≥ 0,

(5.8) implies that

∫

Ω

〈x〉µe(t, x;u)dx + µ

∫ t

0

∫

Ω

〈x〉µ−1
J(s, x;u)dsdx ≤ CK(f1, f2),

which means that (5.1) holds for µ = min{1, a0}. Hence, from Lemma 5.1,
we obtain Theorem 1.4.
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