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The lifespan of solutions to wave equations

with weighted nonlinear terms in one space dimension

Kyouhei Wakasa
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Abstract. In this paper, we consider the initial value problem for nonlinear wave

equation with weighted nonlinear terms in one space dimension. Kubo & Osaka &

Yazici [4] studied global solvability of the problem under different conditions on the

nonlinearity and initial data, together with an upper bound of the lifespan for the

problem. The aim of this paper is to improve the upper bound of the lifespan and to

derive its lower bound which shows the optimality of our new upper bound.
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1. Introduction

In this paper we consider the initial value problem for nonlinear wave
equations:

{
utt − uxx = H(x, u(x, t)), (x, t) ∈ R× [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ R,
(1.1)

where u = u(x, t) is a scalar unknown function of space-time variables,
(f, g) ∈ C2(R) × C1(R) and ε > 0 is a “small” parameter. The nonlinear
term, H is given by

H(x, u) =
F (u(x, t))

(1 + x2)(1+a)/2
, (1.2)

where a ≥ −1 and F (u) = |u|p or |u|p−1u with p > 1. Let us define the
lifespan Tε of C2-solution of (1.1) by

Tε ≡ Tε(f, g) := sup{T ∈ (0,∞) : There exists a unique solution

u ∈ C2(R× [0, T )) of (1.1)}
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with arbitrarily fixed (f, g).
First of all, we recall known results for the case a = −1 in general spatial

dimensions:
{

utt −∆u = |u|p in Rn × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), for x ∈ Rn,

where n ≥ 1. When n ≥ 2, there exists a critical exponent p0(n) such that
Tε = ∞ for “small” ε if p > p0(n), and Tε < ∞ for “positive” (f, g) if
1 < p ≤ p0(n). Actually, p0(n) is a positive root of the quadratic equation
(n− 1)p2 − (n + 1)p− 2 = 0. See e.g. Introduction in Takamura & Wakasa
[6] for the details.

On the other hand, when n = 1, and (f, g) has a compact support and
satisfies some positivity assumption, Kato [3] showed that Tε < ∞ for any
p > 1. The difference between the cases n ≥ 2 and n = 1 comes from
the fact that the solutions to the homogeneous wave equations has a decay
estimate, |u(x, t)| ≤ (t + 1)−(n−1)/2. Especially, the solution does not have
decay property when n = 1.

The result due to [3] motivates one to introduce a weight function (1 +
x2)−(1+a)/2 in the nonlinearity for getting a global solution. Actually, Suzuki
[5] showed that Tε = ∞ with F (u) = |u|p−1u for p > (1+

√
5)/2 and pa > 1

if f and g are odd functions and ε is small enough, and Kubo & Osaka &
Yazici [4] have obtained the same conclusion for any p > 1 satisfying pa > 1.
On the other hand, they showed that Tε < ∞ for F (u) = |u|p with p > 1
and a ≥ −1 if (f, g) satisfies f ≡ 0, g(x) ≥ 0 for x ∈ R, and

∫ δ

δ/2
g(y)dy > 0

with some 0 < δ < 1. Also, they obtained an upper bound of the lifespan,
Tε ≤ Cε−p2

, where C is a positive constant independent of ε. However, this
estimate is not sharp at least in the case of a = −1. In fact, Zhou [7] has
obtained the following estimate of the lifespan Tε for any p > 1,

cε−(p−1)/2 ≤ Tε ≤ Cε−(p−1)/2 if
∫

R

g(x)dx 6= 0, (1.3)

where c and C are positive constants independent of ε.
Our purpose in this paper is to extend Zhou’s result to the case where

a > −1. To obtain a blow-up result, we require the following assumptions
on the data:
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Let f ≡ 0 and g ∈ C1(R) does not vanish identically.

Assume g(x) ≥ 0 for all x ∈ R and
∫ 1

−1

g(y)dy > 0.
(1.4)

Then, we have the following blow-up theorem.

Theorem 1.1 Let a ≥ −1 and F (u) = |u|p−1u or |u|p with p > 1. Assume
(1.4). Then, there exist positive constants ε0 = ε0(g, a, p) and C = C(g, a, p)
such that

Tε ≤





Cε−(p−1)/(1−a) if − 1 ≤ a < 0,

φ−1(Cε−(p−1)) if a = 0,

Cε−(p−1) if a > 0,

(1.5)

holds for any ε with 0 < ε ≤ ε0, where φ = φ(s) is a function defined by
φ(s) = s log(2 + s) for s ≥ 0.

The proof of this theorem is done by an iteration argument concerning
point-wise estimates. Such kind of framework was introduced by John [2]
in three space dimensions. The first step of the iteration argument comes
from the linear estimate of the solution to the homogeneous wave equation
from below. Kubo & Osaka & Yazici [4] obtained such an estimate only in
a strip domain, {0 ≤ x − t ≤ δ/2}, where 0 < δ < 1 is a constant. On the
other hand, we are able to show a similar estimate in unbounded domain,
{t−x ≥ 1}. This improvement enable us to establish sharp upper bound of
Tε. See Lemma 3.2 and Remark 3.2 for details.

To show the optimality of the upper bounds in Theorem 1.1, we require
the following assumptions on (f, g)

f ∈ C2(R) and g ∈ C1(R) satisfy ‖f‖L∞(R) < ∞
and ‖g‖L1(R) < ∞.

(1.6)

Then, we have the following theorem.

Theorem 1.2 Let a ≥ −1 and F (u) = |u|p−1u or |u|p with p > 1. Assume
(1.6). Then, there exists a positive constant c = c(f, g, a, p) such that
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Tε ≥





cε−(p−1)/(1−a) if − 1 ≤ a < 0,

φ−1(cε−(p−1)) if a = 0,

cε−(p−1) if a > 0,

(1.7)

holds for ε > 0, where φ is the function in Theorem 1.1.

Remark 1.1 One can easily generalize the assumption on F in Theorem
1.2 as follows:

F ∈ C1(R) satisfies F (0) = F ′(0) = 0 and

|F ′(s)| ≤ pA|s|p−1 for s ∈ R, where p > 1 and A > 0.
(1.8)

This paper is organized as follows. In the next section, we prepare some
notations. The upper bounds of the lifespan and lower bounds of the lifespan
are obtained in Section 3 and Section 4, respectively.

2. Notations

In this section, we give some notations and definitions.
We define

u0(x, t) =
1
2
{f(x + t) + f(x− t)}+

1
2

∫ x+t

x−t

g(y)dy (2.1)

and

L(V )(x, t) =
1
2

∫∫

D(x,t)

V (y, s)dyds (2.2)

for V ∈ C(R× [0,∞)), where

D(x, t) = {(y, s) ∈ R× [0,∞) : 0 ≤ s ≤ t, x− t + s ≤ y ≤ x + t− s}.

For (f, g) ∈ C2(R)× C1(R), if u ∈ C(R× [0,∞)) is a solution of

u(x, t) = εu0(x, t) + L(H(·, u))(x, t), (x, t) ∈ R× [0,∞), (2.3)

then u ∈ C2(R× [0,∞)) is the solution to the initial value problem (1.1).
For T > 0, we define the following domains:



The lifespan of solutions to nonlinear wave equations 261

Γ1 = {(x, t) ∈ [0,∞)× [0, T ] : t− x ≥ 1},
Γ2 = {(x, t) ∈ [0,∞)× [0, T ] : x ≥ t− x ≥ 1}, (2.4)

Σj = {(x, t) ∈ [0,∞)× [0, T ] : t− x ≥ lj},

where




l1 = 3

lj = l1 +
j−1∑

k=1

2−(k−1) = l1 + 2
(

1− 1
2j−1

)
for j ≥ 2.

(2.5)

3. Upper bound of the lifespan

In this section, we prove Theorem 1.1. It is sufficient to show that the
solution to the integral equation,

u(x, t) = εu0(x, t) +
1
2

∫∫

D(x,t)

|u(y, s)|pdyds

(1 + y2)(1+a)/2
, (x, t) ∈ R× [0,∞), (3.1)

blows up in finite time. Because, if u ∈ C(R× [0,∞)) is a solution of (3.1),
then u satisfies u(x, t) ≥ 0 for (x, t) ∈ R × [0,∞) by the assumptions in
(1.4). Therefore, this u must solve the equation (2.3) with F (u) = |u|p−1u

by the uniqueness of solutions to (1.1).
Before proving Theorem 1.1, we prepare the following lemmas:

Lemma 3.1 Let p > 1, a ≥ −1 and let us define a sequence

{
Ca,j = exp{pj−1(log(Ca,1F

−Sj
p,a E1/(p−1)

p,a ))− log E1/(p−1)
p,a } (j ≥ 2),

Ca,1 = cp
0kaεp,

(3.2)

where

Ep,a =





(p− 1)2/(2a+5p2), if − 1 ≤ a < 0,

(p− 1)2/(2p2), if a = 0,

(p− 1)/(2a+2p). if a > 0,

(3.3)



262 K. Wakasa

Fp,a =

{
p2, if − 1 ≤ a ≤ 0,

2p if a > 0,
(3.4)

ka =





2−(a+4), if − 1 ≤ a < 0,

2−1, if a = 0,

2−(a+2). if a > 0,

(3.5)

and

Sj =
j−1∑

i=1

i

pi
. (3.6)

Then, we have the following relation:

Ca,j+1 =
Cp

a,jEp,a

F j
p,a

(j ∈ N). (3.7)

Proof. First, we shall show (3.7) for j = 1. One can easily get

log
(

Cp
a,1Ep,a

Fp,a

)
= p log(Ca,1F

−1/p
p,a ) + log Ep,a

= p log(Ca,1F
−1/p
p,a E1/(p−1)

p,a )− log E1/(p−1)
p,a = log Ca,2.

Hence (3.7) holds for j = 1. Next, we shall show (3.7) for j ≥ 2. Note that
(3.7) is equivalent to

log Ca,j+1 = p log Ca,j − j log Fp,a + log Ep,a.

By (3.2) and the expression of Sj in (3.6), the right-hand side of this identity
is equal to

pj
{

log(Ca,1F
−Sj
p,a E1/(p−1)

p,a )
}− p log E1/(p−1)

p,a − j log Fp,a + log Ep,a

= pj
{

log(Ca,1F
−Sj+1
p,a E1/(p−1)

p,a )
}

+ pj log F j/pj

p,a − j log Fp,a − log E1/(p−1)
p,a

= pj
{

log(Ca,1F
−Sj+1
p,a E1/(p−1)

p,a )
}− log E1/(p−1)

p,a .
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Hence, we obtain (3.7) by (3.2) with j replaced by j + 1. This completes
the proof. ¤

Remark 3.1 For the proof of Lemma 3.1 itself, the definitions of Ep,a

(3.3), Fp,a (3.4) and ka (3.5) are not necessary, but only the positivity of
them is enough.

Next, we derive a lower bound of the solution to (3.1) which is a starting
point of our iteration argument.

Lemma 3.2 Suppose that the assumptions in Theorem 1.1 are fulfilled.
Let u ∈ C(R× [0, T ]) be the solution of (3.1). Then, u satisfies

u(x, t) ≥ εc0 for (x, t) ∈ Γ1, (3.8)

where c0 = (1/2)
∫ 1

−1
g(y)dy > 0 and Γ1(= {(x, t) ∈ [0,∞)× [0, T ] : t− x ≥

1}) is the one in (2.4).

Proof. By (1.4) and (2.1), we get

εu0(x, t) =
ε

2

∫ x+t

x−t

g(y)dy ≥ εc0 for (x, t) ∈ Γ1.

Making use of the positivity of the second term of right-hand side in (3.1),
we have (3.8). This completes the proof. ¤

Remark 3.2 In three space dimensions, the following estimate which is
necessary to get the first step of the iteration argument was obtained by
John [2] in a strip domain: For (x, t) ∈ S, we have

u0(x, t) ≥ Cr−1,

where r = |x|, C is a positive constant and S = {(r, t) ∈ (0,∞) × [0,∞) :
δ ≤ t− r ≤ δ′}, with some δ′, δ (δ′ > δ > 0).

On the contrary, our estimate holds in some domain without any re-
striction of upper bound for t − x. This is the key point to obtain sharp
upper bound of Tε.

Our iteration argument will be done by using the following estimates.



264 K. Wakasa

Proposition 3.1 Suppose that the assumptions in Theorem 1.1 are ful-
filled. Let j ∈ N and let u ∈ C(R× [0, T ]) be the solution of (3.1). Then, u

satisfies

u(x, t) ≥ Ca,j{(t− x)−(a+1)(t− x− 1)2}aj if − 1 ≤ a < 0, (3.9)

for (x, t) ∈ Γ2, and

u(x, t) ≥ C0,j{(t− x− 1) log(1 + x)}aj if a = 0, (3.10)

for (x, t) ∈ Γ1, and

u(x, t) ≥ Ca,j(t− x− lj)aj if a > 0, (3.11)

for (x, t) ∈ Σj, where Γ1, Γ2 and Σj are defined in (2.4). Here Ca,j is the
one in (3.2) and aj is defined by

aj =
pj − 1
p− 1

(j ∈ N). (3.12)

Proof. We shall show (3.9), (3.10) and (3.11) by induction. Noticing that
u0(x, t) ≥ 0 for (x, t) ∈ R× [0,∞) and (1 + y2)1/2 ≤ 1 + |y|, we get

u(x, t) ≥ 1
2

∫∫

D(x,t)

|u(y, s)|p
(1 + |y|)1+a

dyds in R× [0,∞). (3.13)

(i) Estimate in the case of −1 ≤ a < 0.
Let (x, t) ∈ Γ2. Define

T1(x, t) := {(y, s) ∈ D(x, t) : 1 ≤ s− y ≤ t− x ≤ y, s + y ≤ t + x}.

Changing the variables in the integral of (3.13) by

α = s + y, β = s− y (3.14)

and replacing the domain of integration by T1(x, t), we get

u(x, t) ≥ 1
4

∫ t−x

1

dβ

∫ t+x

2(t−x)+β

|u(y, s)|p
{1 + (α− β)/2}1+a

dα in Γ2. (3.15)
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Making use of (3.8) and T1(x, t) ⊂ Γ1 for (x, t) ∈ Γ2, we have

u(x, t) ≥ cp
0ε

p

4

∫ t−x

1

dβ

∫ t+x

2(t−x)+β

dα

{1 + (α− β)/2}1+a
in Γ2.

Note that x ≥ t− x is equivalent to t + x ≥ 3(t− x), we get

u(x, t) ≥ cp
0ε

p

4

∫ t−x

1

dβ

∫ 3(t−x)

2(t−x)+β

dα

{1 + (α− β)/2}1+a
in Γ2.

It follows from

1 +
α− β

2
≤ 1 +

3(t− x)− 1
2

≤ 2(t− x)

for α ≤ 3(t− x), β ≥ 1 and t− x ≥ 1 that

u(x, t) ≥ cp
0ε

p

2a+3(t− x)1+a

∫ t−x

1

(t− x− β)dβ = Ca,1
(t− x− 1)2

(t− x)1+a
in Γ2.

Therefore, (3.9) holds for j = 1.
Assume that (3.9) holds. Noticing that T1(x, t) ⊂ Γ2 for (x, t) ∈ Γ2 and

putting (3.9) into (3.15), we have

u(x, t) ≥ Cp
a,j

4

∫ t−x

1

(β − 1)2paj

βp(a+1)aj
dβ

∫ t+x

2(t−x)+β

dα

{1 + (α− β)/2}1+a
in Γ2.

Analogously to the case of j = 1, we get

u(x, t) ≥ Cp
a,j

2a+3(t− x)(a+1)(paj+1)

∫ t−x

1

(β − 1)2paj dβ

∫ 3(t−x)

2(t−x)+β

dα

=
Cp

a,j

2a+3(t− x)(a+1)(paj+1)

∫ t−x

1

(β − 1)2paj (t− x− β)dβ

in Γ2. Making use of integration by parts to the integral above, we have

u(x, t) ≥ Cp
a,j(t− x− 1)2(paj+1)

2a+5(paj + 1)2(t− x)(a+1)(paj+1)
in Γ2.
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Recalling the definition of aj , we have

aj+1 = paj + 1 ≤ pj+1

p− 1
. (3.16)

Making use of (3.7), we get

u(x, t) ≥ Cp
a,j(p− 1)2

2a+5p2(j+1)
· (t− x− 1)2aj+1

(t− x)(a+1)aj+1
= Ca,j+1

(t− x− 1)2aj+1

(t− x)(a+1)aj+1

in Γ2. Therefore, (3.9) holds for all j ∈ N.

(ii) Estimate in the case of a = 0.
Let (x, t) ∈ Γ1. Define

T2(x, t) := {(y, s) ∈ D(x, t) : 1 ≤ s− y ≤ t− x, s + y ≤ t + x, y ≥ 0}.

Changing the variables by (3.14) in the integral of (3.13) and replacing the
domain of integration by T2(x, t), we get

u(x, t) ≥ 1
4

∫ t−x

1

dβ

∫ t+x

β

|u(y, s)|p
1 + (α− β)/2

dα in Γ1. (3.17)

By making use of (3.8) and T2(x, t) ⊂ Γ1 for (x, t) ∈ Γ1, we get

u(x, t) ≥ cp
0ε

p

4

∫ t−x

1

dβ

∫ t+x

β

dα

1 + (α− β)/2
in Γ1.

Noticing that

∫ t+x

β

dα

1 + (α− β)/2
= 2 log

(
1 +

t + x− β

2

)
≥ 2 log(1 + x),

for β ≤ t− x, we obtain

u(x, t) ≥ cp
0ε

p

2
log(1 + x)

∫ t−x

1

dβ = C0,1(t− x− 1) log(1 + x) in Γ1.

Therefore, (3.10) holds for j = 1.
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Assume that (3.10) holds. Noticing that T2(x, t) ⊂ Γ1 for (x, t) ∈ Γ1

and putting (3.10) into (3.17), we have

u(x, t) ≥ Cp
0,j

4

∫ t−x

1

(β − 1)paj dβ

∫ t+x

β

{log(1 + (α− β)/2)}paj dα

1 + (α− β)/2
in Γ1.

Analogously to the case of j = 1, we get

u(x, t) ≥ Cp
0,j

2(paj + 1)

∫ t−x

1

(β − 1)paj

{
log

(
1 +

t + x− β

2

)}paj+1

dβ

≥ Cp
0,j{log(1 + x)}paj+1

2(paj + 1)

∫ t−x

1

(β − 1)paj dβ

in Γ1. It follows from (3.16) and (3.7) that

u(x, t) ≥ Cp
0,j(p− 1)2

2p2(j+1)
· {(t− x− 1) log(1 + x)}aj+1

= C0,j+1{(t− x− 1) log(1 + x)}aj+1

in Γ1. Therefore, (3.10) holds for all j ∈ N.

(iii) Estimate in the case of a > 0.
In this case, we use the “slicing” method which is introduced by Agemi

& Kurokawa & Takamura [1]. Let (x, t) ∈ Σ1. Define

L1(x, t) := {(y, s) ∈ D(x, t) : 1 ≤ s− y ≤ t− x− 2, 0 ≤ y ≤ 1}.

Changing the variables by (3.14) in the integral of (3.13) and replacing the
domain of integration by L1(x, t), we get

u(x, t) ≥ 1
4

∫ t−x−2

1

dβ

∫ 2+β

β

|u(y, s)|pdα

{1 + (α− β)/2}1+a
in Σ1.

By making use of (3.8) and L1(x, t) ⊂ Γ1 for (x, t) ∈ Σ1, we have

u(x, t) ≥ cp
0ε

p

4

∫ t−x−2

1

dβ

∫ 2+β

β

dα

{1 + (α− β)/2}1+a
in Σ1.
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It follows from 1 + (α− β)/2 ≤ 2 for α ≤ 2 + β that

u(x, t) ≥ cp
0ε

p

2a+2

∫ t−x−2

1

dβ = Ca,1(t− x− 3) in Σ1.

Therefore, (3.11) holds for j = 1.
Assume that (3.11) holds. Let (x, t) ∈ Σj+1. Define

Lj(x, t) := {(y, s) ∈ D(x, t) : lj ≤ s− y ≤ t− x− 2−(j−1), 0 ≤ y ≤ 2−j}

for j ≥ 1, where lj is defined in (2.5). Making use of (3.14) and replacing
the domain of integration in (3.13) by Lj(x, t), we have

u(x, t) ≥ 1
4

∫ t−x−2−(j−1)

lj

dβ

∫ 2−(j−1)+β

β

|u(y, s)|pdα

{1 + (α− β)/2}1+a
in Σj+1.

Noticing that Lj(x, t) ⊂ Σj for (x, t) ∈ Σj+1 and putting (3.11) into the
integral above, we have

u(x, t) ≥ Cp
a,j

4

∫ t−x−2−(j−1)

lj

(β − lj)paj dβ

∫ 2−(j−1)+β

β

dα

{1 + (α− β)/2}1+a

in Σj+1. Note that

1 +
α− β

2
≤ 1 +

1
2j
≤ 2

for α ≤ 2−(j−1) + β, we get

u(x, t) ≥ Cp
a,j

2a+2+j

∫ t−x−2−(j−1)

lj

(β − lj)paj dβ in Σj+1.

It follows from lj + 2−(j−1) = lj+1, (3.16) and (3.7) that

u(x, t) ≥ (p− 1)Cp
a,j

2a+2+jpj+1
· (t− x− lj+1)aj+1 = Ca,j+1(t− x− lj+1)aj+1

in Σj+1. Therefore, (3.11) holds for all j ∈ N. The proof of Proposition 3.1
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is now completed. ¤

End of the proof of Theorem 1.1. Let u ∈ C(R× [0, T ]) be the solution of
the integral equation, (3.1). Setting S = limj→∞ Sj , we see from (3.6) that
Sj ≤ S for all j ∈ N. Therefore, (3.2) yields

Ca,j ≥ exp
{
pj−1{log(Ca,1F

−S
p,a E1/(p−1)

p,a )} − log E1/(p−1)
p,a

}

= E−1/(p−1)
p,a exp

{
pj−1{log(Ca,1F

−S
p,a E1/(p−1)

p,a )}}. (3.18)

(i) The lifespan in the case of −1 ≤ a < 0.
We take ε0 = ε0(g, a, p) > 0 so small that

B1ε
−(p−1)/(1−a)
0 ≥ 4,

where we set

B1 = (cp
02
−(a+4)+p(a−3)/(p−1)p−2SE1/(p−1)

p,a )−(p−1)/p(1−a) > 0.

Next, for a fixed ε ∈ (0, ε0], we suppose that T satisfies

T > B1ε
−(p−1)/(1−a) (≥ 4). (3.19)

Combining (3.18) with (3.9), we have

u(x, t) ≥ E−1/(p−1)
p,a exp

{
pj−1{log(Ca,1F

−S
p,a E1/(p−1)

p,a )}}

×
{

(t− x− 1)2

(t− x)(1+a)

}(pj−1)/(p−1)

in Γ2. Note that t−x−1 ≥ (t−x)/2 is equivalent to t−x ≥ 2. Furthermore,
we have (t/2, t) ∈ Γ2 for t ∈ [4, T ]. Hence we get

u(t/2, t) ≥ (2a−3Ep,a)−1/(p−1)

× exp
{
pj−1{log(2p(a−3)/(p−1)Ca,1F

−S
p,a E1/(p−1)

p,a )}}

× t(1−a)(pj−1)/(p−1)

= (2a−3Ep,a)−1/(p−1) exp{pj−1K1(t)}t−(1−a)/(p−1)
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for t ∈ [4, T ], where we set

K1(t) = log
(
εpcp

02
−(a+4)+p(a−3)/(p−1)p−2SE1/(p−1)

p,a tp(1−a)/(p−1)
)

(recall (3.4) and (3.5)).
By (3.19) and the definition of B1, we have K1(T ) > 0. Therefore we get

u(T/2, T ) →∞ as j →∞. Hence, (3.19) implies that Tε ≤ B1ε
−(p−1)/(1−a)

for 0 < ε ≤ ε0.

(ii) The lifespan in the case of a = 0.
We take ε1 = ε1(g, p) > 0 so small that

φ−1(B2ε
−(p−1)
1 ) ≥ 4,

where φ is the one in Theorem 1.1 and

B2 =
(
cp
02
−1−3p/(p−1)p−2SE

1/(p−1)
p,0

)−(p−1)/p
> 0.

Next, for a fixed ε ∈ (0, ε1], we suppose that T satisfies

T > φ−1(B2ε
−(p−1)) (≥ 4). (3.20)

Combining the estimates (3.18) and (3.10), we have

u(t/2, t) ≥ (2−2Ep,0)−1/(p−1)

× exp
{
pj−1{log(εpcp

02
−1−2p/(p−1)p−2SE

1/(p−1)
p,0 )}}

× {t log(1 + t/2)}(pj−1)/(p−1)

for 4 ≤ t ≤ T . Noticing that

log
(

1 +
t

2

)
= log(2 + t)− log 2 ≥ log(2 + t)

2
for t ≥ 2,

we get

u(t/2, t) ≥ (2−3Ep,0)−1/(p−1) exp{pj−1K2(t)}φ(t)−1/(p−1)
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for 4 ≤ t ≤ T , where we set

K2(t) = log
(
εpcp

02
−1−3p/(p−1)p−2SE

1/(p−1)
p,0 {φ(t)}p/(p−1)

)
.

Analogously to the case of −1 ≤ a < 0, we have K2(T ) > 0 by (3.20)
and the definition of B2. Therefore we get u(T/2, T ) → ∞ as j → ∞.
Hence, (3.20) implies that Tε ≤ φ−1(B2ε

−(p−1)) for 0 < ε ≤ ε1.

(iii) The lifespan in the case of a > 0.
We take ε2 = ε2(g, a, p) > 0 so small that

B3ε
−(p−1)
2 ≥ 20,

where we set

B3 =
(
cp
02
−(a+2)−2p/(p−1)(2p)−SE1/(p−1)

p,a

)−(p−1)/p
> 0.

Next, for a fixed ε ∈ (0, ε2], we suppose that T satisfies

T > B3ε
−(p−1) (≥ 20). (3.21)

Combining the estimates (3.18) with (3.11), we have

u(t/2, t) ≥ (2−2Ep,a)−1/(p−1) exp{pj−1K3(t)}t−1/(p−1)

for 20 ≤ t ≤ T , where we set

K3(t) = log
(
εpcp

02
−(a+2)−2p/(p−1)(2p)−SE1/(p−1)

p,a tp/(p−1)
)
.

Since K3(T ) > 0, by (3.21) and the definition of B3, we get u(T/2, T ) →
∞ as j → ∞. Hence, (3.21) implies that Tε ≤ B3ε

−(p−1) for 0 < ε ≤ ε2.
Therefore, the proof of Theorem 1.1 is now completed. ¤

4. Lower bound of the lifespan

In this section, we prove Theorem 1.2. First of all, we introduce a
Banach space

X = {u ∈ C(R× [0, T ]) : ‖u‖L∞(R×[0,T ]) < ∞}, (4.1)
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which is equipped with a norm

‖u‖L∞(R×[0,T ]) = sup
(x,t)∈R×[0,T ]

|u(x, t)|. (4.2)

We also define a closed subspace Y in X by

Y = {u ∈ X : ‖u‖L∞(R×[0,T ]) ≤ 2Mε},

where we set

M = ‖f‖L∞(R) + ‖g‖L1(R).

We shall construct a solution of the integral equation (2.3) in Y under suit-
able assumption on T such as (4.7) below. Define a sequence of functions
{un}n∈N by

un = u0 + L(H(·, un−1)), u0 = εu0, (4.3)

where L, H and u0 are given by (2.2), (1.2) and (2.1), respectively. Since
‖u0‖L∞(R×[0,T ]) ≤ Mε by (2.1), we have u0 ∈ Y .

The following a priori estimate plays a key role in the proof of Theorem
1.2.

Lemma 4.1 Let V ∈ X, a ≥ −1, and let D = D(τ) is a function defined
by

D(τ) =





(1 + τ)1−a if − 1 ≤ a < 0,

φ(τ) if a = 0,

1 + τ if a > 0,

(4.4)

for τ ≥ 0, where φ is the one in Theorem 1.1. Then, there exists a positive
constant Ca such that

∥∥∥∥L

(
V

(1 + | · |2)(1+a)/2

)∥∥∥∥
L∞(R×[0,T ])

≤ CaD(T )‖V ‖L∞(R×[0,T ]). (4.5)

Proof. Noticing that (1 + y2) ≥ (1 + |y|)2/2, the left-hand side in (4.5) is
dominated by
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Ca‖V ‖L∞(R×[0,T ])

∫∫

D(x,t)

dyds

〈y〉1+a
,

where we set 〈y〉 = 1 + |y|. Thus, it is enough to show the inequality,

I(x, t) ≤ CaD(T ) for (x, t) ∈ R× [0, T ], (4.6)

where we set

I(x, t) =
∫∫

D(x,t)

dyds

〈y〉1+a
.

We may assume x ≥ 0. Because I(x, t) is an even function with respect
to x. When t ≥ x ≥ 0, we divide the integral domain D(x, t) into two parts
Dj(x, t) (j = 1, 2), where

D1(x, t) = {(y, s) ∈ R× [0,∞) : 0 ≤ s ≤ t− x, x− t + s ≤ y ≤ t− x− s},
D2(x, t) = {(y, s) ∈ [0,∞)2 : 0 ≤ s ≤ t, |x− t + s| ≤ y ≤ x + t− s}.

Namely, we set

Ij(x, t) =
∫∫

Dj(x,t)

1
〈y〉1+a

dyds (j = 1, 2),

so that I(x, t) = I1(x, t) + I2(x, t). We shall estimate I1. Since 〈y〉 is an
even function, we obtain

I1(x, t) = 2
∫ t−x

0

ds

∫ t−x−s

0

dy

(1 + y)1+a
for t ≥ x ≥ 0.

Then, the y-integral is dominated by




−a−1(1 + t− x)−a if a < 0,

log(1 + t− x) if a = 0,

a−1 if a > 0.

Hence, we get
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I1(x, t) ≤ CaD(t− x) ≤ CaD(T ) for 0 ≤ x ≤ t ≤ T.

Next, we shall estimate I2. It follows that

I2(x, t) =
∫ t

0

ds

∫ t−x−s

|x−t+s|

dy

(1 + y)1+a
≤

∫ t

0

ds

∫ t+x−s

0

dy

(1 + y)1+a

for t ≥ x ≥ 0, and that the y-integral is dominated by




−a−1(1 + t + x)−a if a < 0,

log(1 + t + x) if a = 0,

a−1 if a > 0.

Noticing that

log(1 + 2t) ≤ log 2 + log(2 + t) ≤ 2 log(2 + t) for t ≥ 0,

we get

I2(x, t) ≤ CaD(t + x) ≤ CaD(T ) for 0 ≤ x ≤ t ≤ T.

When x ≥ t, we have

I(x, t) ≤
∫ t

0

ds

(1 + s)1+a

∫ x+t−s

x−t+s

dy ≤ 2t

∫ t

0

ds

(1 + s)1+a
≤ CaD(T ).

Therefore, the proof of Lemma 4.1 is ended. ¤

Now, we move on to the proof of Theorem 1.2. First of all, we take
T > 0 such that

2p+1pCaD(T )Mp−1εp−1 ≤ 1, (4.7)

where Ca is the one in Lemma 4.1. We shall show

‖un‖L∞(R×[0,T ]) ≤ 2Mε (n ∈ N), (4.8)

by induction. Assume that ‖un−1‖L∞(R×[0,T ]) ≤ 2Mε (n ≥ 2). It follows
from (4.3) and Lemma 4.1 that
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‖un‖L∞(R×[0,T ]) ≤ ‖u0‖L∞(R×[0,T ]) + ‖L(H(·, un−1))‖L∞(R×[0,T ])

≤ Mε + CaD(T )‖un−1‖p
L∞(R×[0,T ]).

The assumption of the induction yields that

‖un‖L∞(R×[0,T ]) ≤ Mε + Ca(2Mε)pD(T ).

This inequality shows (4.8), provided (4.7) holds.
Next we shall estimate the differences of {un}n∈N. Since

|H(y, un)−H(y, un−1)| ≤ p

(1 + y2)(1+a)/2
(|un−1(y, s)|p−1 + |un(y, s)|p−1)

× |un(y, s)− un−1(y, s)|

for (y, s) ∈ R× [0,∞), we see from Lemma 4.1 that

‖un+1 − un‖L∞(R×[0,T ])

≤ pCaD(T )
(‖un‖p−1

L∞(R×[0,T ]) + ‖un−1‖p−1
L∞(R×[0,T ])

)

× ‖un − un−1‖L∞(R×[0,T ]).

Making use of (4.8), we have

‖un+1 − un‖L∞(R×[0,T ]) ≤
1
2
‖un − un−1‖L∞(R×[0,T ]) for n ∈ N

provided (4.7) holds. Hence, we obtain

‖un+1 − un‖L∞(R×[0,T ]) ≤
1
2n
‖u1 − u0‖L∞(R×[0,T ]) for n ∈ N.

Therefore, {un}n∈N is a Cauchy sequence in Y provided (4.7) holds. Since
Y is complete, there exists u ∈ Y such that un converges uniformly to u

in Y . Therefore, by taking limits under the integral sign, u satisfies the
integral equation (2.3), so that u is the C2-solution of (1.1). Hence, the
proof of Theorem 1.2 is completed. ¤
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