Homology of a certain associative algebra

Nobuo IIYORI and Masato SAWABE

(Received October 20, 2014; Revised April 13, 2015)

Abstract. Let R be a commutative ring, and let A be an associative R-algebra possessing an R-free basis B. In this paper, we introduce a homology $H_n(A, B)$ associated to a pair (A, B) under suitable hypotheses. It depends on not only A itself but also a choice of B. In order to define $H_n(A, B)$, we make use of a certain submodule of the (n + 1)-fold tensor product of A. We develop a general theory of $H_n(A, B)$. Various examples of a pair (A, B) and $H_n(A, B)$ are also provided.

Key words: Homology, R-algebra, Tensor product.

1. Introduction

Let G be a finite group. A family \mathcal{H} of subgroups of G is regarded as a simplicial complex (the order complex) associated to the poset \mathcal{H} with respect to the inclusion relation \leq . A complex \mathcal{H} is called a subgroup complex of G. One of the motivations of our earlier works [5], [6] is to pursue the nature of subgroup complexes. An important thing is that a poset (\mathcal{H}, \leq) can be naturally thought as a quiver. From this viewpoint, we studied in [5] representations of path algebras of quivers.

In our subsequent paper [6], we investigated a homology $H_n(Q; R)$ of a quiver Q over a commutative ring R. Recall that $H_n(Q; R)$ is defined by a graded R-module $\bigoplus_{n\geq 0} C_n(\overline{Q})$ where $C_n(\overline{Q})$ is the R-free module generated by the set $\mathsf{P}(\overline{Q})_n$ of paths in a quiver \overline{Q} of length n. Here \overline{Q} consists of the same set of vertices of Q, and the set of non-trivial paths in Q as arrows. Thus it can be thought that $H_n(Q; R)$ is associated to the path algebra $R[\overline{Q}]$ of \overline{Q} which is an associative R-algebra possessing the set $\mathsf{P}(\overline{Q})$ of paths in \overline{Q} as R-free basis. In the present paper, we extend this situation to an arbitrary associative R-algebra A with an R-free basis B, and introduce a homology $H_n(A, B)$ $(n \geq 0)$ determined by a pair (A, B) under suitable hypotheses. Note that its structure depends on a choice of B, and that our homology contains the notion of $H_n(Q; R)$. We develop a general theory of

²⁰¹⁰ Mathematics Subject Classification : 16E40.

N. Iiyori and M. Sawabe

 $H_n(A,B).$

The paper is organized as follows: In Section 2, we recall some basic concept on a quiver Q. Among them, a homology $H_n(Q; R)$ of Q is a model case in our investigation. In Section 3, we introduce, under suitable hypotheses, a homology $H_n(A, B)$ $(n \ge 0)$ of an associative R-algebra Awith respect to an R-free basis B. Note that $H_n(A, B)$ is defined by a graded R-module $\bigoplus_{n\ge 0} A^{[n]}$ where $A^{[n]}$ is the R-free module generated by a subset

$$B_{\otimes (n+1)}^{\neq 0} := \{ b_0 \otimes \dots \otimes b_n \mid b_i \in B, \ b_0 \dots b_n \neq 0 \} \subseteq A^{\otimes (n+1)}$$

of the (n + 1)-fold tensor product $A^{\otimes (n+1)}$ of A. In Section 4, we provide a homology $H_n(\mathcal{D})$ of a certain subset $\mathcal{D} \subseteq \bigcup_{n\geq 0} B_{\otimes (n+1)}^{\neq 0}$. If \mathcal{D} is the whole set then $H_n(\mathcal{D}) = H_n(A, B)$ holds. In Section 5, we extend our chain complex to define a homology of degree -1. In Section 6, we see that our homology is a natural generalization of $H_n(Q; R)$. In Section 7, we deal with various examples, and present some calculation. In Section 8, we focus on an R-algebra defined by a semilattice L. In particular, we consider the subgroup lattice of a finite group. Furthermore some relations with the associated order complex of L are also examined. Throughout the paper, let R be a commutative ring with the identity element. For a set X, denote by R[X] the R-free module with basis X. For an R-module M and a subset $Y \subseteq M$, the notation $\langle Y \rangle_R$ means an R-submodule of M generated by Y.

2. Preliminaries

In this section, we review some basis concept on a quiver Q (cf. [2, Section III-1], [6, Sections 3 and 5]). In particular, a homology $H_n(Q; R)$ of Q described in Section 2.3 will be fundamental in our consideration.

2.1. Quivers and paths

A quiver Q is a quadruple $Q = (Q_0, Q_1, (s : Q_1 \to Q_0), (r : Q_1 \to Q_0))$ where $Q_0 \neq \emptyset$ and Q_1 are sets, and their elements are called vertices and arrows of Q respectively. Furthermore s and r are maps from Q_1 to Q_0 . For an arrow $\alpha \in Q_1$, if $s(\alpha) = a$ and $r(\alpha) = b$ then denote by $\alpha = (a \to b)$ or $a \xrightarrow{\alpha} b$. Elements $s(\alpha)$ and $r(\alpha)$ are called the start and range of α respectively. A path Δ in Q is either a sequence $(\alpha_1, \alpha_2, \ldots, \alpha_k)$ $(k \ge 1)$ of arrows $\alpha_i = (a_{i-1} \to a_i) \in Q_1$ satisfying $r(\alpha_i) = s(\alpha_{i+1})$ for $(1 \le i \le k-1)$,

or the symbol e_a for $a \in Q_0$ which is called the trivial path. We also write

$$\Delta = \left(a_0 \stackrel{\alpha_1}{\to} a_1 \stackrel{\alpha_2}{\to} a_2 \to \dots \to a_{k-1} \stackrel{\alpha_k}{\to} a_k\right) \quad \text{and} \quad e_a = (a).$$

A vertex *a* is identified with e_a . Denote by $\mathsf{P}(Q)$ and $\mathsf{P}(Q)^{\text{non}}$ respectively the totality of paths in *Q*, and that of non-trivial paths in *Q*. For $\Delta = (\alpha_1, \alpha_2, \ldots, \alpha_k) \in \mathsf{P}(Q)^{\text{non}}$, define $s(\Delta) := s(\alpha_1)$ and $r(\Delta) := r(\alpha_k)$, and denote by $\ell(\Delta)$ the length *k* of Δ . On the other hand, for $a \in Q_0$, define $s(e_a) := a$ and $r(e_a) := a$, and set $\ell(e_a) := 0$. The notation $\mathsf{P}(Q)_i$ $(i \ge 0)$ stands for the totality of paths of length *i*. The path algebra R[Q] of *Q* over *R* is the *R*-free module with $\mathsf{P}(Q)$ as basis, and a multiplication on R[Q] is defined by extending bilinearly the composition

$$\Delta_1 \Delta_2 := \begin{cases} (\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_m) & \text{if } r(\alpha_k) = s(\beta_1) \\ 0 & \text{otherwise} \end{cases}$$

of paths $\Delta_1 = (\alpha_1, \ldots, \alpha_k), \ \Delta_2 = (\beta_1, \ldots, \beta_m) \in \mathsf{P}(Q)$. Then R[Q] is an associative *R*-algebra.

2.2. The closure of Q

For a quiver $Q = (Q_0, Q_1, s, r)$, we extend maps s and r on $\mathsf{P}(Q)^{\text{non}}$ as

$$s: \mathsf{P}(Q)^{\operatorname{non}} \longrightarrow Q_0 \quad \text{by} \quad \Delta \mapsto s(\Delta),$$
$$r: \mathsf{P}(Q)^{\operatorname{non}} \longrightarrow Q_0 \quad \text{by} \quad \Delta \mapsto r(\Delta).$$

Then $\overline{Q} := (Q_0, \mathsf{P}(Q)^{\operatorname{non}}, s, r)$ forms a quiver which we call the closure of Q (cf. [6, Definition 3.5]). The set of paths in \overline{Q} is expressed as follows:

$$\mathsf{P}(\overline{Q}) = \left\{ \left(x_0 \stackrel{\Delta_1}{\to} x_1 \to \dots \to x_{k-1} \stackrel{\Delta_k}{\to} x_k \right) \mid k \ge 0, \ \Delta_i \in \mathsf{P}(Q)^{\mathrm{non}} \right\}.$$

Note that a sequence $(\Delta_1, \ldots, \Delta_n)$ of paths $\Delta_i \in \mathsf{P}(Q)^{\mathrm{non}}$ is a member of $\mathsf{P}(\overline{Q})_n$ if and only if the product $\Delta_1 \cdots \Delta_k$ in R[Q] is non-zero.

2.3. Homology of Q

Let Q be a quiver. The path algebra $R[\overline{Q}] = \langle \mathsf{P}(\overline{Q}) \rangle_R$ of the closure \overline{Q} is a graded R-module $R[\overline{Q}] = \bigoplus_{n \geq 0} C_n(\overline{Q})$ where $C_n(\overline{Q}) := \langle \mathsf{P}(\overline{Q})_n \rangle_R$. Let $\partial_Q : R[\overline{Q}] \longrightarrow R[\overline{Q}]$ be an R-endomorphism defined by, for $(\Delta_1, \ldots, \Delta_n) \in$ $C_{n}(\overline{Q}) \ (n \geq 2),$ $\partial_{Q} \left(x_{0} \stackrel{\Delta_{1}}{\rightarrow} x_{1} \rightarrow \dots \rightarrow x_{n-1} \stackrel{\Delta_{n}}{\rightarrow} x_{n} \right)$ $:= \left(x_{1} \stackrel{\Delta_{2}}{\rightarrow} x_{2} \rightarrow \dots \rightarrow x_{n-1} \stackrel{\Delta_{n}}{\rightarrow} x_{n} \right)$ $+ \sum_{i=1}^{n-1} (-1)^{i} \left(x_{0} \stackrel{\Delta_{1}}{\rightarrow} \dots \rightarrow x_{i-1} \stackrel{\Delta_{i}\Delta_{i+1}}{\longrightarrow} x_{i+1} \rightarrow \dots \stackrel{\Delta_{n}}{\rightarrow} x_{n} \right)$ $+ (-1)^{n} \left(x_{0} \stackrel{\Delta_{1}}{\rightarrow} x_{1} \rightarrow \dots \rightarrow x_{n-2} \stackrel{\Delta_{n-1}}{\longrightarrow} x_{n-1} \right).$

Furthermore, for $(x_0 \xrightarrow{\Delta} x_1) \in C_1(\overline{Q})$ and $(x) \in C_0(\overline{Q})$, we set $\partial_Q(x_0 \xrightarrow{\Delta} x_1) := (x_1) - (x_0) \in C_0(\overline{Q})$ and $\partial_Q(x) := 0$. Then $(R[\overline{Q}], \partial_Q)$ forms a chain complex, and a homology $H_n(Q; R) := H_n(R[\overline{Q}], \partial_Q)$ $(n \ge 0)$ of Q over R is defined (cf. [6, Definition 5.10]). Set $(\partial_Q)_n := \partial_Q|_{C_n(\overline{Q})}$ for $n \ge 0$.

3. Homology of (A, B)

Let A be an R-algebra, that is, A is a left R-module, and is a ring such that (ra)b = r(ab) = a(rb) for all $r \in R$ and $a, b \in A$. All R-algebras are assumed to be associative. Suppose that A is the R-free module with B as basis. In this section, we introduce a homology $H_n(A, B)$ of A with respect to B under Hypothesis (**P**) below. This is a natural generalization of a homology of a quiver stated in Section 2.3. A corresponding chain complex is constructed by the tensor product of A. So we first prepare the related notations.

Notation 3.1 For a non-negative integer $n \ge 0$, denote by

 $A^{\otimes (n+1)} := A \otimes \cdots \otimes A = \langle a_0 \otimes a_1 \otimes \cdots \otimes a_n \mid a_j \in A \ (0 \le j \le n) \rangle_R$

the (n + 1)-fold tensor product of A over R. For a subset $D \subseteq A$, we set $D_{\otimes (n+1)} := \{d_0 \otimes \cdots \otimes d_n \mid d_j \in D \ (0 \leq j \leq n)\}$ and $D_{\otimes (n+1)}^{\neq 0} := \{d_0 \otimes \cdots \otimes d_n \in D_{\otimes (n+1)} \mid d_0 \cdots d_n \neq 0\}$. Denote by

$$A^{[n]} := \left\langle B_{\otimes (n+1)}^{\neq 0} \right\rangle_R = \left\langle b_0 \otimes \cdots \otimes b_n \in B_{\otimes (n+1)} \mid b_0 \cdots b_n \neq 0 \right\rangle_R$$

an R-submodule of $A^{\otimes (n+1)} = \langle B_{\otimes (n+1)} \rangle_R$. This is the R-free module with

 $B_{\otimes (n+1)}^{\neq 0}$ as basis. It is a convention that $A^{[-1]} := \{0\}.$

3.1. Standing hypotheses

Let A be an R-algebra possessing an R-free basis $B = \{b_{\lambda}\}_{\lambda \in \Lambda} \subseteq A$. We establish the following Hypothesis (**P**) on the product of base elements under which we study throughout this paper.

Hypothesis (P) For $i, j \in \Lambda$, we express the product $b_i b_j$ in A as a unique R-linear combination

$$b_i b_j = \sum_{\lambda \in \Lambda} lpha_{i,j}^\lambda b_\lambda \quad \textit{for some } lpha_{i,j}^\lambda \in R.$$

- (1) For any $b_0 \otimes \cdots \otimes b_n \in B_{\otimes (n+1)}^{\neq 0}$ and $0 \leq k \leq n-1$, we have that $b_0 \cdots b_{k-1} b_{\lambda} b_{k+2} \cdots b_n \neq 0$ whenever $\alpha_{k,k+1}^{\lambda} \neq 0$ for $\lambda \in \Lambda$.
- (2) For any $i, j \in \Lambda$ such that $b_i b_j \neq 0$, we have that $\sum_{\lambda \in \Lambda} \alpha_{i,j}^{\lambda} = 1$.

One might think that Hypothesis (\mathbf{P}) is a little strange at first sight. However this is quite natural for constructing our chain complex described in Section 3.2.

3.2. Chain complex and homology of (A, B)

In order to introduce a homology $H_*(A, B)$, we define a chain complex depending on an *R*-free basis *B*.

Definition 3.2 Assume Hypothesis (P) (1). For integers $k \ge -1$ and $n \ge 1$, we define an *R*-homomorphism $\mu_{B,k} : A^{[n]} \longrightarrow A^{[n-1]}$ by the formula

$$\mu_{B,k}(b_0 \otimes \dots \otimes b_n) := \begin{cases} b_1 \otimes \dots \otimes b_n & \text{if } k = -1 \\ b_0 \otimes \dots \otimes b_k b_{k+1} \otimes \dots b_n & \text{if } 0 \le k \le n-1 \\ b_0 \otimes \dots \otimes b_{n-1} & \text{if } k = n \\ 0 & \text{if } k > n \end{cases}$$

for $b_0 \otimes \cdots \otimes b_n \in B_{\otimes (n+1)}^{\neq 0}$. In the case of n = 0, a map $\mu_{B,k} : A^{[0]} \longrightarrow A^{[-1]}$ is defined to be the zero map. It should be mentioned that an element

$$b_0 \otimes \cdots \otimes b_k b_{k+1} \otimes \cdots \otimes b_n$$

= $\sum_{\lambda \in \Lambda} \alpha_{k,k+1}^{\lambda} (b_0 \otimes \cdots \otimes b_{k-1} \otimes b_{\lambda} \otimes b_{k+2} \otimes \cdots \otimes b_n)$

where $b_k b_{k+1} = \sum_{\lambda \in \Lambda} \alpha_{k,k+1}^{\lambda} b_{\lambda}$ is a member of $A^{[n-1]} := \langle B_{\otimes n}^{\neq 0} \rangle_R$ because of Hypothesis **(P)** (1).

Definition 3.3 Assume Hypothesis (\mathbf{P}) (1). We define an *R*-endomorphism

$$\partial_B := \sum_{k \ge -1} (-1)^{k+1} \mu_{B,k} : \bigoplus_{n \ge 0} A^{[n]} \longrightarrow \bigoplus_{n \ge 0} A^{[n]}$$

of a graded *R*-module $\bigoplus_{n\geq 0} A^{[n]}$. In other words, ∂_B is defined by

$$\partial_B(b_0 \otimes \cdots \otimes b_n)$$

= $(b_1 \otimes \cdots \otimes b_n) + \sum_{i=0}^{n-1} (-1)^{i+1} (b_0 \otimes \cdots \otimes b_i b_{i+1} \otimes \cdots \otimes b_n)$
+ $(-1)^{n+1} (b_0 \otimes \cdots \otimes b_{n-1})$

for $b_0 \otimes \cdots \otimes b_n \in B_{\otimes (n+1)}^{\neq 0}$ $(n \ge 1)$, and $\partial_B(b_0) = 0$ for $b_0 \in B_{\otimes 1}^{\neq 0} = B$. In particular, ∂_B is of degree -1, that is, $\partial_B(A^{[n]}) \le A^{[n-1]}$. Set $(\partial_B)_n := \partial_B|_{A^{[n]}}$ for $n \ge 0$.

Proposition 3.4 Assume Hypothesis (**P**). Then the equality $\partial_B \circ \partial_B = 0$ holds, namely

$$\cdots \xrightarrow{(\partial_B)_3} A^{[2]} \xrightarrow{(\partial_B)_2} A^{[1]} \xrightarrow{(\partial_B)_1} A^{[0]} = A \xrightarrow{(\partial_B)_0} \{0\}$$

forms a chain complex.

Proof. We consider $A := (\partial_B)^2 (b_0 \otimes \cdots \otimes b_n)$ for $b_0 \otimes \cdots \otimes b_n \in B_{\otimes (n+1)}^{\neq 0}$ $(n \geq 2)$. Divide the image A into $A = A_1 + A_2 + A_3$ where

$$A_{1} := \partial_{B}(b_{1} \otimes \cdots \otimes b_{n}) = (b_{2} \otimes \cdots \otimes b_{n})$$

+
$$\sum_{i=1}^{n-1} (-1)^{i}(b_{1} \otimes \cdots \otimes b_{i}b_{i+1} \otimes \cdots \otimes b_{n}) + (-1)^{n}(b_{1} \otimes \cdots \otimes b_{n-1}),$$

$$A_{2} := \partial_{B} \left((-1)^{n+1} b_{0} \otimes \cdots \otimes b_{n-1} \right) = (-1)^{n+1} (b_{1} \otimes \cdots \otimes b_{n-1})$$
$$+ (-1)^{n+1} \sum_{i=0}^{n-2} (-1)^{i+1} (b_{0} \otimes \cdots \otimes b_{i} b_{i+1} \otimes \cdots \otimes b_{n-1})$$
$$- (b_{0} \otimes \cdots \otimes b_{n-2}),$$
$$A_{3} := \partial_{B} \left(\sum_{i=0}^{n-1} (-1)^{i+1} (b_{0} \otimes \cdots \otimes b_{i} b_{i+1} \otimes \cdots \otimes b_{n}) \right).$$

Then it is straightforward to calculate that

$$A_{3} = \sum_{i=1}^{n-1} (-1)^{i+1} (b_{1} \otimes \cdots \otimes b_{i} b_{i+1} \otimes \cdots \otimes b_{n}) + (-1)^{n} \sum_{i=0}^{n-2} (-1)^{i+1} (b_{0} \otimes \cdots \otimes b_{i} b_{i+1} \otimes \cdots \otimes b_{n-1}) - \sum_{\lambda \in \Lambda} \alpha_{0,1}^{\lambda} (b_{2} \otimes \cdots \otimes b_{n}) + \sum_{\lambda \in \Lambda} \alpha_{n-1,n}^{\lambda} (b_{0} \otimes \cdots \otimes b_{n-2}).$$

Thus A = 0 if and only if $\sum_{\lambda \in \Lambda} \alpha_{0,1}^{\lambda} = \sum_{\lambda \in \Lambda} \alpha_{n-1,n}^{\lambda} = 1$. So the assertion holds from Hypothesis (**P**) (2).

Definition 3.5 Let A be an R-algebra possessing an R-free basis B. Under Hypothesis (**P**), denote by $H_*(A, B) := \text{Ker }\partial_B/\text{Im }\partial_B$ the factor R-module. We call $H_*(A, B)$ a homology R-module of A with respect to B.

Remark 3.6 Suppose that B or $B \cup \{0\}$ is a semigroup with respect to a multiplication defined on A. Then B satisfies Hypothesis (**P**) since $b_1b_2 \in B \cup \{0\}$ for any $b_1, b_2 \in B$.

Remark 3.7 Since a map ∂_Q in Section 2.3 deletes a vertex x_i $(0 \le i \le n)$ in order of index, it is quite natural from a viewpoint of simplicial complexes. On the other hand, by identifying paths $(\Delta_1, \ldots, \Delta_n) \in C_n(\overline{Q})$ with elements $\Delta_1 \otimes \cdots \otimes \Delta_n \in (\mathsf{P}(Q)^{\mathrm{non}})_{\otimes n}^{\neq 0}$ of the tensor product, it is thought that ∂_B in Definition 3.3 is an algebraic generalization of ∂_Q concerning path algebras.

Remark 3.8 Recall that the standard complex or the bar construction of

A (see [4, page 175]) is obtained from an R-homomorphism (bar resolution) $d_n: A^{\otimes (n+1)} \longrightarrow A^{\otimes n}$ defined by

$$d_n(a_0\otimes\cdots\otimes a_n):=\sum_{i=0}^{n-1}(-1)^i(a_0\otimes\cdots\otimes a_ia_{i+1}\otimes\cdots\otimes a_n)$$

for all $a_0 \otimes \cdots \otimes a_n \in A^{\otimes (n+1)}$. This is independent of a choice of B.

In this situation, if we add to d_n an operation of cutting out both ends a_0 and a_n as in Definition 3.2 then, for example, an element $\mathbf{a} := \alpha_0 a_0 \otimes \alpha_1 a_1 = \alpha_0 \alpha_1 (a_0 \otimes a_1) \ (\alpha_i \in R)$ goes to respectively $\alpha_1 a_1 - (\alpha_0 \alpha_1)(a_0 a_1) + \alpha_0 a_1$ and $\alpha_0 \alpha_1 (a_1 - a_0 a_1 + a_0)$ which are different. This implies that the image of \mathbf{a} is not uniquely determined. Furthermore the zero element $0 = 0 \otimes a_1 \otimes a_2$ goes to a non-zero element $(a_1 \otimes a_2) - (0 \otimes a_2) + (0 \otimes a_1 a_2) - (0 \otimes a_1) = a_1 \otimes a_2$, a contradiction.

In order to avoid that trouble, we need to deal with $(\partial_B)_n : A^{[n]} \longrightarrow A^{[n-1]}$ in Definition 3.2 which depends on an *R*-free basis $B_{\otimes(n+1)}^{\neq 0}$.

The following result on the image $\text{Im}(\partial_B)_1$ will be applied in Section 7.4.

Proposition 3.9 Assume Hypothesis (**P**). If A contains the identity element 1_A and $1_A \in B$ then we have that

$$\operatorname{Im}(\partial_B)_1 = \langle 1_A, (b - 1_A)(c - 1_A) \mid b, c \in B, \ bc \neq 0 \rangle_R.$$

Proof. Recall that $(\partial_B)_1 : A^{[1]} \longrightarrow A^{[0]} = A$ where $A^{[1]} = \langle B_{\otimes 2}^{\neq 0} \rangle_R$. For any $b \otimes c \in B_{\otimes 2}^{\neq 0}$, we have that $(\partial_B)_1 (b \otimes c) = c - bc + b = 1_A - (b - 1_A)(c - 1_A)$. By our assumption, $1_A \otimes 1_A$ lies in $B_{\otimes 2}^{\neq 0}$. Thus $(\partial_B)_1 (1_A \otimes 1_A) = 1_A$. This completes the proof.

3.3. Cohomology of (A, B)

By the usual way, we can define a cohomology $H^*(A, B)$ of (A, B) as the dual of $H_*(A, B)$.

Definition 3.10 Let A be an R-algebra possessing an R-free basis B. Under Hypothesis (**P**), let

$$d_B: \bigoplus_{n \ge 0} \operatorname{Hom}_R(A^{[n]}, R) \longrightarrow \bigoplus_{n \ge 0} \operatorname{Hom}_R(A^{[n]}, R)$$

be an R-endomorphism of a graded $R\text{-module}\bigoplus_{n\geq 0}\operatorname{Hom}_R(A^{[n]},R)$ defined by

$$d_B(f) := f \circ (\partial_B)_{n+1} : A^{[n+1]} \xrightarrow{(\partial_B)_{n+1}} A^{[n]} \xrightarrow{f} R$$

for $f \in \operatorname{Hom}_R(A^{[n]}, R)$ $(n \ge 0)$. Then d_B is of degree +1 with the property that $d_B \circ d_B = 0$. Denote by $H^*(A, B) := \operatorname{Ker} d_B / \operatorname{Im} d_B$ the factor Rmodule. We call $H^*(A, B)$ a cohomology R-module of A with respect to B. Set $(d_B)_n := d_B|_{\operatorname{Hom}_R(A^{[n]}, R)}$ for $n \ge 0$.

Example 3.11 Let \mathbb{Z} be the ring of all rational integers. Let $A := \mathbb{Z}[G]$ be the group algebra of a group G over \mathbb{Z} . Since a \mathbb{Z} -basis G of A is a group, G satisfies Hypothesis (**P**). Recall that $A^{[n]} := \langle G_{\otimes(n+1)}^{\neq 0} \rangle_{\mathbb{Z}} = \langle G_{\otimes(n+1)} \rangle_{\mathbb{Z}}$ $(n \geq 0)$. Then we have the following chain complex

$$\{0\} \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(A^{[0]}, \mathbb{Z}) \xrightarrow{(d_G)_0} \operatorname{Hom}_{\mathbb{Z}}(A^{[1]}, \mathbb{Z}) \xrightarrow{(d_G)_1} \cdots$$

Here we consider $H^0(A, G) := \operatorname{Ker}(d_G)_0$. For $f \in \operatorname{Ker}(d_G)_0 \subseteq \operatorname{Hom}_{\mathbb{Z}}(A^{[0]}, \mathbb{Z})$, we have that $0 = (f \circ (\partial_G)_1)(a \otimes b) = f(a + b - ab) = f(a) + f(b) - f(ab)$ for any $a \otimes b \in G_{\otimes 2}$. Denote by e_G the identity element of G. Then $f(e_G) = 0$ and $f(gg^{-1}) = f(g) + f(g^{-1})$ for $g \in G$, so that, $f(g^{-1}) = -f(g)$. This yields that $f(G') = \{0\}$ where G' is the commutator subgroup of G. Thus $H^0(A, G) = \{0\}$ if G is a perfect group. On the other hand, suppose that G is finite. Take an element $g \in G$ of order $m \geq 1$. Then $0 = f(e_G) = f(g^m) = mf(g)$ and f(g) = 0. Thus $H^0(A, G) = \{0\}$ in the finite case too (see also Remark 7.9).

4. Homology of a subset \mathcal{D}

Let A be an R-algebra possessing an R-free basis B. Assume Hypothesis (**P**). In this section, we provide a homology $H_n(\mathcal{D})$ of a certain subset $\mathcal{D} \subseteq \bigcup_{n\geq 0} B_{\otimes(n+1)}^{\neq 0}$. This contains the notion of $H_n(A, B)$ discussed in Section 3.

4.1. ∂_B -invariant subsets

We begin with the definition.

Definition 4.1 For a subset $\mathcal{D} \subseteq \bigcup_{n \geq 0} B_{\otimes (n+1)}^{\neq 0}$, we say that \mathcal{D} is ∂_B -

invariant if $\partial_B(\langle \mathcal{D} \rangle_R) \subseteq \langle \mathcal{D} \rangle_R$.

Proposition 4.2 Let $\mathcal{D} \subseteq \bigcup_{n \ge 0} B_{\otimes(n+1)}^{\neq 0}$ be a ∂_B -invariant subset. Put $\mathcal{D}_n := \mathcal{D} \cap B_{\otimes(n+1)}^{\neq 0}$ $(n \ge 0)$.

(1) The union $\mathcal{D} = \bigcup_{n \ge 0} \mathcal{D}_n$ is disjoint, and we have a graded R-submodule

$$\langle \mathcal{D} \rangle_R = \bigoplus_{n \ge 0} \langle \mathcal{D}_n \rangle_R \le \bigoplus_{n \ge 0} A^{[n]}.$$

(2) We have that $\partial_B(\langle \mathcal{D}_n \rangle_R) = \partial_B(\langle \mathcal{D} \rangle_R \cap A^{[n]}) \subseteq \langle \mathcal{D} \rangle_R \cap A^{[n-1]} = \langle \mathcal{D}_{n-1} \rangle_R$. The restriction

$$\partial_{B,\mathcal{D}} := \partial_B \big|_{\langle \mathcal{D} \rangle_R} : \bigoplus_{n \ge 0} \langle \mathcal{D}_n \rangle_R \longrightarrow \bigoplus_{n \ge 0} \langle \mathcal{D}_n \rangle_R$$

is an R-endomorphism of $\langle \mathcal{D} \rangle_R$ of degree -1 with the property that $\partial_{B,\mathcal{D}} \circ \partial_{B,\mathcal{D}} = 0$. The following is a chain complex:

(3) Let

$$d_{B,\mathcal{D}}: \bigoplus_{n\geq 0} \operatorname{Hom}_{R}(\langle \mathcal{D}_{n}\rangle_{R}, R) \longrightarrow \bigoplus_{n\geq 0} \operatorname{Hom}_{R}(\langle \mathcal{D}_{n}\rangle_{R}, R)$$

be a map defined by $d_{B,\mathcal{D}}(f) := f \circ (\partial_{B,\mathcal{D}})_{n+1}$ for $f \in \operatorname{Hom}_R(\langle \mathcal{D}_n \rangle_R, R)$ $(n \geq 0)$ as in Definition 3.10. Then $d_{B,\mathcal{D}}$ is an R-endomorphism of degree +1 with the property that $d_{B,\mathcal{D}} \circ d_{B,\mathcal{D}} = 0$.

Proof. Straightforward.

Definition 4.3 For a ∂_B -invariant subset $\mathcal{D} \subseteq \bigcup_{n \ge 0} B_{\otimes(n+1)}^{\neq 0}$, denote by

$$H_*(\mathcal{D}) := H_*((A, B), \mathcal{D}) := \operatorname{Ker} \partial_{B, \mathcal{D}} / \operatorname{Im} \partial_{B, \mathcal{D}},$$
$$H^*(\mathcal{D}) := H^*((A, B), \mathcal{D}) := \operatorname{Ker} d_{B, \mathcal{D}} / \operatorname{Im} d_{B, \mathcal{D}}$$

the factor *R*-modules. We call $H_*(\mathcal{D})$ and $H^*(\mathcal{D})$ respectively a homology *R*-module of \mathcal{D} , and a cohomology *R*-module of \mathcal{D} .

Remark 4.4 The whole set $\mathcal{D} := \bigcup_{n\geq 0} B_{\otimes(n+1)}^{\neq 0}$ is clearly ∂_B -invariant. In this case, $\mathcal{D}_n = B_{\otimes(n+1)}^{\neq 0}$, $\langle \mathcal{D}_n \rangle_R = A^{[n]}$, and $\langle \mathcal{D} \rangle_R = \bigoplus_{n\geq 0} A^{[n]}$. It follows that $H_n(\mathcal{D}) = H_n(A, B)$ and $H^n(\mathcal{D}) = H^n(A, B)$. Thus $H_n(\mathcal{D})$ contains the notion of $H_n(A, B)$.

Remark 4.5 Suppose that *B* is a semigroup. If a subset $\mathcal{D} \subseteq \bigcup_{n\geq 0} B_{\otimes(n+1)}^{\neq 0}$ satisfies $\mu_{B,k}(\mathcal{D}) \subseteq \mathcal{D} \cup \{0\}$ for all $k \geq -1$ where $\mu_{B,k}$ is defined in Definition 3.2, then it is clear that \mathcal{D} is ∂_B -invariant. We call such \mathcal{D} a " μ_B -invariant subset".

4.2. A-module actions

Let V be an A-module, that is, V is a left R-module and a right Amodule (A considered as a ring) such that (rv)a = r(va) = v(ra) for all $v \in V, r \in R$, and $a \in A$. Then there exists the associated algebra homomorphism $\varphi : A \longrightarrow \operatorname{End}_R(V)$ which is a ring homomorphism and an R-linear map. This can be extended to an R-homomorphism

$$\varphi: A^{\otimes (n+1)} \longrightarrow \operatorname{End}_R(V)^{\otimes (n+1)} \ (n \ge 0),$$

using the same notation φ , defined by $\varphi(a_0 \otimes \cdots \otimes a_n) := \varphi(a_0) \otimes \cdots \otimes \varphi(a_n)$. Recall that $A = \langle B \rangle_R$. Then an *R*-subalgebra $\varphi(A) = \langle \varphi(B) \rangle_R \leq \operatorname{End}_R(V)$ is generated by a set $\varphi(B)$.

Lemma 4.6 Suppose that $\varphi(B)$ is an *R*-free basis of $\varphi(A)$.

- (1) $\varphi(B)$ satisfies Hypothesis (**P**) (2).
- (2) Suppose that $\varphi(B_{\otimes (n+1)}^{\neq 0}) \subseteq \varphi(B)_{\otimes (n+1)}^{\neq 0}$ $(n \ge 0)$. Then $\varphi(B)$ satisfies Hypothesis (**P**) (1).

Proof. (1) Suppose that $0 \neq \varphi(b_i)\varphi(b_j) = \varphi(b_ib_j)$ for some $b_i, b_j \in B$. In particular $b_ib_j \neq 0$. It follows that $\sum_{\lambda \in \Lambda} \alpha_{i,j}^{\lambda} = 1$ by Hypothesis (**P**) (2) on *B*. Since $\varphi(b_ib_j) = \sum_{\lambda \in \Lambda} \alpha_{i,j}^{\lambda}\varphi(b_{\lambda})$, the assertion holds.

(2) For $\varphi(b_0) \otimes \cdots \otimes \varphi(b_n) \in \varphi(B)_{\otimes(n+1)}^{\neq 0}$ and $0 \leq k \leq n-1$, we have that $\varphi(b_k)\varphi(b_{k+1}) = \sum_{\lambda \in \Lambda} \alpha_{k,k+1}^{\lambda}\varphi(b_{\lambda})$. Since *B* satisfies Hypothesis **(P)** (1), if $\alpha_{k,k+1}^{\lambda} \neq 0$ then $b_0 \otimes \cdots \otimes b_{\lambda} \otimes \cdots \otimes b_n$ lies in $B_{\otimes n}^{\neq 0}$. Thus

 $\begin{array}{l} \varphi(b_0) \otimes \cdots \otimes \varphi(b_{\lambda}) \otimes \cdots \otimes \varphi(b_n) = \varphi(b_0 \otimes \cdots \otimes b_{\lambda} \otimes \cdots \otimes b_n) \text{ belongs to } \\ \varphi(B_{\otimes n}^{\neq 0}) \subseteq \varphi(B)_{\otimes n}^{\neq 0}. \end{array}$ This completes the proof. \Box

Lemma 4.7 Let V be an A-module with the associated algebra homomorphism $\varphi : A \longrightarrow \operatorname{End}_R(V)$. Suppose that $\varphi(B)$ is an R-free basis of $\varphi(A)$, and that $\varphi(B_{\otimes(n+1)}^{\neq 0}) \subseteq \varphi(B)_{\otimes(n+1)}^{\neq 0}$ $(n \ge 0)$. For a ∂_B -invariant subset $\mathcal{D} \subseteq \bigcup_{n\ge 0} B_{\otimes(n+1)}^{\neq 0}$, the followings hold:

- (1) $\varphi(\mathcal{D}) \subseteq \bigcup_{n \ge 0} \varphi(B)_{\otimes (n+1)}^{\neq 0}$ is $\partial_{\varphi(B)}$ -invariant, so that, $H_*(\varphi(\mathcal{D}))$ is defined.
- (2) φ induces an *R*-homomorphism from $H_*(\mathcal{D})$ to $H_*(\varphi(\mathcal{D}))$.

Proof. Note that $\varphi(B)$ satisfies Hypothesis (**P**) by Lemma 4.6.

(1) For any $n \ge 0$, we have the following commutative diagram:

Since $\varphi \circ \mu_{B,k} = \mu_{\varphi(B),k} \circ \varphi$ for all $k \ge -1$, we have that $\varphi \circ \partial_B = \partial_{\varphi(B)} \circ \varphi$ (see Definition 3.3). Thus

$$\partial_{\varphi(B)} \big(\varphi(\langle \mathcal{D} \rangle_R) \big) = \varphi \big(\partial_B (\langle \mathcal{D} \rangle_R) \big) \subseteq \varphi(\langle \mathcal{D} \rangle_R) = \langle \varphi(\mathcal{D}) \rangle_R.$$

(2) Straightforward.

Example 4.8 $(A_Q$ -module action) Let $A_Q := R[Q] = \langle \mathsf{P}(Q) \rangle_R$ be the path algebra of a quiver $Q = (Q_0, Q_1, s, r)$, which is the *R*-free module with basis $B := \mathsf{P}(Q)$. Let $V := R[Q_0]$ be the *R*-free module generated by Q_0 . First we recall an action of A_Q on V introduced in [5, Section 3.1]. Let $w : Q_1 \longrightarrow R$ be a map which we call a weight function on Q_1 . Then w can be extended on non-trivial paths by setting $w(\Delta) := \prod_{i=1}^k w(\alpha_i)$ for $\Delta = (\alpha_1, \ldots, \alpha_k) \in \mathsf{P}(Q)$. It is a convention that $w(e_a) := 1$ for $a \in Q_0$. Let A_Q° be the opposite algebra of A_Q . Then we regard V as an A_Q° -module induced by an algebra homomorphism $\rho_w : A_Q^\circ \longrightarrow \operatorname{End}_R(V)$ which is defined by

$$\rho_w(\Delta): V \longrightarrow V; \quad a \mapsto a\Delta := w(\Delta)\delta_{a,s(\Delta)}r(\Delta)$$

for $\Delta \in \mathsf{P}(Q)$ and $a \in Q_0$. Note that $(\rho_w(\Delta_1)\rho_w(\Delta_2))(a) = (a\Delta_2)\Delta_1 = a(\Delta_1\Delta_2) = \rho_w(\Delta_1\Delta_2)(a)$ for $\Delta_1, \Delta_2 \in \mathsf{P}(Q)$ and $a \in V$. Here we assume that $\rho_w(B) = \{\rho_w(\Delta) \mid \Delta \in \mathsf{P}(Q)\}$ is an *R*-free basis of $\rho_w(A_Q^\circ) = \langle \rho_w(B) \rangle_R$. If $w \equiv 1$ namely $w(\alpha) = 1$ for any $\alpha \in Q_1$, then this assumption always holds. Now we have the following.

- Since $B \cup \{0\}$ is a semigroup, B satisfies Hypothesis (**P**).
- For $\Delta_0 \otimes \cdots \otimes \Delta_n \in B_{\otimes(n+1)}$, we have that $\rho_w(\Delta_0 \otimes \cdots \otimes \Delta_n) := \rho_w(\Delta_0) \otimes \cdots \otimes \rho_w(\Delta_n) \in \rho_w(B)_{\otimes(n+1)}$. Recall that $\Delta_0 \cdots \Delta_n \neq 0$ if and only if $\rho_w(\Delta_0) \cdots \rho_w(\Delta_n) = \rho_w(\Delta_0 \cdots \Delta_n) \neq 0$. This implies that $\rho_w(B_{\otimes(n+1)}^{\neq 0}) = \rho_w(B)_{\otimes(n+1)}^{\neq 0}$.
- Take the whole set $\mathcal{D} := \bigcup_{n \ge 0} B_{\otimes(n+1)}^{\neq 0}$. Then \mathcal{D} is ∂_B -invariant (cf. Remark 4.4).

By Lemma 4.7, $\rho_w(\mathcal{D}) = \bigcup_{n\geq 0} \rho_w(B_{\otimes(n+1)}^{\neq 0}) = \bigcup_{n\geq 0} \rho_w(B)_{\otimes(n+1)}^{\neq 0}$ is $\partial_{\rho_w(B)}$ -invariant, and $H_*(\rho_w(\mathcal{D}))$ is defined. It is clear that $H_*(\rho_w(\mathcal{D})) = H_*(\rho_w(A_Q^\circ), \rho_w(B))$.

Remark 4.9 (Up-Down algebra) Let $Q = (Q_0, Q_1, s, r)$ be a quiver. For each arrow $\alpha = (a \to b) \in Q_1$, we define the symbol ${}^t\alpha$. Set $Q_1^{\mathrm{ud}} := Q_1 \cup \{{}^t\alpha \mid \alpha \in Q_1\}$. Then

$$Q^{\rm ud} := \left(Q_0, \ Q_1^{\rm ud}, \ (s: Q_1^{\rm ud} \to Q_0), \ (r: Q_1^{\rm ud} \to Q_0)\right)$$

forms a quiver where s and r are extended on Q_1^{ud} as $s({}^t\alpha) := r(\alpha) = b$ and $r({}^t\alpha) := s(\alpha) = a$ for $\alpha = (a \to b) \in Q_1$ (cf. [6, Definition 3.1]). Thus ${}^t\alpha = (b \to a)$. Note that $\mathsf{P}(Q) \subseteq \mathsf{P}(Q^{\text{ud}}) =: B$.

- (1) In Example 4.8, if we just replace Q with a quiver $Q^{\mathrm{ud}} = (Q_0, Q_1^{\mathrm{ud}}, s, r)$ then we have $\rho_w(A_{Q^{\mathrm{ud}}}^\circ) = \langle \rho_w(\Delta) \mid \Delta \in B \rangle_R \leq \mathrm{End}_R(V)$. This Ralgebra $\rho_w(A_{Q^{\mathrm{ud}}}^\circ)$ coincides with the "Up-Down algebra" $\mathrm{UD}(Q, w; R)$ of Q with respect to w over R, which is first introduced in [5], and is investigated in it. Thus a homology of $\mathrm{UD}(Q, w; R)$ can be understood in our setting on module action under the assumption that $\rho_w(B)$ is an R-free basis of $\rho_w(A_{Q^{\mathrm{ud}}}^\circ)$.
- (2) Suppose that Q is finite. Suppose further that $\{\Delta \in \mathsf{P}(Q^{\mathrm{ud}}) \mid s(\Delta) = a, r(\Delta) = b\} \neq \emptyset$ for any $a, b \in Q_0$, and that $w \equiv 1$. Then, by [5,

Corollary 3.13], UD(Q, 1; R) is isomorphic to the total matrix algebra $M_{|Q_0|}(R)$. In particular, for a quiver Q defined as $a \xrightarrow{\alpha} b$, we have that UD($Q, 1; \mathbb{C}$) $\cong M_2(\mathbb{C})$. In Section 7.2, we will consider homology of matrix algebras.

5. An extension of a chain complex

Let A be an R-algebra possessing an R-free basis B. Assume Hypothesis **(P)**. In this section, we introduce an extension of a chain complex. This idea will be applied to a realization of a homology of a quiver in the next Section 6.

Lemma 5.1 Let $\mathcal{D} \subseteq \bigcup_{n>0} B_{\otimes (n+1)}^{\neq 0}$ be a ∂_B -invariant subset, and let

$$\cdots \xrightarrow{(\partial_{B,\mathcal{D}})_2} \langle \mathcal{D}_1 \rangle_R \xrightarrow{(\partial_{B,\mathcal{D}})_1} \langle \mathcal{D}_0 \rangle_R \xrightarrow{(\partial_{B,\mathcal{D}})_0} \{0\}$$

be the corresponding chain complex in Proposition 4.2. Suppose further that there exist an R-module M and R-homomorphisms $\mathbf{s}, \mathbf{r} : \langle \mathcal{D}_0 \rangle_R \longrightarrow M$ such that

- s(xy) = s(x) and r(xy) = r(y) for all $x, y \in \mathcal{D}_0 \subseteq B$ with $xy \neq 0$.
- $\mathbf{r}(x) = \mathbf{s}(y)$ for all $x, y \in \mathcal{D}_0 \subseteq B$ with $xy \neq 0$.

•

Let $(\partial_{B,\mathcal{D}}^M)_0 := \mathsf{r} - \mathsf{s} : \langle \mathcal{D}_0 \rangle_R \longrightarrow M$ be an R-homomorphism. Then

$$\cdots \xrightarrow{(\partial_{B,\mathcal{D}}^{M})_{2}} \langle \mathcal{D}_{1} \rangle_{R} \xrightarrow{(\partial_{B,\mathcal{D}}^{M})_{1}} \langle \mathcal{D}_{0} \rangle_{R} \xrightarrow{(\partial_{B,\mathcal{D}}^{M})_{0}} M \longrightarrow \{0\}$$

forms a chain complex where $(\partial_{B,\mathcal{D}}^M)_n := (\partial_{B,\mathcal{D}})_n$ for $n \ge 1$.

Proof. It is enough to show that $(\partial_{B,\mathcal{D}}^M)_0 \circ (\partial_{B,\mathcal{D}}^M)_1 = 0$. For any $b_0 \otimes b_1 \in \mathcal{D}_1 \subseteq B_{\otimes 2}^{\neq 0}$, by using our assumptions on **s** and **r**, we have that

$$\begin{split} & \left((\partial_{B,\mathcal{D}}^{M})_{0} \circ (\partial_{B,\mathcal{D}}^{M})_{1} \right) (b_{0} \otimes b_{1}) = (\partial_{B,\mathcal{D}}^{M})_{0} (b_{1} - b_{0}b_{1} + b_{0}) \\ & = \left(\mathsf{r}(b_{1}) - \mathsf{s}(b_{1}) \right) - \left(\mathsf{r}(b_{0}b_{1}) - \mathsf{s}(b_{0}b_{1}) \right) + \left(\mathsf{r}(b_{0}) - \mathsf{s}(b_{0}) \right) \\ & = \left(\mathsf{r}(b_{1}) - \mathsf{s}(b_{1}) \right) - \left(\mathsf{r}(b_{1}) - \mathsf{s}(b_{0}) \right) + \left(\mathsf{r}(b_{0}) - \mathsf{s}(b_{0}) \right) \\ & = \mathsf{r}(b_{0}) - \mathsf{s}(b_{1}) = 0. \end{split}$$

This completes the proof.

Definition 5.2 Under the situation of Lemma 5.1, there exists an R-endomorphism

$$\partial^M_{B,\mathcal{D}}: \langle \mathcal{D} \rangle_R \oplus M \longrightarrow \langle \mathcal{D} \rangle_R \oplus M$$

of a graded *R*-module $\langle \mathcal{D} \rangle_R \oplus M$ of degree -1 with the property that $\partial^M_{B,\mathcal{D}} \circ \partial^M_{B,\mathcal{D}} = 0$. Denote by

$$H^M_*(\mathcal{D}) := H^M_*((A, B), \mathcal{D}) := \operatorname{Ker} \partial^M_{B, \mathcal{D}} / \operatorname{Im} \partial^M_{B, \mathcal{D}}.$$

Note that $H_n^M(\mathcal{D}) = H_n(\mathcal{D})$ for all $n \ge 1$, and that $H_0^M(\mathcal{D})$ and $H_0(\mathcal{D})$ are not necessarily equal. Furthermore $H_{-1}^M(\mathcal{D}) := M/\mathrm{Im}(\partial_{B,\mathcal{D}}^M)_0$ of degree -1 is newly defined.

Lemma 5.3 Suppose that B is a monoid, that is, it is a semigroup having the identity element 1_B . Suppose further that 1_B is contained in $\mathcal{D}_0 \subseteq B$. Then $\mathbf{s} = \mathbf{r}$. In particular, $H^M_{-1}(\mathcal{D}) \cong M$.

Proof. For any $x \in \mathcal{D}_0$, since $x1_B = 1_B x = x \neq 0$, we have that $\mathbf{r}(x) = \mathbf{s}(1_B)$ and $\mathbf{r}(1_B) = \mathbf{s}(x)$ by the definitions of \mathbf{s} and \mathbf{r} . Furthermore $\mathbf{r}(1_B) = \mathbf{s}(1_B)$ since $1_B 1_B = 1_B \neq 0$. This implies that $\mathbf{s} = \mathbf{r}$ is a constant map. The proof is complete.

6. A realization of $H_n(Q; R)$

Let $A_Q := R[Q] = \langle \mathsf{P}(Q) \rangle_R$ be the path algebra of a quiver $Q = (Q_0, Q_1, s, r)$. Let $A_Q^{\sharp} := \langle C \rangle_R$ be a subalgebra of A_Q generated by $C := \mathsf{P}(Q)^{\text{non}}$. Note that A_Q^{\sharp} is not unital. Since $C \cup \{0\}$ is a semigroup, C satisfies Hypothesis (**P**). In this section, we see that a homology $H_n(Q; R)$ of Q (see Section 2.3) is realized as a homology of a subalgebra A_Q^{\sharp} with respect to C as in the following.

Proposition 6.1 Let Q be a quiver. Then there exist an R-module M and R-homomorphisms $\mathbf{s}, \mathbf{r} : A_Q^{\sharp} \longrightarrow M$ such that $H_n^M(A_Q^{\sharp}, C) \cong H_{n+1}(Q; R)$ for all $n \ge -1$.

Proof. As in Remark 3.7, $C_{\otimes(n+1)}^{\neq 0}$ can be identified with the set $\mathsf{P}(\overline{Q})_{n+1}$

241

of all non-trivial paths of length n + 1 in the closure \overline{Q} of Q. Thus we may assume that $C_{\otimes(n+1)}^{\neq 0} = \mathsf{P}(\overline{Q})_{n+1}$ $(n \geq 0)$. A path of length 0 is a trivial path. It follows that $(A_Q^{\sharp})^{[n]} := \langle C_{\otimes(n+1)}^{\neq 0} \rangle_R = \langle \mathsf{P}(\overline{Q})_{n+1} \rangle_R = C_{n+1}(\overline{Q})$. This yields a chain complex

Note that $(\partial_C)_n = (\partial_Q)_{n+1}$ for $n \ge 1$. Therefore $H_n(A_Q^{\sharp}, C) = H_{n+1}(Q; R)$ for all $n \ge 1$.

On the other hand, let $M := R[Q_0]$ be the *R*-free module generated by Q_0 . We identify a vertex $a \in Q_0$ with a corresponding trivial path $e_a \in C_0(\overline{Q})$ in \overline{Q} , so that, $M = C_0(\overline{Q})$. Define *R*-homomorphisms

$$\begin{split} \mathbf{s} &: (A_Q^{\sharp})^{[0]} = A_Q^{\sharp} \longrightarrow M \quad \text{by} \quad \Delta \mapsto s(\Delta) \text{ for } \Delta \in C = \mathsf{P}(Q)^{\text{non}}, \\ \mathbf{r} &: (A_Q^{\sharp})^{[0]} = A_Q^{\sharp} \longrightarrow M \quad \text{by} \quad \Delta \mapsto r(\Delta) \text{ for } \Delta \in C = \mathsf{P}(Q)^{\text{non}}. \end{split}$$

These maps s and r clearly satisfy the two conditions in Lemma 5.1. Thus we have a chain complex

where $(\partial_Q^M)_0 := \mathbf{r} - \mathbf{s} : \langle \mathcal{D}_0 \rangle_R \longrightarrow M$ coincides with $(\partial_Q)_1$. It follows that $H_0^M(A_Q^{\sharp}, C) = H_1(Q; R)$ and $H_{-1}^M(A_Q^{\sharp}, C) = H_0(Q; R)$. The proof is complete.

7. Examples

In this section, we give various examples of a pair (A, B) and $H_n(A, B)$. Denote by \mathbb{R}^m the natural \mathbb{R} -module $\{^t(x_1, \ldots, x_m) \mid x_i \in \mathbb{R}\}$ with \mathbb{R} -basis $\{v_i\}_{1 \leq i \leq m}$ where v_i is a vector in \mathbb{R}^m whose *i*-th entry is 1, and the other entries are all 0.

7.1. Path algebra A_O^{\sharp}

Let Q be a quiver defined as $a \xrightarrow{\alpha} b$. Then $\mathsf{P}(Q) = \{e_a, e_b, \alpha\}, C := \mathsf{P}(Q)^{\mathrm{non}} = \{\alpha\}, \text{ and } A_Q^{\sharp} := \langle C \rangle_R = \langle \alpha \rangle_R \cong R$. Since $(A_Q^{\sharp})^{[n]} := \langle C_{\otimes(n+1)}^{\neq 0} \rangle_R$ for $n \ge 0$, a corresponding chain complex is as

$$\cdots \longrightarrow \{0\} \longrightarrow \{0\} \xrightarrow{(\partial_C)_1} (A_Q^{\sharp})^{[0]} \xrightarrow{(\partial_C)_0} \{0\}$$

Note that $(A_Q^{\sharp})^{[0]} = A_Q^{\sharp}$. Thus $H_0(A_Q^{\sharp}, C) = A_Q^{\sharp} \cong R$. Let $M := R^2$, and define *R*-homomorphisms

$$\begin{split} \mathbf{s} &: A_Q^{\sharp} \longrightarrow M \quad \text{by} \quad \alpha \mapsto v_1, \\ \mathbf{r} &: A_Q^{\sharp} \longrightarrow M \quad \text{by} \quad \alpha \mapsto v_2. \end{split}$$

Then, by Lemma 5.1, we have a chain complex

$$\cdots \longrightarrow \{0\} \xrightarrow{(\partial_C^M)_1} (A_Q^{\sharp})^{[0]} \xrightarrow{(\partial_C^M)_0} M \longrightarrow \{0\}$$

where $(\partial_C^M)_0 := \mathbf{r} - \mathbf{s} : A_Q^{\sharp} \longrightarrow M$ with $\operatorname{Im}(\partial_C^M)_0 = \langle v_2 - v_1 \rangle_R \cong R$. It follows that $H_0^M(A_Q^{\sharp}, C) := \operatorname{Ker}(\partial_C^M)_0 = \{0\}$ and $H_{-1}^M(A_Q^{\sharp}, C) := M/\operatorname{Im}(\partial_C^M)_0 \cong R$. Summarizing

n	$n \ge 1$	0	-1
$H_n(A_Q^\sharp, C)$	{0}	R	_
$H_n^M(A_Q^\sharp,C)$	{0}	{0}	R

7.2. Matrix algebras

Let $M_m(R)$ be the total matrix R-algebra of degree m with $\{e_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq m\}$ as R-basis where e_{ij} is a matrix whose (s, t)-entry is 1 if (s,t) = (i,j), and 0 otherwise. Let Λ be a subset of $\{1, 2, \ldots, m\} \times \{1, 2, \ldots, m\}$ such that $(i, k) \in \Lambda$ whenever $(i, j), (j, k) \in \Lambda$. Then

$$A := \bigoplus_{(i,j) \in \Lambda} Re_{i,j}$$

is an *R*-subalgebra of $M_m(R)$ possessing an *R*-free basis $B := \{e_{i,j} \mid (i,j) \in \Lambda\}$. Since $B \cup \{0\}$ is a semigroup, *B* satisfies Hypothesis (**P**). Recall that, for $n \ge 0$,

$$A^{[n]} := \left\langle B_{\otimes(n+1)}^{\neq 0} \right\rangle_R$$
$$= \left\langle e_{i_0 i_1} \otimes e_{i_1 i_2} \otimes \cdots \otimes e_{i_n i_{n+1}} \mid (i_k, i_{k+1}) \in \Lambda, \ 0 \le k \le n \right\rangle_R$$

Note that $A^{[0]} = \langle B \rangle_R = A$. Then we have a corresponding chain complex

$$\cdots \xrightarrow{(\partial_B)_3} A^{[2]} \xrightarrow{(\partial_B)_2} A^{[1]} \xrightarrow{(\partial_B)_1} A^{[0]} \xrightarrow{(\partial_B)_0} \{0\}.$$

Let $M := R^m$, and define *R*-homomorphisms

$$\begin{split} \mathbf{s} &: A \longrightarrow M \quad \text{by} \quad \sum_{(i,j) \in \Lambda} \lambda_{i,j} e_{i,j} \mapsto \sum_{(i,j) \in \Lambda} \lambda_{i,j} v_i, \\ \mathbf{r} &: A \longrightarrow M \quad \text{by} \quad \sum_{(i,j) \in \Lambda} \mu_{i,j} e_{i,j} \mapsto \sum_{(i,j) \in \Lambda} \mu_{i,j} v_j. \end{split}$$

Then, for $e_{ij}, e_{jk} \in B$, we have that $s(e_{ij}e_{jk}) = s(e_{ik}) = v_i = s(e_{ij})$, $r(e_{ij}e_{jk}) = r(e_{ik}) = v_k = r(e_{jk})$, and $r(e_{ij}) = v_j = s(e_{jk})$. By Lemma 5.1, we have a chain complex

$$\cdots \xrightarrow{(\partial_B^M)_2} A^{[1]} \xrightarrow{(\partial_B^M)_1} A^{[0]} \xrightarrow{(\partial_B^M)_0} M \longrightarrow \{0\}$$

where $(\partial_B^M)_n := (\partial_B)_n$ for $n \ge 1$, and $(\partial_B^M)_0 := \mathsf{r} - \mathsf{s} : A \longrightarrow M$.

Proposition 7.1 Suppose that $(1, i) \in \Lambda$ for any $1 \leq i \leq m$. Then

$$H_n^M(A,B) = \begin{cases} \{0\} & \text{if } n \ge 0\\ R & \text{if } n = -1 \end{cases}$$

Proof. Using the assumption that $(1,i) \in \Lambda$ for any $1 \leq i \leq m$, the following *R*-homomorphisms h_n can be defined.

$$h_n: A^{[n]} \longrightarrow A^{[n+1]} \ (n \ge 0)$$

by $e_{i_0 i_1} \otimes \cdots \otimes e_{i_n i_{n+1}} \mapsto e_{1 i_0} \otimes e_{i_0 i_1} \otimes \cdots \otimes e_{i_n i_{n+1}},$

 $h_{-1}: M \longrightarrow A^{[0]}$ by $v_i \mapsto e_{1i}$.

Then we can check that $(\partial_B^M)_{n+1} \circ h_n + h_{n-1} \circ (\partial_B^M)_n = \mathrm{Id}_{A^{[n]}}$ for any $n \ge 0$ where $\mathrm{Id}_{A^{[n]}}$ is the identity map on $A^{[n]}$. This shows that $\mathrm{Ker}(\partial_B^M)_n \le \mathrm{Im}(\partial_B^M)_{n+1}$, and thus $H_n^M(A, B) = \{0\}$ for $n \ge 0$.

On the other hand, we have that $\operatorname{Im}(\partial_B^M)_0 = \langle v_i - v_1 \mid 2 \leq i \leq m \rangle_R$. It follows that $H^M_{-1}(A, B) := M/\operatorname{Im}(\partial_B^M)_0 \cong R$ as desired. \Box

Let $T_m(R)$ be an *R*-subalgebra consisting of all upper triangular matrices in $M_m(R)$. Then we are able to apply Proposition 7.1 to *R*-algebras $M_m(R)$ and $T_m(R)$. Here it is worth mentioning that we originally calculated homology $H_n^M(A, B)$ for $M_2(R)$ and $T_2(R)$. But the referee pointed out that our earlier results can be generalized as in Proposition 7.1.

Remark 7.2 Let Q be a quiver defined as $a \xrightarrow{\alpha} b$. Then by Remark 4.9 (1) and (2), we have that $\rho_w(A^{\circ}_{Q^{\mathrm{ud}}}) = \langle \rho_w(\Delta) | \Delta \in \mathsf{P}(Q^{\mathrm{ud}}) \rangle = \mathrm{UD}(Q, w; \mathbb{C}) \cong M_2(\mathbb{C})$ where $w \equiv 1$. So the above result is regarded as the calculation of homology of the Up-Down algebra $\mathrm{UD}(Q, w; \mathbb{C})$, and at the same time, regarded as the calculation of homology of $A_{Q^{\mathrm{ud}}}$ -action ρ_w discussed in Section 4.2.

Remark 7.3 Let Q be a quiver defined as $a \xrightarrow{\alpha} b$, and let $A_Q := \mathbb{C}[Q] = \langle \mathsf{P}(Q) \rangle_{\mathbb{C}}$ be the path algebra of Q where $\mathsf{P}(Q) = \{e_a, e_b, \alpha\}$. Then $\rho_w(A_Q^\circ) = \langle \rho_w(\Delta) \mid \Delta \in \mathsf{P}(Q) \rangle$ appeared in Example 4.8 is isomorphic to $T_2(R)$ where $w \equiv 1$. So the above result is regarded as the calculation of homology of A_Q -action ρ_w discussed in Section 4.2.

7.3. Group algebras

.

Let G be a group with the identity element e_G . Let R[G] be the group algebra of G over R. Since a R-basis G of R[G] is a group, G satisfies Hypothesis (**P**). Thus homology $H_n(R[G], G)$ is defined. Note that, in this case, $R[G]^{[n]} := \langle B_{\otimes(n+1)}^{\neq 0} \rangle_R$ and $G_{\otimes(n+1)}^{\neq 0} = G_{\otimes(n+1)} = \{g_0 \otimes \cdots \otimes g_n \mid g_i \in G\}$ for $n \geq 0$. Then we have a corresponding chain complex

$$\cdots \xrightarrow{(\partial_G)_2} R[G]^{[1]} \xrightarrow{(\partial_G)_1} R[G]^{[0]} \xrightarrow{(\partial_G)_0} \{0\}$$

Recall that $\operatorname{Im}(\partial_G)_1 = \langle \partial_G(x \otimes y) \mid x, y \in G \rangle_R = \langle x + y - xy \mid x, y \in G \rangle_R$. Let \mathbb{Q} and \mathbb{Z} be respectively the field of all rational numbers and the ring of all rational integers.

Proposition 7.4 Suppose that G is finite. Then $H_0(\mathbb{Q}[G], G) = \{0\}$ and $H^M_{-1}(\mathbb{Q}[G], G) \cong M$ for any extension $(\cdots \longrightarrow \mathbb{Q}[G]^{[0]} \longrightarrow M \longrightarrow \{0\})$ defined in Section 5.

Proof. It is enough to show that $(\partial_G)_1$ is surjective. Take any element $g \in G$ of order m > 1. Then $\operatorname{Im}(\partial_G)_1$ contains $\sum_{i=1}^{m-1} (\partial_G)_1 (g \otimes g^i) = mg - e_G$ and $(\partial_G)_1 (e_G \otimes e_G) = e_G$. It follows that $G \subseteq \operatorname{Im}(\partial_G)_1$. Thus $\operatorname{Im}(\partial_G)_1 = \mathbb{Q}[G] = \mathbb{Q}[G]^{[0]}$. Furthermore since G is a group, we have by Lemma 5.3 that $H^M_{-1}(\mathbb{Q}[G], G) \cong M$.

Lemma 7.5 A surjective group homomorphism $h : G \longrightarrow K$ induces a surjective homomorphism $\hat{h} : H_0(\mathbb{Z}[G], G) \longrightarrow H_0(\mathbb{Z}[K], K)$.

Proof. A map $\hat{h} : \mathbb{Z}[G] \longrightarrow \mathbb{Z}[K]$ defined by $\hat{h}(\sum_{g \in G} \alpha_g g) := \sum_{g \in G} \alpha_g h(g)$ gives a surjective homomorphism. Thus it is enough to show that $\hat{h}(\operatorname{Im}(\partial_G)_1) \subseteq \operatorname{Im}(\partial_K)_1$. Indeed, for $g_1, g_2 \in G$,

$$\widehat{h}((\partial_G)_1(g_1 \otimes g_2)) = \widehat{h}(g_1 + g_2 - g_1g_2) = (\partial_K)_1(\widehat{h}(g_1) \otimes \widehat{h}(g_2)) \in \operatorname{Im}(\partial_K)_1.$$

This completes the proof.

Lemma 7.6 Let $G = \langle x_1 \rangle \times \cdots \times \langle x_m \rangle \times \langle h_1 \rangle \times \cdots \times \langle h_n \rangle = \langle g_1 \rangle \times \cdots \times \langle g_{m+n} \rangle$ be a finitely generated abelian group where $g_i = x_i$ $(1 \le i \le m)$ with $\ell_i := o(x_i) < \infty$, and $g_{m+j} = h_j$ $(1 \le j \le n)$ with $o(h_j) = \infty$. Consider the group algebra $\mathbb{Z}[G]$. Then we have the following.

- (1) Im $(\partial_G)_1 = \langle \prod_{i=1}^{m+n} g_i^{s_i} \sum_{i=1}^{m+n} s_i g_i \mid s_i \in \mathbb{Z} \rangle_{\mathbb{Z}} \subseteq \mathbb{Z}[G].$
- (2) $\operatorname{Im}(\partial_G)_1 \cap G = \{e_G\}.$
- (3) $H_0(\mathbb{Z}[G], G) \cong G$ as groups.

Proof. (1) For any $g = \prod_{i=1}^{m+n} g_i^{s_i}$ and $h = \prod_{i=1}^{m+n} g_i^{t_i}$ in G where $s_i, t_i \in \mathbb{Z}$, we have that $(\partial_G)_1(g \otimes h) = g + h - gh = (g - \sum_{i=1}^{m+n} s_i g_i) + (h - \sum_{i=1}^{m+n} t_i g_i) - (gh - \sum_{i=1}^{m+n} (s_i + t_i)g_i)$. Conversely, modulo $\operatorname{Im}(\partial_G)_1 = \langle x + y - xy \mid x, y \in G \rangle_{\mathbb{Z}}$,

$$\prod_{i=1}^{m+n} \overline{g_i^{s_i} - \sum_{i=1}^{m+n} s_i g_i} = \sum_{i=1}^{m+n} s_i \overline{g_i} - \sum_{i=1}^{m+n} s_i \overline{g_i} = \overline{0}.$$

246

Thus the first assertion holds.

(2) Let $\mathcal{I} := \{(\nu_1, \ldots, \nu_m, \mu_1, \ldots, \mu_n) \mid 0 \leq \nu_i < \ell_i, \ \mu_j \in \mathbb{Z}\}$. For $\Delta = (s_1, \ldots, s_{m+n}) \in \mathcal{I}$, put $g^{\Delta} := \prod_{i=1}^{m+n} g_i^{s_i} \in G, \ g_{\Delta} := \sum_{i=1}^{m+n} s_i g_i \in \mathbb{Z}[G]$, and $J_{\Delta} := \{i \mid 1 \leq i \leq m+n, \ s_i \neq 0\}$. By the previous result, $\operatorname{Im}(\partial_G)_1 = \langle g^{\Delta} - g_{\Delta} \mid \Delta \in \mathcal{I} \rangle_{\mathbb{Z}}$. Let \mathcal{S} be the totality of sequences $\Delta \in \mathcal{I}$ such that $J_{\Delta} = \{k\}$ for some $1 \leq k \leq m+n$ and $s_k = 1$. Then, for $\Delta \in \mathcal{I}$, we have that $g^{\Delta} - g_{\Delta} = 0$ if and only if $\Delta \in \mathcal{S}$. Thus any element Y in $\operatorname{Im}(\partial_G)_1$ can be expressed as

$$Y = \sum_{\Delta \in \mathcal{S}'} \alpha_{\Delta} (g^{\Delta} - g_{\Delta}) \quad \text{(finite sum)}$$

where $\mathcal{S}' := \mathcal{I} \setminus \mathcal{S}$. Suppose now that $Y = g^{\Delta_0} \in G$ for some $\Delta_0 = (t_1, \ldots, t_{m+n}) \in \mathcal{I}$. If $\Delta_0 \notin \mathcal{S}'$ namely $\Delta_0 \in \mathcal{S}$ then, since G is a \mathbb{Z} -free basis, $\alpha_{\Delta} = 0$ for all Δ . Thus $g^{\Delta_0} = 0$, a contradiction. So $\Delta_0 \in \mathcal{S}'$. Then by the same reason, we have that $g^{\Delta_0} = \alpha_{\Delta_0}(g^{\Delta_0} - g_{\Delta_0})$. This implies that $\alpha_{\Delta_0} = 1$ and $0 = g_{\Delta_0} = \sum_{i}^{m+n} t_i g_i$. Thus $t_i = 0$ for all i, so that, $g^{\Delta_0} = e_G$ as required.

(3) Since $\operatorname{Im}(\partial_G)_1 = \langle x + y - xy | x, y \in G \rangle_{\mathbb{Z}}$, we have that $H_0(\mathbb{Z}[G], G) := \mathbb{Z}[G]/\operatorname{Im}(\partial_G)_1 = \langle g_i + \operatorname{Im}(\partial_G)_1 | 1 \leq i \leq m + n \rangle_{\mathbb{Z}}$. Note that $c(g_i + \operatorname{Im}(\partial_G)_1) = (cg_i) + \operatorname{Im}(\partial_G)_1 = (g_i)^c + \operatorname{Im}(\partial_G)_1$ for $c \in \mathbb{Z}$ and $1 \leq i \leq m + n$. Suppose now that, for some $\Delta_0 = (t_1, \ldots, t_{m+n}) \in \mathcal{I}$,

$$\overline{0} = \sum_{i=1}^{m+n} t_i (g_i + \operatorname{Im}(\partial_G)_1) = g^{\Delta_0} + \operatorname{Im}(\partial_G)_1.$$

Then since $g^{\Delta_0} \in \operatorname{Im}(\partial_G)_1 \cap G = \{e_G\}$, we have that $t_i = 0$ for all i. This shows that $\langle g_i + \operatorname{Im}(\partial_G)_1 \mid 1 \leq i \leq m + n \rangle_{\mathbb{Z}}$ is isomorphic to $G = \langle g_1 \rangle \times \cdots \times \langle g_{m+n} \rangle$. The proof is complete. \Box

Example 7.7 Let G be a finitely generated group. Then $H_0(\mathbb{Z}[G], G) \cong G/G'$ as groups where G' is the commutator subgroup of G.

Indeed, let $\pi : G \longrightarrow G/G'$ be the canonical map. Since G/G' is a finitely generated abelian group, we obtain a surjective homomorphism $\widehat{\pi} : H_0(\mathbb{Z}[G], G) \longrightarrow H_0(\mathbb{Z}[G/G'], G/G') \cong G/G'$ by Lemma 7.5 and 7.6. On the other hand, a map $\kappa : G \longrightarrow H_0(\mathbb{Z}[G], G)$ defined by $\kappa(g) := g + \mathrm{Im}(\partial_G)_1$ for $g \in G$ is a surjective homomorphism such that $\kappa(G') = \{\overline{0}\}$. Thus we N. Iiyori and M. Sawabe

have a surjective endomorphism

$$G/G' \xrightarrow{\overline{\kappa}} H_0(\mathbb{Z}[G], G) \xrightarrow{\widehat{\pi}} H_0(\mathbb{Z}[G/G'], G/G) \cong G/G',$$

and this must be an isomorphism in general. It follows that $\overline{\kappa}$ is an isomorphism.

Remark 7.8 (Relation with group homology) Set A := R[G] and B := G. Then we have that $H_n(A, B) = H_{n+1}(G, R)$ for $n \ge 0$ where $H_{n+1}(G, R)$ is the usual group homology (cf. [3, pages 35 and 36]). Indeed, we first recall $H_{n+1}(G, R)$. Let F_n for $n \ge 0$ be the left R[G]-free module with basis $\{[g_1|g_2|\cdots|g_n] \mid g_i \in G\}$. Note that $F_0 = R[G][] \cong R[G]$. Define an R[G]-homomorphism $\partial_n : F_n \longrightarrow F_{n-1}$ by $\partial_n([g_1|g_2|\cdots|g_n]) = g_1[g_2|\cdots|g_n] + \sum_{i=0}^{n-1} (-1)^i [g_1|\cdots|g_ig_{i+1}|\cdots g_n] + (-1)^n [g_1|g_2|\cdots|g_{n-1}]$. Then

$$\cdots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\epsilon} R \longrightarrow \{0\}$$

is a free resolution of the trivial R[G]-module R. Consider the tensor product $F'_n := R \otimes_{R[G]} F_n$ where R is the right trivial R[G]-module. Then F'_n is the R-free module with basis $\{[g_1|g_2|\cdots|g_n] \mid g_i \in G\}$, and we have a chain complex

$$F'_{\bullet}: \quad \cdots \quad \xrightarrow{\partial'_3} F'_2 \xrightarrow{\partial'_2} F'_1 \xrightarrow{\partial'_1} F'_0 \longrightarrow \{0\}$$

where $\partial'_n([g_1|g_2|\cdots|g_n]) = [g_2|\cdots|g_n] + \sum_{i=0}^{n-1} (-1)^i [g_1|\cdots|g_ig_{i+1}|\cdots g_n] + (-1)^n [g_1|g_2|\cdots|g_{n-1}]$. In particular, ∂'_1 is the zero map. Then $H_n(G,R) := H_n(F'_{\bullet})$ by definition. Now identifying $g_0 \otimes \cdots \otimes g_n \in A^{[n]}$ with $[g_0|\cdots|g_n] \in F'_{n+1}$, we have the following commutative diagram.

It follows that $H_n(A, B) = H_{n+1}(G, R)$ for $n \ge 0$. From this viewpoint, it is known that $H_0(\mathbb{Z}[G], G) = H_1(G, \mathbb{Z}) \cong G/G'$ for an arbitrary group G. Thus, in fact, Example 7.7 holds without the assumption on G.

Remark 7.9 As in Remark 7.8, we have $H^n(R[G], G) = H^{n+1}(G, R)$ for $n \ge 0$ where $H^{n+1}(G, R)$ is the usual group cohomology. It is well known that $H^1(G, R) = \text{Hom}(G, R)$. From this viewpoint, we have that $H^0(\mathbb{Z}[G], G) = H^1(G, \mathbb{Z}) = \text{Hom}(G, \mathbb{Z}) = \{0\}$ if G/G' is finite. This is the conclusion of Example 3.11

7.4. The character ring $\mathbb{Q}[\operatorname{NIrr}(G)]$ of a finite group

Let G be a finite group, and $\operatorname{Irr}(G)$ be the set of irreducible complex characters of G. Denote by 1_G and ρ_G respectively the trivial and regular characters of G. Let $\mathbb{Z}[\operatorname{Irr}(G)] = \{\sum_{\chi \in \operatorname{Irr}(G)} m_{\chi}\chi \mid m_{\chi} \in \mathbb{Z}\}$ be the character ring of G which is a \mathbb{Z} -algebra with $\operatorname{Irr}(G)$ as \mathbb{Z} -basis. Consider the tensor product $A := \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}[\operatorname{Irr}(G)]$ over \mathbb{Z} which is a \mathbb{Q} -algebra. Define $\tilde{\chi} :=$ $(1/\chi(e_G))\chi \in A$ for $\chi \in \operatorname{Irr}(G)$, and put $\operatorname{NIrr}(G) := \{\tilde{\chi} \mid \chi \in \operatorname{Irr}(G)\} \subseteq A$. Then A possesses $\operatorname{NIrr}(G)$ as \mathbb{Q} -basis, that is, $A = \mathbb{Q}[\operatorname{NIrr}(G)]$. Note that 1_G is the identity element of A. Denote by $\pi(G)$ the set of all primes dividing the order |G| of G.

Firstly, we claim that a Q-basis NIrr(G) satisfies Hypothesis (P) (2). Indeed, for $\tilde{\chi}, \tilde{\psi} \in \text{NIrr}(G)$, let $\chi \psi = \sum_{\eta \in \text{Irr}(G)} c_{\eta} \eta$ for some $c_{\eta} \in \mathbb{Z}$. Then we have that $\tilde{\chi}\tilde{\psi} = \sum_{\eta \in \text{Irr}(G)} d_{\eta}\tilde{\eta}$ where

$$d_{\eta} := \frac{c_{\eta} \times \eta(e_G)}{\chi(e_G) \times \psi(e_G)} \in \mathbb{Q}.$$

Since $\tilde{\chi}(e_G) = \tilde{\psi}(e_G) = \tilde{\eta}(e_G) = 1$, the equality $\sum_{\eta \in \operatorname{Irr}(G)} d_\eta = 1$ holds. Secondly, we claim that a Q-basis $\operatorname{NIrr}(G)$ satisfies Hypothesis (**P**) (1). This is because that for any $\tilde{\chi_1}, \ldots, \tilde{\chi_m} \in \operatorname{NIrr}(G)$, we have that $\tilde{\chi_1} \cdots \tilde{\chi_m} \neq 0$. In other words, denote by $B := \operatorname{NIrr}(G)$, then $B_{\otimes(n+1)}^{\neq 0} = B_{\otimes(n+1)}$ $(n \geq 0)$ holds. Set $B - 1_G := \{\tilde{\chi} - 1_G \mid \tilde{\chi} \in B\}$.

Proposition 7.10 Under the above notation, we have the following.

(1) $\{\varphi \in A \mid \varphi(e_G) = 0\} = \langle B - 1_G \rangle_{\mathbb{Q}}.$ (2) $H_0(A, B) = \{0\}.$

Proof. (1) Put $X := \{\varphi \in A \mid \varphi(e_G) = 0\}$. For any $\varphi = \sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \widetilde{\chi} \in X$, we have that $0 = \varphi(e_G) = \sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \widetilde{\chi}(e_G) = \sum_{\chi \in \operatorname{Irr}(G)} a_{\chi}$. This implies that $\varphi = \sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} (\widetilde{\chi} - 1_G)$ is contained in $\langle B - 1_G \rangle_{\mathbb{Q}}$. The converse is trivial.

N. Iiyori and M. Sawabe

(2) It is enough to show that $\text{Im}(\partial_B)_1 = A$. Let

$$\theta := 1_G - \frac{1}{|G|}\rho_G = 1_G - \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(e_G)^2}{|G|} \widetilde{\chi} \in A.$$

Since $\theta(e_G) = 0$, we have that $\theta \in X = \langle B - 1_G \rangle_{\mathbb{Q}}$ and express as $\theta = \sum_{\chi \in \operatorname{Irr}(G)} c_{\chi}(\tilde{\chi} - 1_G)$. Furthermore $\varphi \theta = \varphi$ for any $\varphi \in X$ because of $\theta(g) = 1$ for any $g \in G$ with $g \neq e_G$. Thus for any $\tilde{\psi} - 1_G \in (B - 1_G) \subseteq X$, we have that

$$\widetilde{\psi} - 1_G = (\widetilde{\psi} - 1_G)\theta = \sum_{\chi \in \operatorname{Irr}(G)} c_{\chi} (\widetilde{\psi} - 1_G) (\widetilde{\chi} - 1_G)$$
$$\in \langle (\widetilde{\eta} - 1_G) (\widetilde{\chi} - 1_G) \mid \widetilde{\eta}, \widetilde{\chi} \in B \rangle_{\mathbb{Q}}.$$

It follows that $\langle 1_G, (\tilde{\eta} - 1_G)(\tilde{\chi} - 1_G) | \tilde{\eta}, \tilde{\chi} \in B \rangle_{\mathbb{Q}} \supseteq \langle 1_G, \tilde{\psi} - 1_G | \tilde{\psi} \in B \rangle_{\mathbb{Q}} = A$, and that those two sets are equal. On the other hand, since $\tilde{\eta}\tilde{\chi} \neq 0$ for any $\tilde{\eta}, \tilde{\chi} \in B$, we have by Proposition 3.9 that $\operatorname{Im}(\partial_B)_1 = \langle 1_G, (\tilde{\eta} - 1_G)(\tilde{\chi} - 1_G) | \tilde{\eta}, \tilde{\chi} \in B \rangle_{\mathbb{Q}}$. Thus $\operatorname{Im}(\partial_B)_1 = A$ as wanted. This completes the proof. \Box

Remark 7.11 For a positive integer $n \ge 1$, let $\pi(n)$ be the set of all primes dividing n. Let N := N(G) be the least common multiple of the degrees $\chi(e_G)$ for all $\chi \in \operatorname{Irr}(G)$. Set $n_{\pi} := \prod_{p \in \pi(N)} |G|_p$ where $|G|_p$ is the p-part of |G|, and set $n_{\pi'} := |G|/n_{\pi}$.

Now we consider a subring $R := \mathbb{Z}[1/N] = \{f(1/N) \mid f(X) \in \mathbb{Z}[X]\}$ of \mathbb{Q} instead of \mathbb{Q} itself, and observe the *R*-free module $R[\operatorname{NIrr}(G)]$ with $B := \operatorname{NIrr}(G)$ as basis. Note that $\pi(\chi(e_G)\psi(e_G))$ for any $\chi, \psi \in \operatorname{Irr}(G)$ is a subset of $\pi(N)$. This implies that d_η appeared earlier in this Section lives in *R*, and that R[B] is defined as an *R*-algebra. At the same time, we can see that an *R*-basis *B* satisfies Hypothesis (**P**).

We follow the notation in the proof of Proposition 7.10. Then, by the same way, we can show that $X = \langle B - 1 \rangle_R$. Furthermore let

$$\theta' := n_{\pi'} \left(\mathbb{1}_G - \frac{1}{|G|} \rho_G \right) = n_{\pi'} \mathbb{1}_G - \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(e_G)^2}{n_{\pi}} \widetilde{\chi}.$$

Since $\pi(n_{\pi}) = \pi(N)$, we have that $\theta' \in R[B]$. Then, along the same way

as in the proof of Proposition 7.10, it is shown that $\langle 1_G, n_{\pi'}(\tilde{\psi} - 1_G) | \tilde{\psi} \in B \rangle_R = \langle 1_G, n_{\pi'}\tilde{\psi} | \tilde{\psi} \in B \rangle_R$ is contained in $\operatorname{Im}(\partial_B)_1$ by using θ' instead of θ . It follows that $H_0(R[B], B)$ is a $(\pi(G) \setminus \pi(N))$ -group. We will see in the next Example 7.12 that it is not always equal to $\{0\}$.

Example 7.12 Under the situation of Remark 7.11, we give an example. Let G be the dihedral group $D_{10} = \langle (1, 2, 3, 4, 5), (2, 5)(3, 4) \rangle$ of order 10. The character table of G is given as follows:

	e_G	(2,5)(3,4)	(1, 2, 3, 4, 5)	(1, 3, 5, 2, 4)
$\chi_1 = 1_G$	1	1	1	1
χ_2	1	-1	1	1
χ_3	2	0	$\varepsilon + \varepsilon^4$	$\varepsilon^2 + \varepsilon^3$
χ_4	2	0	$\varepsilon^2+\varepsilon^3$	$\varepsilon + \varepsilon^4$

where $\varepsilon^5 = 1$ and $\varepsilon \neq 1$. Then N := N(G) = 2 and a coefficient ring is $R := \mathbb{Z}\begin{bmatrix} \frac{1}{2} \end{bmatrix} \subseteq \mathbb{Q}$. Furthermore $n_{\pi} = 2$ and $n_{\pi'} = 5$. Now we calculate that $(\partial_B)_1(\widetilde{\chi_1} \otimes \widetilde{\chi_i}) = \widetilde{\chi_1} + \widetilde{\chi_i} - \widetilde{\chi_1}\widetilde{\chi_i} = \widetilde{\chi_1}$ for all $1 \le i \le 4$. By the same way, $(\partial_B)_1(\widetilde{\chi_2} \otimes \widetilde{\chi_2}) = 2\widetilde{\chi_2} - \widetilde{\chi_1}, \ (\partial_B)_1(\widetilde{\chi_2} \otimes \widetilde{\chi_3}) = (\partial_B)_1(\widetilde{\chi_2} \otimes \widetilde{\chi_4}) = \widetilde{\chi_2}, \ (\partial_B)_1(\widetilde{\chi_3} \otimes \widetilde{\chi_3}) = 2\widetilde{\chi_3} - \frac{1}{4}\widetilde{\chi_1} - \frac{1}{4}\widetilde{\chi_2} - \frac{1}{2}\widetilde{\chi_4}, \ (\partial_B)_1(\widetilde{\chi_3} \otimes \widetilde{\chi_4}) = \frac{1}{2}\widetilde{\chi_3} + \frac{1}{2}\widetilde{\chi_4}, \ (\partial_B)_1(\widetilde{\chi_4} \otimes \widetilde{\chi_4}) = 2\widetilde{\chi_4} - \frac{1}{4}\widetilde{\chi_1} - \frac{1}{4}\widetilde{\chi_2} - \frac{1}{2}\widetilde{\chi_3}.$ Then $\operatorname{Im}(\partial_B)_1$ is generated by those $(\partial_B)_1(\widetilde{\chi_i} \otimes \widetilde{\chi_j})$ over R, and we eventually obtain that $\operatorname{Im}(\partial_B)_1 = \langle \widetilde{\chi_1}, \widetilde{\chi_2}, 5\widetilde{\chi_3}, \widetilde{\chi_3} + \widetilde{\chi_4} \rangle_R$. Thus $H_0(R[B], B) = \langle \widetilde{\chi_3} + \operatorname{Im}(\partial_B)_1 \rangle_R$ is a cyclic group of order $n_{\pi'} = 5$.

Example 7.13 Suppose that G is a finite abelian group. Since every irreducible character is linear, we have that N := N(G) = 1 and $\operatorname{NIrr}(G) = \operatorname{Irr}(G)$. Furthermore $\operatorname{Irr}(G)$ together with the usual product on characters forms a group which is isomorphic to G. Thus $R := \mathbb{Z}[1/N] = \mathbb{Z}$ and $B := \operatorname{NIrr}(G) = \operatorname{Irr}(G) \cong G$. Then by Example 7.7, $H_0(R[B], B) \cong H_0(\mathbb{Z}[G], G) \cong G$.

8. Semilattices

Let (L, \leq) be a meet-semilattice, namely this is a poset such that there exists the greatest lower bound $a \wedge b$ for any $a, b \in L$. In this section, we focus on an *R*-algebra R[L]. In particular, we consider a subalgebra of $\mathbb{Q}[\operatorname{Sgp}(G)]$

N. Iiyori and M. Sawabe

where Sgp(G) is the subgroup lattice of a finite group G. Furthermore some relations with the associated order complex of L are investigated.

Definition 8.1 For a meet-semilattice (L, \leq) , let R[L] be the *R*-free module with basis *L*. A multiplication on R[L] is defined by extending bilinearly the product $ab := a \land b \in L$ for $a, b \in L$. Then R[L] is an associative *R*-algebra (cf. [1, page 185]). Note that an *R*-free basis *L* is a semigroup, so that, *L* satisfies Hypothesis (**P**).

8.1. Subgroup lattice

Let G be a finite group. Denote by Sgp(G) the set of all subgroups of G. Then Sgp(G) is a meet-semilattice with respect to the inclusionrelation. Note that $H \wedge K = H \cap K \in \text{Sgp}(G)$ for any $H, K \in \text{Sgp}(G)$. Put L := Sgp(G) and a \mathbb{Q} -algebra $A := \mathbb{Q}[L]$.

Definition 8.2 For a subgroup $H \in L$, define an element

$$[H] := \frac{1}{|G|} \sum_{g \in G} H^g = \frac{1}{|G:H|} \left(\frac{1}{|H|} \sum_{g \in G} H^g \right) \in \mathbb{Q}[L]$$

where $H^g := g^{-1}Hg$ for $g \in G$. Put $X_G := \{[H] \mid H \in L/_{\sim_G}\}$ where $L/_{\sim_G}$ is a set of representatives of *G*-conjugate classes of *L*. Denote by $\Omega(G) := \mathbb{Q}[X_G]$ the \mathbb{Q} -free module generated by X_G .

Note that for $[H], [K] \in X_G$, we have that

$$\begin{split} [H][K] &= \frac{1}{|G|^2} \sum_{x,y \in G} H^x \cap K^y = \frac{1}{|G|^2} \sum_{x \in G} \left(\sum_{y \in G} (H \cap K^{yx^{-1}})^x \right) \\ &= \frac{1}{|G|^2} \sum_{x \in G} \left(\sum_{y \in G} (H \cap K^y)^x \right) = \frac{1}{|G|} \sum_{y \in G} \left(\frac{1}{|G|} \sum_{x \in G} (H \cap K^y)^x \right) \\ &= \frac{1}{|G|} \sum_{y \in G} [H \cap K^y] \in \Omega(G). \end{split}$$

This shows that $\Omega(G)$ is a subalgebra of $\mathbb{Q}[L]$ with a \mathbb{Q} -basis X_G , and also shows that X_G satisfies Hypothesis (**P**).

Proposition 8.3 Under the above notation, we have that $H_0(\Omega(G), X_G) = \{0\}$.

Proof. It suffices to show that $\operatorname{Im}(\partial_{X_G})_1 = \Omega(G)$. Let $E := \{e_G\}$ be the trivial subgroup of G. First we note that $(\partial_{X_G})_1([E] \otimes [E]) = 2[E] - [E][E] = 2[E] - [E] = [E]$. Next we take any $[H] \in X_G$ such that $H \neq E$. Then by using the above formula on [H][K],

$$(\partial_{X_G})_1([H] \otimes [H]) = \left(2 - \frac{1}{|G: N_G(H)|}\right)[H] - \frac{1}{|G|} \sum_{y \notin N_G(H)} [H \cap H^y]$$

The coefficient of [H] is non-zero. By induction on the order of a subgroup of G, $\operatorname{Im}(\partial_{X_G})_1$ contains [H]. Thus $X_G \subseteq \operatorname{Im}(\partial_{X_G})_1$, so that, $\operatorname{Im}(\partial_{X_G})_1 = \Omega(G)$ as desired. \Box

8.2. Associated order complex

For a poset (L, \leq) , the order complex $O(L) = O(L, \leq)$ of L is the abstract simplicial complex whose k-simplices are all inclusion-chains $(x_0 > \cdots > x_k)$ of length k where $x_i \in L$. Denote by $O(L)_k$ the set of all k-simplices of O(L) for $k \geq 0$. For $s \in L$ and a subset $K \subseteq L$, we define a subposet $K_{\leq s} := \{a \in K \mid a < s\}$.

Notation 8.4 Let (L, \leq) be a meet-semilattice. For $s \in L$ and a subset $K \subseteq L$, denote by

$$\mathcal{F}(K_{ \cdots > b_{n-1}) \in \mathsf{O}(K_{$$

For $b_0 \otimes \cdots \otimes b_{n-1} \in \mathcal{F}(K_{\langle s \rangle})_{n-1}$, we have the product $b_0 \cdots b_{n-1} = b_{n-1} \neq 0$ in the algebra R[L]. Thus $\mathcal{F}(K_{\langle s \rangle})_{n-1} \subseteq L_{\otimes n}^{\neq 0}$. Furthermore denote by

$$s \otimes \mathcal{F}(K_{\langle s \rangle})_{n-1} := \{ s \otimes b_0 \otimes \dots \otimes b_{n-1} \mid b_0 \otimes \dots \otimes b_{n-1} \in \mathcal{F}(K_{\langle s \rangle})_{n-1} \},$$
$$s \otimes \mathcal{F}(K_{\langle s \rangle})_{-1} := \{ s \},$$
$$\mathcal{D}(K_{\langle s \rangle}) := \bigcup_{n \ge 0} s \otimes \mathcal{F}(K_{\langle s \rangle})_{n-1} \subseteq \bigcup_{n \ge 0} L_{\otimes (n+1)}^{\neq 0}.$$

Recall that $\mathcal{D}(K_{\langle s \rangle})_n := \mathcal{D}(K_{\langle s \rangle}) \cap L^{\neq 0}_{\otimes (n+1)} = s \otimes \mathcal{F}(K_{\langle s \rangle})_{n-1}$ for $n \geq 0$. In particular, $\mathcal{D}(K_{\langle s \rangle})_0 = \{s\}.$

Proposition 8.5 Let (L, \leq) be a meet-semilattice. For $s \in L$ and a subset $K \subseteq L$, we have that $\mathcal{D}(K_{< s})$ is ∂_L -invariant, and that $H_n(\mathcal{D}(K_{< s})) \cong$

 $\widetilde{H}_{n-1}(\mathsf{O}(K_{\leq s}))$ for any $n \geq 0$ as *R*-modules where $\widetilde{H}_{n-1}(\mathsf{O}(K_{\leq s}))$ is the usual reduced homology of a simplicial complex $\mathsf{O}(K_{\leq s})$.

Proof. For $s \otimes b_0 \otimes \cdots \otimes b_{n-1} \in \mathcal{D}(K_{\leq s})_n$ $(n \geq 1)$, we have that

$$\partial_L(s \otimes b_0 \otimes \cdots \otimes b_{n-1}) = (b_0 \otimes \cdots \otimes b_{n-1}) - (sb_0) \otimes b_1 \otimes \cdots \otimes b_{n-1} + \sum_{i=0}^{n-2} (-1)^i s \otimes \cdots \otimes (b_i b_{i+1}) \otimes \cdots \otimes b_{n-1} + (-1)^{n-1} s \otimes b_0 \otimes \cdots \otimes b_{n-2} = \sum_{i=0}^{n-1} (-1)^i s \otimes b_0 \otimes \cdots \otimes \widehat{b}_i \otimes \cdots \otimes b_{n-1} \in \mathcal{D}(K_{< s})_{n-1}.$$

Note that $sb_0 = b_0$ and $b_i b_{i+1} = b_{i+1}$ as $s > b_0$ and $b_i > b_{i+1}$ respectively, and that \hat{b}_i means to delete the element b_i . This shows that $\mathcal{D}(K_{< s})$ is ∂_L -invariant.

Put $\mathcal{D} := \mathcal{D}(K_{\langle s \rangle})$. An element $s \otimes b_0 \otimes \cdots \otimes b_{n-1} \in \mathcal{D}_n = s \otimes \mathcal{F}(K_{\langle s \rangle})_{n-1}$ $(n \geq 1)$ is identified with an (n-1)-simplex $(b_0 > \cdots > b_{n-1}) \in \mathcal{O}(K_{\langle s \rangle})_{n-1}$. Furthermore, for $s \otimes b_0 \in \mathcal{D}_1$, we have that $\partial_L(s \otimes b_0) = s \in \mathcal{D}_0 = \{s\}$. It follows that $(\partial_{L,\mathcal{D}})_1 : \langle \mathcal{D}_1 \rangle_R \longrightarrow \langle \mathcal{D}_0 \rangle_R = \langle s \rangle_R$ gives the augmentation map. Thus we have the following chain complex

Then the above calculation of ∂_L yields the required isomorphism.

Example 8.6 Let G be a finite group. Suppose that $|\pi(G)| \geq 2$. For $p \in \pi(G)$, denote by $S_p(G)$ the set of all non-trivial p-subgroups of G. Put $L := S_p(G) \cup \{\{e_G\}, G\}$. Then L is a meet-semilattice with respect to the inclusion-relation. Note that $P \wedge Q = P \cap Q \in L$ for any $P, Q \in L$ as in Section 8.1. Then for $G \in L$ and a subset $K := S_p(G) \subseteq L$, we have by Proposition 8.5 that

$$H_n(\mathcal{D}(K_{\leq G})) \cong \widetilde{H}_{n-1}(\mathsf{O}(K_{\leq G})) = \widetilde{H}_{n-1}(\mathsf{O}(\mathcal{S}_p(G))).$$

Thus the reduced homology of the Brown complex $O(\mathcal{S}_p(G))$ can be realized as our homology of an *R*-algebra R[L].

Theorem 8.7 For a meet-semilattice (L, \leq) , let

$$\mathcal{D}(L) := \bigcup_{s \in L} \mathcal{D}(L_{< s}) = \bigcup_{n \ge 0} \left(\bigcup_{s \in L} s \otimes \mathcal{F}(L_{< s})_{n-1} \right) \subseteq \bigcup_{n \ge 0} L_{\otimes (n+1)}^{\neq 0}.$$

Then $\mathcal{D}(L)$ is ∂_L -invariant, and

$$H_n(\mathcal{D}(L)) \cong \bigoplus_{s \in L} \widetilde{H}_{n-1}(\mathsf{O}(L_{< s}))$$

for any $n \ge 0$ as *R*-modules.

Proof. By the definition, $\langle \mathcal{D}(L) \rangle_R = \bigoplus_{s \in L} \langle \mathcal{D}(L_{< s}) \rangle_R$ as *R*-modules. Since $\mathcal{D}(L_{< s})$ is ∂_L -invariant by Proposition 8.5, so is $\mathcal{D}(L)$. Furthermore $H_n(\mathcal{D}(L_{< s})) \cong \widetilde{H}_{n-1}(\mathcal{O}(L_{< s}))$ for any $n \geq 0$. Thus the assertion clearly holds.

Acknowledgments The authors are very much grateful to the anonymous referee for a thorough reading of the paper and for suggesting especially Proposition 7.1 and Remark 7.8.

This work was supported by JSPS KAKENHI Grant Number 25400006.

References

- Aigner M., Combinatorial theory, Reprint of the 1979 original, Classics in Mathematics, Springer-Verlag, Berlin, 1997.
- [2] Auslander M., Reiten I. and Smalø S. O., Representation theory of Artin algebras, Corrected reprint of the 1995 original, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, 1997.
- [3] Brown K. S., Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York-Berlin, 1982.
- [4] Cartan H. and Eilenberg S., *Homological algebra*, Reprint of the 1956 original, Princeton Landmarks in Mathematics, Princeton University Press, 1999.
- [5] Iiyori N. and Sawabe M., Representations of path algebras with applications to subgroup lattices and group characters. Tokyo J. Math. 37 (2014), 37–59.

N. Iiyori and M. Sawabe

 [6] Iiyori N. and Sawabe M., Simplicial complexes associated to quivers arising from finite groups. Osaka J. Math. 52 (2015), 161–204.

> Nobuo IIYORI Department of Mathematics Faculty of Education Yamaguchi University Yamaguchi 753-8511, Japan E-mail: iiyori@yamaguchi-u.ac.jp

Masato SAWABE Department of Mathematics Faculty of Education Chiba University Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan E-mail: sawabe@faculty.chiba-u.jp