Hokkaido Mathematical Journal Vol. 46 (2017) p. 209-226

A moment problem on rational numbers

Koji Furuta

(Received October 15, 2014; Revised February 17, 2015)

Abstract. We give integral representations of positive and negative definite functions defined on an interval in a certain subsemigroup of the semigroup of rational numbers.

Key words: moment problem, positive definite function, semigroup.

1. Introduction

It was shown by D. V. Widder [8, Thereom A] that a real-valued function f(x) defined on an open interval (a, b) in **R** has a form

$$f(x) = \int_{\mathbf{R}} e^{-xt} \, d\alpha(t), \quad a < x < b, \tag{1.1}$$

where $\alpha(t)$ is a non-decreasing function on **R** if and only if f(x) is continuous and positive definite. Here the function f(x) is said to be *positive definite* on (a, b) if

$$\sum_{i,j=1}^{n} c_i c_j f(x_i + x_j) \ge 0$$

for every $n \ge 1$ and for every $c_1, c_2, \ldots, c_n, x_1, \ldots, x_n \in \mathbf{R}$ such that $2x_i \in (a, b)$ for $i = 1, 2, \ldots, n$.

In this paper, we concern positive definite functions defined on a subset of the additive semigroup Q of rational numbers. Let $\vec{m} = \{m_n\}_{n=1}^{\infty}$ be a sequence of integers greater than or equal to 2, and let $S(\vec{m})$ be the subsemigroup of Q defined by

$$S(\overrightarrow{m}) = \bigg\{ \frac{k}{m_1 \cdots m_n} : k \in \mathbb{Z}, \ n \ge 1 \bigg\},\$$

²⁰¹⁰ Mathematics Subject Classification : Primary 43A35; Secondary 44A60, 47A57.

where Z denotes the set of all integers. For example, if $m_n = n + 1$ for $n \ge 1$, we have $S(\vec{m}) = Q$, and if $m_n = 2$ for $n \ge 1$, $S(\vec{m})$ is the set of all dyadic rational numbers.

Let I denote a finite or infinite interval in \mathbf{R} , and let $\varphi : I \cap S(\vec{m}) \to \mathbf{R}$ be a real-valued function on $I \cap S(\vec{m})$. We say φ is *positive definite* if

$$\sum_{i,j=1}^{n} c_i c_j \varphi(r_i + r_j) \ge 0$$

for all $n \geq 1, c_1, c_2, \ldots, c_n \in \mathbf{R}$ and $r_1, r_2, \ldots, r_n \in S(\vec{m})$ such that $2r_i \in I \cap S(\vec{m})$ for $i = 1, 2, \ldots, n$. The purpose of this paper is to show that every positive definite function on $I \cap S(\vec{m})$ has an integral representation such as (1.1) (see Section 2). The result we obtain will generalize the results of N. Sakakibara for the case $I = [0, \infty)$ ([7, Theorem 2.2]) and D. Atanasiu for the case $S(\vec{m}) = \mathbf{Q}$ ([2, Theorem 1, Proposition 1]). In Section 3, we extend the result of Section 2 to the case where φ is a mapping of $I \cap S(\vec{m})$ into the space of bounded linear operators on a complex Hilbert space. We also give a Lévy–Khinchin type formula for negative definite functions on $I \cap S(\vec{m})$ in Section 2.

2. Integral representations of positive and negative definite functions

First we consider the case where I is an open interval. Define the function χ on $S(\vec{m})$ as follows (cf. [7]):

If the sequence $\overrightarrow{m} = \{m_n\}_{n=1}^{\infty}$ contains no even numbers, put

$$\chi\left(\frac{k}{m_1\cdots m_n}\right) = (-1)^k, \qquad \frac{k}{m_1\cdots m_n} \in S(\overrightarrow{m});$$

If \vec{m} contains only finitely many even numbers, we may suppose that m_1, \ldots, m_p are even and m_q (q > p) are odd. Then we put

$$\chi\left(\frac{k}{m_1\cdots m_p m_{p+1}\cdots m_n}\right) = (-1)^k, \qquad \frac{k}{m_1\cdots m_p m_{p+1}\cdots m_n} \in S(\overrightarrow{m}).$$

It is clear that χ is well-defined and multiplicative, i.e.

$$\chi(r_1+r_2) = \chi(r_1)\chi(r_2), \qquad r_1, r_2 \in S(\overrightarrow{m}).$$

In fact, the functions $r \in S(\vec{m}) \mapsto e^{rx}$ and $r \in S(\vec{m}) \mapsto \chi(r)e^{rx}$, where $x \in \mathbf{R}$, are the semicharacters of $S(\vec{m})$ [7].

Throughout the paper, $E_+(I, A)$ denotes the set of all positive Radon measures μ on A, where A is an open or closed subset of \mathbf{R} , such that the function $x \mapsto e^{rx}$ is μ -integrable for all $r \in I$.

Theorem 2.1 Let $a, b \in \mathbf{R} \cup \{-\infty, \infty\}$ such that a < b and let $\vec{m} = \{m_n\}_{n=1}^{\infty}$ be a sequence of integers $m_n \geq 2$. Let φ be a positive definite function on $(a, b) \cap S(\vec{m})$.

(1) If the sequence \vec{m} contains at most finitely many even numbers, then there exist positive Radon measures $\mu, \nu \in E_+((a, b), \mathbf{R})$ such that

$$\varphi(r) = \int_{\mathbf{R}} e^{rx} d\mu(x) + \int_{\mathbf{R}} \chi(r) e^{rx} d\nu(x), \quad r \in (a, b) \cap S(\overrightarrow{m}).$$

Moreover, the pair (μ, ν) is uniquely determined by φ .

(2) If the sequence \vec{m} contains infinitely many even numbers, then there exists a uniquely determined measure $\mu \in E_+((a,b), \mathbf{R})$ such that

$$\varphi(r) = \int_{\mathbf{R}} e^{rx} d\mu(x), \qquad r \in (a, b) \cap S(\overrightarrow{m}).$$

Proof. (1) Fix $\alpha, \beta \in 2S(\vec{m}) = \{2r : r \in S(\vec{m})\}$ which satisfy $a < \alpha < \beta < b$. Using the above notation, we may put $\alpha = d_0(m_1 \cdots m_q)^{-1}, \beta = d_1(m_1 \cdots m_q)^{-1}$ where d_0 and d_1 are even numbers and q > p. For a fixed integer $n \ge 1$, put $M_n = (d_1 - d_0)m_{q+1} \cdots m_{q+n}$ and $L_n = m_1 \cdots m_{q+n}$, and define the sequence $\{s_k\}_{k=0}^{M_n}$ by $s_k = \varphi(\alpha + k/L_n), k = 0, 1, \ldots, M_n$. Then for $c_i \in \mathbf{R}, i = 0, 1, \ldots, M_n/2$, we have

$$\sum_{i,j=0}^{M_n/2} c_i c_j s_{i+j} = \sum_{i,j=0}^{M_n/2} c_i c_j \varphi \left(\left(\frac{\alpha}{2} + \frac{i}{L_n}\right) + \left(\frac{\alpha}{2} + \frac{j}{L_n}\right) \right) \ge 0,$$

because of the positive definiteness of φ . By [1, Theorem 2.6.3], there exists a finite positive Radon measure τ_n on **R** such that

$$\varphi\left(\alpha + \frac{k}{L_n}\right) = \int_{\mathbf{R}} t^k d\tau_n(t), \qquad k = 0, 1, \dots, M_n - 1,$$

and $\varphi(\alpha + k/L_n) = \varphi(\beta) \ge \int_{\mathbf{R}} t^k d\tau_n(t)$ for $k = M_n$. Define the mappings f_n and g_n on $\mathbf{R} = \mathbf{R} \cup \{-\infty\}$ by

$$f_n : \underline{\mathbf{R}} \to [0, \infty);$$
 $f_n(x) = \exp \frac{x}{L_n},$
 $g_n : \underline{\mathbf{R}} \to (-\infty, 0];$ $g_n(x) = -\exp \frac{x}{L_n},$

and let μ_n , ν_n be positive Radon measures on <u>**R**</u> which satisfy

$$\mu_n \circ f_n^{-1} = \tau_n|_{[0,\infty)}, \qquad \nu_n \circ g_n^{-1} = \tau_n|_{(-\infty,0]}$$

respectively. Then we have

$$\varphi\left(\alpha + \frac{k}{L_n}\right) = \int_{\underline{\mathbf{R}}} \exp\frac{kx}{L_n} \, d\mu_n(x) + \int_{\underline{\mathbf{R}}} (-1)^k \exp\frac{kx}{L_n} \, d\nu_n(x).$$

Since $\mu_n(\underline{\mathbf{R}}) + \nu_n(\underline{\mathbf{R}}) = \varphi(\alpha) < +\infty$ for all $n \ge 1$, there exist subsequences $\{\mu_{n_i}\}_{i=1}^{\infty}$ and $\{\nu_{n_i}\}_{i=1}^{\infty}$ which converge vaguely to positive measures μ_0 and ν_0 respectively (see [2, Proposition 2.4.6, 2.4.10]). Put $s = k/L_n$ for $k = 0, 1, \ldots, M_n - 1$. If $n_i > n$, we have

$$\varphi(\alpha + s) = \varphi\left(\alpha + \frac{km_{q+n+1}\cdots m_{q+n_i}}{m_1\cdots m_{q+n_i}}\right)$$
(2.1)

$$= \int_{\underline{R}} e^{sx} d\mu_{n_i}(x) + \int_{\underline{R}} \chi(s) e^{sx} d\nu_{n_i}(x).$$
(2.2)

Using that for each nonnegative continuous function f on a locally compact space the integral $\int f d\mu$ is lower semicontinuous in μ with respect to the vague topology, we find that for $s = k/L_n$, $k = 0, 1, \ldots, M_n/2$,

$$\int_{\underline{R}} e^{2sx} d\mu_0(x) \le \varphi(\alpha + 2s), \quad \int_{\underline{R}} e^{2sx} d\nu_0(x) \le \varphi(\alpha + 2s).$$

Since $e^{sx} \leq (1 + e^{2sx})/2$, it follows that the function e^{sx} is μ_0 - (and ν_0 -) integrable for $s = k/L_n$, $k = 0, 1, \ldots, M_n - 1$. Define the function h(x) by

213

 $h(x)=1+e^{2(s+1)x}.$ Then the sequence $\{h\mu_{n_i}\}_{i=1}^\infty$ converges to $h\mu_0$ vaguely and

$$\sup_{i \ge 1} \int_{\underline{\mathbf{R}}} h(x) d\mu_{n_i}(x) \le \varphi(\alpha) + \varphi(\alpha + 2(s+1)).$$

Therefore, since $e^{sx}/h(x)$ is a continuous function on $\underline{\mathbf{R}}$ vanishing at infinity, we have

$$\lim_{i \to \infty} \int_{\underline{R}} e^{sx} d\mu_{n_i}(x) = \lim_{i \to \infty} \int_{\underline{R}} \frac{e^{sx}}{h(x)} h(x) d\mu_{n_i}(x)$$
$$= \int_{\underline{R}} \frac{e^{sx}}{h(x)} h(x) d\mu_0(x)$$
$$= \int_{\underline{R}} e^{sx} d\mu_0(x),$$

and similarly

$$\lim_{i \to \infty} \int_{\underline{R}} e^{sx} \, d\nu_{n_i}(x) = \int_{\underline{R}} e^{sx} \, d\nu_0(x).$$

Thus by (2.2) we have

$$\varphi(\alpha+s) = \int_{\underline{R}} e^{sx} d\mu_0(x) + \int_{\underline{R}} \chi(s) e^{sx} d\sigma_0(x),$$

for $s = k/L_n$, $k = 0, 1, ..., M_n - 1$. Since this equality holds for every $n \ge 1$, putting $r = \alpha + s$ we see that

$$\varphi(r) = \int_{\mathbf{R}} e^{rx} e^{-\alpha x} d(\mu_0|_{\mathbf{R}})(x) + \int_{\mathbf{R}} \chi(r) e^{rx} e^{-\alpha x} d(\nu_0|_{\mathbf{R}})(x),$$
$$r \in (\alpha, \beta) \cap S(\overrightarrow{m}).$$

Consequently

$$\varphi(r) = \int_{\mathbf{R}} e^{rx} d\mu(x) + \int_{\mathbf{R}} \chi(r) e^{rx} d\nu(x), \quad r \in (\alpha, \beta) \cap S(\overrightarrow{m}), \qquad (2.3)$$

where $d\mu(x) = e^{-\alpha x} d(\mu_0|_{\mathbf{R}})(x)$ and $d\nu(x) = e^{-\alpha x} d(\nu_0|_{\mathbf{R}})(x)$.

We now prove the uniqueness of μ and ν . Suppose that

$$\int_{\mathbf{R}} e^{rx} d\mu(x) + \int_{\mathbf{R}} \chi(r) e^{rx} d\nu(x) = \int_{\mathbf{R}} e^{rx} d\mu'(x) + \int_{\mathbf{R}} \chi(r) e^{rx} d\nu'(x)$$

for $r \in (\alpha, \beta) \cap S(\overrightarrow{m})$. If $r \in (\alpha, \beta) \cap 2S(\overrightarrow{m})$, we have

$$\int_{\mathbf{R}} e^{rx} d(\mu + \nu - \mu' - \nu')(x) = 0.$$

Define the holomorphic function $\Phi(z)$ on the strip $\alpha < \operatorname{Re} z < \beta$ in the complex plane by

$$\Phi(z) = \int_{\mathbf{R}} e^{zx} d(\mu + \nu - \mu' - \nu')(x).$$

Then the identity theorem ensures that $\Phi(z) \equiv 0$ for $\alpha < \operatorname{Re} z < \beta$ because the set $(\alpha, \beta) \cap 2S(\overrightarrow{m})$ is dense in the interval (α, β) . Since for fixed $\alpha < \gamma < \beta$, the function $y \in \mathbf{R} \mapsto \Phi(\gamma + iy)$ is the Fourier transform of $e^{\gamma}(\mu + \nu - \mu' - \nu')$, it follows that $\mu + \nu - \mu' - \nu' = 0$. Using a similar argument for the equality

$$\int_{\mathbf{R}} e^{rx} d(\mu - \nu - \mu' + \nu')(x) = 0, \quad r \in (\alpha, \beta) \cap (S(\overrightarrow{m}) \setminus 2S(\overrightarrow{m})),$$

we have $\mu - \nu - \mu' + \nu' = 0$. Consequently $\mu = \mu'$ and $\nu = \nu'$. Since α and β are arbitrary, we conclude that (2.3) is valid not only for $r \in (\alpha, \beta) \cap S(\overrightarrow{m})$ but also for $r \in (a, b) \cap S(\overrightarrow{m})$, and that the pair (μ, ν) is uniquely determined.

(2) Suppose that $\overrightarrow{m} = \{m_n\}_{n=1}^{\infty}$ contains infinitely many even numbers. In this case, we have $2S(\overrightarrow{m}) = S(\overrightarrow{m})$. Fix $\alpha, \beta \in S(\overrightarrow{m})$ which satisfy $a < \alpha < \beta < b$, and put $\alpha = d_0(m_1 \cdots m_{p_0})^{-1}, \beta = d_1(m_1 \cdots m_{p_0})^{-1}$, where d_0, d_1 are even. For fixed $n \ge 1$, put $M_n = (d_1 - d_0)m_{p_0+1} \cdots m_{p_0+n}$ and $L_n = m_1 \cdots m_{p_0+n}$. Then the sequence $\{s_k\}_{k=0}^{M_n}$ defined by $s_k = \varphi(\alpha + k/L_n), k = 0, 1, \ldots, M_n$, is a truncated Stieltjes moment sequence. To see this, pick a sufficiently large number n_0 such that $m_{p_0+n_0}$ is even. Then for $c_i \in \mathbf{R}, i = 0, 1, \ldots, M_n/2$, we have

$$\sum_{i,j=0}^{M_n/2} c_i c_j s_{i+j} = \sum_{i,j=0}^{M_n/2} c_i c_j \varphi\left(\alpha + \frac{i+j}{L_n}\right) \ge 0,$$

and

$$\sum_{i,j=0}^{M_n/2-1} c_i c_j s_{i+j+1} = \sum_{i,j=0}^{M_n/2-1} c_i c_j \varphi \left(\alpha + \frac{i+j}{L_n} + 2 \frac{m_{p_0+n+1} \cdots m_{p_0+n_0-1} \cdot \frac{m_{p_0+n_0}}{2}}{m_1 \cdots m_{p_0+n_0}} \right) \ge 0.$$

Therefore there exists a finite positive Radon measure τ_n on $[0, \infty)$ such that

$$\varphi\left(\alpha + \frac{k}{L_n}\right) = \int_0^\infty t^k d\tau_n(t), \qquad k = 0, 1, \dots, M_n - 1.$$

By an argument similar to that in the proof of (1), we find a unique measure $\mu \in E_+((a, b), \mathbf{R})$ such that

$$\varphi(r) = \int_{\mathbf{R}} e^{rx} d\mu(x), \qquad r \in (a, b) \cap S(\overrightarrow{m}).$$

Thus the proof is complete.

For $\alpha \in S(\vec{m})$, let E_{α} denote the shift operator on $\mathbf{R}^{S(\vec{m})}$ defined by $E_{\alpha}\varphi(r) = \varphi(\alpha + r), \ \varphi \in \mathbf{R}^{S(\vec{m})}, \ r \in S(\vec{m})$. In [3, Theorem 7.1.10], it is shown that a bounded function φ on a commutative semigroup S is completely monotone if and only if φ is completely positive definite on S. The following theorem gives an analogous result, which is a generalization of [2, Theorem 3].

Theorem 2.2 Let $a \in \mathbf{R}$ and let $\vec{m} = \{m_n\}_{n=1}^{\infty}$ be a sequence of integers $m_n \geq 2$. For a function $\varphi : (a, \infty) \cap S(\vec{m}) \to \mathbf{R}$, the following conditions are mutually equivalent:

(1) For any natural number p and for any $\alpha_1, \ldots, \alpha_p \in (0, \infty) \cap S(\overrightarrow{m})$,

$$(E_0 - E_{\alpha_1}) \cdots (E_0 - E_{\alpha_p})\varphi(r) \ge 0$$

215

holds for $r \in (a, \infty) \cap S(\overrightarrow{m})$;

- (2) For any $\alpha \in (0, \infty) \cap S(\vec{m})$, the functions $E_{\alpha}\varphi(r)$ and $(E_0 E_{\alpha})\varphi(r)$ are both positive definite on $(a, \infty) \cap S(\vec{m})$;
- (3) There exists a measure $\mu \in E_+((-\infty, -a), [0, \infty))$ such that

$$\varphi(r) = \int_0^\infty e^{-rx} d\mu(x), \qquad r \in (a, \infty) \cap S(\overrightarrow{m}).$$

Proof. The proof is similar to that of [2, Theorem 3] and omitted. For the implication $(2) \implies (3)$, see also [3, Lemma 7.3.8].

Next we consider the case where I = [a, b) is a half-open interval. Let $\delta_a(r)$ denote the function on $I \cap S(\vec{m})$ defined by $\delta_a(a) = 1$ and $\delta_a(r) = 0$ for $r \neq a$.

Theorem 2.3 Let $a \in 2S(\vec{m})$, $b \in \mathbf{R} \cup \{\infty\}$ such that a < b and let $\vec{m} = \{m_n\}_{n=1}^{\infty}$ be a sequence of integers $m_n \ge 2$. Let φ be a positive definite function on $[a, b) \cap S(\vec{m})$.

(1) If the sequence \vec{m} contains at most finitely many even numbers, then there exist a nonnegative constant ω and $\mu, \nu \in E_+([a,b), \mathbf{R})$ such that

$$\varphi(r) = \omega \delta_a(r) + \int_{\mathbf{R}} e^{rx} d\mu(x) + \int_{\mathbf{R}} \chi(r) e^{rx} d\nu(x),$$

$$r \in [a, b) \cap S(\vec{m}).$$
(2.4)

Moreover the triple (ω, μ, ν) is uniquely determined by φ .

(2) If the sequence \vec{m} contains infinitely many even numbers, then there exist a nonnegative constant ω and $\mu \in E_+([a,b), \mathbf{R})$ such that

$$\varphi(r) = \omega \delta_a(r) + \int_{\mathbf{R}} e^{rx} d\mu(x), \quad r \in [a, b) \cap S(\overrightarrow{m}).$$
(2.5)

The pair (ω, μ) is uniquely determined by φ .

Proof. (1) Since $a \in 2S(\vec{m})$, putting $\alpha = a$ in the proof of Theorem 2.1 (1), we have

$$\varphi(r) = \omega \delta_a(r) + \int_{\mathbf{R}} e^{rx} d\mu(x) + \int_{\mathbf{R}} \chi(r) e^{rx} d\nu(x), \quad r \in [a, \beta) \cap S(\overrightarrow{m}),$$

 \square

where $\omega = \mu_0(\{-\infty\}) + \nu_0(\{-\infty\}) \ge 0$. Then the same argument as in the proof of Theorem 2.1 (1) shows (2.4) and the uniqueness of μ and ν . The uniqueness of ω follows from the equality

$$\lim_{r\downarrow a,r\in 2S(\overrightarrow{m})}\varphi(r)=\int_{R}e^{ax}d\mu(x)+\int_{R}e^{ax}d\nu(x)=\varphi(a)-\omega.$$

The assertion (2) is proved analogously.

Remark 2.1 If we put $S(\vec{m}) = Q$ in Theorem 2.1(2) and Theorem 2.2(2), we obtain [2, Theorem 1, Proposition 1]. If we put $[a, b) = [0, \infty)$ in Theorem 2.2, we obtain [7, Theorem 2.2].

A real-valued function ψ on $I \cap S(\vec{m})$ is said to be *negative definite* if

$$\sum_{i,j=1}^{n} c_i c_j \psi(r_i + r_j) \le 0$$

for all $n \geq 2, c_1, c_2, \ldots, c_n \in \mathbf{R}$ such that $\sum_{i=1}^n c_i = 0$ and $r_1, \ldots, r_n \in S(\vec{m})$ such that $2r_i \in I \cap S(\vec{m})$ for $i = 1, 2, \ldots, n$. Using Theorem 2.1 and Theorem 2.2, we can obtain an integral representation of negative definite functions on $I \cap S(\vec{m})$.

Theorem 2.4 Let $a, b \in \mathbf{R} \cup \{-\infty, \infty\}$ such that a < b and let $\vec{m} = \{m_n\}_{n=1}^{\infty}$ be a sequence of integers $m_n \geq 2$. Let ψ be a negative definite function on $(a,b) \cap S(\vec{m})$. Let $\alpha \in 2S(\vec{m})$ such that $a < \alpha < b$ and let $\beta \in S(\vec{m})$ such that $\beta > 0$ and $a < \alpha + 2\beta < b$.

(1) If the sequence \vec{m} contains at most finitely many even numbers, then ψ has a representation of the form

$$\begin{split} \psi(r) &= A + Br - Cr^2 + \int_{\mathbf{R} \setminus \{0\}} \left(e^{\alpha x} - e^{rx} - \frac{r - \alpha}{\beta} e^{\alpha x} (1 - e^{\beta x}) \right) d\mu(x) \\ &- \int_{\mathbf{R}} \chi(r) e^{rx} d\nu(x) \end{split}$$

for $r \in (a,b) \cap S(\vec{m})$, where A, B, C are real constants such that $C \ge 0$ and μ, ν are positive Radon measures such that

$$\begin{split} &\int_{0<|x|\leq 1} x^2 d\mu(x) < +\infty, \\ &\int_{|x|\geq 1} e^{rx} d\mu(x) < +\infty \quad and \quad \int_{\boldsymbol{R}} e^{rx} d\nu(x) < +\infty \end{split}$$

for $r \in (a,b) \cap S(\vec{m})$. Moreover, the quintuple (A, B, C, μ, ν) is uniquely determined by ψ, α and β .

(2) If the sequence \vec{m} contains infinitely many even numbers, then ψ has a representation of the form

$$\psi(r) = A + Br - Cr^2 + \int_{\mathbf{R} \setminus \{0\}} \left(e^{\alpha x} - e^{rx} - \frac{r - \alpha}{\beta} e^{\alpha x} (1 - e^{\beta x}) \right) d\mu(x)$$

for $r \in (a, b) \cap S(\vec{m})$, where A, B, C are real constants such that $C \ge 0$ and μ is a positive Radon measure such that

$$\int_{0 < |x| \le 1} x^2 d\mu(x) < +\infty \quad and \quad \int_{|x| \ge 1} e^{rx} d\mu(x) < +\infty$$

for $r \in (a,b) \cap S(\vec{m})$. Moreover, the quadruple (A, B, C, μ) is uniquely determined by ψ, α and β .

Proof. We prove only (1). Replacing ψ by $\psi - \psi(\alpha)$ if necessary, we may suppose that $\psi(\alpha) = 0$. By Theorem 2.1 (1) and [3, Theorem 3.2.2], we have

$$e^{-t\psi(r)} = \int_{\mathbf{R}} e^{(r-\alpha)x} d\mu_t(x) + \int_{\mathbf{R}} \chi(r) e^{(r-\alpha)x} d\nu_t(x),$$

for $r \in (a,b) \cap S(\overrightarrow{m}), \ t > 0,$

where μ_t and ν_t are finite positive Radon measures on \mathbf{R} such that $\mu_t(\mathbf{R}) + \nu_t(\mathbf{R}) = 1$. For $r \in (a, b) \cap S(\vec{m})$, we have

$$\int_{\mathbf{R}} \left(1 - e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1 - e^{\beta x}) \right) d\mu_t(x) + \int_{\mathbf{R}} \left(1 - \chi(r) e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1 - \chi(\beta) e^{\beta x}) \right) d\nu_t(x)$$

$$= 1 - e^{-t\psi(r)} - \frac{r-\alpha}{\beta} (1 - e^{-t\psi(\alpha+\beta)}),$$

 \mathbf{SO}

$$\frac{1}{t} \int_{\boldsymbol{R}} \left(1 - e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1 - e^{\beta x}) \right) d\mu_t(x) \\ + \frac{1}{t} \int_{\boldsymbol{R}} \left(1 - \chi(r)e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1 - \chi(\beta)e^{\beta x}) \right) d\nu_t(x)$$

converges to $\psi(r) - \frac{r-\alpha}{\beta}\psi(\alpha+\beta)$ as $t \to 0$. Similarly, if $r \in S(\overrightarrow{m})$ satisfies $a < \alpha + 2r < b$, we have

$$\lim_{t \to 0} \frac{1}{t} \left(\int_{\mathbf{R}} (1 - e^{rx})^2 d\mu_t(x) + \int_{\mathbf{R}} (1 - \chi(r)e^{rx})^2 d\nu_t(x) \right) = 2\psi(\alpha + r) - \psi(\alpha + 2r),$$

which implies that

$$\sup_{0 < t \le 1} \int_{\mathbf{R}} \frac{1}{t} (1 - e^{rx})^2 d\mu_t(x) \le A_r,$$

$$\sup_{0 < t \le 1} \int_{\mathbf{R}} \frac{1}{t} (1 - \chi(r)e^{rx})^2 d\nu_t(x) \le A_r$$
(2.6)

for some constant $A_r > 0$ depending on r. Fix $\beta' \in S(\vec{m}) \setminus 2S(\vec{m})$ such that $\beta < \beta'$ and $a < \alpha + 2\beta' < b$. By (2.6), there exist finite positive Radon measures σ , τ and a sequence $\{t_j\}$ which tends to 0 such that

$$\lim_{j \to \infty} \frac{1}{t_j} (1 - e^{\beta x})^2 \mu_{t_j} = \sigma,$$
(2.7)

$$\lim_{j \to \infty} \frac{1}{t_j} (1 + e^{\beta' x})^2 \nu_{t_j} = \lim_{j \to \infty} \frac{1}{t_j} (1 - \chi(\beta') e^{\beta' x})^2 \nu_{t_j} = \tau$$
(2.8)

in vague topology.

For a fixed $r \in (a, b) \cap S(\overrightarrow{m})$, choose $\delta, \gamma \in S(\overrightarrow{m}) \setminus 2S(\overrightarrow{m})$ satisfying $\delta < 0, \beta < \gamma$ and

$$a < \alpha + 2\delta < r < \alpha + 2\gamma < b.$$

Then it follows from (2.6), (2.7) and [3, Proposition 2.4.4] that

$$\lim_{j \to \infty} \frac{1}{t_j} \int_{\mathbf{R}} f(x) (1 - e^{\delta x})^2 d\mu_{t_j}(x) = \int_{\mathbf{R}} f(x) \left(\frac{1 - e^{\delta x}}{1 - e^{\beta x}}\right)^2 d\sigma(x), \quad (2.9)$$

$$\lim_{j \to \infty} \frac{1}{t_j} \int_{\mathbf{R}} f(x) (1 - e^{\gamma x})^2 d\mu_{t_j}(x) = \int_{\mathbf{R}} f(x) \left(\frac{1 - e^{\gamma x}}{1 - e^{\beta x}}\right)^2 d\sigma(x)$$
(2.10)

for every continuous function f on \boldsymbol{R} vanishing at infinity. Using (2.9) and (2.10), we have

$$\begin{split} \lim_{j \to \infty} \frac{1}{t_j} \int_{R} \left(1 - e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1-e^{\beta x}) \right) d\mu_{t_j}(x) \\ &= \lim_{j \to \infty} \frac{1}{t_j} \int_{R} \frac{1 - e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1-e^{\beta x})}{(1-e^{\beta x})^2 + (1-e^{\gamma x})^2} \Big\{ (1-e^{\delta x})^2 + (1-e^{\gamma x})^2 \Big\} d\mu_{t_j}(x) \\ &= \int_{R} \frac{1 - e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1-e^{\beta x})}{(1-e^{\beta x})^2} d\sigma(x) \\ &= \frac{(r-\alpha)(\alpha+\beta-r)}{2\beta^2} \sigma(\{0\}) \\ &+ \int_{R \setminus \{0\}} \left(e^{\alpha x} - e^{rx} - \frac{r-\alpha}{\beta} e^{\alpha x} (1-e^{\beta x}) \right) d\mu(x), \end{split}$$

where $\mu = (e^{-\alpha x}/(1-e^{\beta x})^2)\sigma|_{\mathbf{R} \setminus \{0\}}$. Similarly,

$$\frac{1}{t_j} \int_{R} \left(1 - \chi(r) e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1 - \chi(\beta) e^{\beta x}) \right) d\nu_{t_j}(x)$$
$$= \frac{1}{t_j} \int_{R} \frac{1 - \chi(r) e^{(r-\alpha)x} - \frac{r-\alpha}{\beta} (1 - \chi(\beta) e^{\beta x})}{(1 + e^{\delta x})^2 + (1 + e^{\gamma x})^2}$$
$$\times \left\{ (1 + e^{\delta x})^2 + (1 + e^{\gamma x})^2 \right\} d\nu_{t_j}(x)$$

converges to

$$\int_{\boldsymbol{R}} \frac{1 - \chi(r)e^{(r-\alpha)x} - \frac{r-\alpha}{\beta}(1 - \chi(\beta)e^{\beta x})}{(1 + e^{\beta' x})^2} d\tau(x)$$

A moment problem on rational numbers

$$= \int_{\mathbf{R}} \left(e^{\alpha x} - \chi(r)e^{rx} - \frac{r-\alpha}{\beta}e^{\alpha x}(1-\chi(\beta)e^{\beta x}) \right) d\nu(x)$$

as $j \to \infty$, where $\nu = (e^{-\alpha x}/(1+e^{\beta' x})^2)\tau$. Thus we get

$$\begin{split} \psi(r) &= \frac{r-\alpha}{\beta} \psi(\alpha+\beta) + \frac{(r-\alpha)(\alpha+\beta-r)}{2\beta^2} \sigma(\{0\}) \\ &+ \int_{\mathbf{R}\setminus\{0\}} \left(e^{\alpha x} - e^{rx} - \frac{r-\alpha}{\beta} e^{\alpha x} (1-e^{\beta x}) \right) d\mu(x) \\ &+ \int_{\mathbf{R}} \left(e^{\alpha x} - \chi(r) e^{rx} - \frac{r-\alpha}{\beta} e^{\alpha x} (1-\chi(\beta) e^{\beta x}) \right) d\nu(x) \end{split}$$

By (2.6), we have

$$\int_{\boldsymbol{R}\setminus\{0\}} \left(\frac{1-e^{rx}}{1-e^{\beta x}}\right)^2 d\sigma(x) \le A_r, \quad \int_{\boldsymbol{R}} \left(\frac{1-\chi(r)e^{rx}}{1+e^{\beta' x}}\right)^2 d\tau(x) \le A_r$$

for $r \in S(\overrightarrow{m})$ satisfying $a < \alpha + 2r < b$, and it follows that μ and ν have the asserted properties. Moreover, since we have

$$\begin{aligned} 2\psi(r+\beta) - \psi(r) - \psi(r+2\beta) &= 2C\beta^2 + \int_{\mathbf{R}\backslash\{0\}} e^{rx} (e^{\beta x} - 1)^2 d\mu(x) \\ &+ \int_{\mathbf{R}} \chi(r) e^{rx} (\chi(\beta) e^{\beta x} - 1)^2 d\nu(x) \\ &= \int_{\mathbf{R}} e^{rx} d\tilde{\mu}(x) + \int_{\mathbf{R}} \chi(r) e^{rx} d\tilde{\nu}(x) \end{aligned}$$

for $r \in (a, b - 2\beta) \cap S(\vec{m})$, where $\tilde{\mu} = 2C\beta^2\delta_0 + (e^{\beta x} - 1)^2\mu$ and $\tilde{\nu} = (\chi(\beta)e^{\beta x} - 1)^2\nu$, it follows from Theorem 2.1 that C, μ, ν, A and B are uniquely determined.

In the case of half-open intervals, we can prove the following theorem. The proof can be done in a similar way as that of Theorem 2.4.

Theorem 2.5 Let $\overrightarrow{m} = \{m_n\}_{n=1}^{\infty}$ be a sequence of integers $m_n \geq 2$ and let $a \in 2S(\overrightarrow{m}), b \in \mathbf{R} \cup \{\infty\}$ such that a < b. Let ψ be a negative definite function on $[a,b) \cap S(\overrightarrow{m})$ and let $\beta \in S(\overrightarrow{m})$ such that $a < a + 2\beta < b$.

(1) If the sequence \vec{m} contains at most finitely many even numbers, then ψ has a representation of the form

$$\begin{split} \psi(r) &= A + Br - Cr^2 - D\delta_a(r) \\ &+ \int_{\mathbf{R} \setminus \{0\}} (e^{ax} - e^{rx} - \frac{r-a}{\beta} e^{ax} (1 - e^{\beta x})) d\mu(x) \\ &- \int_{\mathbf{R}} \chi(r) e^{rx} d\nu(x) \end{split}$$

for $r \in [a,b) \cap S(\vec{m})$, where A, B, C, D are real constants such that $C, D \geq 0$ and μ, ν are positive Radon measures such that

$$\begin{aligned} \int_{0 < |x| \le 1} x^2 \, d\mu(x) < +\infty, \\ \int_{|x| \ge 1} e^{rx} d\mu(x) < +\infty \quad and \quad \int_{\mathbf{R}} e^{rx} d\nu(x) < +\infty \end{aligned}$$

for $r \in (a,b) \cap S(\vec{m})$. Moreover, the sextuple (A, B, C, D, μ, ν) is uniquely determined by ψ and β .

(2) If the sequence \vec{m} contains infinitely many even numbers, then ψ has a representation of the form

$$\psi(r) = A + Br - Cr^2 - D\delta_a(r)$$
$$+ \int_{\mathbf{R}\setminus\{0\}} \left(e^{ax} - e^{rx} - \frac{r-a}{\beta} e^{ax} (1 - e^{\beta x}) \right) d\mu(x)$$

for $r \in [a,b) \cap S(\vec{m})$, where A, B, C, D are real constants such that $C, D \geq 0$ and μ is a positive Radon measure such that

$$\int_{0 < |x| \le 1} x^2 d\mu(x) < +\infty \quad and \quad \int_{|x| \ge 1} e^{rx} d\mu(x) < +\infty$$

for $r \in (a, b) \cap S(\vec{m})$. Moreover, the quintuple (A, B, C, D, μ) is uniquely determined by ψ and β .

Remark 2.2 If we put $S(\vec{m}) = Q$ in Theorem 2.4 (2) and Theorem 2.5 (2), we obtain [2, Theorem 4, Proposition 2]. If we put $[a, b) = [0, \infty)$ and

 $\beta = 1$ in Theorem 2.5, we obtain [7, Theorem 2.4].

3. Integral representations of operator-valued functions

In this section, we consider the case of operator-valued functions. Let \mathcal{H} be a complex Hilbert space, $\langle \cdot, \cdot \rangle$ the inner product on \mathcal{H} , $B(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H} , and $B(\mathcal{H})_+$ the set of all positive operators on \mathcal{H} . A function $\varphi: I \cap S(\overline{m}) \to B(\mathcal{H})$ is said to be *positive definite* if

$$\sum_{i,j=1}^n c_i \overline{c_j} \langle \varphi(r_i+r_j)\xi,\xi\rangle \geq 0$$

for all $n \geq 1, c_1, c_2, \ldots, c_n \in \mathbb{C}, r_1, r_2, \ldots, r_n \in S(\overrightarrow{m})$ such that $2r_i \in I \cap S(\overrightarrow{m})$ for $i = 1, 2, \ldots, n$ and $\xi \in \mathcal{H}$, and of positive type if

$$\sum_{i,j=1}^{n} \langle \varphi(r_i + r_j)\xi_i, \xi_j \rangle \ge 0$$

for all $n \ge 1, r_1, r_2, \ldots, r_n \in S(\vec{m})$ such that $2r_i \in I \cap S(\vec{m})$ for $i = 1, 2, \ldots, n$ and $\xi_1, \xi_2, \ldots, \xi_n \in \mathcal{H}$.

If φ is a function of positive type, then φ is positive definite, and the converse is true if dim $\mathcal{H} = 1$. Furthermore, it is known that a positive definite function defined on a perfect *-semigroup is necessarily of positive type ([5, Theorem 3.1, Proposition 1.1]). But there exists a positive definite function defined on a semiperfect *-semigroup which is not of positive type ([4, Theorem 1], [5, Theorem 3.7]).

Let us denote by $\mathcal{B}(\mathbf{R})$ the σ -algebra of all Borel subsets of \mathbf{R} , and by $E_+(I, \mathbf{R}, \mathcal{H})$ the set of all functions $F : \mathcal{B}(\mathbf{R}) \to \mathcal{B}(\mathcal{H})_+$ satisfying $\langle F(\cdot)\xi, \xi \rangle \in E_+(I, \mathbf{R})$ for all $\xi \in \mathcal{H}$.

Theorem 3.1 Let $a, b \in \mathbf{R} \cup \{-\infty, \infty\}$ such that a < b and let $\vec{m} = \{m_n\}_{n=1}^{\infty}$ be a sequence of integers $m_n \ge 2$ which contains at most finitely many even numbers. Let $\varphi : (a, b) \cap S(\vec{m}) \to B(\mathcal{H})$ be a function on $(a, b) \cap S(\vec{m})$. Then the following conditions are mutually equivalent:

- (1) φ is of positive type;
- (2) φ is positive definite;
- (3) For any fixed $\alpha \in (a,b) \cap 2S(\vec{m})$, there exist functions $F_1, F_2 : \mathcal{B}(\mathbf{R}) \to \mathcal{B}(\mathbf{R})$

$$B(\mathcal{H})_{+} \text{ such that } e^{-\alpha x} F_{1}, e^{-\alpha x} F_{2} \in E_{+}((a, b), \mathbf{R}, \mathcal{H}) \text{ and}$$
$$\langle \varphi(r)\xi, \eta \rangle = \int_{\mathbf{R}} e^{(r-\alpha)x} d\langle F_{1}(x)\xi, \eta \rangle + \int_{\mathbf{R}} \chi(r) e^{(r-\alpha)x} d\langle F_{2}(x)\xi, \eta \rangle,$$

for $r \in (a, b) \cap S(\overrightarrow{m}), \, \xi, \eta \in \mathcal{H}.$

Moreover, the pair (F_1, F_2) is uniquely determined by φ and α .

Proof. The implication $(1) \Longrightarrow (2)$ is clear, while the implication $(3) \Longrightarrow$ (1) is proved by a similar way as the proof of [5, Proposition 1.1]. Suppose that (2) holds and fix $\alpha \in (a,b) \cap 2S(\overrightarrow{m})$. By the proof of Theorem 2.1 (1), for each $\xi \in \mathcal{H}$ there exist finite positive Radon measures μ_{ξ}, ν_{ξ} on \mathbf{R} such that

$$\langle \varphi(r)\xi,\xi\rangle = \int_{\mathbf{R}} e^{(r-\alpha)x} d\mu_{\xi}(x) + \int_{\mathbf{R}} \chi(r) e^{(r-\alpha)x} d\nu_{\xi}(x), \quad r \in (a,b) \cap S(\overrightarrow{m}).$$

For $\xi, \eta \in \mathcal{H}$, define the signed measures $\mu_{\xi,\eta}, \nu_{\xi,\eta}$ by

$$\mu_{\xi,\eta} = \frac{1}{4} \left\{ \mu_{\xi+\eta} - \mu_{\xi-\eta} + i\mu_{\xi+i\eta} - i\mu_{\xi-i\eta} \right\},\\ \nu_{\xi,\eta} = \frac{1}{4} \left\{ \nu_{\xi+\eta} - \sigma_{\xi-\eta} + i\nu_{\xi+i\eta} - i\nu_{\xi-i\eta} \right\}.$$

Then

$$\langle \varphi(r)\xi,\eta\rangle = \int_{\mathbf{R}} e^{(r-\alpha)x} d\mu_{\xi,\eta}(x) + \int_{\mathbf{R}} \chi(r) e^{(r-\alpha)x} d\nu_{\xi,\eta}(x), \quad r \in (a,b) \cap S(\overrightarrow{m}).$$

By Theorem 2.1(1), we can see that for each $B \in \mathcal{B}(\mathbf{R})$ the mappings

$$(\xi,\eta) \mapsto \mu_{\xi,\eta}(B), \quad (\xi,\eta) \mapsto \nu_{\xi,\eta}(B)$$

are sesqui-linear forms on $\mathcal{H} \times \mathcal{H}$ respectively. Furthermore, for $\xi \in \mathcal{H}$ we have

$$0 \le \mu_{\xi,\xi}(B) \le \mu_{\xi,\xi}(\mathbf{R}) \le \langle \varphi(\alpha)\xi,\xi \rangle,$$

so that $0 \leq \mu_{\xi,\xi}(B) \leq \|\varphi(\alpha)\| \|\xi\|^2$. Therefore there exists a unique operator $F_1(B) \in B(\mathcal{H})_+$ such that $\mu_{\xi,\eta}(B) = \langle F_1(B)\xi, \eta \rangle$. Similarly $\nu_{\xi,\eta}(B) =$

 $\langle F_2(B)\xi,\eta\rangle$ with $F_2(B)\in B(\mathcal{H})_+$. Then we have

$$\langle \varphi(r)\xi,\eta\rangle = \int_{\mathbf{R}} e^{(r-\alpha)x} d\langle F_1(x)\xi,\eta\rangle + \int_{\mathbf{R}} \chi(r) e^{(r-\alpha)x} d\langle F_2(x)\xi,\eta\rangle.$$

Thus the condition (3) holds.

We can obtain a result analogous to Theorem 3.1 for the case where \overrightarrow{m} contains infinitely many even numbers. We also obtain the following theorem:

Theorem 3.2 Let \overrightarrow{m} be a sequence of integers $m_n \geq 2$ which contains at most finitely many even numbers, and let $a \in 2S(\overrightarrow{m}), b \in \mathbb{R} \cup \{\infty\}$ such that a < b. Let $\varphi : [a,b) \cap S(\overrightarrow{m}) \to B(\mathcal{H})$ be a function on $[a,b) \cap S(\overrightarrow{m})$. Then the following conditions are mutually equivalent:

- (1) φ is of positive type;
- (2) φ is positive definite;
- (3) There exist a positive operator $T \in B(\mathcal{H})$ and functions $F_1, F_2 : \mathcal{B}(\mathbf{R}) \to \mathcal{B}(\mathcal{H})_+$ such that $e^{-ax}F_1, e^{-ax}F_2 \in E_+([a, b), \mathbf{R}, \mathcal{H})$ and

$$\begin{split} \langle \varphi(r)\xi,\eta\rangle &= \delta_a(r)\langle T\xi,\eta\rangle + \int_{\mathbf{R}} e^{(r-a)x} d\langle F_1(x)\xi,\eta\rangle \\ &+ \int_{\mathbf{R}} \chi(r) e^{(r-a)x} d\langle F_2(x)\xi,\eta\rangle, \end{split}$$

for $r \in [a, b) \cap S(\overrightarrow{m}), \, \xi, \eta \in \mathcal{H}.$

Moreover the triple (T, F_1, F_2) is uniquely determined by φ .

Acknowledgments The author would like to express his gratitude to the referee for valuable suggestions.

References

- Akhiezer N. I., *The Classical Moment Problem*. Oliver and Boyd, Edinburgh, 1965.
- [2] Atanasiu D., Laplace integral on rational numbers. Math. Scand. 76 (1995), 152–160.
- [3] Berg C., Christensen J. P. R. and Ressel P., Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Springer-Verlag,

New York - Berlin - Heidelberg - Tokyo, 1984.

- [4] Bisgaard T. M., Positive definite operator sequences. Proc. Amer. Math. Soc. 121 (1994), 1185–1191.
- [5] Furuta K. and Sakakibara N., Operator moment problems on abelian *semigroups. Math. Japonica 51 (2000), 433–441.
- [6] Glöckner H., Positive Definite Functions on Infinite-Dimensional Convex Cones. Mem. Amer. Math. Soc., vol. 166, Amer. Math. Soc., Providence, 2003.
- [7] Sakakibara N., The moment problem on divisible abelian semigroups. Hokkaido Math. J. 19 (1990), 45–53.
- [8] Widder D. V., Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull. Amer. Math. Soc. 40 (1934), 321–326.

Faculty of Liberal Arts and Sciences Tokyo City University Tamazutsumi, Setagaya, Tokyo 158-8557, Japan E-mail: kfuruta@tcu.ac.jp