A moment problem on rational numbers

Koji Furuta

(Received October 15, 2014; Revised February 17, 2015)

Abstract

We give integral representations of positive and negative definite functions defined on an interval in a certain subsemigroup of the semigroup of rational numbers.

Key words: moment problem, positive definite function, semigroup.

1. Introduction

It was shown by D. V. Widder [8, Thereom A] that a real-valued function $f(x)$ defined on an open interval (a, b) in \boldsymbol{R} has a form

$$
\begin{equation*}
f(x)=\int_{\boldsymbol{R}} e^{-x t} d \alpha(t), \quad a<x<b \tag{1.1}
\end{equation*}
$$

where $\alpha(t)$ is a non-decreasing function on \boldsymbol{R} if and only if $f(x)$ is continuous and positive definite. Here the function $f(x)$ is said to be positive definite on (a, b) if

$$
\sum_{i, j=1}^{n} c_{i} c_{j} f\left(x_{i}+x_{j}\right) \geq 0
$$

for every $n \geq 1$ and for every $c_{1}, c_{2}, \ldots, c_{n}, x_{1}, \ldots, x_{n} \in \boldsymbol{R}$ such that $2 x_{i} \in$ (a, b) for $i=1,2, \ldots, n$.

In this paper, we concern positive definite functions defined on a subset of the additive semigroup \boldsymbol{Q} of rational numbers. Let $\vec{m}=\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers greater than or equal to 2 , and let $S(\vec{m})$ be the subsemigroup of \boldsymbol{Q} defined by

$$
S(\vec{m})=\left\{\frac{k}{m_{1} \cdots m_{n}}: k \in \boldsymbol{Z}, n \geq 1\right\}
$$

where \boldsymbol{Z} denotes the set of all integers. For example, if $m_{n}=n+1$ for $n \geq 1$, we have $S(\vec{m})=\boldsymbol{Q}$, and if $m_{n}=2$ for $n \geq 1, S(\vec{m})$ is the set of all dyadic rational numbers.

Let I denote a finite or infinite interval in \boldsymbol{R}, and let $\varphi: I \cap S(\vec{m}) \rightarrow \boldsymbol{R}$ be a real-valued function on $I \cap S(\vec{m})$. We say φ is positive definite if

$$
\sum_{i, j=1}^{n} c_{i} c_{j} \varphi\left(r_{i}+r_{j}\right) \geq 0
$$

for all $n \geq 1, c_{1}, c_{2}, \ldots, c_{n} \in \boldsymbol{R}$ and $r_{1}, r_{2}, \ldots, r_{n} \in S(\vec{m})$ such that $2 r_{i} \in$ $I \cap S(\vec{m})$ for $i=1,2, \ldots, n$. The purpose of this paper is to show that every positive definite function on $I \cap S(\vec{m})$ has an integral representation such as (1.1) (see Section 2). The result we obtain will generalize the results of N. Sakakibara for the case $I=[0, \infty)([7$, Theorem 2.2]) and D. Atanasiu for the case $S(\vec{m})=\boldsymbol{Q}([2$, Theorem 1, Proposition 1]). In Section 3, we extend the result of Section 2 to the case where φ is a mapping of $I \cap S(\vec{m})$ into the space of bounded linear operators on a complex Hilbert space. We also give a Lévy-Khinchin type formula for negative definite functions on $I \cap S(\vec{m})$ in Section 2.

2. Integral representations of positive and negative definite functions

First we consider the case where I is an open interval. Define the function χ on $S(\vec{m})$ as follows (cf. [7]):

If the sequence $\vec{m}=\left\{m_{n}\right\}_{n=1}^{\infty}$ contains no even numbers, put

$$
\chi\left(\frac{k}{m_{1} \cdots m_{n}}\right)=(-1)^{k}, \quad \frac{k}{m_{1} \cdots m_{n}} \in S(\vec{m})
$$

If \vec{m} contains only finitely many even numbers, we may suppose that m_{1}, \ldots, m_{p} are even and $m_{q}(q>p)$ are odd. Then we put

$$
\chi\left(\frac{k}{m_{1} \cdots m_{p} m_{p+1} \cdots m_{n}}\right)=(-1)^{k}, \quad \frac{k}{m_{1} \cdots m_{p} m_{p+1} \cdots m_{n}} \in S(\vec{m})
$$

It is clear that χ is well-defined and multiplicative, i.e.

$$
\chi\left(r_{1}+r_{2}\right)=\chi\left(r_{1}\right) \chi\left(r_{2}\right), \quad r_{1}, r_{2} \in S(\vec{m})
$$

In fact, the functions $r \in S(\vec{m}) \mapsto e^{r x}$ and $r \in S(\vec{m}) \mapsto \chi(r) e^{r x}$, where $x \in \boldsymbol{R}$, are the semicharacters of $S(\vec{m})$ [7].

Throughout the paper, $E_{+}(I, A)$ denotes the set of all positive Radon measures μ on A, where A is an open or closed subset of \boldsymbol{R}, such that the function $x \mapsto e^{r x}$ is μ-integrable for all $r \in I$.

Theorem 2.1 Let $a, b \in \boldsymbol{R} \cup\{-\infty, \infty\}$ such that $a<b$ and let $\vec{m}=$ $\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers $m_{n} \geq 2$. Let φ be a positive definite function on $(a, b) \cap S(\vec{m})$.
(1) If the sequence \vec{m} contains at most finitely many even numbers, then there exist positive Radon measures $\mu, \nu \in E_{+}((a, b), \boldsymbol{R})$ such that

$$
\varphi(r)=\int_{\boldsymbol{R}} e^{r x} d \mu(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu(x), \quad r \in(a, b) \cap S(\vec{m})
$$

Moreover, the pair (μ, ν) is uniquely determined by φ.
(2) If the sequence \vec{m} contains infinitely many even numbers, then there exists a uniquely determined measure $\mu \in E_{+}((a, b), \boldsymbol{R})$ such that

$$
\varphi(r)=\int_{\boldsymbol{R}} e^{r x} d \mu(x), \quad r \in(a, b) \cap S(\vec{m})
$$

Proof. (1) Fix $\alpha, \beta \in 2 S(\vec{m})=\{2 r: r \in S(\vec{m})\}$ which satisfy $a<\alpha<$ $\beta<b$. Using the above notation, we may put $\alpha=d_{0}\left(m_{1} \cdots m_{q}\right)^{-1}, \beta=$ $d_{1}\left(m_{1} \cdots m_{q}\right)^{-1}$ where d_{0} and d_{1} are even numbers and $q>p$. For a fixed integer $n \geq 1$, put $M_{n}=\left(d_{1}-d_{0}\right) m_{q+1} \cdots m_{q+n}$ and $L_{n}=m_{1} \cdots m_{q+n}$, and define the sequence $\left\{s_{k}\right\}_{k=0}^{M_{n}}$ by $s_{k}=\varphi\left(\alpha+k / L_{n}\right), k=0,1, \ldots, M_{n}$. Then for $c_{i} \in \boldsymbol{R}, i=0,1, \ldots, M_{n} / 2$, we have

$$
\sum_{i, j=0}^{M_{n} / 2} c_{i} c_{j} s_{i+j}=\sum_{i, j=0}^{M_{n} / 2} c_{i} c_{j} \varphi\left(\left(\frac{\alpha}{2}+\frac{i}{L_{n}}\right)+\left(\frac{\alpha}{2}+\frac{j}{L_{n}}\right)\right) \geq 0
$$

because of the positive definiteness of φ. By [1, Theorem 2.6.3], there exists a finite positive Radon measure τ_{n} on \boldsymbol{R} such that

$$
\varphi\left(\alpha+\frac{k}{L_{n}}\right)=\int_{\boldsymbol{R}} t^{k} d \tau_{n}(t), \quad k=0,1, \ldots, M_{n}-1
$$

and $\varphi\left(\alpha+k / L_{n}\right)=\varphi(\beta) \geq \int_{\boldsymbol{R}} t^{k} d \tau_{n}(t)$ for $k=M_{n}$. Define the mappings f_{n} and g_{n} on $\underline{\boldsymbol{R}}=\boldsymbol{R} \cup\{-\infty\}$ by

$$
\begin{array}{ll}
f_{n}: \underline{\boldsymbol{R}} \rightarrow[0, \infty) ; & f_{n}(x)=\exp \frac{x}{L_{n}} \\
g_{n}: \underline{\boldsymbol{R}} \rightarrow(-\infty, 0] ; & g_{n}(x)=-\exp \frac{x}{L_{n}},
\end{array}
$$

and let μ_{n}, ν_{n} be positive Radon measures on $\underline{\boldsymbol{R}}$ which satisfy

$$
\mu_{n} \circ f_{n}^{-1}=\left.\tau_{n}\right|_{[0, \infty)}, \quad \nu_{n} \circ g_{n}^{-1}=\left.\tau_{n}\right|_{(-\infty, 0]}
$$

respectively. Then we have

$$
\varphi\left(\alpha+\frac{k}{L_{n}}\right)=\int_{\underline{\boldsymbol{R}}} \exp \frac{k x}{L_{n}} d \mu_{n}(x)+\int_{\underline{\boldsymbol{R}}}(-1)^{k} \exp \frac{k x}{L_{n}} d \nu_{n}(x) .
$$

Since $\mu_{n}(\underline{\boldsymbol{R}})+\nu_{n}(\underline{\boldsymbol{R}})=\varphi(\alpha)<+\infty$ for all $n \geq 1$, there exist subsequences $\left\{\mu_{n_{i}}\right\}_{i=1}^{\infty}$ and $\left\{\nu_{n_{i}}\right\}_{i=1}^{\infty}$ which converge vaguely to positive measures μ_{0} and ν_{0} respectively (see [2, Proposition 2.4.6, 2.4.10]). Put $s=k / L_{n}$ for $k=0,1, \ldots, M_{n}-1$. If $n_{i}>n$, we have

$$
\begin{align*}
\varphi(\alpha+s) & =\varphi\left(\alpha+\frac{k m_{q+n+1} \cdots m_{q+n_{i}}}{m_{1} \cdots m_{q+n_{i}}}\right) \tag{2.1}\\
& =\int_{\underline{\boldsymbol{R}}} e^{s x} d \mu_{n_{i}}(x)+\int_{\underline{\boldsymbol{R}}} \chi(s) e^{s x} d \nu_{n_{i}}(x) \tag{2.2}
\end{align*}
$$

Using that for each nonnegative continuous function f on a locally compact space the integral $\int f d \mu$ is lower semicontinuous in μ with respect to the vague topology, we find that for $s=k / L_{n}, k=0,1, \ldots, M_{n} / 2$,

$$
\int_{\underline{\boldsymbol{R}}} e^{2 s x} d \mu_{0}(x) \leq \varphi(\alpha+2 s), \quad \int_{\underline{\boldsymbol{R}}} e^{2 s x} d \nu_{0}(x) \leq \varphi(\alpha+2 s) .
$$

Since $e^{s x} \leq\left(1+e^{2 s x}\right) / 2$, it follows that the function $e^{s x}$ is $\mu_{0^{-}}$(and $\nu_{0^{-}}$) integrable for $s=k / L_{n}, k=0,1, \ldots, M_{n}-1$. Define the function $h(x)$ by
$h(x)=1+e^{2(s+1) x}$. Then the sequence $\left\{h \mu_{n_{i}}\right\}_{i=1}^{\infty}$ converges to $h \mu_{0}$ vaguely and

$$
\sup _{i \geq 1} \int_{\underline{\boldsymbol{R}}} h(x) d \mu_{n_{i}}(x) \leq \varphi(\alpha)+\varphi(\alpha+2(s+1)) .
$$

Therefore, since $e^{s x} / h(x)$ is a continuous function on $\underline{\boldsymbol{R}}$ vanishing at infinity, we have

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \int_{\underline{\boldsymbol{R}}} e^{s x} d \mu_{n_{i}}(x) & =\lim _{i \rightarrow \infty} \int_{\underline{\boldsymbol{R}}} \frac{e^{s x}}{h(x)} h(x) d \mu_{n_{i}}(x) \\
& =\int_{\underline{\boldsymbol{R}}} \frac{e^{s x}}{h(x)} h(x) d \mu_{0}(x) \\
& =\int_{\underline{\boldsymbol{R}}} e^{s x} d \mu_{0}(x)
\end{aligned}
$$

and similarly

$$
\lim _{i \rightarrow \infty} \int_{\underline{\boldsymbol{R}}} e^{s x} d \nu_{n_{i}}(x)=\int_{\underline{\boldsymbol{R}}} e^{s x} d \nu_{0}(x)
$$

Thus by (2.2) we have

$$
\varphi(\alpha+s)=\int_{\underline{\boldsymbol{R}}} e^{s x} d \mu_{0}(x)+\int_{\underline{\boldsymbol{R}}} \chi(s) e^{s x} d \sigma_{0}(x),
$$

for $s=k / L_{n}, k=0,1, \ldots, M_{n}-1$. Since this equality holds for every $n \geq 1$, putting $r=\alpha+s$ we see that

$$
\begin{gathered}
\varphi(r)=\int_{\boldsymbol{R}} e^{r x} e^{-\alpha x} d\left(\left.\mu_{0}\right|_{\boldsymbol{R}}\right)(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} e^{-\alpha x} d\left(\left.\nu_{0}\right|_{\boldsymbol{R}}\right)(x), \\
r \in(\alpha, \beta) \cap S(\vec{m}) .
\end{gathered}
$$

Consequently

$$
\begin{equation*}
\varphi(r)=\int_{\boldsymbol{R}} e^{r x} d \mu(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu(x), \quad r \in(\alpha, \beta) \cap S(\vec{m}) \tag{2.3}
\end{equation*}
$$

where $d \mu(x)=e^{-\alpha x} d\left(\left.\mu_{0}\right|_{\boldsymbol{R}}\right)(x)$ and $d \nu(x)=e^{-\alpha x} d\left(\left.\nu_{0}\right|_{\boldsymbol{R}}\right)(x)$.
We now prove the uniqueness of μ and ν. Suppose that

$$
\int_{\boldsymbol{R}} e^{r x} d \mu(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu(x)=\int_{\boldsymbol{R}} e^{r x} d \mu^{\prime}(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu^{\prime}(x)
$$

for $r \in(\alpha, \beta) \cap S(\vec{m})$. If $r \in(\alpha, \beta) \cap 2 S(\vec{m})$, we have

$$
\int_{\boldsymbol{R}} e^{r x} d\left(\mu+\nu-\mu^{\prime}-\nu^{\prime}\right)(x)=0 .
$$

Define the holomorphic function $\Phi(z)$ on the strip $\alpha<\operatorname{Re} z<\beta$ in the complex plane by

$$
\Phi(z)=\int_{\boldsymbol{R}} e^{z x} d\left(\mu+\nu-\mu^{\prime}-\nu^{\prime}\right)(x)
$$

Then the identity theorem ensures that $\Phi(z) \equiv 0$ for $\alpha<\operatorname{Re} z<\beta$ because the set $(\alpha, \beta) \cap 2 S(\vec{m})$ is dense in the interval (α, β). Since for fixed $\alpha<$ $\gamma<\beta$, the function $y \in \boldsymbol{R} \mapsto \Phi(\gamma+i y)$ is the Fourier transform of $e^{\gamma}(\mu+$ $\left.\nu-\mu^{\prime}-\nu^{\prime}\right)$, it follows that $\mu+\nu-\mu^{\prime}-\nu^{\prime}=0$. Using a similar argument for the equality

$$
\int_{\boldsymbol{R}} e^{r x} d\left(\mu-\nu-\mu^{\prime}+\nu^{\prime}\right)(x)=0, \quad r \in(\alpha, \beta) \cap(S(\vec{m}) \backslash 2 S(\vec{m}))
$$

we have $\mu-\nu-\mu^{\prime}+\nu^{\prime}=0$. Consequently $\mu=\mu^{\prime}$ and $\nu=\nu^{\prime}$. Since α and β are arbitrary, we conclude that (2.3) is valid not only for $r \in(\alpha, \beta) \cap S(\vec{m})$ but also for $r \in(a, b) \cap S(\vec{m})$, and that the pair (μ, ν) is uniquely determined.
(2) Suppose that $\vec{m}=\left\{m_{n}\right\}_{n=1}^{\infty}$ contains infinitely many even numbers. In this case, we have $2 S(\vec{m})=S(\vec{m})$. Fix $\alpha, \beta \in S(\vec{m})$ which satisfy $a<\alpha<\beta<b$, and put $\alpha=d_{0}\left(m_{1} \cdots m_{p_{0}}\right)^{-1}, \beta=d_{1}\left(m_{1} \cdots m_{p_{0}}\right)^{-1}$, where d_{0}, d_{1} are even. For fixed $n \geq 1$, put $M_{n}=\left(d_{1}-d_{0}\right) m_{p_{0}+1} \cdots m_{p_{0}+n}$ and $L_{n}=m_{1} \cdots m_{p_{0}+n}$. Then the sequence $\left\{s_{k}\right\}_{k=0}^{M_{n}}$ defined by $s_{k}=\varphi(\alpha+$ $\left.k / L_{n}\right), k=0,1, \ldots, M_{n}$, is a truncated Stieltjes moment sequence. To see this, pick a sufficiently large number n_{0} such that $m_{p_{0}+n_{0}}$ is even. Then for $c_{i} \in \boldsymbol{R}, i=0,1, \ldots, M_{n} / 2$, we have

$$
\sum_{i, j=0}^{M_{n} / 2} c_{i} c_{j} s_{i+j}=\sum_{i, j=0}^{M_{n} / 2} c_{i} c_{j} \varphi\left(\alpha+\frac{i+j}{L_{n}}\right) \geq 0
$$

and

$$
\begin{aligned}
& \sum_{i, j=0}^{M_{n} / 2-1} c_{i} c_{j} s_{i+j+1} \\
& \quad=\sum_{i, j=0}^{M_{n} / 2-1} c_{i} c_{j} \varphi\left(\alpha+\frac{i+j}{L_{n}}+2 \frac{m_{p_{0}+n+1} \cdots m_{p_{0}+n_{0}-1} \cdot \frac{m_{p_{0}+n_{0}}}{2}}{m_{1} \cdots m_{p_{0}+n_{0}}}\right) \geq 0
\end{aligned}
$$

Therefore there exists a finite positive Radon measure τ_{n} on $[0, \infty)$ such that

$$
\varphi\left(\alpha+\frac{k}{L_{n}}\right)=\int_{0}^{\infty} t^{k} d \tau_{n}(t), \quad k=0,1, \ldots, M_{n}-1
$$

By an argument similar to that in the proof of (1), we find a unique measure $\mu \in E_{+}((a, b), \boldsymbol{R})$ such that

$$
\varphi(r)=\int_{\boldsymbol{R}} e^{r x} d \mu(x), \quad r \in(a, b) \cap S(\vec{m})
$$

Thus the proof is complete.
For $\alpha \in S(\vec{m})$, let E_{α} denote the shift operator on $\boldsymbol{R}^{S(\vec{m})}$ defined by $E_{\alpha} \varphi(r)=\varphi(\alpha+r), \varphi \in \boldsymbol{R}^{S(\vec{m})}, r \in S(\vec{m})$. In [3, Theorem 7.1.10], it is shown that a bounded function φ on a commutative semigroup S is completely monotone if and only if φ is completely positive definite on S. The following theorem gives an analogous result, which is a generalization of $[2$, Theorem 3].

Theorem 2.2 Let $a \in \boldsymbol{R}$ and let $\vec{m}=\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers $m_{n} \geq 2$. For a function $\varphi:(a, \infty) \cap S(\vec{m}) \rightarrow \boldsymbol{R}$, the following conditions are mutually equivalent:
(1) For any natural number p and for any $\alpha_{1}, \ldots, \alpha_{p} \in(0, \infty) \cap S(\vec{m})$,

$$
\left(E_{0}-E_{\alpha_{1}}\right) \cdots\left(E_{0}-E_{\alpha_{p}}\right) \varphi(r) \geq 0
$$

holds for $r \in(a, \infty) \cap S(\vec{m})$;
(2) For any $\alpha \in(0, \infty) \cap S(\vec{m})$, the functions $E_{\alpha} \varphi(r)$ and $\left(E_{0}-E_{\alpha}\right) \varphi(r)$ are both positive definite on $(a, \infty) \cap S(\vec{m})$;
(3) There exists a measure $\mu \in E_{+}((-\infty,-a),[0, \infty))$ such that

$$
\varphi(r)=\int_{0}^{\infty} e^{-r x} d \mu(x), \quad r \in(a, \infty) \cap S(\vec{m})
$$

Proof. The proof is similar to that of [2, Theorem 3] and omitted. For the implication $(2) \Longrightarrow(3)$, see also [3, Lemma 7.3.8].

Next we consider the case where $I=[a, b)$ is a half-open interval. Let $\delta_{a}(r)$ denote the function on $I \cap S(\vec{m})$ defined by $\delta_{a}(a)=1$ and $\delta_{a}(r)=0$ for $r \neq a$.

Theorem 2.3 Let $a \in 2 S(\vec{m}), b \in \boldsymbol{R} \cup\{\infty\}$ such that $a<b$ and let $\vec{m}=\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers $m_{n} \geq 2$. Let φ be a positive definite function on $[a, b) \cap S(\vec{m})$.
(1) If the sequence \vec{m} contains at most finitely many even numbers, then there exist a nonnegative constant ω and $\mu, \nu \in E_{+}([a, b), \boldsymbol{R})$ such that

$$
\begin{gather*}
\varphi(r)=\omega \delta_{a}(r)+\int_{\boldsymbol{R}} e^{r x} d \mu(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu(x), \\
r \in[a, b) \cap S(\vec{m}) \tag{2.4}
\end{gather*}
$$

Moreover the triple (ω, μ, ν) is uniquely determined by φ.
(2) If the sequence \vec{m} contains infinitely many even numbers, then there exist a nonnegative constant ω and $\mu \in E_{+}([a, b), \boldsymbol{R})$ such that

$$
\begin{equation*}
\varphi(r)=\omega \delta_{a}(r)+\int_{\boldsymbol{R}} e^{r x} d \mu(x), \quad r \in[a, b) \cap S(\vec{m}) \tag{2.5}
\end{equation*}
$$

The pair (ω, μ) is uniquely determined by φ.
Proof. (1) Since $a \in 2 S(\vec{m})$, putting $\alpha=a$ in the proof of Theorem 2.1 (1), we have

$$
\varphi(r)=\omega \delta_{a}(r)+\int_{\boldsymbol{R}} e^{r x} d \mu(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu(x), \quad r \in[a, \beta) \cap S(\vec{m})
$$

where $\omega=\mu_{0}(\{-\infty\})+\nu_{0}(\{-\infty\}) \geq 0$. Then the same argument as in the proof of Theorem 2.1 (1) shows (2.4) and the uniqueness of μ and ν. The uniqueness of ω follows from the equality

$$
\lim _{r \downarrow a, r \in 2 S(\vec{m})} \varphi(r)=\int_{\boldsymbol{R}} e^{a x} d \mu(x)+\int_{\boldsymbol{R}} e^{a x} d \nu(x)=\varphi(a)-\omega .
$$

The assertion (2) is proved analogously.
Remark 2.1 If we put $S(\vec{m})=\boldsymbol{Q}$ in Theorem 2.1(2) and Thoerem 2.2(2), we obtain $[2$, Theorem 1, Proposition 1]. If we put $[a, b)=[0, \infty)$ in Theorem 2.2, we obtain [7, Theorem 2.2].

A real-valued function ψ on $I \cap S(\vec{m})$ is said to be negative definite if

$$
\sum_{i, j=1}^{n} c_{i} c_{j} \psi\left(r_{i}+r_{j}\right) \leq 0
$$

for all $n \geq 2, c_{1}, c_{2}, \ldots, c_{n} \in \boldsymbol{R}$ such that $\sum_{i=1}^{n} c_{i}=0$ and $r_{1}, \ldots, r_{n} \in S(\vec{m})$ such that $2 r_{i} \in I \cap S(\vec{m})$ for $i=1,2, \ldots, n$. Using Theroem 2.1 and Theorem 2.2, we can obtain an integral representation of negative definite functions on $I \cap S(\vec{m})$.

Theorem 2.4 Let $a, b \in \boldsymbol{R} \cup\{-\infty, \infty\}$ such that $a<b$ and let $\vec{m}=$ $\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers $m_{n} \geq 2$. Let ψ be a negative definite function on $(a, b) \cap S(\vec{m})$. Let $\alpha \in 2 S(\vec{m})$ such that $a<\alpha<b$ and let $\beta \in S(\vec{m})$ such that $\beta>0$ and $a<\alpha+2 \beta<b$.
(1) If the sequence \vec{m} contains at most finitely many even numbers, then ψ has a representation of the form

$$
\begin{aligned}
\psi(r)= & A+B r-C r^{2}+\int_{\boldsymbol{R} \backslash\{0\}}\left(e^{\alpha x}-e^{r x}-\frac{r-\alpha}{\beta} e^{\alpha x}\left(1-e^{\beta x}\right)\right) d \mu(x) \\
& -\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu(x)
\end{aligned}
$$

for $r \in(a, b) \cap S(\vec{m})$, where A, B, C are real constants such that $C \geq 0$ and μ, ν are positive Radon measures such that

$$
\begin{aligned}
& \int_{0<|x| \leq 1} x^{2} d \mu(x)<+\infty \\
& \int_{|x| \geq 1} e^{r x} d \mu(x)<+\infty \text { and } \int_{\boldsymbol{R}} e^{r x} d \nu(x)<+\infty
\end{aligned}
$$

for $r \in(a, b) \cap S(\vec{m})$. Moreover, the quintuple (A, B, C, μ, ν) is uniquely determined by ψ, α and β.
(2) If the sequence \vec{m} contains infinitely many even numbers, then ψ has a representation of the form

$$
\psi(r)=A+B r-C r^{2}+\int_{\boldsymbol{R} \backslash\{0\}}\left(e^{\alpha x}-e^{r x}-\frac{r-\alpha}{\beta} e^{\alpha x}\left(1-e^{\beta x}\right)\right) d \mu(x)
$$

for $r \in(a, b) \cap S(\vec{m})$, where A, B, C are real constants such that $C \geq 0$ and μ is a positive Radon measure such that

$$
\int_{0<|x| \leq 1} x^{2} d \mu(x)<+\infty \quad \text { and } \quad \int_{|x| \geq 1} e^{r x} d \mu(x)<+\infty
$$

for $r \in(a, b) \cap S(\vec{m})$. Moreover, the quadruple (A, B, C, μ) is uniquely determined by ψ, α and β.

Proof. We prove only (1). Replacing ψ by $\psi-\psi(\alpha)$ if necessary, we may suppose that $\psi(\alpha)=0$. By Theorem 2.1 (1) and [3, Theorem 3.2.2], we have

$$
\begin{gathered}
e^{-t \psi(r)}=\int_{\boldsymbol{R}} e^{(r-\alpha) x} d \mu_{t}(x)+\int_{\boldsymbol{R}} \chi(r) e^{(r-\alpha) x} d \nu_{t}(x), \\
\text { for } r \in(a, b) \cap S(\vec{m}), t>0,
\end{gathered}
$$

where μ_{t} and ν_{t} are finite positive Radon measures on \boldsymbol{R} such that $\mu_{t}(\boldsymbol{R})+$ $\nu_{t}(\boldsymbol{R})=1$. For $r \in(a, b) \cap S(\vec{m})$, we have

$$
\begin{aligned}
\int_{\boldsymbol{R}} & \left(1-e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-e^{\beta x}\right)\right) d \mu_{t}(x) \\
& \quad+\int_{\boldsymbol{R}}\left(1-\chi(r) e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-\chi(\beta) e^{\beta x}\right)\right) d \nu_{t}(x)
\end{aligned}
$$

$$
=1-e^{-t \psi(r)}-\frac{r-\alpha}{\beta}\left(1-e^{-t \psi(\alpha+\beta)}\right)
$$

So

$$
\begin{aligned}
& \frac{1}{t} \int_{\boldsymbol{R}}\left(1-e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-e^{\beta x}\right)\right) d \mu_{t}(x) \\
& \quad+\frac{1}{t} \int_{\boldsymbol{R}}\left(1-\chi(r) e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-\chi(\beta) e^{\beta x}\right)\right) d \nu_{t}(x)
\end{aligned}
$$

converges to $\psi(r)-\frac{r-\alpha}{\beta} \psi(\alpha+\beta)$ as $t \rightarrow 0$. Similarly, if $r \in S(\vec{m})$ satisfies $a<\alpha+2 r<b$, we have
$\lim _{t \rightarrow 0} \frac{1}{t}\left(\int_{\boldsymbol{R}}\left(1-e^{r x}\right)^{2} d \mu_{t}(x)+\int_{\boldsymbol{R}}\left(1-\chi(r) e^{r x}\right)^{2} d \nu_{t}(x)\right)=2 \psi(\alpha+r)-\psi(\alpha+2 r)$,
which implies that

$$
\begin{array}{r}
\sup _{0<t \leq 1} \int_{\boldsymbol{R}} \frac{1}{t}\left(1-e^{r x}\right)^{2} d \mu_{t}(x) \leq A_{r} \\
\sup _{0<t \leq 1} \int_{\boldsymbol{R}} \frac{1}{t}\left(1-\chi(r) e^{r x}\right)^{2} d \nu_{t}(x) \leq A_{r} \tag{2.6}
\end{array}
$$

for some constant $A_{r}>0$ depending on r. Fix $\beta^{\prime} \in S(\vec{m}) \backslash 2 S(\vec{m})$ such that $\beta<\beta^{\prime}$ and $a<\alpha+2 \beta^{\prime}<b$. By (2.6), there exist finite positive Radon measures σ, τ and a sequence $\left\{t_{j}\right\}$ which tends to 0 such that

$$
\begin{align*}
& \lim _{j \rightarrow \infty} \frac{1}{t_{j}}\left(1-e^{\beta x}\right)^{2} \mu_{t_{j}}=\sigma \tag{2.7}\\
& \lim _{j \rightarrow \infty} \frac{1}{t_{j}}\left(1+e^{\beta^{\prime} x}\right)^{2} \nu_{t_{j}}=\lim _{j \rightarrow \infty} \frac{1}{t_{j}}\left(1-\chi\left(\beta^{\prime}\right) e^{\beta^{\prime} x}\right)^{2} \nu_{t_{j}}=\tau \tag{2.8}
\end{align*}
$$

in vague topology.
For a fixed $r \in(a, b) \cap S(\vec{m})$, choose $\delta, \gamma \in S(\vec{m}) \backslash 2 S(\vec{m})$ satisfying $\delta<0, \beta<\gamma$ and

$$
a<\alpha+2 \delta<r<\alpha+2 \gamma<b
$$

Then it follows from (2.6), (2.7) and [3, Proposition 2.4.4] that

$$
\begin{align*}
& \lim _{j \rightarrow \infty} \frac{1}{t_{j}} \int_{\boldsymbol{R}} f(x)\left(1-e^{\delta x}\right)^{2} d \mu_{t_{j}}(x)=\int_{\boldsymbol{R}} f(x)\left(\frac{1-e^{\delta x}}{1-e^{\beta x}}\right)^{2} d \sigma(x), \tag{2.9}\\
& \lim _{j \rightarrow \infty} \frac{1}{t_{j}} \int_{\boldsymbol{R}} f(x)\left(1-e^{\gamma x}\right)^{2} d \mu_{t_{j}}(x)=\int_{\boldsymbol{R}} f(x)\left(\frac{1-e^{\gamma x}}{1-e^{\beta x}}\right)^{2} d \sigma(x) \tag{2.10}
\end{align*}
$$

for every continuous function f on \boldsymbol{R} vanishing at infinity. Using (2.9) and (2.10), we have

$$
\begin{aligned}
\lim _{j \rightarrow \infty} & \frac{1}{t_{j}} \int_{\boldsymbol{R}}\left(1-e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-e^{\beta x}\right)\right) d \mu_{t_{j}}(x) \\
= & \lim _{j \rightarrow \infty} \frac{1}{t_{j}} \int_{\boldsymbol{R}} \frac{1-e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-e^{\beta x}\right)}{\left(1-e^{\delta x}\right)^{2}+\left(1-e^{\gamma x}\right)^{2}}\left\{\left(1-e^{\delta x}\right)^{2}+\left(1-e^{\gamma x}\right)^{2}\right\} d \mu_{t_{j}}(x) \\
= & \int_{\boldsymbol{R}} \frac{1-e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-e^{\beta x}\right)}{\left(1-e^{\beta x}\right)^{2}} d \sigma(x) \\
= & \frac{(r-\alpha)(\alpha+\beta-r)}{2 \beta^{2}} \sigma(\{0\}) \\
& +\int_{\boldsymbol{R} \backslash\{0\}}\left(e^{\alpha x}-e^{r x}-\frac{r-\alpha}{\beta} e^{\alpha x}\left(1-e^{\beta x}\right)\right) d \mu(x),
\end{aligned}
$$

where $\mu=\left.\left(e^{-\alpha x} /\left(1-e^{\beta x}\right)^{2}\right) \sigma\right|_{\boldsymbol{R} \backslash\{0\}}$. Similarly,

$$
\begin{aligned}
& \frac{1}{t_{j}} \int_{\boldsymbol{R}}\left(1-\chi(r) e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-\chi(\beta) e^{\beta x}\right)\right) d \nu_{t_{j}}(x) \\
& =\frac{1}{t_{j}} \int_{\boldsymbol{R}} \frac{1-\chi(r) e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-\chi(\beta) e^{\beta x}\right)}{\left(1+e^{\delta x}\right)^{2}+\left(1+e^{\gamma x}\right)^{2}} \\
& \quad \times\left\{\left(1+e^{\delta x}\right)^{2}+\left(1+e^{\gamma x}\right)^{2}\right\} d \nu_{t_{j}}(x)
\end{aligned}
$$

converges to

$$
\int_{\boldsymbol{R}} \frac{1-\chi(r) e^{(r-\alpha) x}-\frac{r-\alpha}{\beta}\left(1-\chi(\beta) e^{\beta x}\right)}{\left(1+e^{\beta^{\prime} x}\right)^{2}} d \tau(x)
$$

$$
=\int_{\boldsymbol{R}}\left(e^{\alpha x}-\chi(r) e^{r x}-\frac{r-\alpha}{\beta} e^{\alpha x}\left(1-\chi(\beta) e^{\beta x}\right)\right) d \nu(x)
$$

as $j \rightarrow \infty$, where $\nu=\left(e^{-\alpha x} /\left(1+e^{\beta^{\prime} x}\right)^{2}\right) \tau$. Thus we get

$$
\begin{aligned}
\psi(r)= & \frac{r-\alpha}{\beta} \psi(\alpha+\beta)+\frac{(r-\alpha)(\alpha+\beta-r)}{2 \beta^{2}} \sigma(\{0\}) \\
& +\int_{\boldsymbol{R} \backslash\{0\}}\left(e^{\alpha x}-e^{r x}-\frac{r-\alpha}{\beta} e^{\alpha x}\left(1-e^{\beta x}\right)\right) d \mu(x) \\
& +\int_{\boldsymbol{R}}\left(e^{\alpha x}-\chi(r) e^{r x}-\frac{r-\alpha}{\beta} e^{\alpha x}\left(1-\chi(\beta) e^{\beta x}\right)\right) d \nu(x) .
\end{aligned}
$$

By (2.6), we have

$$
\int_{\boldsymbol{R} \backslash\{0\}}\left(\frac{1-e^{r x}}{1-e^{\beta x}}\right)^{2} d \sigma(x) \leq A_{r}, \quad \int_{\boldsymbol{R}}\left(\frac{1-\chi(r) e^{r x}}{1+e^{\beta^{\prime} x}}\right)^{2} d \tau(x) \leq A_{r}
$$

for $r \in S(\vec{m})$ satisfying $a<\alpha+2 r<b$, and it follows that μ and ν have the asserted properties. Moreover, since we have

$$
\begin{aligned}
2 \psi(r+\beta)-\psi(r)-\psi(r+2 \beta)= & 2 C \beta^{2}+\int_{\boldsymbol{R} \backslash\{0\}} e^{r x}\left(e^{\beta x}-1\right)^{2} d \mu(x) \\
& +\int_{\boldsymbol{R}} \chi(r) e^{r x}\left(\chi(\beta) e^{\beta x}-1\right)^{2} d \nu(x) \\
= & \int_{\boldsymbol{R}} e^{r x} d \tilde{\mu}(x)+\int_{\boldsymbol{R}} \chi(r) e^{r x} d \tilde{\nu}(x)
\end{aligned}
$$

for $r \in(a, b-2 \beta) \cap S(\vec{m})$, where $\tilde{\mu}=2 C \beta^{2} \delta_{0}+\left(e^{\beta x}-1\right)^{2} \mu$ and $\tilde{\nu}=$ $\left(\chi(\beta) e^{\beta x}-1\right)^{2} \nu$, it follows from Theorem 2.1 that C, μ, ν, A and B are uniquely determined.

In the case of half-open intervals, we can prove the following theorem. The proof can be done in a similar way as that of Theorem 2.4.

Theorem 2.5 Let $\vec{m}=\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers $m_{n} \geq 2$ and let $a \in 2 S(\vec{m}), b \in \boldsymbol{R} \cup\{\infty\}$ such that $a<b$. Let ψ be a negative definite function on $[a, b) \cap S(\vec{m})$ and let $\beta \in S(\vec{m})$ such that $a<a+2 \beta<b$.
(1) If the sequence \vec{m} contains at most finitely many even numbers, then ψ has a representation of the form

$$
\begin{aligned}
\psi(r)= & A+B r-C r^{2}-D \delta_{a}(r) \\
& +\int_{\boldsymbol{R} \backslash\{0\}}\left(e^{a x}-e^{r x}-\frac{r-a}{\beta} e^{a x}\left(1-e^{\beta x}\right)\right) d \mu(x) \\
& -\int_{\boldsymbol{R}} \chi(r) e^{r x} d \nu(x)
\end{aligned}
$$

for $r \in[a, b) \cap S(\vec{m})$, where A, B, C, D are real constants such that $C, D \geq 0$ and μ, ν are positive Radon measures such that

$$
\begin{aligned}
& \int_{0<|x| \leq 1} x^{2} d \mu(x)<+\infty \\
& \qquad \int_{|x| \geq 1} e^{r x} d \mu(x)<+\infty \text { and } \int_{\boldsymbol{R}} e^{r x} d \nu(x)<+\infty
\end{aligned}
$$

for $r \in(a, b) \cap S(\vec{m})$. Moreover, the sextuple (A, B, C, D, μ, ν) is uniquely determined by ψ and β.
(2) If the sequence \vec{m} contains infinitely many even numbers, then ψ has a representation of the form

$$
\begin{aligned}
\psi(r)= & A+B r-C r^{2}-D \delta_{a}(r) \\
& +\int_{\boldsymbol{R} \backslash\{0\}}\left(e^{a x}-e^{r x}-\frac{r-a}{\beta} e^{a x}\left(1-e^{\beta x}\right)\right) d \mu(x)
\end{aligned}
$$

for $r \in[a, b) \cap S(\vec{m})$, where A, B, C, D are real constants such that $C, D \geq 0$ and μ is a positive Radon measure such that

$$
\int_{0<|x| \leq 1} x^{2} d \mu(x)<+\infty \quad \text { and } \quad \int_{|x| \geq 1} e^{r x} d \mu(x)<+\infty
$$

for $r \in(a, b) \cap S(\vec{m})$. Moreover, the quintuple (A, B, C, D, μ) is uniquely determined by ψ and β.

Remark 2.2 If we put $S(\vec{m})=\boldsymbol{Q}$ in Theorem 2.4 (2) and Thoerem 2.5 (2), we obtain [2, Theorem 4, Proposition 2]. If we put $[a, b)=[0, \infty)$ and
$\beta=1$ in Theorem 2.5, we obtain [7, Theorem 2.4].

3. Integral representations of operator-valued functions

In this section, we consider the case of operator-valued functions. Let \mathcal{H} be a complex Hilbert space, $\langle\cdot, \cdot\rangle$ the inner product on $\mathcal{H}, B(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H}, and $B(\mathcal{H})_{+}$the set of all positive operators on \mathcal{H}. A function $\varphi: I \cap S(\vec{m}) \rightarrow B(\mathcal{H})$ is said to be positive definite if

$$
\sum_{i, j=1}^{n} c_{i} \overline{c_{j}}\left\langle\varphi\left(r_{i}+r_{j}\right) \xi, \xi\right\rangle \geq 0
$$

for all $n \geq 1, c_{1}, c_{2}, \ldots, c_{n} \in \boldsymbol{C}, r_{1}, r_{2}, \ldots, r_{n} \in S(\vec{m})$ such that $2 r_{i} \in I \cap$ $S(\vec{m})$ for $i=1,2, \ldots, n$ and $\xi \in \mathcal{H}$, and of positive type if

$$
\sum_{i, j=1}^{n}\left\langle\varphi\left(r_{i}+r_{j}\right) \xi_{i}, \xi_{j}\right\rangle \geq 0
$$

for all $n \geq 1, r_{1}, r_{2}, \ldots, r_{n} \in S(\vec{m})$ such that $2 r_{i} \in I \cap S(\vec{m})$ for $i=1,2, \ldots, n$ and $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \mathcal{H}$.

If φ is a function of positive type, then φ is positive definite, and the converse is true if $\operatorname{dim} \mathcal{H}=1$. Furthermore, it is known that a positive definite function defined on a perfect $*$-semigroup is necessarily of positive type ([5, Theorem 3.1, Proposition 1.1]). But there exists a positive definite function defined on a semiperfect $*$-semigroup which is not of positive type ([4, Theorem 1], [5, Theorem 3.7]).

Let us denote by $\mathcal{B}(\boldsymbol{R})$ the σ-algebra of all Borel subsets of \boldsymbol{R}, and by $E_{+}(I, \boldsymbol{R}, \mathcal{H})$ the set of all functions $F: \mathcal{B}(\boldsymbol{R}) \rightarrow B(\mathcal{H})_{+}$satisfying $\langle F(\cdot) \xi, \xi\rangle \in E_{+}(I, \boldsymbol{R})$ for all $\xi \in \mathcal{H}$.

Theorem 3.1 Let $a, b \in \boldsymbol{R} \cup\{-\infty, \infty\}$ such that $a<b$ and let $\vec{m}=$ $\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers $m_{n} \geq 2$ which contains at most finitely many even numbers. Let $\varphi:(a, b) \cap S(\vec{m}) \rightarrow B(\mathcal{H})$ be a function on $(a, b) \cap$ $S(\vec{m})$. Then the following conditions are mutually equivalent:
(1) φ is of positive type;
(2) φ is positive definite;
(3) For any fixed $\alpha \in(a, b) \cap 2 S(\vec{m})$, there exist functions $F_{1}, F_{2}: \mathcal{B}(\boldsymbol{R}) \rightarrow$
$B(\mathcal{H})_{+}$such that $e^{-\alpha x} F_{1}, e^{-\alpha x} F_{2} \in E_{+}((a, b), \boldsymbol{R}, \mathcal{H})$ and

$$
\langle\varphi(r) \xi, \eta\rangle=\int_{\boldsymbol{R}} e^{(r-\alpha) x} d\left\langle F_{1}(x) \xi, \eta\right\rangle+\int_{\boldsymbol{R}} \chi(r) e^{(r-\alpha) x} d\left\langle F_{2}(x) \xi, \eta\right\rangle
$$

for $r \in(a, b) \cap S(\vec{m}), \xi, \eta \in \mathcal{H}$.
Moreover, the pair $\left(F_{1}, F_{2}\right)$ is uniquely determined by φ and α.
Proof. The implication $(1) \Longrightarrow(2)$ is clear, while the implication $(3) \Longrightarrow$ (1) is proved by a similar way as the proof of [5, Proposition 1.1]. Suppose that (2) holds and fix $\alpha \in(a, b) \cap 2 S(\vec{m})$. By the proof of Theorem 2.1 (1), for each $\xi \in \mathcal{H}$ there exist finite positive Radon measures μ_{ξ}, ν_{ξ} on \boldsymbol{R} such that

$$
\langle\varphi(r) \xi, \xi\rangle=\int_{\boldsymbol{R}} e^{(r-\alpha) x} d \mu_{\xi}(x)+\int_{\boldsymbol{R}} \chi(r) e^{(r-\alpha) x} d \nu_{\xi}(x), \quad r \in(a, b) \cap S(\vec{m}) .
$$

For $\xi, \eta \in \mathcal{H}$, define the signed measures $\mu_{\xi, \eta}, \nu_{\xi, \eta}$ by

$$
\begin{aligned}
\mu_{\xi, \eta} & =\frac{1}{4}\left\{\mu_{\xi+\eta}-\mu_{\xi-\eta}+i \mu_{\xi+i \eta}-i \mu_{\xi-i \eta}\right\}, \\
\nu_{\xi, \eta} & =\frac{1}{4}\left\{\nu_{\xi+\eta}-\sigma_{\xi-\eta}+i \nu_{\xi+i \eta}-i \nu_{\xi-i \eta}\right\}
\end{aligned}
$$

Then

$$
\langle\varphi(r) \xi, \eta\rangle=\int_{\boldsymbol{R}} e^{(r-\alpha) x} d \mu_{\xi, \eta}(x)+\int_{\boldsymbol{R}} \chi(r) e^{(r-\alpha) x} d \nu_{\xi, \eta}(x), \quad r \in(a, b) \cap S(\vec{m}) .
$$

By Theorem 2.1(1), we can see that for each $B \in \mathcal{B}(\boldsymbol{R})$ the mappings

$$
(\xi, \eta) \mapsto \mu_{\xi, \eta}(B), \quad(\xi, \eta) \mapsto \nu_{\xi, \eta}(B)
$$

are sesqui-linear forms on $\mathcal{H} \times \mathcal{H}$ respectively. Furthermore, for $\xi \in \mathcal{H}$ we have

$$
0 \leq \mu_{\xi, \xi}(B) \leq \mu_{\xi, \xi}(\boldsymbol{R}) \leq\langle\varphi(\alpha) \xi, \xi\rangle
$$

so that $0 \leq \mu_{\xi, \xi}(B) \leq\|\varphi(\alpha)\|\|\xi\|^{2}$. Therefore there exists a unique operator $F_{1}(B) \in B(\mathcal{H})_{+}$such that $\mu_{\xi, \eta}(B)=\left\langle F_{1}(B) \xi, \eta\right\rangle$. Similarly $\nu_{\xi, \eta}(B)=$
$\left\langle F_{2}(B) \xi, \eta\right\rangle$ with $F_{2}(B) \in B(\mathcal{H})_{+}$. Then we have

$$
\langle\varphi(r) \xi, \eta\rangle=\int_{\boldsymbol{R}} e^{(r-\alpha) x} d\left\langle F_{1}(x) \xi, \eta\right\rangle+\int_{\boldsymbol{R}} \chi(r) e^{(r-\alpha) x} d\left\langle F_{2}(x) \xi, \eta\right\rangle
$$

Thus the condition (3) holds.
We can obtain a result analogous to Theorem 3.1 for the case where \vec{m} contains infinitely many even numbers. We also obtain the following theorem:

Theorem 3.2 Let \vec{m} be a sequence of integers $m_{n} \geq 2$ which contains at most finitely many even numbers, and let $a \in 2 S(\vec{m}), b \in \boldsymbol{R} \cup\{\infty\}$ such that $a<b$. Let $\varphi:[a, b) \cap S(\vec{m}) \rightarrow B(\mathcal{H})$ be a function on $[a, b) \cap S(\vec{m})$. Then the following conditions are mutually equivalent:
(1) φ is of positive type;
(2) φ is positive definite;
(3) There exist a positive operator $T \in B(\mathcal{H})$ and functions $F_{1}, F_{2}: \mathcal{B}(\boldsymbol{R}) \rightarrow$ $\mathcal{B}(\mathcal{H})_{+}$such that $e^{-a x} F_{1}, e^{-a x} F_{2} \in E_{+}([a, b), \boldsymbol{R}, \mathcal{H})$ and

$$
\begin{aligned}
\langle\varphi(r) \xi, \eta\rangle= & \delta_{a}(r)\langle T \xi, \eta\rangle+\int_{\boldsymbol{R}} e^{(r-a) x} d\left\langle F_{1}(x) \xi, \eta\right\rangle \\
& +\int_{\boldsymbol{R}} \chi(r) e^{(r-a) x} d\left\langle F_{2}(x) \xi, \eta\right\rangle
\end{aligned}
$$

for $r \in[a, b) \cap S(\vec{m}), \xi, \eta \in \mathcal{H}$.
Moreover the triple $\left(T, F_{1}, F_{2}\right)$ is uniquely determined by φ.
Acknowledgments The author would like to express his gratitude to the referee for valuable suggestions.

References

[1] Akhiezer N. I., The Classical Moment Problem. Oliver and Boyd, Edinburgh, 1965.
[2] Atanasiu D., Laplace integral on rational numbers. Math. Scand. 76 (1995), 152-160.
[3] Berg C., Christensen J. P. R. and Ressel P., Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Springer-Verlag,

New York - Berlin - Heidelberg - Tokyo, 1984.
[4] Bisgaard T. M., Positive definite operator sequences. Proc. Amer. Math. Soc. 121 (1994), 1185-1191.
[5] Furuta K. and Sakakibara N., Operator moment problems on abelian *semigroups. Math. Japonica 51 (2000), 433-441.
[6] Glöckner H., Positive Definite Functions on Infinite-Dimensional Convex Cones. Mem. Amer. Math. Soc., vol. 166, Amer. Math. Soc., Providence, 2003.
[7] Sakakibara N., The moment problem on divisible abelian semigroups. Hokkaido Math. J. 19 (1990), 45-53.
[8] Widder D. V., Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull. Amer. Math. Soc. 40 (1934), 321-326.

Faculty of Liberal Arts and Sciences
Tokyo City University
Tamazutsumi, Setagaya, Tokyo 158-8557, Japan
E-mail: kfuruta@tcu.ac.jp

