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A note on skew group categories

Zhenqiang Zhou
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Abstract. Let G be a finite group, and C a G-abelian category. We prove that the

skew group category C (G) is an abelian category under the condition that the order

|G| is invertible in C . When the order |G| is not invertible in C , an example is given

to show that C (G) is not an abelian category.
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1. Introduction

Let G be a finite group, and C a preadditive category. By an action of
G on C we mean a group homomorphism from G to the group Aut(C ) of
autofunctors of C . Recall that C is called a G-abelian category if C is an
abelian category with an action of G on C . Then one can form the orbit
category C [G] of C with respect to the given action (compare [10], [7], [14],
[2], the orbit category C [G] is called the skew category of C in [7]). We
mention that both works [7] and [2] suggest that the orbit category C [G] is
a more general notion which allow ones to consider the case that the action
of G on C is not free; see [7, Remark 2.9] and [2, Remark 2.2 and Remark
2.14].

In general, the orbit category C [G] of a G-abelian category C is not
necessarily an abelian category since idempotent morphisms in C [G] may
not split; see [14, page 255]. This leads ones to consider the skew group
category C (G) of C , which is defined as the idempotent completion of the
orbit category C [G]; see [14, Section 3]. It is well known that the idempotent
completion D̂ of a category D is the smallest category containing D as a
full subcategory with split idempotent morphisms; see [12].

The aim of this note is to show that: for a G-abelian category C , the
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skew group category C (G), which is the smallest category containing the
orbit category C [G] as a full subcategory, has a natural abelian categorial
structure, under the condition that the order |G| of the group G is invertible
in C (see page 4 for the definition of the order |G| being invertible in C ).
The main result is as follows.

Proposition 1.1 Let C be a G-abelian category with the order |G| invert-
ible in C . Then the skew group category C (G) is also an abelian category.

In Section 2, we recall some basic facts of the orbit categories and the
skew group categories.

Section 3 is devoted to the proof of Proposition 1.1.
In Section 4, we present an example where the skew group category

C (G) is not an abelian category with |G| not invertible in C .
Throughout this paper, the composition of two morphisms f : L −→ M

and g : M −→ N in a category C is denoted by gf . For a ring A, we denote
by modA the category of all finitely generated left A-modules. The quivers
we consider in this paper are finite. Let α and β be two paths in a quiver Q.
We denote by β α the multiplication of the paths α and β when the terminal
vertex of α is the starting vertex of β. For the unexplained notions about
quiver algebras and the representation theory of quivers, we refer to [3], [4].

2. Preliminaries

In this section, we recall some basic facts on skew group categories;
compare [7], [14], [2].

The notion of the skew group category for a G-preadditive category with
a finite group G was introduced in [14] for the study of the representation
theory of an artin algebra and its skew group algebra. The skew group
category C (G) for a G-preadditive category C was defined as the idempotent
completion of the category C [G]; see [14, Section 3]. When G is a cyclic
group, the category C [G] is called the orbit category in [10]. For an arbitrary
group G and a small preadditive category C over a commutative ring R, the
orbit category C [G] is called the skew category in [7]. When the action of G

on C is free, two alternative constructions for the orbit category were also
introduced in [7]; see [7, Propsition 2.7 and Theorem 2.8]. The notion of the
skew group category for a G-preadditive category over a commutative ring R

with an arbitrary group G was introduced in [2] as done for the finite group
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case in [14]. We mention that the skew group category in [2] was defined as
the basic category of the idempotent completion of the orbit category; see
[2, Definition 3.6].

Throughout this paper, G is a finite group. Let C be a G-preadditive
category, that is, C is a preadditive category with an action of G on C . In
other words, the category C is equipped with the following data. That is,
each element x ∈ G defines an autofunctor Fx : C −→ C . For an object M

in C , the action xM of x on M is the value Fx(M) of the functor Fx applying
on M . For a morphism f : M −→ N in C , the action xf : xM −→ xN of
x on f is the value Fx(f) of the functor Fx applying on f . Moreover, the
action of G on morphisms is subject to the following rules:

(1) x(gf) = (xg)(xf), for x ∈ G, and f , g which can be composed in C .
(2) xyf = x(yf), for x, y ∈ G.
(3) 1f = f , for f in C , and 1 the identity element of G.

Following [10], [7], the orbit category C [G] of C with respect to the given
action of G on C is defined as follows. The objects of C [G] are the
same as C . Each morphism set HomC [G](M, N) is given by the direct
sum

⊕
x∈G HomC (xM, N) of the abelian groups of morphisms. The com-

position of morphisms is defined in the natural way. More explicitly, let
f : L −→ M be a morphism in C [G], which is given by a family of mor-
phisms {fx : xL −→ M}x∈G in C , and let g : M −→ N be a morphism
in C [G], which is given by a family of morphisms {gy : yM −→ N}y∈G

in C . The composition g · f : L −→ N is the morphism in C [G], which
is given by the family of morphisms {∑y∈G gy(yfy−1x) : xL −→ N}x∈G

in C . It follows immediately that C [G] is a preadditive category, and it
is an additive category provided C is. If C is a G-additive category, one
can consider a morphism f : L −→ M in C [G] is given by a morphism⊕

x∈G fx :
⊕

x∈G
xL −→ M in C .

However, idempotent morphisms in C [G] may not split even if idem-
potent morphisms split in C as we have mentioned in the introduction.
This leads ones to consider the skew group category C (G). Let us recall
the definition of the idempotent completion of a category from [12, Pre-
liminaries]. Some authors call the idempotent completion of a category as
Karoubianisation or pseudo-abelian hull of a category; see for instance [5]
and [8, Appendix].

Let D be an arbitrary category. A morphism f : M −→ N in D is said
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to be a retraction if there exists a morphism g : N −→ M such that fg = 1N .
In this case, the object N is called a retract of M . A full subcategory C of
D is said to be a cover of D if every object in D is a retract of some object
in C .

An endomorphism e : M −→ M with e2 = e is said to be a split
idempotent provided that there exist two morphisms π : M −→ L and
ι : L −→ M in D , such that e = ι π, and π ι = 1L. A category is idempotent
complete if all idempotent morphisms split. It is well known that abelian
categories are idempotent complete.

Let C be a full subcategory of D . D is called an idempotent completion
of C provided that D is idempotent complete and C is a cover for D .

There is a well known construction of an idempotent completion Ĉ of
a category C ; see [9, Chapter 2, Exercise B]. The category Ĉ is defined
as follows. The objects are pairs (M, e) with an object X in C and an
idempotent morphism e : M −→ M in C . A morphism from (M, eM ) to
(N, eN ) is a morphism f : M −→ N in C such that f eM = f = eN f , which
can be represented by a commutative diagram

M

eM

²²

f //

f
AA

AA

ÃÃA
AA

A

N

eN

²²

M
f // N

in C . We denote by f : (M, eM ) −→ (N, eN ) the morphism depicted above
for simplicity. There is a canonical embedding functor ı̇ı : C −→ Ĉ assigning
M to (M, 1M ), which makes C as a full subcategory of Ĉ . It is an equivalence
if and only if C is idempotent complete. Since idempotent completions
are unique up to equivalence of categories, we shall call Ĉ the idempotent
completion of C . Moreover, if C is an additive category, then so is Ĉ .

Remark 2.1 (1) We will write an object M in Ĉ to mean the object
(M, 1M ) in Ĉ , and write a morphism f : M −→ N in Ĉ to mean the
morphism f : (M, 1M ) −→ (N, 1N ) if the situation is clear.

(2) It is worthy to notice that the identity 1(M,e) of an object (M, e) in
Ĉ is the endomorphism e : (M, e) −→ (M, e). And 1(M,e) = 1M if
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and only if (M, e) = (M, 1M ). Moreover, if e′ : (M, e) −→ (M, e)
is an idempotent morphism, then e′ has an epi-mono factorization as
e′ = ιπ with πι = 1(M,e′), where π = e′ : (M, e) −→ (M, e′), and
ι = e′ : (M, e′) −→ (M, e).

Let A be an idempotent complete category. Then any functor F :
C −→ A can be extended (uniquely up to natural equivalence) to a functor
F̂ : Ĉ −→ A . For an object (M, e), set F̂ (M, e) = Im F (e). For a morphism
f : (M, eM ) −→ (N, eN ) with eM = ιM πM and eN = ιN πN , set F̂ (f) =
F (πN ) F (f)F (ιM ). Moreover, any natural transformation θ : F −→ G can
be extended uniquely to a natural transformation θ̂ : F̂ −→ Ĝ by means of
θ̂(M,e) = G(πM ) θM F (ιM ).

Let A be an idempotent complete category, and F : C −→ A be a
functor. It is well known that F is fully faithful if and only if F̂ : Ĉ −→ A is
fully faithful. This result implies that Ĉ is the smallest idempotent complete
category containing C as a full subcategory.

By now, we have all the needed ingredients to introduce the following
notion, which is due to Reiten and Riedtmann; see [14, Section 3].

Definition 2.2 Let C be a G-preadditive category and C [G] the orbit
category. Define the skew group category of C as the idempotent completion
Ĉ [G] of the orbit category, which we denote by C (G) instead of Ĉ [G] for
simplicity.

Finally, let us recall the constructions of the two functors F : C −→
C (G) and H : C (G) −→ C , which will be helpful to investigate the rela-
tionship between C and C (G).

From now on, unless otherwise stated, we will always assume that C
is a G-abelian category, and the order |G| is invertible in C , that is, any
morphism f in any HomC (M, N) is uniquely divisible by |G|. For example,
if C is an abelian category over a field k, then |G| is invertible in k.

The additive functor F : C −→ C [G] is given by F (M) = M for an
object M in C . If f : M −→ N is a morphism in C , F (f) : M −→ N

is defined to be the morphism f ′ in C [G], which is given by the morphism⊕
x∈G f ′x :

⊕
x∈G

xM −→ N in C with f ′1 = f and other component mor-
phisms f ′x = 0 for x 6= 1. Compositing F with the embedding functor
ı̇ı : C [G] −→ C (G), then we get a natural functor C −→ C (G), and also
denote by F .
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The functor F : C −→ C [G] admits a right adjoint H : C [G] −→ C
which is defined as follows. For an object V in C [G], set H(V ) =

⊕
x∈G

xV .
If f : V −→ W is a morphism in C [G], which is given by a morphism⊕

x∈G fx :
⊕

x∈G
xV −→ W in C , set H(f) :

⊕
x∈G

xV −→ ⊕
y∈G

yW to
be the |G| × |G| matrix (fy, x) of morphisms such that fy, x : xV −→ yW

is yfy−1x. Extending H to C (G), we get a functor C (G) −→ C , and also
denote by H, which is a right adjoint of the functor F : C −→ C (G).

Put G = {x1 = 1, x2, . . . , xn}. For the adjoint pair (F, H) on C and
C [G], the unit η : 1C −→ HF is defined by ηM : M −→ HF (M) =
x1M ⊕ · · · ⊕ xnM which sends M to the first coordinate for an object M in
C . Moreover, the unit η is a split monomorphism of functors, which has a
splitting ξ : HF −→ 1C such that ξM : x1M ⊕ · · · ⊕ xnM = HF (M) −→ M

is the projection to the first summand.
The counit ε : FH −→ 1C [G] is defined by εV : x1V ⊕ · · · ⊕ xnV =

FH(V ) −→ V to be the morphism in C [G] for an object V in C [G], which
is given by the morphism

⊕n
i=1

xi(x1V ⊕ · · · ⊕ xnV ) −→ V in C , such that
the component morphism

xi(x1V ⊕ · · · ⊕ xnV ) −→ V

sends xi(x−1
i V ) to V by the identity for i = 1, . . . , n. It is a split epimor-

phism of functors with a splitting (1/|G|)δ : 1C [G] −→ FH. The natu-
ral transformation δ is defined as follows. For an object V in C [G], set
δV : V −→ FH(V ) = x1V ⊕ · · · ⊕ xnV to be the morphism in C [G], which
is given by the morphism

⊕n
i=1

xiV −→ x1V ⊕ · · · ⊕ xnV in C , where the
component morphism xiV −→ x1V ⊕ · · · ⊕ xnV in C sends xiV to the ith
coordinate for i = 1, . . . , n.

Extending this adjunction, we get the split unit η : 1C −→ HF and the
split counit ε : FH −→ 1C (G) of the adjoint pair (F, H) on C and C (G).
Moreover, (H, F ) is also an adjoint pair, for details, we refer [14, Section 3,
Theorem 3.2].

3. The proof of proposition 1.1

Let C be a G-abelian category, we will prove Proposition 1.1 under
the assumption that |G| is invertible in C . Let us start the proof with the
following observation.
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Lemma 3.1 Let 0 −→ L
f−→ M

g−→ N −→ 0 be an exact sequence in C .
Then

0 −→ FL
f−→ FM

g−→ FN −→ 0

is also an exact sequence in C [G].

Here, recall that a sequence 0 −→ L
f−→ M

g−→ N in an additive
category D is said to be left exact (equivalently, f : L −→ M is a kernel of
g : M −→ N) if for any object X in D , the induced sequence

0 // HomD(X, L)
HomD(X,f) // HomD(X, M)

HomD(X,g) // HomD(X, N)

is exact in the category Ab of abelian groups.
By duality, a sequence L

f−→ M
g−→ N −→ 0 is said to be right exact

(equivalently, g : M −→ N is a cokernel of f : L −→ M) if for any object Y

in D , the sequence

0 // HomD(N, Y )
HomD(g,Y ) // HomD(M, Y )

HomD(f,Y ) // HomD(L, Y )

is exact in Ab. A sequence 0 −→ L
f−→ M

g−→ N −→ 0 is said to be exact
if it is both left exact and right exact.

Proof. Let X be an object in C [G], we have the following commutative
diagram in Ab,

0 // HomC (HX,L)
HomC (HX,f) //

∼
²²

HomC (HX,M)

∼
²²

0 // HomC [G](X, FL)
HomC [G](X,Ff)

// HomC [G](X, FM)

HomC (HX,g) // HomC (HX,N)

∼
²²HomC [G](X,Fg)

// HomC [G](X, FN) ,
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where the top row is exact from the left exactness of the sequence 0 −→
L

f−→ M
g−→ N , and each column is isomorphic by applying the adjunction

of (H, F ). Therefore, the bottom row is exact. This gives rise to the left

exactness of the sequence 0 −→ FL
f−→ FM

g−→ FN in C [G]. Dually,

the right exactness of FL
f−→ FM

g−→ FN −→ 0 follows from the right
exactness of the sequence L

f−→ M
g−→ N −→ 0 by applying the adjunctions

of (F, H). ¤

We need the following result about natural transformations of functors
evaluating at split exact sequences, which generalizes the Lemma 20.9 in [1,
Chapter 5].

Lemma 3.2 Let D and D ′ be two additive categories. Let F1, F2 and
F3 be three additive functors from D to D ′ with natural transformations
θ : F1 −→ F2 and θ′ : F2 −→ F3. If ξ : 0 −→ X

iX−→ Y
πZ−→ Z −→ 0 is a

split exact sequence in D , then

ζY : 0 −→ F1(Y ) θY−→ F2(Y )
θ′Y−→ F3(Y ) −→ 0

is an exact sequence in D ′ if and only if both ζX : 0 −→ F1(X) θX−→
F2(X)

θ′X−→ F3(X) −→ 0 and ζZ : 0 −→ F1(Z) θZ−→ F2(Z)
θ′Z−→ F3(Z) −→ 0

are exact sequences in D ′.

Proof. Let πX be a splitting of iX , and iZ a splitting of πZ such that
iXπX + iZπZ = 1Y . Since ξ is split exact in D , then each 0 −→ Fj(X) −→
Fj(Y ) −→ Fj(Z) −→ 0 is split exact in D ′ for j = 1, 2, 3. Note that, we
have the following commutative diagram

0 // F1(Y )
θY //

„
F1(πX )
F1(πZ )

«

²²

F2(Y )
θ′Y //

„
F2(πX )
F2(πZ )

«

²²

F3(Y ) //

„
F3(πX )
F3(πZ )

«

²²

0

0 // F1(X)⊕ F1(Z)„
θX o

0 θZ

«// F2(X)⊕ F2(Z)„
θ′X o

0 θ′Z

«// F3(X)⊕ F3(Z) // 0 ,

where each column is an isomorphism with an inverse (Fj(iX) Fj(iZ)) for
j = 1, 2, 3. Therefore, the top row is an exact sequence in D ′ if and only if
so is the bottom row. Denote by ζX ⊕ ζZ the bottom row. For any object
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E in D ′, the induced sequence

0 −→ HomD′(E, F1(X)⊕ F1(Z)) −→ HomD′(E, F2(X)⊕ F2(Z))

−→ HomD′(E, F3(X)⊕ F3(Z))

is exact in Ab, if and only if both sequences

0 −→ HomD′(E, F1(X)) −→ HomD′(E, F2(X)) −→ HomD′(E, F3(X))

and

0 −→ HomD′(E, F1(Z)) −→ HomD′(E, F2(Z)) −→ HomD′(E, F3(Z))

are exact in Ab by the fact that the Hom functor HomD′(E,−) commutes
with the direct sums. That is, we have that the sequence ζX⊕ζZ is left exact
in D ′ if and only if both sequences ζX and ζZ are left exact in D ′. Dually,
we have the similar conclusion about the right exactness of the sequence
ζX ⊕ ζZ . Thus the result immediately follows. ¤

Corollary 3.3 Let ζ : 0 −→ U
f−→ V

g−→ W −→ 0 be an exact sequence
in C [G]. Then the sequence ζ is also an exact sequence in C (G).

Proof. It is equivalent to show that ζ is both left exact and right exact in
C (G). We first show ζ is right exact. To this end, let (X, eX) be an object
in C (G), we have to show that the induced sequence

0 −→ HomC (G)((W, 1W ), (X, eX)) −→ HomC (G)((V, 1V ), (X, eX))

−→ HomC (G)((U, 1U ), (X, eX))

is exact in Ab. Since C [G] is a cover of C (G), then there exists an object
(X ′, eX′) such that Y = (X, eX)⊕(X ′, eX′) is an object in C [G]. That is, we
have a split exact sequence 0 −→ (X, eX) −→ (Y, 1Y ) −→ (X ′, eX′) −→ 0
in C (G). Set F1 = HomC (G)((W, 1W ),−), F2 = HomC (G)((V, 1V ),−), and
F3 = HomC (G)((U, 1U ),−). Observe that the sequence F1((Y, 1Y )) −→
F2((Y, 1Y )) −→ F3((Y, 1Y )) −→ 0 is just the sequence
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δ : 0 // HomC [G](W,Y )
HomC [G](g,Y )

// HomC [G](V, Y )

HomC [G](f,Y )
// HomC [G](U, Y )

by the fact that C [G] is a full subcategory of C (G). It follows that the
sequence δ is exact in Ab from the assumption that ζ is exact in C [G]. Now,
we are in the setting of Lemma 3.2. The right exactness of the sequence ζ in
C (G) immediately follows. The left exactness of of the sequence ζ in C (G)
can be obtained by duality. ¤

Lemma 3.4 If every morphism f : V −→ W in C [G] has a kernel (resp.
a cokernel) in C (G), then every morphism in C (G) has a kernel (resp. a
cokernel).

Proof. Let f : (V, eV ) −→ (W, eW ) be a morphism in C (G). Let k :
(K, eK) −→ (V, 1V ) be a kernel of the morphism f : V −→ W in C (G) by the
assumption. Then there exists a unique morphism eK

′ : (K, eK) −→ (K, eK)
such that the following diagram

(K, eK) k //

eK
′

²²Â
Â
Â (V, 1V )

eV

²²

f // (W, 1W )

eW

²²
(K, eK) k // (V, 1V )

f // (W, 1W )

commutes in C (G). Therefore, we have k · eK
′ · eK

′ = eV · eV · k = eV · k =
k · eK

′. This immediately yields that eK
′ is an idempotent on (K, eK) by

the fact that k is monic in C (G), where eK
′ · eK = eK

′ = eK · eK
′.

We now claim that k · eK
′ : (K, eK

′) −→ (V, eV ) is a kernel of f :
(V, eV ) −→ (W, eW ) in C (G). In fact, let h : (X, eX) −→ (V, eV ) be a

morphism in C (G) such that f · h = 0. Then (X, eX) h−−→ (V, eV ) eV−−→

(V, 1V )
f−−→ (W, 1W ) = 0. Since k : (K, eK) −→ (V, 1V ) is a kernel of the

morphism f : V −→ W in C (G), then there exists a unique morphism
α : (X, eX) −→ (K, eK) such that eV · h = k · α.

Let β : (X, eX) −→ (K, eK
′) = (X, eX) α−−→ (K, eK) eK

′
−−→ (K, eK

′), then

we have that h = (k ·eK
′) ·β. That is, the morphism h : (X, eX) −→ (V, eV )
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in C (G) with f · h = 0 can factor through k · eK
′ : (K, eK

′) −→ (V, eV ).
Finally, we have to show that the factorization of h through k · eK

′ is
unique. Assume that γ : (X, eX) −→ (K, eK

′) is a morphism in C (G) such

that h = (k · eK
′) · γ. It is easy to verify that (X, eX)

γ−−→ (K, eK
′) eK

′
−−→

(K, eK) satisfying that eV ·h = k ·α = k ·(eK
′ ·γ). This yields that eK

′ ·γ = α

since k : (K, eK) −→ (V, 1V ) is a kernel of the morphism f : V −→ W

in C (G). Immediately, we can conclude that γ = β by composing with
the split epimorphism eK

′ : (K, eK) −→ (K, eK
′) on eK

′ · γ = α. Hence,
k · eK

′ : (K, eK
′) −→ (V, eV ) is a kernel of f : (V, eV ) −→ (W, eW ) in C (G).

Dually, by switching from C to the opposite category C op, the statement
about cokernels immediately follows. ¤

Lemma 3.5 Any morphism f : V −→ W in C [G] has a kernel and a
cokernel in C (G).

Proof. First, we know that the morphism H(f) : H(V ) −→ H(W ) has
a kernel k : K −→ H(V ) in C . This gives rise to that F (k) : F (K) −→
FH(V ) is a kernel of FH(f) : FH(V ) −→ FH(W ) in C [G] by Lemma
3.1. Hence, it follows that F (k) : F (K) −→ FH(V ) is a kernel of FH(f) :
FH(V ) −→ FH(W ) in C (G) by Corollary 3.3. Note that the counit ε :
FH −→ 1C [G] of (F, H) is a split epimorphism of functors with a splitting
(1/|G|)δ : 1C [G] −→ FH. Consider the following commutative diagram

F (K)
F (k) //

eF (K)

²²Â
Â
Â
Â
Â
Â
Â

FH(V )
FH(f) //

εV

²²

FH(W )

εW

²²
V

1
|G| δV

²²

f // W

1
|G| δW

²²
F (K)

F (k) // FH(V )
FH(f) // FH(W )

in C [G]. Immediately, we have eFH(V ) = (1/|G|)δV · εV and eFH(W ) =
(1/|G|)δW · εW are idempotent morphisms in C [G]. This gives rise to an
idempotent morphism eF (K) : F (K) −→ F (K) in C [G]. Since C (G) is idem-
potent complete, then the idempotent morphism eF (K) : F (K) −→ F (K)
is the composition of a split epimorphism π = eF (K) : (F (K), 1F (K)) −→
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(F (K), eF (K)) and a split monomorphism ι = eF (K) : (F (K), eF (K)) −→
(F (K), 1F (K)) in C (G).

Now, we claim that εV · F (k) · ι : (F (K), eF (K)) −→ (V, 1V ) is a kernel
of f : V −→ W in C (G). In fact, let h : (Y, eY ) −→ (V, 1V ) be a mor-
phism in C (G) with f · h = 0. Then we have that FH(f) · (1/|G|)δV · h =
(1/|G|)δW · f · h = 0. Since F (k) : F (K) −→ FH(V ) is a kernel of
FH(f) : FH(V ) −→ FH(W ) in C (G), then there exists a morphism
α : (Y, eY ) −→ (F (K), 1F (K)) such that (1/|G|)δV · h = F (k) · α. De-
fine β : (Y, eY ) −→ (F (K), eF (K)) to be the composition of α : (Y, eY ) −→
(F (K), 1F (K)) and π : (F (K), 1F (K)) −→ (F (K), eF (K)). It follows that
h = (εV · F (k) · ι) · β by a direct verification. Suppose that there is a mor-
phism γ : (Y, eY ) −→ (F (K), eF (K)) in C (G) such that h = (εV ·F (k) · ι) ·γ.
Then the composed morphism ι · γ : (Y, eY ) −→ (F (K), 1F (K)) is just the
morphism α : (Y, eY ) −→ (F (K), 1F (K)) such that (1/|G|)δV · h = F (k) · α.
This yields that γ = π · ι · γ = π · α = β. We have shown that
the factorization of h through εV · F (k) · ι in C (G) is unique. Hence,
εV · F (k) · ι : (F (K), eF (K)) −→ (V, 1V ) is a kernel of f : V −→ W in
C (G). The existence of a cokernel can be proved by duality. ¤

Lemma 3.6 Let f : V −→ W be a morphism in C [G]. Then Coim f

and Im f exist in C (G). Moreover, The canonical factorization (V, 1V ) −→
Coim f −→ Im f −→ (W, 1W ) of f in C (G) induces an isomorphism of
Coim f and Im f .

Here, for a morphism f : X −→ Y in an additive category D with a
kernel k : K −→ X and a cokernel c : Y −→ C. If k : K −→ X has a
cokernel in D , define the coimage Coim f of f as Coker k. If c : Y −→ C

has a kernel, define the image Im f of f as Ker c. In this case, the morphism
f : X −→ Y has a natural canonical factorization X −→ Coim f

δ−−→
Im f −→ Y , where the morphism δ : Coim f −→ Im f is called the induced
morphism of the canonical factorization.

Proof. Since f : V −→ W has a kernel and a cokernel in C (G) by Lemma
3.5. Then we can form the Coim f and the Im f of the morphism f : V −→
W in C (G) by carrying a similar proof of Lemma 3.5. That is, we have the
following commutative diagram
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Coim FH(f)

π

²²

σ //
Im FH(f)

π′

²²

τ
oo

k
**TTTTTT

(FH(V ), 1FH(V ))

c 44jjjjj
FH(f) //

εV

²²

(FH(W ), 1FH(W ))

εW

²²

Coim f

ι

²²

α //
Im f

ι′

²²

β

oo
q

**TTTTTTTTTTT

(V, 1V )

p
44iiiiiiiiiii

1
|G| δV

²²

f // (W, 1W )

1
|G| δW

²²

Coim FH(f)
σ //

Im FH(f)
τ

oo
k

**TTTTTT

(FH(V ), 1FH(V ))

c 44jjjjj
FH(f) // (FH(W ), 1FH(W ))

in C (G), where p = π · c · (1/|G|)δV and q = εW · k · ι′; π · ι = 1Coim f and
π′ · ι′ = 1Im f ; the morphism σ is the isomorphism induced by the canonical
factorization of FH(f) with an inverse τ .

Define α = π′ · σ · ι and β = π · τ · ι′, then f = q · α · p which means
that α is the induced morphism of the canonical factorization of f in C (G).
Moreover, It follows that σ and β are inverses of each other from a direct
verification. Hence, the canonical factorization of f in C (G) induces an
isomorphism α : Coim f −→ Im f . ¤

Proof of Proposition 1.1. To prove that C (G) is an abelian category, we
have to show that, any morphism f : (V, eV ) −→ (W, eW ) in C (G) has a ker-
nel and a cokernel, and the canonical factorization induces an isomorphism
of Coim f and Im f .

By Lemma 3.5 and Lemma 3.4, we can conclude that any morphism in
C (G) has a kernel and a cokernel. Therefore, the coimage and the image of
the morphism f : (V, eV ) −→ (W, eW ) exist in C (G).

Now, we show that for any morphism f : (V, eV ) −→ (W, eW ), whose
canonical factorization induces an isomorphism of the coimage and image.
To this end, consider the following commutative diagram with the canonical
factorization of f : (V, 1V ) −→ (W, 1W ) in C (G):
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(Coker k, eci)

eCoker k

²²

α // (Ker c, eim)

eKer c

²²

q

%%KKKKKKK

(Ker f, eK)

eKer f

²²

k // (V, 1V )

p
99sssssss

f //

eV

²²

(W, 1W )

eW

²²

c // (Coker f, eC)

eCoker f

²²

(Coker k, eci)
α // (Ker c, eim)

q

%%KKKKKKK

(Ker f, eK)
k // (V, 1V )

p
99sssssss

f // (W, 1W )
c // (Coker f, eC) ,

where α is the isomorphism from Lemma 3.6.
Denote by ι the split monomorphism eCoker k : (Coker k, eCoker k) −→

(Coker k, eci) and by π′ the split epimorphism eKer c : (Ker c, eim) −→
(Ker c, eKer c). Set β : (Coker k, eCoker k) −→ (Ker c, eKer c) be the com-
posed morphism π′ · α · ι. By Lemma 3.4 and carrying a similar proce-
dure of the proof for Lemma 3.6, we have the canonical factorization of
f : (V, eV ) −→ (W, eW ) in C (G) as follows

(Ker f, eKer f )
k ·eKer f // (V, eV )

s=eCoker k
·p

²²

f // (W, eW )
eCoker f

·c
// (Coker f, eCoker f )

(Coker k, eCoker k)
β // (Ker c, eKer c) ,

t=q ·eKer c

OO

where β is an isomorphism in C (G) since α is an isomorphism. We have
completed the proof of Proposition 1.1. ¤

Corollary 3.7 Let C be a G-abelian category with the order |G| = n

invertible in C . Then F : C −→ C (G) and H : C (G) −→ C are exact
functors between abelian categories.

Proof. Combine Lemma 3.1 and Corollary 3.3, we know that F is an exact
functor. Note that F is a left adjoint and also a right adjoint of H, it
follows that the additive functor H preserves kernels and cokernels from
[11, Chapter V, Section 5, Theorem 1] and its dual version. Hence, H is
also an exact fucntor. ¤

Corollary 3.8 Let C be a Hom-finite abelian k-category, G a finite group
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acting on C with the order |G| invertible in C . Then C (G) is also a Hom-
finite abelian k-category, and hence a Krull-Schmidt abelian category.

Proof. Let (V, eV ) and (W, eW ) be two objects in C (G).
HomC (G)((V, eV ), (W, eW )) is the subvector space of HomC [G](V, W )
which consists of morphisms f : V −→ W subject to f · eV = f = eW · f .
Since HomC [G](V, W ) is a finite direct sum of

⊕
x∈G HomC (xM, N) of

finite dimensional vector spaces by the assumption that C is a Hom-finite
k-category, then C (G) is also a Hom-finite k-category. The abelianness of
C (G) follows from Proposition 1.1 since C is an abelian category.

It is well known that a Hom-finite abelian category is Krull-Schmidt;
see [15, p. 52] also [6, Appendix, Remark A.2]. Then we have completed the
proof of the corollary. ¤

Remark 3.9 Let G be a finite group, and C a preadditive category. An
action of G on C is called to be free if xM = M for an object M in C ,
then x = 1. Let C be a free G-preadditive category over a commutative
ring R, that is, C is a preadditive category over a commutative ring R with
a free action of G on C . In this case, the orbit category C [G] is equivalent
to the quotient category C /G defined in [7, Definition 2.1]; see [7, Theorem
2.8]. We are interested in the following question which is presented by the
referee: if the action of a group on an abelian category is free, is it true that
the orbit category is abelian? We thank the referee for this question.

4. Example of a non-abelian category C (G)

Let C be a G-abelian category, we have proven that the skew group
category C (G) is an abelian category under the assumption that the order
|G| is invertible in C . This condition seems to be a usual assumption,
which can be traced back to the study of relationships between the module
categories of an artin algebra A and the skew group algebra AG in [14].
However, one might ask that whether the skew group category C (G) an
abelian category or not when the order |G| is not invertible in C ?

In this section, we consider a finite dimensional k-algebra A of the
Dynkin type A3 with an action of a cyclic group G of order 2 on the quiver
QA, where k is an algebraically closed field with the characteristic char k = 2.
The condition char k = 2 means that the order |G| is not invertible in modA.
Then, we show that the skew group category (modA)(G) of the finitely gen-
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erated module category mod A is not an abelian category.
Before giving the example, let us recall the definition of skew group

algebras; see [14, Introduction] and [13, Chapter 1, 1.4]. Let k be a field,
and A a finite dimensional k-algebra with a finite group G acting on A. The
skew group algebra AG is defined as a free left module

⊕
x∈G Ax with the

basis G, and the multiplication is defined by

(ax)(by) = a xb xy

for a, b ∈ A and x, y ∈ G. There is a natural algebra monomorphism
i : A −→ AG by i(a) = a 1G with 1G the identity of G. Then we have
the tensor functor F = −⊗

A AG : mod A −→ mod AG, which admits the
restriction functor H : mod AG −→ mod A both as a right adjoint and as a
left adjoint, we refer to [14, Section 3] for more details.

Example 4.1 Let k be an algebraically closed field with the characteristic
char k = 2, A a finite dimensional k-algebra given by the Dynkin quiver QA.

QA : 2
α

wwnnnnnnn α′

((PPPPPPP

1 1′

QB : 2

β

©©

γ
²²
1

Let G = {1, x} be a cyclic group of order 2 with a generator x, which acts on
A by x(e1) = e1′ , x(e1′) = e1, x(α) = α′, x(α′) = α and x(e2) = e2. Then
the skew group algebra AG is Morita equivalent to a basic finite dimensional
k-algebra B given by quiver QB with the relation β2 = 0. Put C = mod A,
we can form the skew group category C (G), which is a non-abelian full
subcategory of modAG.

Proof. For computing the quiver QB , we refer the reader to [14, Section
2], [2, Example 9.1] and [4, Chapter II, Section 3]. The Auslander-Reiten
quiver Γ(modA) is as follows:
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P (1′) = 0
0 1

**VVVV
I(1) = 1

1 0

**UUUU

P (2) = 1
1 1

44iiii

**UUUU
I(2) = 1

0 0 .

P (1) = 0
1 0

44hhhh
I(1′) = 1

0 1

44iiii

The Auslander-Reiten quiver Γ(modB) is given by the following:

P (1) = 0
1

))TTTT
I(1) = 2

1

))SSSS

P (2) = 2
2

55kkkk

))SSSSS
I(2) = 2

0

))TTTT

N = 1
1

55jjjjj

))TTTTT M = 2
1

55kkkkk

))SSSSSS S(2) = 1
0 ,

S(2) = 1
0

55kkkkk
N = 1

1

55jjjjj

where we identify the two copies of S(2) as one vertex, and also identify the
two copies of N as one vertex in Γ(modB).

It is easy to verify that F (P (1)) = F (P (1′)), F (P (2)), and F (I(1)) =
F (I(1′)), F (I(2)) are the projective modules 0

1 , 2
2 , and the injective modules

2
1 , 2

0 in modAG respectively, under Morita equivalence.
For the tensor functor F = −⊗

A AG : mod A −→ mod AG, denote by
Im F the full subcategory of modAG consisting of modules that is isomor-
phic to F (M) for some module M in modA. Then the orbit category C [G]
is equivalent to ImF as we have mentioned in the proof of Remark 3.9; see
also [14, p. 255]. Note that, all the modules in modA are either projec-
tive or injective. Since F preserves projective and injective modules, then
C [G] = C (G) is the full subcategory of modAG consisting of all finitely
generated projective modules, injective modules, and the finite direct sums
of projective and injective modules.

Now, if we suppose that C (G) is an abelian category. Consider the

minimal projective resolution 0 −→ P (1)
f−−→ P (2) −→ M −→ 0 of the

B-module M , that is,
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0

0

°°

0

²²

0
// k ⊕ k

“
0 0
1 0

”

±±

“
1 0
0 1

”

²²

“
1 0
0 1

” // k ⊕ k

“
0 0
1 0

”

±±

(1 0)

²²

k “
0
1

” // k ⊕ k
(1 0)

// k

where the left hand square is the B-module monomorphism f : P (1) −→
P (2). Since the skew group category C (G) is a full subcategory of modB,
then f : P (1) −→ P (2) is a monomorphism in C (G). But it is not an
epimorphism by the fact that P (1) is not isomorphism to P (2) in C (G).

Let Q be the object in C (G) such that 0 −→ P (1)
f−−→ P (2) −→ Q −→ 0

is an exact sequence in C (G). Then we have the following commutative
diagram

0 // P (1)
f // P (2) // M

²²Â
Â
Â

// 0

0 // P (1)
f // P (2) // Q

in mod B. From the Auslander-Reiten quiver Γ(modB), it follows that
dimHomB(M, I(2)) = 1, dim HomB(M, I(1)) = 0, dim HomB(M, P (1)) =
0 and dim HomB(P (2), P (1)) = 0. This implies that the object Q must
contain the B-module I(2) as a direct summand and not contain the B-
module P (1) as a direct summand. Thus, we get a contradiction to the
fact that dimP (2) = dim P (1) + dim Q by applying the exact functor H :

C (G) −→ C (see Corollary 3.7) on the exact sequence 0 −→ P (1)
f−−→

P (2) −→ Q −→ 0 in C (G). Therefore, we can conclude that C [G] = C (G)
is not an abelian category. ¤
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