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CR rigidity of pseudo harmonic maps

and pseudo biharmonic maps

Hajime Urakawa

(Received October 1, 2014; Revised February 20, 2015)

Abstract. The CR analogue of B.-Y. Chen’s conjecture on pseudo biharmonic maps

will be shown. Pseudo biharmonic, but not pseudo harmonic, isometric immersions

with pseudo parallel pseudo mean curvature vector fields, will be characterized.

Key words: isometric immersion, harmonic map, biharmonic map, pseudo-harmonic

map, pseudo-biharmonic map.

1. Introduction

Harmonic maps play a central role in geometry; they are critical points of
the energy functional E(ϕ) = (1/2)

∫
M
|dϕ|2vg for smooth maps ϕ of (M, g)

into (N, h). The Euler-Lagrange equations are given by the vanishing of the
tension filed τ(ϕ). In 1983, Eells and Lemaire [12] extended the notion of
harmonic map to biharmonic map, which are critical points of the bienergy
functional E2(ϕ) = (1/2)

∫
M
|τ(ϕ)|2vg. After Jiang [20] studied the first

and second variation formulas of E2, extensive studies in this area have
been done (for instance, see [6], [22], [25], [16], [17], [19]). Every harmonic
maps is always biharmonic by definition. Chen raised ([7]) famous Chen’s
conjecture and later, Caddeo, Montaldo, Piu and Oniciuc raised ([6]) the
generalized Chen’s conjecture.

B.-Y. Chen’s conjecture:
Every biharmonic submanifold of the Euclidean space Rn must be har-

monic (minimal).

The generalized B.-Y. Chen’s conjecture:
Every biharmonic submanifold of a Riemannian manifold of non-

positive curvature must be harmonic (minimal).
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For the generalized Chen’s conjecture, Ou and Tang gave ([30]) a counter
example in a Riemannian manifold of negative curvature. For Chen’s con-
jecture, some affirmative answers were known for surfaces in the three di-
mensional Euclidean space ([7]), and hypersurfaces of the four dimensional
Euclidean space ([15], [9]). Akutagawa and Maeta showed ([1]) that any
properly immersed biharmonic submanifold of the Euclidean space Rn is
harmonic (minimal).

To the generalized Chen’s conjecture, we showed ([28]) that: for a com-
plete Riemannian manifold (M, g), a Riemannian manifold (N, h) of non-
positive curvature, then, every biharmonic map ϕ : (M, g) → (N, h) with
finite energy and finite bienergy is harmonic. In the case Vol(M, g) = ∞,
every biharmonic map ϕ : (M, g) → (N, h) with finite bienergy is harmonic.
This gave ([26], [27], [28]) affirmative answers to the generalized Chen’s
conjecture under the L2-condition and the completeness of (M, g).

In 1970’s, Chern and Moser initiated ([8]) the geometry and analysis
of strictly convex CR manifolds, and many mathematicians works on CR

manifolds (cf. [11]). Recently, Barletta, Dragomir and Urakawa gave ([5])
the notion of pseudo harmonic map, and also Dragomir and Montaldo settled
([10]) the one of pseudo biharmonic map.

In this paper, we raise

The CR analogue of the generalized Chen’s conjecture:
Let (M, gθ) be a complete strictly pseudoconvex CR manifold, and as-

sume that (N, h) is a Riemannian manifold of non-positive curvature. Then,
every pseudo biharmonic isometric immersion ϕ : (M, gθ) → (N, h) must be
pseudo harmonic.

We will show this conjecture holds under some L2 condition on a com-
plete strongly pseudoconvex CR manifold (cf. Theorem 3.2), and will give
characterization theorems on pseudo biharmonic immersions from CR man-
ifolds into the unit sphere or the complex projective space (cf. Theorems
6.2 and 7.1). More precisely, we will show

Theorem 1.1 (cf. Theorem 3.2) Let ϕ be a pseudo biharmonic map of a
complete CR manifold (M, gθ) into a Riemannian manifold (N, h) of non-
positive curvature. Then,

If the pseudo energy Eb(ϕ) and the pseudo bienergy Eb,2(ϕ) are finite,
then ϕ is pseudo harmonic.
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For isometric immersions of a CR manifold (M2n+1, gθ) into the unit
sphere S2n+2(1) of curvature 1, we have

Theorem 1.2 (cf. Corollary 6.2) For such immersion, assume that the
pseudo mean curvature is pseudo parallel, but not pseudo harmonic.

Then, ϕ is pseudo biharmonic if and only if the restriction of the second
fundamental form Bϕ to the holomorphic subspace Hx(M) of TxM (x ∈ M)
satisfies that

‖Bϕ|H(M)×H(M)‖2 = 2n.

For isometric immersions of a CR manifold (M2n+1, gθ) into the complex
projective space (Pn+1(c), h, J) of holomorphic sectional curvature c > 0, we
have

Theorem 1.3 (cf. Theorem 7.1) For such immersion, assume that the
pseudo mean curvature is pseudo parallel, but not pseudo harmonic. Then,
ϕ is pseudo biharmonic if and only if one of the following holds:

(1) J(dϕ(T )) is tangent to ϕ(M) and

‖Bϕ|H(M)×H(M)‖2 =
c

4
(2n + 3).

(2) J(dϕ(T )) is normal to ϕ(M) and

‖Bϕ|H(M)×H(M)‖2 =
c

4
(2n) =

n

2
c.

Here, T is the charactersitic vector field of (M, gθ), Hx(M)⊕RTx = Tx(M),
and Bϕ|H(M)×H(M) is the restriction of the second fundamental form Bϕ to
Hx(M) (x ∈ M).

Several examples of pseudo biharmonic immersions of (M, gθ) into the
unit sphere or complex projective space will be given.

2. Preliminaries

2.1.
We prepare the materials for the first and second variational formulas

for the bienergy functional and biharmonic maps. Let us recall the definition
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of a harmonic map ϕ : (M, g) → (N, h), of a compact Riemannian manifold
(M, g) into another Riemannian manifold (N, h), which is an extremal of
the energy functional defined by

E(ϕ) =
∫

M

e(ϕ)vg,

where e(ϕ) := (1/2)|dϕ|2 is called the energy density of ϕ. That is, for any
variation {ϕt} of ϕ with ϕ0 = ϕ,

d

dt

∣∣∣∣
t=0

E(ϕt) = −
∫

M

h(τ(ϕ), V )vg = 0, (2.1)

where V ∈ Γ(ϕ−1TN) is a variation vector field along ϕ which is given by
V (x) = (d/dt)|t=0ϕt(x) ∈ Tϕ(x)N , (x ∈ M), and the tension field is given
by τ(ϕ) =

∑m
i=1 Bϕ(ei, ei) ∈ Γ(ϕ−1TN), where {ei}m

i=1 is a locally defined
orthonormal frame field on (M, g), and Bϕ is the second fundamental form
of ϕ defined by

Bϕ(X, Y ) = (∇̃dϕ)(X, Y )

= (∇̃Xdϕ)(Y )

= ∇X(dϕ(Y ))− dϕ(∇g
XY ), (2.2)

for all vector fields X, Y ∈ X(M). Here, ∇g, and ∇h, are Levi-Civita con-
nections on TM , TN of (M, g), (N, h), respectively, and ∇, and ∇̃ are the
induced ones on ϕ−1TN , and T ∗M ⊗ ϕ−1TN , respectively. By (2.1), ϕ is
harmonic if and only if τ(ϕ) = 0.

The second variation formula is given as follows. Assume that ϕ is
harmonic. Then,

d2

dt2

∣∣∣∣
t=0

E(ϕt) =
∫

M

h(J(V ), V )vg, (2.3)

where J is an elliptic differential operator, called the Jacobi operator acting
on Γ(ϕ−1TN) given by

J(V ) = ∆V −R(V ), (2.4)
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where ∆V = ∇∗∇V = −∑m
i=1{∇ei

∇ei
V − ∇∇g

ei
ei

V } is the rough
Laplacian and R is a linear operator on Γ(ϕ−1TN) given by R(V ) =∑m

i=1 Rh(V, dϕ(ei))dϕ(ei), and Rh is the curvature tensor of (N, h) given
by Rh(U, V ) = ∇h

U∇h
V −∇h

V∇h
U −∇h

[U,V ] for U, V ∈ X(N).
J. Eells and L. Lemaire [12] proposed polyharmonic (k-harmonic) maps

and Jiang [20] studied the first and second variation formulas of biharmonic
maps. Let us consider the bienergy functional defined by

E2(ϕ) =
1
2

∫

M

|τ(ϕ)|2vg, (2.5)

where |V |2 = h(V, V ), V ∈ Γ(ϕ−1TN).
The first variation formula of the bienergy functional is given by

d

dt

∣∣∣∣
t=0

E2(ϕt) = −
∫

M

h(τ2(ϕ), V )vg. (2.6)

Here,

τ2(ϕ) := J(τ(ϕ)) = ∆(τ(ϕ))−R(τ(ϕ)), (2.7)

which is called the bitension field of ϕ, and J is given in (2.4).
A smooth map ϕ of (M, g) into (N, h) is said to be biharmonic if τ2(ϕ) =

0. By definition, every harmonic map is biharmonic. For an isometric
immersion, it is minimal if and only if it is harmonic.

2.2.
Following Dragomir and Montaldo [10], and also Barletta, Dragomir

and Urakawa [5], we will prepare the materials on pseudo harmonic maps
and pseudo biharmonic maps.

Let M be a strictly pseudoconvex CR manifold of (2n + 1)-dimension,
T , the characteristic vector field on M , J is the complex structure of the
subspace Hx(M) of Tx(M) (x ∈ M), and gθ, the Webster Riemannian metric
on M defined for X, Y ∈ H(M) by

gθ(X, Y ) = (dθ)(X, JY ), gθ(X, T ) = 0, gθ(T, T ) = 1.

Let us recall for a C∞ map ϕ of (M, gθ) into another Riemannian man-
ifold (N, h), the pseudo energy Eb(ϕ) is defined ([5]) by
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Eb(ϕ) =
1
2

∫

M

2n∑

i=1

(ϕ∗h)(Xi, Xi)θ ∧ (dθ)n, (2.8)

where {Xi}2n
i=1 is an orthonormal frame field on (H(M), gθ). Then, the first

variational formula of Eb(ϕ) is as follows ([5]). For every variation {ϕt} of
ϕ with ϕ0 = ϕ,

d

dt

∣∣∣∣
t=0

Eb(ϕt) = −
∫

M

h(τb(ϕ), V )dθ ∧ (dθ)n = 0, (2.9)

where V ∈ Γ(ϕ−1TN) is defined by V (x) = (d/dt)|t=0ϕt(x) ∈ Tϕ(x)N ,
(x ∈ M). Here, τb(ϕ) is the pseudo tension field which is given by

τb(ϕ) =
2n∑

i=1

Bϕ(Xi, Xi), (2.10)

where Bϕ(X, Y ) (X, Y ∈ X(M)) is the second fundamental form (2.2) for a
C∞ map of (M, gθ) into (N, h). Then, ϕ is pseudo harmonic if τb(ϕ) = 0.

The second variational formula of Eb is given as follows ([5, p. 733]):

d2

dt2

∣∣∣∣
t=0

Eb(ϕt) =
∫

M

h(Jb(V ), V )θ ∧ (dθ)n, (2.11)

where Jb is a subelliptic operator acting on Γ(ϕ−1TN) given by

Jb(V ) = ∆b V −Rb(V ). (2.12)

Here, for V ∈ Γ(ϕ−1TN)),





∆bV = (∇H
)∗∇H

V = −
2n∑

i=1

{∇Xi
(∇Xi

V )−∇∇Xi
Xi

V
}
,

Rb(V ) =
2n∑

i=1

Rh(V, dϕ(Xi))dϕ(Xi),

(2.13)

where ∇ is the Tanaka-Webster connection, and ∇, the induced connection
on φ−1TN induced from the Levi-Civita connection∇h, and {Xi}2n

i=1, a local
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orthonormal frame field on (H(M), gθ), respectively. Here, (∇H
)XV :=

∇XH V (X ∈ X(M), V ∈ Γ(φ−1TN)), corresponding to the decomposition
X = XH + gθ(X, T )T (XH ∈ H(M)), and define πH(X) = XH (X ∈
Tx(M)), and (∇H

)∗ is the formal adjoint of ∇H
.

Dragomir and Montaldo [10] introduced the pseudo bienergy given by

Eb,2(ϕ) =
1
2

∫

M

h(τb(ϕ), τb(ϕ))θ ∧ (dθ)n, (2.14)

where τb(ϕ) is the pseudo tension field of ϕ. They gave the first variational
formula of Eb,2 as follows ([10, p. 227]):

d

dt

∣∣∣∣
t=0

Eb,2(ϕt) = −
∫

M

h(τb,2(ϕ), V )θ ∧ (dθ)n, (2.15)

where τb,2(ϕ) is called the pseudo bitension field given by

τb,2(ϕ) = ∆b(τb(ϕ))−
2n∑

i=1

Rh(τb(ϕ), dϕ(Xi))dϕ(Xi). (2.16)

Then, a smooth map ϕ of (M, gθ) into (N, h) is said to be pseudo bi-
harmonic if τb,2(ϕ) = 0. By definition, a pseudo harmonic map is always
pseudo biharmonic.

3. Generalized Chen’s conjecture for pseudo biharmonic maps

3.1.
First, let us recall the usual Weitzenbeck formula for a C∞ map from

a Riemannian manifod (M, g) of (2n + 1) dimension into a Riemannian
manifold (N, h):

Lemma 3.1 (The Weitzenbeck formula) For every C∞ map ϕ of (M, g) of
(2n+1)-dimension into a Riemannian manifold (N, h), the Hodge Laplacian
∆ acting on the 1-form dϕ, regarded as a ϕ−1TN -valued 1 form, dϕ ∈
Γ(T ∗M ⊗ ϕ−1TN), we have

∆ dϕ = ∇̃∗ ∇̃ dϕ + S. (3.1)

Here, let us recall the rough Laplacian
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∇̃∗ ∇̃ :=
2n+1∑

k=1

{∇̃ek
∇̃ek

− ∇̃∇g
ek

ek

}
(3.2)

S(X) := −(R̃(X, ek)dϕ)(ek), (X ∈ X(M)). (3.3)

Here, ∇g, ∇h are the Levi-Civita connections of (M, g), (N, h), and ∇̃
is the induced connection on T ∗M ⊗ ϕ−1TN defined by (∇̃Xdϕ)(Y ) =
∇Xdϕ(Y ) − dϕ(∇g

XY ), ∇ is the induced connection on ϕ−1TN given by
∇Xdϕ(Y ) = ∇h

dϕ(X)dϕ(Y ), (X, Y ∈ X(M)), and {ek}2n+1
k=1 is a locally de-

fined orthonormal vector field on (M, g). The curvature tensor field R̃ in
(3.3) is defined by

(R̃(X, Y )dϕ)(Z) := R(X, Y )dϕ(Z)− dϕ(Rg(X, Y )Z)

= Rh(dϕ(X), dϕ(Y ))dϕ(Z)− dϕ(Rg(X, Y )Z),

for X, Y, Z ∈ X(M), where R, Rg, and Rh are the curvature tensors of the
induced connection ∇, ∇g and ∇h, respectively.

Notice that for an isometric immersion ϕ : (M, g) → (N, h), it holds
that

(∇̃Xdϕ)(Y ) = Bϕ(X, Y ), (X, Y ∈ X(M)). (3.4)

3.2.
In this part, we first raise the CR analogue of the generalized Chen’s

conjecture, and settle it for pseudo biharmonic maps with finite pseudo
energy and finite pseudo bienergy.

Let us recall a strictly pseudoconvex CR manifold (possibly non com-
pact) (M, gθ) of (2n+1)-dimension, and the Webster Riemannian metric gθ

given by

gθ(X, Y ) = (dθ)(X, JY ), gθ(X, T ) = 0, gθ(T, T ) = 1

for X, Y ∈ H(M). Recall the material on the Levi-Civita connection ∇gθ

of (M, gθ). Due to Lemma 1.3, Page 38 in [11], it holds that,

∇gθ = ∇+ (Ω−A)⊗ T + τ ⊗ θ + 2 θ ¯ J, (3.5)
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where ∇ is the Tanaka-Webster connection, Ω = dθ, and A(X, Y ) =
gθ(τX, Y ), τX = T∇(T, X), and T∇ is the torsion tensor of ∇. And also,
(τ ⊗ θ)(X, Y ) = θ(Y )τX, (θ¯J)(X, Y ) = (1/2){θ(X)JY + θ(Y )JX} for all
vector fields X, Y on M . Here, J is the complex structure on H(M) and is
extended as an endomorphism on (M) by JT = 0.

Then, we have

∇gθ

Xk
Xk = ∇Xk

Xk −A(Xk, Xk)T, (3.6)

∇gθ

T T = 0, (3.7)

where {Xk}2n
k=1 is a locally defined orthonormal frame field on H(M) with

respect to gθ, and T is the characteristic vector field of (M, gθ). For (3.6), it
follows from that Ω(Xk, Xk) = 0, (τ⊗θ)(Xk, Xk) = 0, and (θ¯J)(Xk, Xk) =
0 since θ(Xk) = 0. For (3.7), notice that the Tanaka-Webster connection
∇ satisfies ∇T T = 0, and also τT = 0 and JT = 0, so that Ω(T, T ) =
0, A(T, T ) = 0, (τ ⊗ θ)(T, T ) = 0(θ ¯ J)(T, T ) = 0 which imply (3.7).

For (3.2) in the Weitenbeck formula in Lemma 3.1, by taking {Xk (k =
1, . . . , 2n), T}, as an orthonormal basis {ek} of our (M, gθ), and due to (3.6)
and (3.7), we have

(∇̃∗ ∇̃ dϕ)(X)

= (∆̃b dϕ)(X)

= −
2n+1∑

k=1

{∇̃ek
∇̃ek

− ∇̃∇gθ
ek

ek
}dϕ(X)

= −
2n∑

k=1

{∇̃Xk
∇̃Xk

− ∇̃∇gθ
Xk

Xk
}dϕ(X)− {∇̃T ∇̃T − ∇̃∇gθ

T T }dϕ(X)

= −
2n∑

k=1

{∇̃Xk
∇̃Xk

− ∇̃∇Xk
Xk
}dϕ(X)

− {∇̃T ∇̃T +
2n∑

k=1

A(Xk, Ak)∇̃T }dϕ(X)

= −
2n∑

k=1

{∇̃Xk
∇̃Xk

− ∇̃∇Xk
Xk
}dϕ(X)− ∇̃T ∇̃T dϕ(X) (3.8)



150 H. Urakawa

since
∑2n

k=1 A(Xk, Xk) = 0 (cf. [11, p. 35]).
For (3.3) in the Weitzenbeck formula in Lemma 3.1, we have

S(X) = −
2n+1∑

k=1

(R̃(X, ek)dϕ)(ek)

= −
2n∑

k=1

(R̃(X, Xk)dϕ)(Xk)− (R̃(X, T )dϕ)(T )

= −
2n∑

k=1

{
Rh(dϕ(X), dϕ(Xk))dϕ(Xk)− dϕ(Rgθ (X, Xk)Xk)

}

− {
Rh(dϕ(X), dϕ(T ))dϕ(T )− dϕ(Rgθ (X, T )T )

}
. (3.9)

And, we have the following formulas for (3.1) in our case,

∆ dϕ(X) = d d∗ dϕ(X)

= −d τ(ϕ)(X)

= −∇Xτ(ϕ). (3.10)

Therefore, we have

−(∆̃b dϕ)(X) =
2n∑

k=1

{∇̃Xk
∇̃Xk

− ∇̃∇Xk
Xk

}
dϕ(X)

= −(∆ dϕ)(X) + S(X)− ∇̃T ∇̃T dϕ(X)

= ∇Xτ(ϕ)

−
2n∑

k=1

{Rh(dϕ(X), dϕ(Xk))dϕ(Xk)− dϕ(Rgθ (X, Xk)Xk)}

− {Rh(dϕ(X), dϕ(T ))dϕ(T )− dϕ(Rgθ (X, T )T )}
− ∇̃T ∇̃T dϕ(X). (3.11)

3.3.
Let us consider the generalized B.-Y. Chen’s conjecture for pseudo bihar-
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monic maps which is CR analogue of the usual generalized Chen’s conjecture
for biharmonic maps:

The CR analogue of the generalized B.-Y. Chen’s conjecture
for pseudo biharmonic maps:

Let (M, gθ) be a complete strictly pseudoconvex CR manifold, and as-
sume that (N, h) is a Riemannian manifold of non-positive curvature.

Then, every pseudo biharmonic isometric immersion ϕ : (M, gθ) →
(N, h) must be pseudo harmonic.

In this section, we want to show that the above conjecture is true under
the finiteness of the pseudo energy and pseudo bienergy.

Theorem 3.2 Assume that ϕ is a pseudo biharmonic map of a strictly
pseudoconvex complete CR manifold (M, gθ) into another Riemannian man-
ifold (N, h) of non positive curvature.

If ϕ has finite pseudo bienergy Eb,2(ϕ) < ∞ and finite pseudo energy
Eb(ϕ) < ∞, then it is pseudo harmonic, i.e., τb(ϕ) = 0.

Proof of Theorem 3.2. The proof is divided into several steps.

(The first step) For an arbitrarily fixed point x0 ∈ M , let Br(x0) =
{x ∈ M : r(x) < r} where r(x) is a distance function on (M, gθ), and let us
take a cut off function η on (M, gθ), i.e.,





0 ≤ η(x) ≤ 1 (x ∈ M),

η(x) = 1 (x ∈ Br(x0)),

η(x) = 0 (x 6∈ B2r(x0)),

|∇gθ η| ≤ 2
r

(x ∈ M),

(3.12)

where r,∇gθ are the distance function, the Levi-Civita connection of (M, gθ),
respectively. Assume that ϕ : (M, gθ) → (N, h) is a pseudo biharmonic map,
i.e.,

τb, 2(ϕ) = Jb(τb(ϕ))

= ∆b(τb(ϕ))−
2n∑

j=1

Rh(τb(ϕ), dϕ(Xj))dϕ(Xj)

= 0. (3.13)
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(The second step) Then, we have

∫

M

〈∆b(τb(ϕ)), η2 τb(ϕ)〉θ ∧ (dθ)n

=
∫

M

η2
2n∑

j=1

〈Rh(τb(ϕ), dϕ(Xj))dϕ(Xj), τb(ϕ)〉θ ∧ (dθ)n

≤ 0 (3.14)

since (N, h) has the non-positive sectional curvature. But, for the left hand
side of (3.14), it holds that

∫

M

〈∆b(τb(ϕ)), η2 τb(ϕ)〉θ ∧ (dθ)n

=
∫

M

〈∇H
τb(ϕ),∇H

(η2 τb(ϕ))〉θ ∧ (dθ)n

=
∫

M

2n∑

j=1

〈∇Xj τb(ϕ),∇Xj (η
2 τb(ϕ))〉θ ∧ (dθ)n. (3.15)

Here, let us recall, for V, W ∈ Γ(ϕ−1TN)),

〈∇H
V,∇H

W 〉 =
∑
α

〈∇H

eα
V,∇H

eα
W 〉 =

2n∑

j=1

〈∇Xi
V,∇Xi

W 〉,

where {eα} is a locally defined orthonormal frame field of (M, gθ) and ∇H

XW

(X ∈ X(M), W ∈ Γ(ϕ−1TN)) is defined by

∇H

XW =
∑

j

{(XHfj)Vj + fj∇XH Vj}

for W =
∑

j fi Vj (fj ∈ C∞(M) and Vj ∈ Γ(ϕ−1TN). Here, XH is the
H(M)-component of X corresponding to the decomposition of Tx(M) =
Hx(M) ⊕ RTx (x ∈ M), and ∇ is the induced connection of ϕ−1TN from
the Levi-Civita connection ∇h of (N, h).

Since
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∇Xj
(η2 τb(ϕ)) = 2η Xjη τb(ϕ) + η2∇Xj

τb(ϕ), (3.16)

the right hand side of (3.15) is equal to

∫

M

η2
2n∑

j=1

∣∣∇Xj
τb(ϕ)

∣∣2θ ∧ (dθ)n

+ 2
∫

M

2n∑

j=1

〈η∇Xj
τb(ϕ), (Xjη)τb(ϕ)〉θ ∧ (dθ)n. (3.17)

Therefore, together with (3.14), we have

∫

M

η2
2n∑

j=1

∣∣∇Xj
τb(ϕ)

∣∣2θ ∧ (dθ)n

≤ −2
∫

M

2n∑

j=1

〈η∇Xj
τb(ϕ), (Xjη)τb(ϕ)〉θ ∧ (dθ)n

=: −2
∫

M

2n∑

j=1

〈Vj ,Wj〉θ ∧ (dθ)n, (3.18)

where we define Vj , Wj ∈ Γ(ϕ−1TN) (j = 1, . . . , 2n) by

Vj := η∇Xj
τb(ϕ), Wj := (Xjη)τb(ϕ).

Then, since it holds that 0 ≤ ∣∣√ε Vi ± (1/
√

ε)Wi

∣∣2 for every ε > 0, we have,

the right hand side of (3.18)

≤ ε

∫

M

2n∑

j=1

∣∣Vj

∣∣2θ ∧ (dθ)n +
1
ε

∫

M

2n∑

j=1

|Wj |2θ ∧ (dθ)n (3.19)

foe every ε > 0. By taking ε = 1/2, we obtain

∫

M

η2
2n∑

j=1

∣∣∇Xj
τb(ϕ)

∣∣2θ ∧ (dθ)n
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≤ 1
2

∫

M

2n∑

j=1

η2
∣∣∇Xj

τb(ϕ)
∣∣2θ ∧ (dθ)n + 2

∫

M

2n∑

j=1

∣∣Xjη
∣∣2∣∣τb(ϕ)

∣∣2θ ∧ (dθ)n.

(3.20)

Therefore, we obtain, due to the properties that η = 1 on Br(x0), and∑2n
j=1 |Xjη|2 ≤ |∇gθη|2 ≤ (2/r)2,

∫

Br(x0)

2n∑

j=1

∣∣∇τb(ϕ)
∣∣2θ ∧ (dθ)n ≤

∫

M

η2
2n∑

j=1

∣∣∇Xj
τb(ϕ)

∣∣2θ ∧ (dθ)n

≤ 4
∫

M

2n∑

j=1

∣∣Xjη
∣∣2∣∣τb(ϕ)

∣∣2θ ∧ (dθ)n

≤ 16
r2

∫

M

|τb(ϕ)|2θ ∧ (dθ)n. (3.21)

(The third step) By our assumption that Eb, 2(ϕ) = (1/2)
∫

M
|τb(ϕ)|2θ

∧ (dθ)n < ∞ and (M, gθ) is complete, if we let r →∞, then Br(x0) goes to
M , and the right hand side of (3.21) goes to zero. We have

∫

M

2n∑

j=1

∣∣∇Xj
τb(ϕ)

∣∣2θ ∧ (dθ)n = 0. (3.22)

This implies that

∇Xτb(ϕ) = 0 (for all X ∈ H(M)). (3.23)

(The fourth step) Let us take a 1 form α on M defined by

α(X) =

{〈dϕ(X), τb(ϕ)〉, (X ∈ H(M)),

0 (X = T ).

Then, we have

∫

M

|α|θ ∧ (dθ)n =
∫

M

( 2n∑

j=1

α(Xj)|2
)1/2

θ ∧ (dθ)n
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≤ (|dbϕ|2θ ∧ (dθ)n
)1/2

( ∫

M

|τb(ϕ)|2θ ∧ (dθ)n

)1/2

= 2
√

Eb(ϕ)Eb,2(ϕ) < ∞, (3.24)

where we put dbϕ :=
∑2n

i=1 dϕ(Xi)⊗Xi,

|dbϕ|2 =
2n∑

i,j=1

gθ(Xi, Xj)h(dϕ(Xi), dϕ(Xj)) =
2n∑

i=1

h(dϕ(Xi), dϕ(Xi)),

and

Eb(ϕ) =
1
2

∫

M

|dbϕ|2θ ∧ (dθ)n. (3.25)

Furthermore, let us define a C∞ function δbα on M by

δbα = −
2n∑

j=1

(∇Xj
α)(Xj) = −

2n∑

j=1

{
Xj(α(Xj))− α(∇Xj

Xj)
}
, (3.26)

where ∇ is the Tanaka-Webster connection. Notice that

div(α) =
2n∑

j=1

(∇gθ

Xj
α)(Xj) + (∇gθ

T α)(T )

=
2n∑

j=1

{
Xj(α ◦ πH(Xj))− α ◦ πH(∇gθ

Xj
Xj)

}

+ T (α ◦ πH(T ))− α ◦ πH(∇gθ

T T )

=
2n∑

j=1

{
Xj(α(Xj))− α(πH(∇gθ

Xj
Xj))

}

=
2n∑

j=1

{
Xj(α(Xj))− α(∇Xj

Xj)
}

= −δbα, (3.27)
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where πH : Tx(M) → Hx(M) is the natural projection. We used the facts
that ∇gθ

T T = 0, and πH(∇gθ

X Y ) = ∇XY (X, Y ∈ H(M)) ([2, p. 37]). Here,
recall again ∇gθ is the Levi-Civita connection of gθ, and ∇ is the Tanaka-
Webster connection. Then, we have, for (3.26),

δbα = −
2n∑

j=1

{
Xj〈dϕ(Xj), τb(ϕ)〉 − 〈dϕ(∇Xj Xj), τb(ϕ)〉}

= −
2n∑

j=1

{ 〈∇Xj
(dϕ(Xj)), τb(ϕ)〉+ 〈dϕ(Xj),∇Xj

τb(ϕ)〉
− 〈dϕ(∇Xj Xj), τb(ϕ)〉

}

= −
〈 2n∑

j=1

{∇Xj (dϕ(Xj))− dϕ(∇Xj Xj)
}
, τb(ϕ)

〉

= −|τb(ϕ)|2. (3.28)

We used (3.23) ∇Xj
τb(ϕ) = 0 to derive the last second equality of (3.28).

Then, due to (3.28), we have for Eb,2(ϕ),

Eb,2(ϕ) =
1
2

∫

M

|τb(ϕ)|2θ ∧ (dθ)n

= −1
2

∫

M

δbα θ ∧ (dθ)n

=
1
2

∫

M

div(α)θ ∧ (dθ)n

= 0. (3.29)

In the last equality, we used Gaffney’s theorem ([28, p. 271], [14]).
Therefore, we obtain τb(ϕ) ≡ 0, i.e., ϕ is pseudo harmonic. ¤

4. Parallel pseudo biharmonic isometric immersion into rank one
symmetric spaces

On the contrary of the Section Three, we consider isometric immersions
into the unit sphere or the complex projective spaces which are pseudo
biharmonic. One of the main theorem of this section is as follows:
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Theorem 4.1 Let ϕ : (M, gθ) → S2n+2(1) be an isometric immersion of a
CR manifold (M, gθ) of (2n+1)-dimension into the unit sphere S2n+2(1) of
constant sectional curvature 1 and (2n + 2)-dimension. Assume that ϕ ad-
mits a parallel pseudo mean curvature vector field with non-zero pseudo mean
curvature. The following equivalences hold : The immersion ϕ is pseudo bi-
harmonic if and only if

2n∑

i=1

λi
2 = 2n (4.1)

if and only if

∥∥Bϕ|H(M)×H(M)

∥∥2 = 2n, (4.2)

where λi (1 ≤ i ≤ 2n + 1 are the principal curvatures of the immersion ϕ

whose λ2n+1 corresponds to the characteristic vector field T of (M, gθ), and
Bϕ|H(M)×H(M) is the restriction of the second fundamental form od ϕ to the
orthogonal complement H(M) of T in the tangent space (Tx(M), gθ).

As applications of this theorem, we will give pseudo biharmonic immer-
sions into the unit sphere which are not pseudo harmonic.

The other case of rank one symmetric space is the complex projective
space Pn+1(c). We obtain the following theorem:

Theorem 4.2 Let ϕ : (M2n+1, gθ → Pn+1(c) be an isometric immer-
sion of CR manifold (M, gθ) into the complex projective space Pn+1(c) of
constant holomorphic sectional curvature c and complex (n + 1)-dimension.
Assume that ϕ has parallel pseudo-mean curvature vector filed with non-zero
pseudo mean curvature. Then, the following equivalence relation holds: The
immersion ϕ is pseudo-biharmonic if and only if the following hold :

Either (1) J(dϕ(T )) is tangent to ϕ(M) and

∥∥Bϕ|H(M)×H(M)

∥∥2 =
c

4
(2n + 3), (4.3)

or (2) J(dϕ(T )) is normal to ϕ(M) and

∥∥Bϕ|H(M)×H(M)

∥∥2 =
c

4
(2n) = c

n

2
. (4.4)
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As applications of this theorem, we will give pseudo biharmonic, but
not pseudo harmonic immersions (M, gθ) into the complex projective space
Pn+1(c).

5. Admissible immersions of strongly pseudoconvex CR mani-
folds

In this section, we introduce the notion of admissible isometric immer-
sion of strongly pseudoconvex CR manifold (M, gθ), and will show the fol-
lowing two lemmas related to ∆b(τb(ϕ)) which are necessary to prove main
theorems.

Definition 5.1 Let (M2n+1, gθ) be a strictly pseudoconvex CR manifold,
and TxM = Hx(M) ⊕ RTx, (x ∈ M), the orthogonal decomposition of the
tangent space TxM (x ∈ M), where T is the characteristic vector field of
(M2n+1, gθ), ϕ : (M2n+1, gθ) → (N, h) be an isometric immersion. The
immersion ϕ is called to be admissible if the second fundamental form Bϕ

satisfies that

Bϕ(X, T ) = 0 (5.1)

for all vector field X in H(M).

The following clarifies the meaning of the admissibility condition:

Proposition 5.2 Let ϕ be an isometric immersion of a strongly pseudo-
convex CR manifold (M2n+1, gθ) into another Riemannian manifold (N, h).
Then, ϕ is admissible if and only if

(1) dϕ(Tx) (x ∈ M) is a principal curvature vector field along ϕ with some
principal curvature λ(x) (x ∈ M).
This is equivalent the following:

(2) The shape operator Aξ of the immersion ϕ : (M, gθ) → (N, h) preserves
Hx(M) (x ∈ M) invariantly for a normal vector field ξ.

Proof of Proposition 5.2. We first note for every normal vector field ξ of
the isometric immersion ϕ : (M, gθ) → (N, h), it holds that

〈Bϕ(X, T ), ξ〉 = gθ(AξX, T ) = gθ(X, AξT ), (X ∈ Hx(M)). (#)
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Thus, if ϕ is admissible, then the left hand side of (#) vanishes, then we
have immediately that

{
AξX ∈ Hx(M) (X ∈ Hx(M)),

AξTx = λ(x)Tx (for some real number λ(x)).
([)

Conversely, if one of the conditions of ([) holds, then it turns out im-
mediately that ϕ is admissible. ¤

The following two lemmas will be essential to us later.

Lemma 5.3 Let ϕ : (M2n+1, gθ) → (N, h) be an admissible isometric
immersion with pseudo parallel pseudo mean curvature vector field, i.e.,
∇Xτb(ϕ) = 0 (X ∈ H(M)). Then, the pseudo tension field τb(ϕ) satis-
fies that

−∆b(τb(ϕ)) = 〈−∆b(τb(ϕ)), dϕ(Xi)〉dϕ(Xi)

+
〈∇Xiτb(ϕ), dϕ(Xj)

〉(∇̃Xidϕ
)
(Xj), (5.2)

where {Xj}2n
j=1 is a local orthonormal frame field of H(M) with respect to

gθ.

Lemma 5.4 Under the same assumptions of the above lemma, we have

−∆b(τb(ϕ)) =
〈
τb(ϕ), Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

〉
dϕ(Xj)

+
〈
τb(ϕ), Rh(dϕ(Xj), dϕ(T ))dϕ(T )

〉
dϕ(Xj)

− 〈
τb(ϕ),

(∇̃Xi
dϕ

)
(Xj)

〉(∇̃Xi
dϕ

)
(Xj), (5.3)

where Rh(U, V )W is the curvature tensor field of (N, h) defined by
Rh(U, V )W = ∇h

U (∇h
V W )−∇h

V (∇N
U W )−∇h

[U,V ]W for vector fields U, V, W

on N , and ∇h is the Levi-Civita connection of (N, h).

Proof of Lemma 5.3. The proof is divided into several steps.

(The first step) Since we assume the pseudo mean curvature vector
field τb(ϕ) is pseudo parallel, i.e., ∇Xτb(ϕ) = 0 (X ∈ H(M)), the in-
duced connection ∇ of the Levi-Civita connection ∇h to the induced bundle
ϕ−1TN satisfies that, for all X ∈ X(M),
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∇Xτb(ϕ) = ∇>Xτb(ϕ) +∇⊥Xτb(ϕ) = ∇>Xτb(ϕ) ∈ Γ(ϕ∗TM).

Then. we have, for all X ∈ H(M),

∇Xτb(ϕ) =
2n∑

j=1

〈∇Xτb(ϕ), dϕ(Xj)〉dϕ(Xj) + 〈∇Xτb(ϕ), dϕ(T )〉dϕ(T )

=
2n∑

j=1

〈∇Xτb(ϕ), dϕ(Xj)〉dϕ(Xj). (5.4)

Due to the assumption of the admissibility of ϕ, for all X ∈ H(M),

〈∇Xτb(ϕ), dϕ(T )〉 = X〈τb(ϕ), dϕ(T )〉 − 〈τb(ϕ),∇Xdϕ(T )〉 = 0. (5.5)

In fact, τb(ϕ) =
∑2n

i=1 Bϕ(Xi, Xi) is orthogonal to dϕ(TM) with respect to
〈 , 〉, we have 〈τb(ϕ), dϕ(T )〉 = 0. So, the first term of (5.5) vanishes. By
the admissibility of ϕ, for all X ∈ H(M),

0 = Bϕ(X, T ) = ∇Xdϕ(T )− dϕ(∇gθ

X T ), (5.6)

so that ∇Xdϕ(T ) is tangential, which implies that

〈τb(ϕ),∇Xdϕ(T )〉 = 0.

We have (5.5), and then (5.4).

(The second step) We calculate −∆b(τb(ϕ)). We have by (5.4),

−∆b(τb(ϕ)) =
2n∑

i=1

{∇Xi
(∇Xi

τb(ϕ))−∇∇Xi
Xi

τb(ϕ)
}

=
2n∑

i=1




2n∑

j=1

∇Xi

{〈∇Xτb(ϕ), dϕ(Xj)〉dϕ(Xj)
}

−
2n∑

j=1

〈∇∇Xi
Xiτb(ϕ), dϕ(Xj)〉dϕ(Xj)
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=
2n∑

i,j=1




〈∇Xi(∇Xiτb(ϕ)), dϕ(Xj)〉dϕ(Xj)

+ 〈∇Xi
τb(ϕ),∇Xi

(dϕ(Xj))〉dϕ(Xj)

+ 〈∇Xi
τb(ϕ), dϕ(Xj)〉∇Xi

dϕ(Xj)

− 〈∇∇Xi
Xiτb(ϕ), dϕ(Xj)〉dϕ(Xj)




=
2n∑

j=1

〈−∆b(τb(ϕ)), dϕ(Xj)〉dϕ(Xj)

+
2n∑

i,j=1

[
〈∇Xi

τb(ϕ),∇Xi
(dϕ(Xj))〉dϕ(Xj)

+ 〈∇Xi
τb(ϕ), dϕ(Xj)〉∇Xi

dϕ(Xj)

]
. (5.7)

(The third step) Here, we have

{
(∇̃Xidϕ)(Xj) = ∇Xidϕ(Xj)− dϕ(∇XiXj) ∈ T⊥M,

∇Xi
τb(ϕ) ∈ T⊥M,

(5.8)

where ∇ is the Tanaka-Webster connection and ∇XiXj ∈ H(M). Then, we
have, in the first term of the second sum of (5.7),

2n∑

i,j=1

〈∇Xi
τb(ϕ),∇Xi

dϕ(Xj)〉dϕ(Xj)

=
2n∑

i,j=1

〈∇Xiτb(ϕ), (∇̃Xidϕ)(Xj) + dϕ(∇XiXj)
〉
dϕ(Xj)

=
2n∑

i,j=1

〈∇Xiτb(ϕ), dϕ(∇XiXj)
〉
dϕ(Xj)

=
2n∑

i,j=1

〈
∇Xi

τb(ϕ), dϕ

( 2n∑

k=1

〈∇Xi
Xj , Xk〉Xk

)〉
dϕ(Xj), (5.9)

because of ∇Xi
Xj ∈ H(M). Since the Tanaka-Webster connection ∇ satis-

fies ∇gθ = 0, we have

〈∇Xi
Xj , Xk〉 = Xi〈Xj , Xk〉 − 〈Xj ,∇Xi

Xk〉 = −〈Xj ,∇Xi
Xk〉.
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Thus, (5.9) turns to

2n∑

i,j=1

〈∇Xi
τb(ϕ),∇Xi

dϕ(Xj)〉dϕ(Xj)

=
2n∑

i,j,k=1

〈∇Xi
Xj , Xk〉〈∇Xi

τb(ϕ), dϕ(Xk)〉dϕ(Xj)

= −
2n∑

i,j,k=1

〈Xj ,∇Xi
Xk〉〈∇Xi

τb(ϕ), dϕ(Xk)〉dϕ(Xj)

= −
2n∑

i,k=1

〈∇Xi
τb(ϕ), dϕ(Xk)〉dϕ(∇Xi

Xk). (5.10)

(The fourth step) By inserting (5.10) into (5.7), the second sum of
(5.7) turns to

2n∑

i,j=1

[
〈∇Xi

τb(ϕ),∇Xi
(dϕ(Xj))〉dϕ(Xj)

+ 〈∇Xiτb(ϕ), dϕ(Xj)〉∇Xidϕ(Xj)

]

=
2n∑

i,j=1

[
〈∇Xi

τb(ϕ), dϕ(Xj)〉∇Xi
dϕ(Xj)

− 〈∇Xiτb(ϕ), dϕ(Xj)〉dϕ(∇XiXj)

]

=
2n∑

i,j=1

〈∇Xi
τb(ϕ), dϕ(Xj)〉

(∇̃Xi
dϕ

)
(Xj). (5.11)

Thus, by (5.7) and (5.11), we obtain Lemma 5.3. ¤

Proof of Lemma 5.4. We will calculate the right hand side of (5.2) in
Lemma 5.3. The proof is divided into several steps.

(The first step) We first note that

〈∇Xi
τb(ϕ), dϕ(Xj)〉+ 〈τb(ϕ),∇Xi

dϕ(Xj)〉 = Xi〈τb(ϕ), dϕ(Xj)〉
= 0. (5.12)

Thus, by (5.12), we have
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〈∇Xi
τb(ϕ), dϕ(Xj)〉 = −〈τb(ϕ),∇Xi

dϕ(Xj)〉
= −〈τb(ϕ),∇Xi

dϕ(Xj)− dϕ(∇Xi
Xj)〉

= −〈τb(ϕ),∇Xidϕ(Xj)− dϕ(∇gθ
XiXj)〉

(by 〈τb(ϕ), dϕ(T )〉 = 0)

= −〈τb(ϕ),
(∇̃Xi

dϕ
)
(Xj)〉. (5.13)

(The second step) By differentiating (5.12), we have

〈∇Xi(∇Xiτb(ϕ)), dϕ(Xj)
〉

+ 2
〈∇Xiτb(ϕ),∇Xidϕ(Xj)

〉

+
〈
τb(ϕ),∇Xi

(∇Xi
dϕ(Xj))

〉
= 0. (5.14)

And we have
〈∇∇Xi

Xiτb(ϕ), dϕ(Xj)
〉

+
〈
τb(ϕ),∇∇Xi

Xidϕ(Xj)
〉

= ∇Xi
Xi〈τb(ϕ), dϕ(Xj)〉 = 0. (5.15)

Thus, by (5.14) and (5.15), we have

〈−∆b(τb(ϕ)), dϕ(Xj)〉+ 2〈∇Xiτb(ϕ),∇Xidϕ(Xj)〉
+ 〈τb(ϕ),−∆b(dϕ(Xj))〉 = 0. (5.16)

(The third step) For the second term of the left hand side of (5.16),
we have

2〈∇Xi
τb(ϕ),∇Xi

dϕ(Xj)〉 = −2
〈
τb(ϕ), (∇̃Xi

dϕ)(∇Xi
Xj)

〉
. (5.17)

Because, the left hand side of (5.17) is

2〈∇Xi
τb(ϕ),∇Xi

dϕ(Xj)〉 = 2
〈∇Xi

τb(ϕ), (∇̃Xi
dϕ)(Xj) + dϕ(∇gθ

Xi
Xj)

〉

= 2
〈∇Xi

τb(ϕ), (∇̃Xi
dϕ)(Xj) + dϕ(∇Xi

Xj)
〉

= 2
〈∇Xi

τb(ϕ), dϕ(∇Xi
Xj)

〉

= −2
〈
τb(ϕ),∇Xidϕ(∇XiXj)

〉
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(by 〈τb(ϕ), dϕ(∇Xi
Xj)〉 = 0)

= −2
〈
τb(ϕ), (∇̃Xi

dϕ)(∇Xi
Xj)

〉
(5.18)

which is the right hand side of (5.17). In the last step of (5.18), we used
the equality 〈τb(ϕ),∇Xidϕ(T )〉 = 0 which follows from that ∇Xidϕ(T ) is
tangential.

(The fourth step) For the third term of the left hand side of (5.16), we
have

〈τb(ϕ),−∆b(dϕ(Xj))〉

=
〈

τb(ϕ), (−∆̃bdϕ)(Xj) + 2
2n∑

k=1

(∇̃Xk
dϕ)(∇Xk

Xj)
〉

. (5.19)

Because, by the definition of ∆b, we have

〈τb(ϕ),−∆b(dϕ(Xj))〉

=
〈

τb(ϕ),
2n∑

k=1

{∇Xk
(∇Xk

dϕ(Xj))−∇∇Xk
Xk

dϕ(Xj)
}〉

=
〈

τb(ϕ),
2n∑

k=1

{∇Xk

(
(∇̃Xk

dϕ)(Xj) + dϕ(∇Xk
Xj)

)

− (∇̃∇Xk
Xk

dϕ)(Xj)− dϕ(∇∇Xk
Xk

Xj)
}〉

=
〈

τb(ϕ),
2n∑

k=1

{
(∇̃Xk

∇̃Xk
dϕ)(Xj) + (∇̃Xk

dϕ)(∇Xk
Xj)

+ (∇̃Xk
dϕ)(∇Xk

Xj) + dϕ(∇Xk
∇Xk

Xj)

− (∇̃∇Xk
Xk

dϕ)(Xj)
〉}

=
〈

τb(ϕ), (−∆̃bdϕ)(Xj) + 2
2n∑

k=1

(∇̃Xk
dϕ)(∇Xk

Xj)
〉

,

which is (5.19). To get the last equality of the above, we used the following
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equations: for all X ∈ H(M), it holds that

〈τb(ϕ), (∇Xdϕ)(T )〉 = 〈τb(ϕ), dϕ(X)〉 = 〈τb(ϕ), (∇̃Xdϕ)(T )〉 = 0. (5.20)

To get (5.20), due to the admissibility of ϕ, we have

(∇̃Xdϕ)(T ) = (∇Xdϕ)(T )− dϕ(∇gθ

X T ) = Bϕ(X, T ) = 0,

and then, (∇Xdϕ)(T ) is tangential for all X ∈ H(M). We have (5.20), and
then (5.19).

(The fifth step) Then, the right hand side of (5.19) is equal to

〈
τb(ϕ), (−∆̃bdϕ)(Xj) + 2

2n∑

k=1

(∇̃Xk
dϕ)(∇Xk

Xj)
〉

=
〈

τb(ϕ),∇Xj
τ(ϕ)

−
2n∑

k=1

{
Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)− dϕ(Rgθ (Xj , Xk)Xk)

}

−
2n∑

k=1

{
Rh(dϕ(Xj), dϕ(T ))dϕ(T )− dϕ((Rgθ (Xj , T )T

}

− ∇̃T ∇̃T dϕ(Xj)

+ 2(∇̃Xk
dϕ)(∇Xk

Xj)
〉

, (5.21)

which follows from the formula (3.11).
Here, notice that

〈τb(ϕ),∇Xj
τ(ϕ)〉 = 0. (5.22)

Because τb(ϕ) is normal, and ∇Xj τ(ϕ) is tangential. And also we have

〈τb(ϕ), ∇̃T (dϕ(Xj)〉 = 0, (5.23)

〈τb(ϕ), ∇̃T ∇̃T dϕ(Xj)〉 = 0. (5.24)
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To see (5.23), since we assume ϕ is an admissible isometric immersion, we
have

∇̃T dϕ(Xj) = ∇h
T Xj = ∇gθ

T Xj + Bϕ(T, Xj) = ∇gθ

T Xj (5.25)

which is tangential, so that we have (5.23). Furthermore, to see (5.24), we
have

∇̃T ∇̃T dϕ(Xj) = ∇̃(∇gθ

T Xj)

= ∇h
T (∇gθ

T Xj)

= ∇gθ

T (∇gθ

T Xj) + B(T,∇gθ

T Xj). (5.26)

Here, for every X ∈ H(M),

∇gθ

T X ∈ H(M).

Indeed, since gθ(T, X) = 0, and ∇gθ

T T = 0 (cf. [11, pp. 47, and 48]),

gθ(T,∇gθ

T X) = T (gθ(T,X))− gθ(∇gθ

T T, X) = 0,

which implies ∇gθ

T X ∈ H(M). Thus, the admissibility implies that the sec-
ond term of (5.26) vanishes. Thus, the right hand side of (5.26) is tangential,
which implies (5.24).

Therefore, we obtain

〈
τb(ϕ), (−∆̃bdϕ)(Xj) + 2

2n∑

k=1

(∇̃Xk
dϕ)(∇Xk

Xj)
〉

= −
2n∑

k=1

〈τb(ϕ), Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)〉

−
2n∑

k=1

〈τb(ϕ), Rh(dϕ(Xj), dϕ(T ))dϕ(T )〉

+ 2
2n∑

k=1

〈τb(ϕ), (∇̃Xk
dϕ)(∇Xk

Xj)〉. (5.27)
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(The sixth step) Now, return to (5.16), by using (5.17), (5.19) and
(5.27), we have

0 = 〈−∆b(τb(ϕ)), dϕ(Xj)〉+ 2〈∇Xiτb(ϕ),∇Xidϕ(Xj)〉
+ 〈τb(ϕ),−∆b(dϕ(Xj))〉

= 〈−∆b(τb(ϕ)), dϕ(Xj)〉 − 2〈τb(ϕ), (∇̃Xi
dϕ)(∇Xi

Xj)〉
+ 〈τb(ϕ),−∆b(dϕ(Xj))〉

= 〈−∆b(τb(ϕ)), dϕ(Xj)〉 − 2〈τb(ϕ), (∇̃Xi
dϕ)(∇Xi

Xj)〉

+
〈

τb(ϕ), (−∆̃bdϕ)(Xj) + 2
2n∑

k=1

(∇̃Xk
dϕ)(∇Xk

Xj)
〉

= 〈−∆b(τb(ϕ)), dϕ(Xj)〉 − 2〈τb(ϕ), (∇̃Xi
dϕ)(∇Xi

Xj)〉

+
〈

τb(ϕ),−
2n∑

k=1

Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

−Rh(dϕ(Xj), dϕ(T ))dϕ(T ) + 2
2n∑

k=1

(∇̃Xk
dϕ)(∇Xk

Xj)
〉

= 〈−∆b(τb(ϕ)), dϕ(Xj)〉

+
〈

τb(ϕ),−
2n∑

k=1

Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

−Rh(dϕ(Xj), dϕ(T ))dϕ(T )
〉

. (5.28)

(The seventh step) Inserting (5.28) into (5.2) of Lemma 5.3, we obtain

−∆b(τb(ϕ)) =
〈

τb(ϕ),
2n∑

k=1

Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)
〉

dϕ(Xj)

+ 〈τb(ϕ), Rh(dϕ(Xj), dϕ(T ))dϕ(T )〉dϕ(Xj)

+ 〈∇Xi
τb(ϕ), dϕ(Xj)〉(∇̃Xi

dϕ)(Xj). (5.29)
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At last, for the third term of (5.29), we have

〈∇Xiτb(ϕ), dϕ(Xj)〉 = Xi〈τb(ϕ), dϕ(Xj)〉 − 〈τb(ϕ),∇Xidϕ(Xj)〉
= −〈τb(ϕ), (∇̃Xi

dϕ)(Xj)〉. (5.30)

Together with (5.29) and (5.30), we have (5.3) of Lemma 5.4. ¤

Due to Lemma 5.4 and the definition of biharmonicity, we obtain im-
mediately

Theorem 5.5 Let ϕ be an admissible isometric immersion of a strongly
pseudoconvex CR manifold (M, gθ) into another Riemannian manifold
(N, h) whose pseudo mean curvature vector field along ϕ is pseudo paral-
lel, i.e., ∇Xτb(ϕ) = 0, (X ∈ H(M)). Then, ϕ is pseudo biharmonic if and
only if

τb,2(ϕ) := ∆b

(
τb(ϕ)

)−
2n∑

j=1

Rh
(
τb(ϕ), dϕ(Xj)

)
dϕ(Xj) = 0 (5.31)

if and only if

−
2n∑

j,k=1

h
(
τb(ϕ), Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

)
dϕ(Xj)

−
2n∑

j=1

h
(
τb(ϕ), Rh(dϕ(Xj), dϕ(T ))dϕ(T )

)
dϕ(Xj)

+
2n∑

j,k=1

h
(
τb(ϕ), Bϕ(Xj , Xk)

)
Bϕ(Xj , Xk)

−
2m∑

j=1

Rh
(
τb(ϕ), dϕ(Xj)

)
dϕ(Xj) = 0, (5.32)

where {Xj}2n
j=1 is an orthonormal frame field of (H(M), gθ).

Remark 5.6 Due to [20, p. 220, Lemma 10], and the definition of bi-
tension field τ2(ϕ) for an isometric immersion ϕ of a Riemannian manifold
(M, g) into another Riemannian manifold (N, h), we can also obtain imme-
diately the following useful theorem:
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Theorem Let ϕ be an isometric immersion of a Riemannian manifold
(Mm, g) into another Riemannian manifold (Nn, h) whose mean curvature
vector field along ϕ is pseudo parallel. Let {ej}m

j=1 be an orthonormal frame
field of (M, g). Then, ϕ is biharmonic if and only if

τ2(ϕ) := ∆
(
τ(ϕ)

)−
m∑

j=1

Rh
(
τ(ϕ), ej

)
ej = 0 (5.33)

if and only if

−
m∑

j,k=1

h
(
τ(ϕ), Rh(dϕ(ej), dϕ(ek))dϕ(ek)

)
dϕ(ej)

+
m∑

j,k=1

h
(
τ(ϕ), Bϕ(ej , ek)

)
Bϕ(ej , ek)

−
m∑

j=1

Rh
(
τ(ϕ), dϕ(ej)

)
dϕ(ej) = 0. (5.34)

6. Isometric immersions into the unit sphere

In this section, we treat with admissible isometric immersions of
(M2n+1, gθ) into the unit sphere (N, h) = S2n+2(1) with parallel pseudo
mean curvature vector field with non-zero pseudo mean curvature.

The curvature tensor field Rh of the target space (N, h) = S2n+2(1)
satifies that

Rh(X, Y )Z = h(Z, Y )X − h(Z,X)Y (6.1)

for all vector fields X, Y, Z on N . Then, we have

(
Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

)⊥ = 0, (6.2)
(
Rh(dϕ(Xj), dϕ(T ))dϕ(T )

)⊥ = 0, (6.3)

for all i, j = 1, . . . , 2n. Therefore, we obtain by (5.3) in Lemma 5.4,

−∆b(τb(ϕ)) = −〈
τb(ϕ),

(∇̃Xidϕ
)
(Xj)

〉(∇̃Xidϕ
)
(Xj). (6.4)
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On the other hand, we have

2n∑

k=1

Rh(τb(ϕ), dϕ(Xk))dϕ(Xk)

=
2n∑

k=1

h(dϕ(Xk), dϕ(Xk))τb(ϕ)−
2n∑

k=1

h(dϕ(Xk), τb(ϕ))τb(ϕ)

= 2n τb(ϕ). (6.5)

Now, let us recall the pseudo biharmonicity of ϕ is equivalent to that

−∆b(τb(ϕ)) +
2n∑

k=1

Rh(τb(ϕ), dϕ(Xk))dϕ(Xk) = 0 (6.6)

which is equivalent to that

−〈
τb(ϕ), (∇̃Xidϕ)(Xj)

〉
(∇̃Xidϕ)(Xj) + 2n τb(ϕ) = 0. (6.7)

For our immersion ϕ : (M, gθ) → S2n+2(1), let ξ be the unit normal
vector filed on M along ϕ, we have by definition,

(∇̃Xi
dϕ

)
(Xj) = Bϕ(Xi, Xj) = Hij ξ. (6.8)

Then, we have by definition of τb(ϕ),

τb(ϕ) =
2n∑

i=1

(∇̃Xi
dϕ

)
(Xi) =

( 2n∑

i=1

Hii

)
ξ. (6.9)

Therefore, we have

‖τb(ϕ)‖2 =
( 2n∑

i=1

Hii

)2

‖ξ‖2 =
( 2n∑

i=1

Hii

)2

. (6.10)

By the admissibility, we have
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‖Bϕ‖2 =
2n∑

i,j=1

‖Bϕ(Xi, Xj)‖2 + 2
∑

i=1

‖Bϕ(Xi, T )‖2 + ‖Bϕ(T, T )‖2

=
2n∑

i,j=1

‖Hij ξ‖2 + ‖Bϕ(T, T )‖2

=
2n∑

i,j=1

Hij
2 + ‖Bϕ(T, T )‖2. (6.11)

Due to (6.7), (6.8) and (6.9), the biharmonicity of ϕ is equivalent to that

0 = −
〈( 2n∑

k=1

Hkk

)
ξ,Hij ξ

〉
Hij ξ + 2n

( 2n∑

k=1

Hkk

)
ξ (6.12)

which is equivalent to that

0 =
( 2n∑

k=1

Hkk

){
−

2n∑

i,j=1

Hij
2 + 2n

}

= ‖τb(ϕ)‖{− ‖Bϕ‖2 + ‖Bϕ(T, T )‖2 + 2n
}

(6.13)

by (6.11). By our assumption of non-zero pseudo mean curvature, ‖τb(ϕ)‖ 6=
0 at every point, we obtain the following equivalence relation: ϕ is pseudo
biharmonic if and only if

‖Bϕ‖2 = ‖Bϕ(T, T )‖2 + 2n (6.14)

at every point in M .
By summing up the above, we obtain the following theorem:

Theorem 6.1 Let ϕ be an sdmissible isometric immersion of a strictly
pseudoconvex CR manifold (M, gθ) into the unit sphere (N, h) = S2n+2(1)
Assume that the pseudo mean curvature vector field is pseudo parallel with
non-zero pseudo mean curvature. Then, ϕ is pseudo biharmonic if and only
if

‖Bϕ‖2 = ‖Bϕ(T, T )‖2 + 2n. (6.15)
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The admissibility condition is that: dϕ(T ) is the principal curvature
vector field along ϕ with some principal curvature, say λ2n+1. I.e.,

AξT = λ2n+1 T.

Then, we have

‖Bϕ‖2 =
2n+1∑

i=1

λi
2, and ‖Bϕ(T, T )‖2 = λ2n+1.

By Theorem 6.1, we have immediately. Thus, we obtain

Corollary 6.2 Let ϕ : (M2n+1, gθ) → S2n+2(1) be an isometric immer-
sion whose the pseudo mean curvature vector field is pseudo parallel and has
non-zero pseudo mean curvature. Then, ϕ is pseudo biharmonic if and only
if it holds that

2n∑

i=1

λi
2 = 2n (6.16)

which is equivalent to that

∥∥Bϕ|H(M)×H(M)

∥∥2 = 2n, (6.17)

where Bϕ|H(M)×H(M) is the restriction of Bϕ to the subspace H(M) of the
tangent space TxM (x ∈ M).

7. Isometric immersions to the complex projective space

In this section, we will consider admissible isometric immersions of
(M2n+1, gθ) into the complex projective space (N, h) = Pn+1(c) (c > 0)
whose mean curvature vector field is parallel with non-zero pseudo mean
curvature.

7.1.
Let us recall that the curvature tensor field (N, h) = Pn+1(c) is given

by
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Rh(U, V )W =
c

4
{
h(V, W )U − h(U,W )V

+ h(JV, W )JU − h(JU,W )JV + 2h(U, JV )JW
}
, (7.1)

where J is the adapted complex structure of Pn+1(c), and U, V and W are
vector fields on Pn+1(c), respectively. Therefore, we have

Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

=
c

4
{
h(dϕ(Xk), dϕ(Xk))dϕ(Xj)− h(dϕ(Xj), dϕ(Xk))dϕ(Xk)

+ h(J dϕ(Xk), dϕ(Xk))Jdϕ(Xj)− h(Jdϕ(Xj), dϕ(Xk))Jdϕ(Xk)

+ 2h(dϕ(Xj), Jdϕ(Xk))Jdϕ(Xk)
}

=
c

4
{
dϕ(Xj)− δjk dϕ(Xk) + 3 h(dϕ(Xj), Jdϕ(Xk))Jdϕ(Xk)

}
. (7.2)

We show first

2n∑

j,k=1

h
(
τb(ϕ), Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

)
dϕ(Xj)

= −3c

4
h(τb(ϕ), J dϕ(T ))(J dϕ(T ))>

− 3c

4

2n∑

j=1

h
(
dϕ(Xj), J(J τb(ϕ))>

)
dϕ(Xj). (7.3)

Recall here that the tangential part of Z ∈ Tϕ(x)N (x ∈ M) is given by

Z> =
2n∑

i=1

h(Z, dϕ(Xi))dϕ(Xi) + h(Z, dϕ(T ))dϕ(T ). (7.4)

Since h(τb(ϕ), dϕ(Xj)) = 0 (j = 1, . . . , 2n), and (7.2), one can calculate the
left hand side of (7.3) as follows:

2n∑

j,k=1

h
(
τb(ϕ), Rh(dϕ(Xj), dϕ(Xk))dϕ(Xk)

)
dϕ(Xj)
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=
3c

4

2n∑

j,k=1

h(τb(ϕ), h(dϕ(Xj), J dϕ(Xk))h(τb(ϕ), J dϕ(Xk))dϕ(Xj)

=
3c

4

2n∑

j,k=1

h(J dϕ(Xj), dϕ(Xk))h(J τb(ϕ), dϕ(Xk))dϕ(Xj)

=
3c

4

2n∑

j=1

h

(
J dϕ(Xj),

2n∑

k=1

h(J τb(ϕ), dϕ(Xk))dϕ(Xk)
)

dϕ(Xj)

=
3c

4

2n∑

j=1

h
(
J dϕ(Xj), (J τb(ϕ))> − h(J τb(ϕ), dϕ(T ))dϕ(T )

)
dϕ(Xj)

=
3c

4

2n∑

j=1

h(J dϕ(Xj), (J τb(ϕ))>)dϕ(Xj)

+
3c

4
h(Jτb(ϕ), dϕ(T ))

2n∑

j=1

h(dϕ(Xj), J dϕ(T ))dϕ(Xj)

= −3c

4

2n∑

j=1

h(dϕ(Xj), J(J τb(ϕ))>)dϕ(Xj)

− 3c

4
h(τb(ϕ), J dϕ(T ))(J dϕ(T ))>. (7.5)

Then, (7.5) is just (7.3).
Second, by a similar way,

2n∑

j=1

〈τb(ϕ), Rh(dϕ(Xj), dϕ(T ))dϕ(T )〉dϕ(Xj)

=
2n∑

j=1

〈
τb(ϕ),

3c

4
h(dϕ(Xj), J dϕ(T ))J dϕ(T )

〉
dϕ(Xj)

=
3c

4
h(τb(ϕ), J dϕ(T ))(J dϕ(T ))> (7.6)

in the last equality of (7.6) we used that h(dϕ(T ), J dϕ(T )) = 0.
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Thus, we have

∆b(τb(ϕ)) =
3c

4
h(τb(ϕ), Jdϕ(T ))(Jdϕ(T ))>

+
3c

4

2n∑

j=1

h(dϕ(Xj), J(Jτb(ϕ))>)dϕ(Xj)

− 3c

4
h(τb(ϕ), J dϕ(T ))(J dϕ(T ))>

+ 〈τb(ϕ), Bϕ(Xi, Xj)〉Bϕ(Xi, Xj)

=
3c

4

2n∑

j=1

h(dϕ(Xj), J((Jτb(ϕ))>)dϕ(Xj)

+ 〈(τb(ϕ), Bϕ(Xi, Xj)〉Bϕ(Xi, Xj). (7.7)

Therefore, an isometric immersion ϕ is pseudo biharmonic if and only
if the pseudo biharmonic map equation folds:

∆b(τb(ϕ))−
2n∑

k=1

Rh(τb(ϕ), dϕ(Xk)dϕ(Xk) = 0. (7.8)

By (7.7) and (7.1), (7.8) is equivalent to that the following (7.9) holds:

3c

4

2n∑

j=1

h(dϕ(Xj), J((Jτb(ϕ)>))dϕ(Xj)

+ 〈τb(ϕ), Bϕ(Xi, Xj)〉Bϕ(Xi, Xj)

− 2nc

4
τb(ϕ) +

3c

4

2n∑

k=1

h(dϕ(Xj), Jτb(ϕ))J dϕ(Xk)

= 0. (7.9)

7.2.
Let ξ be the unit normal vector field along the admissible isometric

immersion ϕ : (M, gθ) → Pn+1(c) (c > 0).
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We have immediately




Bϕ(Xi, Xi) = (∇̃Xi
dϕ)(Xj) = Hij ξ,

τb(ϕ) =
2n∑

k=1

(∇̃Xk
dϕ)(Xk) =

( 2n∑

k=1

Hkk

)
ξ,

J τb(ϕ) =
( 2n∑

k=1

Hkk

)
Jξ,

(7.10)

and then, we have

h(ξ, J ξ) = 0. (7.11)

Indeed, we have

−h(J ξ, ξ) = h(J ξ, J(J ξ)) = h(ξ, J ξ),

which implies that h(ξ, J ξ) = 0.
Due to (7.11), J ξ is tangential. By (7.10), J τb(ϕ) is also tangential.

Therefore, we have

(J τb(ϕ))> = J τb(ϕ). (7.12)

In particular, we have

2n∑

j=1

h(dϕ(Xj), J(J τb(ϕ))>))dϕ(Xj)

=
2n∑

j=1

h(dϕ(Xj), J(J τb(ϕ)))dϕ(Xj)

= −
2n∑

j=1

h(dϕ(Xj), τb(ϕ))dϕ(Xj)

= 0 (7.13)

by using (7.12) and τb(ϕ) is a normal vector field along ϕ.



CR rigidity of pseudo biharmonic maps 177

Since J τb(ϕ) is tangential, we can write as

J τb(ϕ) =
2n∑

k=1

h(dϕ(Xk), J τb(ϕ))dϕ(Xk) + h(dϕ(T ), J τb(ϕ))dϕ(T ),

which implies that

2n∑

k=1

h(dϕ(Xk), J τb(ϕ))dϕ(Xk)

= J τb(ϕ)− h(dϕ(T ), J τb(ϕ))dϕ(T ). (7.14)

Therefore, applying J to (7.14), we have

2n∑

k=1

h(dϕ(Xk), J τb(ϕ))J dϕ(Xk)

= J2 τb(ϕ)− h(dϕ(T ), J τb(ϕ))J dϕ(T )

= −τb(ϕ)− h(dϕ(T ), J τb(ϕ))J dϕ(T ). (7.15)

Inserting (7.15) into (7.9), the left hand side of (7.9) is equal to

3c

4

2n∑

j=1

h(dϕ(Xj), J((J τb(ϕ))>))dϕ(Xj)

+
2n∑

i,j=1

h(τb(ϕ), Bϕ(Xi, Xj)Bϕ(Xi, Xj)

− 2nc

4
τb(ϕ) +

3c

4

{
− τb(ϕ)− h(dϕ(T ), J τb(ϕ))Jdϕ(T )

}

=
2n∑

i,j=1

h(τb(ϕ), Bϕ(Xi, Xj))Bϕ(Xi, Xj)

− c(2n + 3)
4

τb(ϕ)− 3c

4
h(dϕ(T ), J τb(ϕ))J dϕ(T ), (7.16)



178 H. Urakawa

where we used (7.13) for vanishing the first term of the left hand side of
(7.16).

Due to (7.9) and (7.16), we obtain the equivalence relation that ϕ is
biharmonic if and only if both the equations

(1) h(dϕ(T ), J τb(ϕ))(J dϕ(T ))> = 0, (7.17)

and

(2)
2n∑

i,j=1

h(τb(ϕ), Bϕ(Xi, Xj))Bϕ(Xi, Xj)− c(2n + 3)
4

τb(ϕ)

− 3c

4
h(dϕ(T ), J τb(ϕ))(J dϕ(T ))⊥ = 0, (7.18)

hold.

7.3.
For the first equation (1) (7.17) is equivalent to that

h(dϕ(T ), J τb(ϕ)) = 0 or (J dϕ(T ))> = 0. (7.19)

But, by (7.10), we have

h(dϕ(T ), J τb(ϕ)) =
( 2n∑

k=1

Hkk

)
h(dϕ(T ), J ξ)

= −
( 2n∑

k=1

Hkk

)
h(J dϕ(T ), ξ). (7.20)

By our assumption that the pseudo mean curvature
∑2n

k=1 Hkk 6= 0, to hold
that h(dϕ(T ), J τb(ϕ)) = 0 is equivalent to that

h(J dϕ(T ), ξ) = 0. (7.21)

And to hold that (J dϕ(T ))> = 0 is equivalent to that

J dϕ(T ) = h(J dϕ(T ), ξ)ξ. (7.22)
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Thus, (1) (7.17) holds if and only if

(7.21) h(J dϕ(T ), ξ) = 0, or

(7.22) J dϕ(T ) = h(J dϕ(T ), ξ)ξ.

In the case (7.21) holds, we have

h(dϕ(T ), J τb(ϕ))(J dϕ(T ))> = 0, (7.23)

which implies that (2) (7.18) turns out that

2n∑

i,j=1

h(τb(ϕ), Bϕ(Xi, Xj)Bϕ(Xi, Xj)− c(2n + 3)
4

τb(ϕ) = 0. (7.24)

In the case that (7.22) holds, we have that

h(dϕ(T ), J τb(ϕ))(J dϕ(T ))>

= h(dϕ(T ), J τb(ϕ))h(J dϕ(T ), ξ)ξ

=
( 2n∑

k=1

Hkk

)
h(dϕ(T ), J ξ)h(J dϕ(T ), ξ)ξ (by (7.10)

= −
( 2n∑

k=1

Hkk

)
h(J dϕ(T ), ξ)2ξ. (7.25)

In the case that (7.21) holds, (2) (7.18) turns out that

2n∑

i,j=1

h(τb(ϕ), Bϕ(Xi, Xj))− c(2n + 3)
4

τb(ϕ)

+
3c

4

( 2n∑

k=1

Hkk

)
h(J dϕ(T ), ξ)2ξ = 0. (7.26)

By inserting (7.10) into (7.24), the left hand side of (7.24) is equal to
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2n∑

i,j=1

h

( 2n∑

k=1

Hkk ξ, Hij ξ

)
Hij ξ − c(2n + 3)

4

2n∑

k=1

Hkk ξ

=
( 2n∑

k=1

Hkk

){ 2n∑

i,j=1

Hij
2 − c(2n + 3)

4

}
ξ. (7.27)

(2) (7.18) is equivalent to that

2n∑

i,j=1

Hij
2 =

c(2n + 3)
4

(7.28)

by our assumption that
∑2n

k=1 Hkk 6= 0.
In the case that (7.22) holds, by inserting (7.10) into (7.26), the left

hand side of (7.26) is equal to

2n∑

i,j=1

h

( 2n∑

k=1

Hkk ξ, Hij ξ

)
Hij ξ − c(2n + 3)

4

2n∑

k=1

Hkk ξ

+
3c

4
h(J dϕ(X), ξ)2

( 2n∑

k=1

Hkk

)
ξ

=
( 2n∑

k=1

Hkk

){ 2n∑

i,j=1

Hij
2 − c(2n + 3)

4
+

3c

4
h(J dϕ(T ), ξ)2

}
ξ. (7.29)

Since (7.22) J dϕ(T ) = h(J dϕ(T ), ξ)ξ, we have

h(J dϕ(T ), ξ)2 = h(J dϕ(T ), d ϕ(T ))

= h(dϕ(T ), dϕ(T )) = gθ(T, T ) = 1

which implies again by our assumption
∑2n

k=1 Hkk 6= 0, that (2) (7.18) is
equivalent to that

2n∑

i,j=1

Hij
2 − c(2n + 3)

4
+

3c

4
=

2n∑

i,j=1

Hij
2 − n

2
c = 0. (7.30)
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Therefore, we obtain

Theorem 7.1 Assume that ϕ : (M, gθ) → Pn+1(c) = (N, h) (c > 0) is an
admissible isometric immersion whose pseudo mean curvature vector filed
along ϕ is pseudo parallel with non-zero pseudo mean curvature. Then, ϕ is
biharmonic if and only if one of the following two cases occurs:

(1) h(J dϕ(T ), ξ) = 0 and

∥∥Bϕ|H(M)×H(M)

∥∥2 =
c(2n + 3)

4
, (7.31)

(2) J dϕ(T ) = h(J dϕ(T ), ξ)ξ and

∥∥Bϕ|H(M)×H(M)

∥∥2 =
n

2
c. (7.32)

8. Examples of pseudo harmonic maps and pseudo biharmonic
maps

In this section, we give some examples of pseudo biharmonic maps.

Example 8.1 Let (M2n+1, gθ) = S2n+1(r) be the sphere of radius r (0 <

r < 1) which is embedded in the unit sphere S2n+2(1), i.e., the natural
embedding ϕ : S2n+1(r) → S2n+2(1) is given by

ϕ : S2n+1(r) 3 x′ = (x1, x2, . . . , x2n+2) 7→ (x′,
√

1− r2) ∈ S2n+2(1).

This ϕ is a standard isometric with constant principal curvature λ1 =
cot[cos−1 t], (−1 < t < 1), with the multiplicity m1 = dim M = 2n + 1.

Due to Theorem 6.2, it is pseudo biharmonic if and only if

(λ1)2 × 2n = 2n ⇔ λ1 = cot[cos−1 t] = ±1.

⇔ t = cos
(
± π

4

)
=

1√
2
. (8.1)

This is just the example which is biharmonic but not minimal given by C.
Oniciuc ([29]). Note that ϕ : S2n+1(r) → S2n+2(1) is pseudo harmonic if
and only if
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Trace(Bϕ|H(M)×H(M)) = 0 ⇔ λ1 = 0

⇔ t = cos
(

π

2

)
= 1. (8.2)

This t = 1 gives a great hypersphere which is also minimal.

Example 8.2 Let the Hopf fibration π : S2n+3(1) → Pn+1(4), and, let
M̂ := S1(cos u) × S2n+1(sinu) ⊂ S2n+3(1) (0 < u < π/2). Then, we have
ϕ : M2n+1 = π(M̂) ⊂ Pn+1(4) which is a homogeneous real hypersurface of
Pn+1(4) of type A1 in the table of R. Takagi ([31]) whose principal curvatures
and their multiplicities are given as follows ([31]):

{
λ1 = cot u, multiplicity m1 = 2n,

λ2 = 2 cot(2u), multiplicity m2 = 1.
(8.3)

Since 2 cot(2u) = cot u− tanu, the mean curvature H and ‖Bϕ‖2 are given
by

H =
1

2n + 1
{(2n + 1) cot u− tanu}, (8.4)

‖Bϕ‖2 = m1 λ1
2 + m2 λ2

2 = tan2 u + (2n + 1) cot2 u− 2. (8.5)

R. Takagi showed ([31]) to this example, that ϕ : M2n+1 → Pn+1(4) is
the geodesic sphere S2n+1, and J(−ξ) is the mean curvature vector of the
principal curvature λ2 (cf. Remark 1.1 in [31, p. 48]), where ξ is a unit
normal vector field along ϕ.

In the case (1) of Theorem 7.1, i.e., (M2n+1, gθ) = (S2n+1, gθ) is a
strictly pseudoconvex CR manifold and J dϕ(T ) is tangential, we have

0 = h(J dϕ(T ), ξ) = h(J2 dϕ(T ), J ξ) = h(dϕ(T ), J(−ξ)),

and h(dϕ(T ), dϕ(H(M))) = 0. Then, the principal curvature vector field
J(−ξ) with principal curvature λ2 = 2 cot(2u) coincides with dϕ(X) for
some X ∈ H(M). Since

‖X‖ = ‖dϕ(X)‖ = ‖J(−ξ)‖ = ‖ξ‖ = 1,
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we can choose an orthonormal basis {Xi}2n
i=1 of H(M) in such a way X1 = X.

Then, {dϕ(T ), dϕ(X2), . . . , dϕ(X2n)} give principal curvature vector fields
along ϕ with principal curvature λ1 = cot u. Then,

τb(ϕ) =
2n∑

i=1

Bϕ(Xi, Xi) = 2 cot(2u) + (2n− 1) cot u

= 2n cot u− tanu. (8.6)

Therefore, ϕ is pseudo harmonic if and only if

τb(ϕ) = 0 ⇔ tanu =
√

2n. (8.7)

By Theorem 7.1, (1), ϕ is pseudo biharmonic if and only if

∥∥Bϕ|H(M)×H(M)

∥∥2 =
c(2n + 3)

4
= 2n + 3. (8.8)

Since the left hand side of (8.8) coincides with

∥∥Bϕ

∣∣
H(M)×H(M)

‖2 = (2 cot(2u))2 + (2n− 1) cot2 u

= (cot u− tanu)2 + (2n− 1) cot2 u

= 2n cot2 u− 2 + tan2 u, (8.9)

we have that (8.8) holds if and only if

2n cot2 u + tan2 u = 2n + 5 ⇔ x2 − (2n + 5)x + 2n = 0, (8.10)

where x = tan2 u. Therefore, ϕ is pseudo biharmonic if and only if tanu is√
α or

√
β, where α and β are positive roots of (8.10).

In the case (2) of Theorem 7.1, i.e., (M2n+1, gθ) = S2n+1, gθ) is a
strictly pseudoconvex CR manifold, and J dϕ(T ) is normal, i.e., J dϕ(T ) =
h(J dϕ(T )ξ)ξ. Then, we have that

0 6= dϕ(T ) = h(dϕ(T ), J(−ξ))J(−ξ).

And J(−ξ) is the principal curvature vector field along ϕ with the principal
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curvature λ2, and dϕ(H(M)) is the space spanned by the principal curvature
vectors along ϕ with the principal curvature λ1 since h(dϕ(H(M)), J(−ξ)) =
0. Then the pseudo tension field τb(ϕ) is given by

τb(ϕ) =
2n∑

i=1

Bϕ(Xi, Xi) = (2n cot u)ξ 6= 0, (8.11)

so that ϕ is not pseudo harmonic. Due to the case (2) of Theorem 7.1 that
J dϕ(T ) is normal, ϕ is pseudo biharmonic if and only if

2n = ‖Bϕ|H(M)×H(M)‖2

= m1λ1
2

= 2n cot2 u (8.12)

occurs. Thus, we obtain

tan2 u = 1. (8.13)

Therefore, if tanu = 1 (u = π/4), then the corresponding isometric im-
mersion ϕ : (M2n+1, gθ) → Pn+1(4) is pseudo biharmonic, but not pseudo
harmonic.

Remark 8.1 Let us recall our previous work ([16], [17]) that ϕ :
(M2n+1, gθ) → Pn+1(4) is biharmonic if and only if

‖Bϕ‖2 = tan2 u + (2n + 1) cot2 u− 2 =
n + 2

2
4

⇔ x2 − 2(n + 3)x + 2n + 1 = 0, (x = tan2 u). (8.14)

The equation (8.14) has two positive solutions α, β, and if we put tanu =√
α or

√
β (0 < u < π/2), then ϕ : (M2n+1, gθ) → Pn+1(4) is bi-

harmonic, and vice versa. Since the mean curvature is given by (8.4),
ϕ : (M2n+1, gθ) → Pn+1(4) is harmonic (i.e., minimal) if and only if
tanu =

√
2n + 1 (0 < u < π/2).
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