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Non-closed curves in Rn with finite total first curvature arising

from the solutions of an ODE
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Abstract. The solution space of a constant coefficient ODE gives rise to a natural

real analytic curve in Euclidean space. We give necessary and sufficient conditions on

the ODE to ensure that this curve is a proper embedding of infinite length or has finite

total first curvature. If all the roots of the associated characteristic polynomial are

simple, we give a uniform upper bound for the total first curvature and show the opti-

mal uniform upper bound must grow at least linearly with the order n of the ODE. We

then examine the case where multiple roots are permitted. We present several exam-

ples illustrating that a curve can have finite total first curvature for positive/negative

time and infinite total first curvature for negative/positive time as well as illustrating

that other possibilities may occur.

Key words: finite total curvature, ordinary differential equation, proper embedded

curve.

1. Introduction

Throughout this paper, in the interests of notational simplicity, the word
“curvature” will refer to the “first curvature”. It is defined as follows. If
t → σ(t) is an immersion of R into Rn, then the curvature κ and the total
curvatures κ±[σ] are given, respectively, by setting:

κ :=
‖σ̇ ∧ σ̈‖
‖σ̇‖3 , κ−[σ] :=

∫ 0

−∞
κ‖σ̇‖dt, κ+[σ] :=

∫ ∞

0

κ‖σ̇‖dt. (1.a)

The total curvature is then given by κ[σ] := κ+[σ] + κ−[σ]. In this paper
we shall construct a real analytic curve σ in Euclidean space which arises as
the solution space of a constant coefficient ODE. We examine when σ is a
proper immersion with finite total curvature. In the C∞ context, one could
start with a straight line, perturb it by putting a small bump in it, and get
thereby a proper curve with finite total curvature. Thus working in the real
analytic context is crucial when considering questions of this sort.
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The curvature κ of Equation (1.a) is a local invariant of the curve which
does not depend on the parametrization. If ρ(t) is the radius of the best
circle approximating σ at t, then κ = ρ−1. One can extend the definition
from the Euclidean setting to the Riemannian setting. Let ∇ be the Levi-
Civita connection of a Riemannian manifold (M, g). If σ is a curve which is
parametrized by arc length, then the geodesic curvature is defined by setting
κg(σ) := ‖∇σ̇σ̇‖; κg = 0 if and only if σ is a geodesic. We have κg = κ if
M = Rm with the usual flat metric.

1.1. History
Let κ[σ] := κ+[σ] + κ−[σ] be the total curvature. Fenchel [13] showed

that a simple closed curve in R3 had κ[σ] ≥ 2π. Fáry [12] and Milnor [15]
showed the total curvature of any knot (i.e. of a circle which is embedded
in R3) is greater than 4π. Castrillón López and Fernández Mateos [3],
and Kondo and Tanaka [14] have examined the global properties of the
total curvature of a curve in an arbitrary Riemannian manifold. The total
curvature of open plane curves of fixed length in R2 was studied by Enomoto
[7]. The analogous question for S2 was examined by Enomoto and Itoh [8],
[9]. Enomoto, Itoh, and Sinclair [11] examined curves in R3. We also refer
to related work of Sullivan [16]. Buck and Simon [2] and Diao and Ernst [5]
studied this invariant in the context of knot theory, and Ekholm [6] used this
invariant in the context of algebraic topology. Alexander, Bishop, and Ghrist
[1] extended these notions to more general spaces than smooth manifolds.
The total curvature also appears in the study of Plateau’s problem – see
the discussion in Desideri and Jakob [4]. The total absolute torsion has also
been examined analogously by Enomoto and Itoh [10]; we shall not touch
on this. The literature on the subject is a vast one and we have only cited
a few representative papers to give a flavor for the subject.

1.2. Curves given by constant coefficient ODE’s
Let P be a real constant coefficient ordinary differential operator of

degree n = nP ≥ 2 of the form:

P (φ) := φ(n) + cn−1φ
(n−1) + · · ·+ c0φ

where φ(k) := dkφ/dtk for 1 ≤ k ≤ n and φ = φ(t). Let S = SP be the
solution space, let P = PP be the associated characteristic polynomial, and
let R = RP be the roots of P, respectively:
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S := {φ : P (φ) = 0},
P(λ) := λn + cn−1λ

n−1 + · · ·+ c0,

R := {λ ∈ C : P(λ) = 0}.

We suppose for the moment that all the roots of P are simple (i.e. have
multiplicity 1) and enumerate the roots of P in the form:

R = {s1, . . . , sk, µ1, µ̄1, . . . , µ`, µ̄`} for k + 2` = n

where si ∈ R for 1 ≤ i ≤ k and where µj = aj +
√−1bj with bj > 0 for

1 ≤ j ≤ `. Since we have assumed that all the roots are simple, the standard
basis for S is given by the functions

φ1 := es1t, . . . , φk := eskt,

φk+1 := ea1t cos(b1t), φk+2 := ea1t sin(b1t), . . . ,

φn−1 := ea`t cos(b`t), φn := ea`t sin(b`t).

(1.b)

Of course, if all the roots are real, then k = n and we omit the functions
involving cos(·) and sin(·). Similarly, if all the roots are complex, then k = 0
and we omit the pure exponential functions. We define the associated curve
σP : R→ Rn by setting:

σP (t) := (φ1(t), . . . , φn(t)).

1.3. The length of the curve σP

Let <(λ) denote the real part of a complex number λ. Define:

r+(P ) := max
λ∈R

<(λ) = max(s1, . . . , sk, a1, . . . , a`),

r−(P ) := min
λ∈R

<(λ) = min(s1, . . . , sk, a1, . . . , a`).

The numbers r±(P ) control the growth of ‖σP ‖ as t → ±∞. Section 2 is
devoted to the proof of the following result:

Theorem 1.1 Assume that all the roots of P are simple. If r+(P ) > 0,
then σP is a proper embedding of [0,∞) into Rn with infinite length. If
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r−(P ) < 0, then σP is a proper embedding of (−∞, 0] into Rn with infinite
length.

1.4. The total curvature
We order the roots to ensure that:

s1 > s2 > · · · > sk and a1 ≥ · · · ≥ a`.

We then have r+(P ) = max(s1, a1) and r−(P ) = min(sk, a`). Section 3 is
devoted to the proof of the following result:

Theorem 1.2 Assume that all the roots of P are simple, that r+(P ) > 0,
and that r−(P ) < 0.

(1) If s1 > a1, then κ+[σP ] < ∞; otherwise, κ+[σP ] = ∞.
(2) If sk < a`, then κ−[σP ] < ∞; otherwise κ−[σP ] = ∞.

We note that if there are no complex roots, then s1 > 0 and sk < 0 and
we may conclude that κ+[σP ] and κ−[σP ] are finite. This is quite striking
as these curves are, obviously, not straight lines. On the other hand, if there
are no real roots, then a1 > 0 and a` < 0 and we may conclude that κ+[σP ]
and κ−[σP ] are infinite.

1.5. Uniform bounds on the total curvature
Theorem 1.2 shows κ+[σP ] is finite if s1 > 0, if all the roots are simple,

and if s1 > <(µ) for any complex root µ. In fact, one can give a uniform
upper bound for κ+[σP ] if there are no complex roots and if all the real
roots are simple without the assumption that s1 > 0 where the uniform
bound depends only on the dimension. If s1 > · · · > sn, let σs1,...,sn

:=
(es1t, . . . , esnt). We will establish the following result in Section 4.

Theorem 1.3 κ+[σs1,...,sn
] ≤ 2n(n− 1).

Remark 1.4 Let σn(t) := (et, cos(nt)e−t, sin(nt)e−t, e−2t). Since we have
that limn→∞ κ±[σn] = ∞, no uniform upper bound on the curvature is
possible if complex roots are permitted. We picture below a 3-dimensional
projection of such a curve:
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Theorem 1.3 shows that there exists a dimension dependent uniform
upper bound for the total curvature of a curve defined by an ODE of order
n with simple real roots. We now show the optimal uniform upper bound
must grow at least linearly in n. Let

uk,θ := ekθ and σn,θ(t) := (e−u1,θt, e−u2,θt, . . . , e−un,θt).

We will establish the following result in Section 5:

Theorem 1.5 Let ε > 0 be given. There exists θ(ε) so that if θ > θ(ε),
then κ+[σn,θ] ≥ (1/3)(n− 1)− ε.

1.6. Examples
Section 6 treats several families of examples. We construct examples

where κ+[σP ] and κ−[σP ] are both finite, where κ+[σP ] is finite but κ−[σP ]
is infinite, where κ+[σP ] is infinite but κ−[σP ] is finite, and where both
κ+[σP ] and κ−[σP ] are infinite.

1.7. Changing the basis
We took the standard basis for S to define the curve σP . More generally,

let Ψ := {ψ1, . . . , ψn} be an arbitrary basis for S. We define:

σΨ,P (t) := (ψ1(t), . . . , ψn(t)).

In Section 7, we extend Theorem 1.1 and Theorem 1.2 to this setting and
verify that the properties we have been discussing are properties of the
solution space S and not of the particular basis chosen:

Theorem 1.6 Assume that all the roots of P are simple, that r+(P ) > 0,
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and that r−(P ) < 0. Then σΨ,P is a proper embedding of [0,∞) and of
(−∞, 0] into Rn with infinite length.

(1) If s1 > a1, then κ+[σΨ,P ] < ∞; otherwise, κ+[σΨ,P ] = ∞.
(2) If sk < a`, then κ−[σΨ,P ] < ∞; otherwise κ−[σΨ,P ] = ∞.

1.8. Roots with multiplicity greater than 1
Powers of t arise in this setting. For example, if we consider the equation

φ(n) = 0, then

S = Span{1, t, . . . , tn−1}.

More generally, if s is a real eigenvalue of multiplicity ν ≥ 2, then we must
consider the family of functions:

{φs,0 := est, φs,1 := test, . . . , φs,ν−1 := tν−1est} (1.c)

while if µ = a+
√−1b for b > 0 is a complex root of multiplicity ν ≥ 2, then

we must consider the family of functions:

{φµ,0 := eat cos(bt), φµ,1 := teat cos(bt), . . . , φµ,ν−1 := tν−1eat cos(bt),

φ̃µ,0 := eat sin(bt), φ̃µ,1 := teat sin(bt), . . . , φ̃µ,ν−1 := tν−1eat sin(bt)}.
(1.d)

We will establish the following result in Section 8:

Theorem 1.7 Assume that r+(P ) > 0 and that r−(P ) < 0.

(1) If s1 = r+(P ) and if the multiplicity of s1 as a root of P is larger than the
corresponding multiplicity of any complex root µ of P with <(µ) = s1,
then κ+[σΨ,P ] < ∞; otherwise κ+[σΨ,P ] = ∞.

(2) If sk = r−(P ) and if the multiplicity of sk as a root of P is larger
than the corresponding multiplicity of any complex root µ of P with
<(µ) = sk, then κ−[σΨ,P ] < ∞; otherwise κ−[σΨ,P ] = ∞.
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2. The proof of Theorem 1.1

Assume all the roots of P are simple. It then follows from the definition
that

‖σP ‖2 =
k∑

i=1

e2sit +
∑̀

j=1

e2ajt.

Thus ‖σP ‖2 tends to infinity as t →∞ if and only if some si or some aj is
positive or, equivalently, if r+(P ) > 0. This implies that σP is a proper map
from [0,∞) to Rn and that the length is infinite. If s1 > 0, then φ1 = es1t

is an injective map from R to R and consequently σP is an embedding of R
into Rn. If a1 > 0, then ea1t(cos(b1t), sin(b1t)) is an injective map from R
to R2 and again we may conclude that σP is an embedding. The analysis
on (−∞, 0] is similar if r−(P ) < 0 and is therefore omitted in the interests
of brevity. ¤

3. The proof of Theorem 1.2

Throughout our proof, we will let Ci = Ci(P ) denote a generic positive
constant; we clear the notation after each case under consideration and after
the end of any given proof; thus Ci can have different meanings in different
proofs or in different sections of the same proof. We shall examine σP on
[0,∞); the analysis on (−∞, 0] is similar and will therefore be omitted. We
suppose r+(P ) > 0 or, equivalently, that max(s1, a1) > 0. We also assume
that all the roots of P are simple. Suppose first that s1 > a1 or that there
are no complex roots. Let

ε := min
λ∈R,λ6=s1

(s1 −<(λ)) = min
i>1,j≥1

(s1 − si, s1 − aj) > 0.

This measures the difference between the exponential growth rate of φ1 and
the growth (or decay) rates of the functions φi of Equation (1.b) for i > 1
as t →∞. We have

‖σ̇P ∧ σ̈P ‖2 =
∑

i<j

(φ̇iφ̈j − φ̇j φ̈i)2. (3.a)

Consequently, we may estimate:
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‖σ̇P ∧ σ̈P ‖ ≤ C1e
(2s1−ε)t, ‖σ̇P ‖2 ≥ C2e

2s1t for t ≥ 0,

‖σ̇P ∧ σ̈P ‖
‖σ̇P ‖2 ≤ C3e

−εt for t ≥ 0.
(3.b)

We integrate the estimate of Equation (3.b) to see κ+[σP ] < ∞.
Next suppose that a1 > 0 and that a1 ≥ s1 (or that there are no real

roots). Then ea1t is the dominant term and we have

‖σ̇P ‖2 ≤ C1e
2a1t. (3.c)

The term (φ̇iφ̈j − φ̇j φ̈i)2 in Equation (3.a) is maximized for t ≥ 0 when we
take φi = ea1t cos(b1t) and φj = ea1t sin(b1t). We have:

φ̇i = ea1t(a1 cos(b1t)− b1 sin(b1t))

φ̈i = ea1t{(a2
1 − b2

1) cos(b1t)− 2a1b1 sin(b1t)}
φ̇j = ea1t(a1 sin(b1t) + b1 cos(b1t)),

φ̈j = ea1t{(a2
1 − b2

1) sin(b1t) + 2a1b1 cos(b1t)},
φ̇2

i + φ̇2
j = (a2

1 + b2
1)e

2a1t,

(φ̇iφ̈j − φ̇j φ̈i)2 = b2
1(a

2
1 + b1)2e4a1t.

Since b1 6= 0, we may estimate:

‖σ̇P ∧ σ̈P ‖ ≥ C2e
2a1t. (3.d)

We use Equation (3.c) and Equation (3.d) to see

‖σ̇P ∧ σ̈P ‖
‖σ̇P ‖2 ≥ C2

C1
> 0. (3.e)

We integrate the uniform estimate of Equation (3.e) to see κ+[σP ] = ∞. ¤
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4. The proof of Theorem 1.3

Let σs1,...,sn
(t) := (es1t, . . . , esnt) for s1 > · · · > sn and n ≥ 2. We may

express

κ+[σs1,...,sn
] =

∫ ∞

0

√∑

i<j

{sisj(si − sj)e(si+sj)t}2
{ ∑

k

s2
ke2skt

}−1

dt

≤
∫ ∞

0

∑

i<j

|sisj(si − sj)|e(si+sj)t

{ ∑

k

s2
ke2skt

}−1

dt

≤
∫ ∞

0

∑

i<j

|sisj(si − sj)|e(si+sj)t{s2
i e

2sit + s2
je

2sjt}−1dt

=
∑

i<j

κ+[σsi,sj
].

Thus estimate κ+[σs1,...,sn
] ≤ n(n − 1) for n ≥ 3 will follow if we can

establish the corresponding estimate κ+[σsi,sj
] < 2 for n = 2. We set n = 2

and consider 2 cases:

Case I: s2
1 ≥ s2

2. Since s1 > s2, we must have s1 > 0. We compute:

κ+[σs1,s2 ] =
∫ ∞

0

|s1s2(s1 − s2)|e(s1+s2)t
{
s2
1e

2s1t + s2
2e

2s2t
}−1

dt

<

∫ ∞

0

|s1s2(s1 − s2)|e(s1+s2)t
{
s2
1e

2s1t
}−1

dt

=
∫ ∞

0

∣∣s−1
1 s2(s1 − s2)

∣∣e(s2−s1)tdt =
∣∣s−1

1 s2

∣∣ ≤ 1.

Case II: s2
1 < s2

2. Since s1 > s2, either s1 > 0 > s2 or 0 > s1 > s2. When
t is small, s2

1e
2s1t < s2

2e
2s2t while if t is large, s2

1e
2s1t > s2

2e
2s2t. Choose T

so that s2
1e

2s1T = s2
2e

2s2T . Then

s2
1e

2s1t < s2
2e

2s2t if t < T and s2
1e

2s1t > s2
2e

2s2t if t > T.

We may decompose κ+[σs1,s2 ] = I1 + I2 for
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I1 =
∫ T

0

|s1s2(s1 − s2)|e(s1+s2)t
{
s2
1e

2s1t + s2
2e

2s2t
}−1

dt

I2 =
∫ ∞

T

|s1s2(s1 − s2)|e(s1+s2)t
{
s2
1e

2s1t + s2
2e

2s2t
}−1

dt.

Note that e(s1−s2)T = |s2s
−1
1 | and e(s2−s1)T = |s−1

2 s1|. We complete the
proof by estimating:

I1 ≤
∫ T

0

|s1s2(s1 − s2)|e(s1+s2)t
{
s2
2e

2s2t
}−1

dt

=
∣∣s1s

−1
2 (s1 − s2)

∣∣
∫ T

0

e(s1−s2)tdt =
∣∣s1s

−1
2

∣∣e(s1−s2)t

∣∣∣∣
T

0

=
∣∣s1s

−1
2

∣∣{e(s1−s2)T − 1
}

=
∣∣s1s

−1
2

∣∣{|s2s
−1
1 | − 1

}

= 1− ∣∣s2s
−1
1

∣∣ < 1,

I2 ≤
∫ ∞

T

|s1s2(s1 − s2)|e(s1+s2)t
{
s2
1e

2s1t
}−1

dt

=
∣∣s−1

1 s2(s1 − s2)
∣∣
∫ ∞

T

e(s2−s1)tdt = −∣∣s−1
1 s2

∣∣e(s2−s1)t

∣∣∣∣
∞

t=T

= 1. ¤

5. The proof of Theorem 1.5

Let θ À 1. We set

uk,θ := ekθ and σn,θ(t) := (e−u1,θt, . . . , e−un,θt).

We have:

κ+[σn,θ] =
∫ ∞

0

( ∑
i<j{(ui,θ − uj,θ)ui,θuj,θe

−(ui,θ+uj,θ)t}2)1/2

∑
` u2

`,θe
−2u`,θt

dt. (5.a)

To obtain a lower estimate for κ+[σn,θ], we must obtain an upper estimate for
the denominator D(t) :=

∑
` u2

`,θe
−2u`,θt in Equation (5.a). We determine

the maximal term in D(t) on various intervals and complete the proof of
Theorem 1.5:
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Lemma 5.1 Set fk,θ(t) := uk,θe
−uk,θt.

(1) There exists a unique positive real number Tk,θ so fk,θ(Tk,θ) =
fk+1,θ(Tk,θ).
(a) Tk,θ = θe−(k+1)θ(1− e−θ)−1.
(b) If t < Tk,θ, then fk,θ(t) < fk+1,θ(t).
(c) If t > Tk,θ, then fk,θ(t) > fk+1,θ(t).

(2) If j ∈ {k, k + 1, k + 2} and if t ∈ [Tk+1,θ, Tk,θ], then fj,θ(t) ≤ fk+1,θ(t).
(3) If 0 < δ < 1, there exists θ(δ) > 1 so that if θ ≥ θ(δ), if j /∈ {k, k + 1,

k + 2}, and if t ∈ [Tk+1,θ, Tk,θ], then fj,θ(t) ≤ δfk+1,θ(t).
(4) If 0 < δ < 1, there exists θ(δ) > 1 so that if θ ≥ θ(δ), then

∫ Tk,θ

Tk+1,θ

uk,θuk+1,θ(uk+1,θ − uk,θ)e−(uk,θ+uk+1,θ)t

u2
k+1,θe

−2uk+1,θt
dt ≥ 1− δ.

(5) If 0 < ε < 1, there exists θ(ε) > 1 so θ ≥ θ(ε) implies:
(a)

∫ Tk,θ

Tk+1,θ
κ(σn,θ)ds ≥ 1/3− (1/n)ε for 1 ≤ k ≤ n− 1.

(b) κ+[σn,θ] ≥ (1/3)(n− 1)− ε.

Proof. Since 0 < uk,θ < uk+1,θ, fk,θ(t)−fk+1,θ(t) is negative for t = 0 and
positive for t large. Thus there exists Tk,θ ∈ R+ so fk,θ(Tk,θ) = fk+1,θ(Tk,θ).
We show Tk,θ is unique by determining its value. We have:

fk,θ(Tk,θ) = fk+1,θ(Tk,θ) ⇔
log(uk,θ)− uk,θTk,θ = log(uk+1,θ)− uk+1,θTk,θ ⇔
kθ − ekθTk,θ = (k + 1)θ − e(k+1)θTk,θ ⇔
Tk,θ = θ(e(k+1)θ − ekθ)−1 = θe−(k+1)θ(1− e−θ)−1.

Assertion 1 follows from this computation and the Intermediate Value
Theorem.

Note that Tn,θ < Tn−1,θ < · · · < T2,θ < T1,θ. Let t ∈ [Tk+1,θ, Tk,θ].
The inequality of Assertion 2 is immediate if j = k + 1. Since t ≤ Tk,θ,
fk,θ(t) ≤ fk+1,θ(t) by Assertion 1b. Since t ≥ Tk+1,θ, fk+1,θ(t) ≥ fk+2,θ(t)
by Assertion 1c. This proves Assertion 2.

Assertion 3 estimates fj,θ(t) for t ∈ [Tk+1,θ, Tk,θ] for the remaining val-
ues of j which are distinct from k, k + 1, and k + 2. Let 1 ≤ k ≤ n − 1.
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Given 0 < δ < 1, choose θ(δ) À 1 so θ ≥ θ(δ) implies

(1− e−θ)−1 ≤ 1 + δ and

uj,θ − uk+1,θ ≥ (1− δ)uj,θ if 3 ≤ k + 2 < j ≤ n.
(5.b)

By Equation (5.b), we have that:

Tk,θ = θe−(k+1)θ(1− e−θ)−1 ≤ (1 + δ)θe−(k+1)θ.

Let j < k and t ∈ [Tk+1,θ, Tk,θ]. Thus, in particular, t ≤ Tk,θ. As uk+1,θ −
uj,θ > 0,

fj,θ(t)fk+1,θ(t)−1 = e(j−k−1)θe(uk+1,θ−uj,θ)t

≤ e(j−k−1)θeuk+1,θTk,θ ≤ e(j−k−1)θee(k+1)θ·(1+δ)θe−(k+1)θ

= e(j−k+δ)θ.

This can be made arbitrarily small if θ is large since j − k + δ < 0. This
proves Assertion 3 if j < k. Next suppose j > k +2. Since t ∈ [Tk+1,θ, Tk,θ],

t ≥ Tk+1,θ = θe−(k+2)θ(1− e−θ)−1 ≥ θe−(k+2)θ.

As uk+1,θ − uj,θ < 0, Equation (5.b) implies:

fj,θ(t)fk+1,θ(t)−1 = eθ(j−k−1)e(uk+1,θ−uj,θ)t

≤ eθ(j−k−1)e(uk+1,θ−uj,θ)θe−(k+2)θ

≤ eθ(j−k−1)e−(1−δ)ejθθe−(k+2)θ

= eθ(j−k−1−(1−δ)e(j−k−2)θ).

This term goes to zero as θ → ∞ since j − k − 2 > 0. This establishes
Assertion 3.

To prove Assertion 4, we compute:

∫ Tk,θ

Tk+1,θ

uk,θuk+1,θ(uk+1,θ − uk,θ)e−(uk,θ+uk+1,θ)t

u2
k+1,θe

−2uk+1,θt
dt

= uk,θu
−1
k+1,θe

(uk+1,θ−uk,θ)t
∣∣Tk,θ

t=Tk+1,θ
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= uk,θu
−1
k+1,θe

(uk+1,θ−uk,θ)Tk,θ
{
1− e(uk+1,θ−uk,θ)(Tk+1,θ−Tk,θ)

}

= 1− e(uk+1,θ−uk,θ)(Tk+1,θ−Tk,θ)

= 1− e{e
θk(eθ−1)}·{θ(eθ−1)−1}{e−(k+1)θ−e−kθ}

= 1− eθ(e−θ−1).

Assertion 4 follows as θ(e−θ − 1) tends to −∞ as θ tends to ∞.
We use Assertion 2 and Assertion 3 to see that if t ∈ [Tk+1,θ, Tk,θ], then

∑

`

u2
`,θe

−2u`,θt ≤ (3 + (n− 3)δ2)u2
k+1,θe

−2uk+1,θt,

∫ Tk,θ

Tk+1,θ

κ(σn,θ)ds

=
∫ Tk,θ

Tk+1,θ

( ∑
i<j{(ui,θ − uj,θ)ui,θuj,θe

−(ui,θ+uj,θ)t}2)1/2

∑
` u2

`,θe
−2u`,θt

dt

≥
∫ Tk,θ

Tk+1,θ

(uk+1,θ − uk,θ)uk+1,θuk,θe
−(uk,θ+uk+1,θ)t

∑
` u2

`,θe
−2u`,θt

dt

≥
∫ Tk,θ

Tk+1,θ

(uk+1,θ − uk,θ)uk+1,θuk,θe
−(uk,θ+uk+1,θ)t

(3 + (n− 3)δ2)u2
k+1,θe

−2uk+1,θt
dt

≥ (1− δ)(3 + (n− 3)δ2)−1.

Assertion 5a now follows by choosing δ = δ(ε) appropriately. We sum this
estimate for 1 ≤ k ≤ n − 1 to establish Assertion 5b and thereby complete
the proof of Theorem 1.5. ¤

6. Examples

We now examine several specific cases. Since the eigenvalues are to be
simple, we can just specify P or equivalently R; the corresponding operator
P is then:

P = P
(

d

dt

)
=

∏

λ∈R

{
d

dt
− λ

}
.
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Example 6.1 Let P(λ) = λn − 1. The roots of P are the nth roots of
unity and all the roots have multiplicity 1. Since P(1) = 0, 1 is always a
root.

Case I: Suppose that n is odd. Then 1 is the only real root of P. The
remaining roots are all complex. Thus k = 1 and it follows that σP is a
proper embedding of infinite length from [0,∞) to Rn. If λn = 1 and λ 6= 1,
then necessarily <(λ) < 1. It now follows that κ+[σP ] is finite. There exists
a complex nth root of unity with <(λ) < 0. Consequently, σP is also a
proper embedding of infinite length from (−∞, 0] to Rn. Since there are no
real roots with si < 0, we conclude κ−[σP ] is infinite.

Case II: Suppose that n is even. Then ±1 are the two real roots of P. It
now follows that σP is a proper embedding of infinite length from [0,∞) to
Rn and from (−∞, 0] to Rn. If λn = 1 and λ is not real, then −1 < <(λ) < 1.
Consequently, κ+[σP ] and κ−[σP ] are both finite.

Example 6.2 Let n ≥ 3. Let {1, . . . , n − 2,−1 ± √−1} be the roots of
P. Then σP is a proper embedding of infinite length from [0,∞) to Rn and
from (−∞, 0] to Rn, κ+[σP ] is finite, and κ−[σP ] is infinite. We adjust the
angular parameter to emphasize the radial revolution and let the roots be
{1,−1± 5

√−1}. This yields the curve:

C(t) = (cos(5t)e−t, sin(5t)e−t, et)

This curve curve hugs the z axis for t > 0 and becomes a spiral in the xy

plane for t < 0. It has exponentially decaying curvature as t → ∞ and
infinite curvature as t → −∞. We draw the 2-dimensional projection:
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D(t) = (cos(5t)e−t, sin(5t)e−t)

Example 6.3 Let n ≥ 3. Let {−1, . . . , 2 − n, 1 ± √−1} be the roots of
P. Then σP is a proper embedding of infinite length from [0,∞) to Rn and
from (−∞, 0] to Rn, κ+[σP ] is infinite, and κ−[σP ] is finite.

Example 6.4 Let n ≥ 2. Let {1, . . . , n− 1,−1} be the roots of P. Then
σP is a proper embedding of infinite length from [0,∞) to Rn and from
(−∞, 0] to Rn, κ+[σP ] is finite, and κ−[σP ] is finite. The following curve
hugs the z axis for t < 0 and hugs the curve y = x2 in the xy plane for
t > 0. The total curvature is finite. It has exponentially decaying curvature
as t →∞ and infinite curvature as t → −∞.

C(t) = (et, e2t, e−t) D(t) = (et, e2t)

By considering the roots {1, a,−1} for a > 0, one can construct curves
which asymptotically approach the curve y = xa for x > 0 in the xy plane
as t →∞.

Example 6.5 Let n = 3. Let {1, 1,−1} be the roots of P. Then σP is
a proper embedding of infinite length from [0,∞) to Rn and from (−∞, 0]
to Rn, κ+[σP ] is finite, and κ−[σP ] is finite. The following curve hugs the z

axis for t < 0 and hugs the curve (et, tet) for t > 0. Both have finite total
curvature.
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C(t) = (et, tet, e−t) D(t) = (et, tet)

Example 6.6 Let n = 4. Let the roots of P be {1± 5
√−1,−1± 5

√−1}.
Then σP is a proper embedding of infinite length from [0,∞) to Rn and
from (−∞, 0] to Rn, κ+[σP ] is infinite, and κ−[σP ] is infinite. This yields

C(t) = (et cos(5t), et sin(5t), e−t cos(5t), e−t sin(5t)).

Example 6.7 Let n = 2k + 1 ≥ 5 be odd. Let

{
0, 1±√−1,−1±√−1, . . . ,−(k − 1)±√−1

}

be the roots of P. Then σP is a proper embedding of infinite length from
[0,∞) to Rn and from (−∞, 0] to Rn, κ+[σP ] is infinite, and κ−[σP ] is
infinite.

7. The proof of Theorem 1.6

Let Φ = {φ1, . . . , φn} be the standard basis for S given in Equation
(1.b) and let Ψ = {ψ1, . . . , ψn} be any other basis for S. Express

ψi = Θj
iφj

where we adopt the Einstein convention and sum over repeated indices. We
use Θj

i to make a linear change of basis on Rn and to regard σΨ,P = Θ◦σP ;
correspondingly, this defines a new inner product 〈·, ·〉 := Θ∗(·, ·) on Rn so
that

‖σ̇Ψ,P ‖ = ‖σ̇P ‖Θ and ‖σ̇Ψ,P ∧ σ̈Ψ,P ‖ = ‖σ̇P ∧ σ̈P ‖Θ. (7.a)

Any two norms on a finite dimensional real vector space are equivalent.
Thus
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C1‖v‖ ≤ ‖v‖Θ ≤ C2‖v‖. (7.b)

The desired result now follows from Theorem 1.1, Theorem 1.2, Equation
(7.a), and Equation (7.b). ¤

8. The proof of Theorem 1.7

We will assume that Ψ is the standard basis for S as the methods
discussed in Section 7 suffice to derive the general result from this specific
example. We shall deal with [0,∞) as the situation for (−∞, 0] is similar.
The proof that r+(P ) > 0 implies σP is a proper embedding of [0,∞) into
Rn with infinite length is unchanged by any questions of multiplicity since
est or {eat cos(bt), eat sin(bt)} are still among the solutions of P for suitably
chosen s or (a, b). We adopt the notation of Equation (1.c) to define the
functions φs,` = t`est for s ∈ R and we adopt the notation of Equation
(1.d) to define the functions φµ,` = t`eat cos(bt) and φ̃µ,` = t`eat sin(bt) for
µ = a + b

√−1. We divide our discussion of κ+[σP ] into several cases:

Case I: Suppose that s1 > a1 and that s1 is a real root of order ν. If ν = 1,
the proof of Theorem 1.2 extends to show κ+[σP ] is finite; the multiplicity
of the other roots plays no role as the exponential decay e−εt swamps any
powers of t. We suppose therefore that the multiplicity ν(s1) > 1. We will
show that there exists t0 so that:

‖σ̇P ‖2 ≥ C1t
2ν−2e2s1t for t ≥ t0, (8.a)

‖σ̇P ∧ σ̈P ‖ ≤ C2t
2ν−4e2s1t for t ≥ t0. (8.b)

It will then follow that

‖σ̇P ∧ σ̈P ‖
‖σ̇P ‖2 ≤ C3t

−2 for t ≥ t0.

Since this is integrable on [0,∞), we may conclude κ+[σP ] is finite as desired.
We establish Equation (8.a) by noting that we have the following esti-

mate:

‖σ̇P ‖2 =
n∑

i=1

|φ̇i|2 ≥ |φ̇s1,ν−1|2 = {s1t
ν−1 + (ν − 1)tν−2}2e2s1t
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≥ s2
1t

2(ν−1)e2s1t for t sufficiently large.

When dealing with [0,∞), we may take t0 = 1. However, when dealing with
(−∞, 0], we must take t0 ¿ 0 to ensure that the term s1t

ν−1 dominates the
term (ν−1)tν−2 since these terms might have opposite signs and cancellation
could occur.

We may compute that:

‖σ̇P ∧ σ̈P ‖2 =
∑

i<j

(φ̇iφ̈j − φ̇j φ̈i)2. (8.c)

The assumption s1 > a1 shows that the maximal term in this sum occurs
when φi = φs1,ν−1 and φj = φs1,ν−2 and thus

‖σ̇P ∧ σ̈P ‖2 ≤ n(n− 1)
2

{φ̇s1,ν−1φ̈s1,ν−2 − φ̇s1,ν−2φ̈s1,ν−1}2 for t ≥ t0.

We have:

φ̇s1,ν−1 = (s1t
ν−1 + (ν − 1)tν−2)es1t,

φ̈s1,ν−1 = (s2
1t

ν−1 + 2s1(ν − 1)tν−2 + (ν − 1)(ν − 2)tν−3)es1t,

φ̇s1,ν−2 = (s1t
ν−2 + (ν − 2)tν−3)es1t,

φ̈s1,ν−2 = (s2
1t

ν−2 + 2s1(ν − 2)tν−3 + (ν − 2)(ν − 3)tν−4)es1t,

Consequently:

φ̇s1,ν−1φ̈s1,ν−2 − φ̇s1,ν−2φ̈s1,ν−1

=
{
(s1t

ν−1 + (ν − 1)tν−2)

× (s2
1t

ν−2 + 2s1(ν − 2)tν−3 + (ν − 2)(ν − 3)tν−3)
}
e2s1t

− {
(s1t

ν−2 + (ν − 2)tν−3)

× (s2
1t

ν−1 + 2s1(ν − 1)tν−2 + (ν − 1)(ν − 2)tν−3)
}
e2s1t

The leading terms cancel:

{
(s1t

ν−1s2
1t

ν−2)− (s1t
ν−2s2

1t
ν−1)

}
e2s1t = 0.
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The remaining terms are O(t2ν−4e2s1t) as desired; Equation (8.b) now fol-
lows. This shows κ+[σP ] is finite if s1 > a1.

Case II: Suppose a1 > s1. Choose the complex root µ1 = a1 + b1

√−1
to have maximal multiplicity ν among all the complex roots µ ∈ R with
<(µ) = a1. The dominant term in Equation (8.c) occurs when φi = φµ1,ν−1

and φj = φ̃µ1,ν−1. Differentiating powers of t lowers the order in t and give
rise to lower order terms. Thus we may ignore these derivatives and use the
computations performed in Section 3 to see:

C1t
2ν−2e2a1t ≤ ‖σ̇P ‖2 ≤ C2t

2ν−2e2a1t for t ≥ t0,

(φ̇iφ̈j − φ̇j φ̈i)2 ≥ C3t
4(ν−1)e4a1t for t ≥ t0.

We may now conclude that κ+[σP ] = ∞.

Case III: The difficulty comes when a1 = s1. If µ1 is a complex root of
multiplicity at least as great as the multiplicity of s1, the {φµ1,ν−1, φ̃µ1,ν−1}
terms dominate the computation and the argument given above in Case II
implies κ+[σP ] is infinite. On the other hand, if all the complex roots with
<(µ) = s1 have multiplicity less than the multiplicity of s1, then the φs1,ν−1

terms dominate the computation and the argument given above in Case I
shows that κ+[σP ] is finite. ¤

We conclude this section with an example where the multiplicity plays
a crucial role and where our previous results are not applicable.

Example 8.1 Let P (φ) = φ(n) for n ≥ 2. Then R = {0} and 0 is a root of
multiplicity n. We have S = Span{φ1 := 1, φ2 := t, . . . , φn := tn−1}. Since
t ∈ S, σP is a proper map of infinite length on [0,∞) and on (−∞, 0]. We
have:

|σ̇P |2 ≥ C1t
2n−2, and

∑

i<j

(φ̈iφ̇j − φ̈j φ̇i)2

=
∑

i<j

((i− 1)(i− 2)(j − 1)− (j − 1)(j − 2)(i− 1))2t2(i+j−3)

≤ C2t
2(2n−4).
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Consequently |κ| ≤ C3(t2n−4/t2n−2) for |t| ≥ 1. This is integrable so
κ+[σP ] < ∞ and κ−[σP ] < ∞.
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