More on the annihilator graph of a commutative ring

M. J. NIKMEHR, R. NIKANDISH and M. BAKHTYIARI

(Received September 17, 2014; Revised November 3, 2014)

Abstract. Let R be a commutative ring with identity, and let Z(R) be the set of zerodivisors of R. The annihilator graph of R is defined as the undirected graph AG(R)with the vertex set $Z(R)^* = Z(R) \setminus \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cup ann_R(y)$. In this paper, we study the affinity between annihilator graph and zero-divisor graph associated with a commutative ring. For instance, for a non-reduced ring R, it is proved that the annihilator graph and the zero-divisor graph of R are identical to the join of a complete graph and a null graph if and only if $ann_R(Z(R))$ is a prime ideal if and only if R has at most two associated primes. Among other results, under some assumptions, we give necessary and sufficient conditions under which AG(R) is a star graph.

Key words: Annihilator graph, Zero-divisor graph, Associated prime ideal.

1. Introduction

Usually, after translating of algebraic properties of rings into graphtheoretic language, some problems in ring theory might be more easily solved. When one assigns a graph to a ring, numerous interesting algebraic problems arise from the translation of some graph-theoretic parameters such as clique number, chromatic number, diameter, radius and so on. There are many extensive studies of this topic, see for example [1], [2], [3], [5] and [7].

Throughout this paper, all rings are assumed to be non-domain commutative rings with identity. We denote by Min(R), Nil(R) and Z(R), the set of all minimal prime ideals, the set of all nilpotent elements and the set of zero-divisors elements of R, respectively. Let $A \subseteq R$. The set of annihilators of A is denoted by $ann_R(A)$ and by A^* , we mean $A \setminus \{0\}$. The ring R is said to be reduced, if Nil(R) = 0. A prime ideal P of R is called an *associated* prime ideal, if $ann_R(x) = P$, for some non-zero element $x \in R$. The set of all associated prime ideals of R is denoted by Ass(R). For any undefined notation or terminology in ring theory, we refer the reader to [4], [8].

Let G = (V, E) be a graph, where V = V(G) is the set of vertices and E = E(G) is the set of edges. By \overline{G} , we mean the complement graph of

²⁰¹⁰ Mathematics Subject Classification: 13A15, 13B99, 05C99.

G. The girth of a graph G is denoted by gr(G). We write u - v, to denote an edge with ends u, v. A graph $H = (V_0, E_0)$ is called a subgraph of G if $V_0 \subseteq V$ and $E_0 \subseteq E$. Moreover, H is called an *induced subgraph by* V_0 , denoted by $G[V_0]$, if $V_0 \subseteq V$ and $E_0 = \{\{u, v\} \in E \mid u, v \in V_0\}$. Let G_1 and G_2 be two disjoint graphs. The join of G_1 and G_2 , denoted by $G_1 \vee G_2$, is a graph with the vertex set $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$. Also G is called a *null graph* if it has no edge. For a vertex x in G, we denote the set of all vertices adjacent to x by $N_G(x)$. A complete bipartite graph of part sizes m, n is denoted by $K^{m,n}$. If m = 1, then the complete bipartite graph is called *star graph*. Also, a complete graph of n vertices is denoted by K^n . For any undefined notation or terminology in graph theory, we refer the reader to [9].

The annihilator graph of a ring R is defined as the graph AG(R) with the vertex set $Z(R)^* = Z(R) \setminus \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cup ann_R(y)$. This graph was first introduced and investigated in [5] and many of interesting properties of annihilator graph were studied. For example, it was proved the annihilator graph is a connected graph of diameter at most 2. Also, the author in [5], studied some relations between two graphs AG(R) and $\Gamma(R)$, where $\Gamma(R)$ is the zero-divisor graph of a ring R. The zero- divisor graph of a ring R, denoted by $\Gamma(R)$, is a graph with the vertex set $Z(R)^*$ and two distinct vertices x and y are adjacent if and only if xy = 0. In this article, we continue the study of annihilator graphs associated with commutative rings. Especially, we focus on the conditions under which the annihilator graph is identical to the zero-divisor graph. For instance, for a non-reduced ring R, it is proved that the annihilator graph and the zero-divisor graph of R are identical to the join of a complete graph and a null graph if and only if $ann_R(Z(R))$ is a prime ideal if and only if R has at most two associated primes.

2. Main Results

We begin with the following lemma.

Lemma 2.1 Let R be a ring.

(1) Let x, y be distinct elements of $Z(R)^*$, and suppose that Z(R) =

 $ann_R(x) \cup ann_R(y)$. Then x - y is an edge of $\Gamma(R)$ if and only if x - y is an edge of AG(R).

- (2) Let x, y, z be elements of $Z(R)^*$, and suppose that $ann_R(x) = ann_R(y)$. Then x-z is an edge of AG(R) if and only if y-z is an edge of AG(R).
- (3) Let $\Gamma(R) = K^{1,n}$ for some $n \ge 1$ such that x is adjacent to every other vertex. If $ann_R(x) = ann_R(y)$ for some $y \in Z(R)^*$, then either x = y, or $\Gamma(R) = AG(R) = K^{1,1}$.

Proof. (1) If x - y is an edge of $\Gamma(R)$, then by Part (2) of [5, Lemmad 2.1], x - y is an edge of AG(R). To prove the converse, assume that x - y is an edge of AG(R). It is enough to show that xy = 0. Assume to the contrary, $xy \neq 0$. Since $ann_R(x) \cup ann_R(y) \subseteq ann(xy)$, the equality $Z(R) = ann_R(x) \cup ann_R(y)$ implies that $ann_R(xy) = ann_R(x) \cup ann_R(y)$. This means that x - y is not an edge of AG(R), a contradiction.

(2) Suppose that x-z is an edge of AG(R). Then there exists an element $r \in R$ such that rxz = 0, $rx \neq 0$ and $rz \neq 0$. The equality rxz = 0 together with the assumption $ann_R(x) = ann_R(y)$ imply that ryz = 0. Also, it is clear that $ry \neq 0$. Thus $r \in ann_R(yz) \setminus ann_R(y) \cup ann_R(z)$. Hence y - z is an edge of AG(R). The converse is proved, similarly.

(3) is clear.

By using Lemma 2.1, we provide a simple proof of [5, Theorem 3.17].

Theorem 2.2 ([5, Theorem 3.17]) Let R be a commutative ring such that $AG(R) \neq \Gamma(R)$. Then the following statements are equivalent:

- (1) $\Gamma(R)$ is a star graph;
- (2) $\Gamma(R) = K^{1,2};$
- $(3) AG(R) = K^3.$

Proof. Since $AG(R) \neq \Gamma(R)$, $(3) \Rightarrow (1)$ and $(3) \Leftrightarrow (2)$ are obvious. We have only to prove $(1) \Rightarrow (3)$. Let *a* be the center of the star graph $\Gamma(R)$. Since $\Gamma(R)$ is a star graph and $AG(R) \neq \Gamma(R)$, we deduce that $|Z(R)^*| \geq 3$ and $ann_R(x) = ann_R(y) = \{0, a\}$, for every $x, y \in Z(R) \setminus \{0, a\}$. Furthermore, by [3, Theorem 2.5] and [5, Theorem 3.6], $Z(R) = ann_R(a)$ for a nonzero element $a \in R$. To complete the proof, we show that $|Z(R)^*| = 3$. Suppose to the contrary, a, b, c, x are distinct elements of $Z(R)^*$. With no loss of generality, one may assume that b-x is an edge of AG(R) ($AG(R) \neq \Gamma(R)$). Since $ann_R(b) = ann_R(c)$, Part (2) of Lemma 2.1 implies that c - x is also

an edge of AG(R). Similarly, the equality $ann_R(c) = ann_R(x)$ shows that c-b is an edge of AG(R). Since $bx \neq 0$ and $ann_R(bx) \neq ann_R(b) \cup ann_R(x)$, we have $ann_R(bx) = ann_R(a)$. By Part (3) of Lemma 2.1, bx = a. Similarly, cx = a and cb = a. Hance x(b-c) = b(c-x) = c(b-x) = 0 and so b-x = c-x = b-c = a, a contradiction.

To prove Theorem 2.5, the following lemma is needed.

Lemma 2.3 Let R be a ring and $x \in Z(R)^*$. Then

- (1) If $ann_R(x)$ is a prime ideal of R, then $N_{\Gamma(R)}(x) = N_{AG(R)}(x)$.
- (2) If $x \in Nil(R)^*$ and $N_{\Gamma(R)}(x) = N_{AG(R)}(x)$, then $ann_R(x)$ is a prime ideal of R.

Proof. (1) By Part (2) of [5, Lemma 2.1], it is enough to show that $N_{AG(R)}(x) \subseteq N_{\Gamma(R)}(x)$. Assume to the contrary, x - y is an edge of AG(R) such that $xy \neq 0$. Therefore, there exists an element $r \in R$ such that $rxy = 0, rx \neq 0$ and $ry \neq 0$. Thus $ry \in ann_R(x)$. Since $ann_R(x)$ is a prime ideal of R and $y \notin ann_R(x)$, we have $r \in ann_R(x)$, a contradiction. So $N_{\Gamma(R)}(x) = N_{AG(R)}(x)$.

(2) Assume that $x \in Nil(R)^*$ and $N_{\Gamma(R)}(x) = N_{AG(R)}(x)$. Then by [5, Theorem 3.10], $Nil(R)^* \subseteq N_{AG(R)}(x)$. If $x^2 \neq 0$, then $x^3 = 0$ and $x(x+x^2) = 0$. Thus $x^2 + x^3 = x^2 = 0$, which is impossible. So $x^2 = 0$. Now, we show that $ann_R(x)$ is a prime ideal of R. To prove this, let $ab \in ann_R(x)$, $a \notin ann_R(x)$ and $b \notin ann_R(x)$. Thus $x \neq a$ and $x \neq b$. Since xab = 0 and $ax \neq 0$ and $bx \neq 0$, we have $a, b \in Z(R)^*$. If $ab \neq 0$, then x is adjacent to ain AG(R) which contradicts the assumption $N_{\Gamma(R)}(x) = N_{AG(R)}(x)$. Hence ab = 0 and so $b \in ann_R(a) \setminus ann_R(x)$. Since $x \in ann_R(x) \setminus ann_R(a)$, by Part (4) of [5, Lemma 2.1], x - a is an edge of AG(R), a contradiction. \Box

In light of Lemma 2.3, we have the following corollary.

Corollary 2.4 Let R be a ring. If $\Gamma(R) = AG(R)$, then for every $x \in Nil(R)^*$, $ann_R(x) \in Ass(R)$.

Let R be a ring and $\Sigma = \{ann_R(x) \mid 0 \neq x \in R\}$. Recall that the set of all maximal elements of Σ (under \subseteq) is a subset of Ass(R). We set $\Sigma^* = \Sigma \setminus \{(0)\}$. Now, we are ready to present the following result.

Theorem 2.5 Let R be a ring such that for every edge of AG(R), say x-y, either $ann_R(x) \in Ass(R)$ or $ann_R(y) \in Ass(R)$. Then $\Gamma(R) = AG(R)$.

Proof. It follows from Part (1) of Lemma 2.3.

Corollary 2.6 Let R be a ring. If $\Sigma^* = Ass(R)$, then $\Gamma(R) = AG(R)$.

Proposition 2.7 Let R be a non-reduced ring such that Z(R) is not an ideal of R. Then $\Sigma^* \neq Ass(R)$.

Proof. The result follows from Corollary 2.6 and [5, Theorem 3.15].

If R is a reduced ring, then the converse of Theorem 2.6 is also true (see [5, Theorem 3.6]). The annihilator graph of a reduced ring has been studied extensively in [5] and it has been characterized all reduced rings R that $\Gamma(R) = AG(R)$. So in the rest of this paper, almost everywhere, we assume that R is a non-reduced ring. We are interested in characterize non-reduced rings whose annihilator and zero-divisor graphs are identical. Therefore, the following question is posed:

Question 2.8 Let R be a non-reduced ring and x-y be an edge of AG(R). If $\Gamma(R) = AG(R)$, then is it true either $ann_R(x) \in Ass(R)$ or $ann_R(y) \in Ass(R)$?

In what follow, we provide some examples for which the Question 2.8 has an affirmative answer.

Example 2.9 (1) [5, Example 2.7] Let $R = \mathbb{Z}_8$. Then 2 - 6 is an edge of AG(R) and $ann_R(2) = ann_R(6) \notin Ass(R)$. On the other hand, $\Gamma(R) \neq AG(R)$.

(2) [5, Example 2.8] Let $R = \mathbb{Z}_2 \times \mathbb{Z}_4$ and let a = (0, 1) and b = (1, 2). Then a - b is an edge of AG(R), $ann_R(a) \notin Ass(R)$ and $ann_R(b) \notin Ass(R)$. Also, it is known that $\Gamma(R) \neq AG(R)$ and so the Question 2.8 has an affirmative answer.

(3) [5, Example 3.22] Let $D = \mathbb{Z}_2[X, Y, W]$, $I = (X^2, Y^2, XY, XW)D$ be an ideal of D, and let R = D/I. It is not hard to check that if a - b is an edge of AG(R), then either $ann_R(a) \in Ass(R)$ or $ann_R(b) \in Ass(R)$. Since $\Gamma(R) = AG(R)$, the Question 2.8 has an affirmative answer.

(4) [5, Example 3.23] Let $D = \mathbb{Z}_2[X, Y, W]$, $I = (X^2, Y^2, XY, XW, YW^3)D$ be an ideal of D, and let R = D/I. Then let x = X + I, y = Y + I and w = W + I be elements of R. We have $w - w^2$ is an edge of AG(R), $ann_R(w) \notin Ass(R)$ and $ann_R(w^2) \notin Ass(R)$. Moreover, it is known that $\Gamma(R) \neq AG(R)$.

 \Box

In the following theorem, for a non-reduced ring R, we provide conditions under which $\Gamma(R) = AG(R)$.

Theorem 2.10 Let R be a non-reduced ring. Then the following statements are equivalent:

- (1) $\Gamma(R) = AG(R) = K^n \vee \overline{K}^m$, where $n = |Nil(R)^*|$ and $m = |Z(R) \setminus Nil(R)|$;
- (2) $ann_R(Z(R))$ is a prime ideal of R;
- (3) $\Sigma^* = Ass(R)$ and $|\Sigma^*| \leq 2$.

Proof. (1) \Rightarrow (2) With no loss of generality, one may assume that $m \neq 0$. Since $\Gamma(R) = K^n \vee \overline{K}^m$, every vertex of K^n is adjacent to all other vertices of $\Gamma(R)$ and there is no edge between vertices of \overline{K}^m . Thus $ann_R(Z(R)) = V(K^n) \cup \{0\}, xy \neq 0$ and $ann_R(x) = ann_R(y) = ann_R(Z(R))$, for every $x, y \in V(\overline{K}^m)$. Now, we show that $ann_R(Z(R))$ is a prime ideal of R. To see this, let $xy \in ann_R(Z(R)), x \notin ann_R(Z(R))$ and $y \notin ann_R(Z(R))$. Thus $x \neq y$, and hence $Z(R) = ann_R(xy) \neq ann_R(x) \cup ann_R(y) = ann_R(Z(R))$. Therefore, x - y is an edge of AG(R), a contradiction. So, $ann_R(Z(R))$ is a prime ideal of R.

(2) \Rightarrow (1) Assume that $ann_R(Z(R))$ is a prime ideal of R. Thus xy = 0, for all $x, y \in ann_R(Z(R))$, and $xy \neq 0$, for all $x, y \in Z(R) \setminus ann_R(Z(R))$. Now, it is not hard to see that $\Gamma(R)[ann_R(Z(R))^*]$ and $\Gamma(R)[Z(R) \setminus ann_R(Z(R))]$ are two subgraph of $\Gamma(R)$ such that $\Gamma(R)[ann_R(Z(R))^*]$ is complete, $\Gamma(R)[Z(R) \setminus ann_R(Z(R))]$ is null and $\Gamma(R) = \Gamma(R)[ann_R(Z(R))^*] \vee \Gamma(R)[Z(R) \setminus ann_R(Z(R))]$. To complete the proof, we have only to show that $\Gamma(R) = AG(R)$. Let x, y be non-adjacent vertices of $\Gamma(R)$. Then $x, y, xy \in Z(R) \setminus ann_R(Z(R))$. Since $ann_R(Z(R))$ is a prime ideal of R, we conclude that $ann(x) = ann(y) = ann_R(xy) = ann_R(Z(R))$, i.e., x, y are not adjacent in AG(R), as desired.

(2) \Rightarrow (3) Since $ann_R(Z(R))$ is a prime ideal of R, for every $x \in Z(R)^*$, either $ann_R(x) = ann_R(Z(R))$ or $ann_R(x) = Z(R)$. Hence $\Sigma^* = \{ann_R(Z(R)), Z(R)\}$ and so $\Sigma^* = Ass(R)$ and $|\Sigma^*| \leq 2$.

 $(3) \Rightarrow (2)$ Let $ann_R(x)$ and $ann_R(y)$ be elements of Σ^* . Since $\Sigma^* = Ass(R)$, by Corollary 2.6, $\Gamma(R) = AG(R)$ and hence it follows from [5, Theorem 3.15] that Z(R) is an ideal of R. This, together with the fact $Z(R) = ann_R(x) \cup ann_R(y)$ imply that either $ann_R(x) \subseteq ann_R(y)$ or $ann_R(y) \subseteq ann_R(x)$. With no loss of generality, suppose that $ann_R(x) \subseteq ann_R(y)$.

Thus $Z(R) = ann_R(y)$. Now, we have only to show that $ann_R(x) = ann_R(Z(R))$. We consider the following two cases:

Case 1. Let $a, b \in ann_R(x)$. Then either $ann_R(a) = ann_R(x)$ or $ann_R(a) = Z(R)$. Thus ab = 0.

Case 2. Let $a \in ann_R(x)$ and $b \notin ann_R(x)$. Then it is easily seen that $ann_R(b) = ann_R(x)$ and so ab = 0.

The proof is complete.

Theorem 2.11 Let R be a non-reduced ring and $|\Sigma^*| \leq 2$. If $\Gamma(R) = AG(R)$, then $\Sigma^* = Ass(R)$.

Proof. Assume that $x, y \in Z(R)^*$ and $\Sigma^* = \{ann_R(x), ann_R(y)\}$. So $Z(R) = ann_R(x) \cup ann_R(y)$. Since $\Gamma(R) = AG(R)$, by [5, Theorem 3.15], Z(R) is an ideal of R and so either $ann_R(x) \subseteq ann_R(y)$ or $ann_R(y) \subseteq ann_R(x)$. With no loss of generality, suppose that $ann_R(x) \subseteq ann_R(y)$. Since $Z(R) = ann_R(y)$, we have only to show that $ann_R(x) \subseteq ann_R(y)$. Since $Z(R) = ann_R(x)$, $a \notin ann_R(x)$ and $b \notin ann_R(x)$. If $ab \neq 0$, then x-a is an edge of AG(R), by definition, and thus xa = 0 (since $\Gamma(R) = AG(R)$), which is impossible. So $a \in ann_R(b)$. On the other hand, we know that $ann_R(b) = ann_R(x)$ or $ann_R(b) = ann_R(y)$. If $ann_R(b) = ann_R(x)$, then ax = 0, a contradiction. If $ann_R(b) = ann_R(y)$, then it is easily seen that bx = 0, again we get a contradiction. Hence $\Sigma^* = Ass(R)$.

To characterize non-reduced rings whose annihilator graphs are star, the following lemma is needed.

Lemma 2.12 Let R be a non-reduced ring and $x \in Z(R) \setminus Nil(R)$. If $x^n = x^{n+1}$, where n is a positive integer, then $gr(AG(R)) \leq 4$.

Proof. Since $x^n = x^{n+1}$ for some $x \in Z(R) \setminus Nil(R)$, there exists an element $e \in Z(R)^*$ such that $e = e^2$. So by Brauer's Lemma (see [6, 10.22]), $R \cong Re \times R(1-e)$. Hence we may assume that $R \cong R_1 \times R_2$. With no loss of generality, one may assume that there exists $a \in Nil(R_2)^*$ and $a^2 = 0$. Therefore, (1,0)(0,a) = (1,0)(0,1) = (0,0) and (1,a)(0,1) = (0,a). Thus $ann_R((0,a)) \neq ann_R((1,a)) \cup ann_R((0,a))$. So (1,0) - (0,1) - (1,a) - (0,a) - (1,0) is a cycle of length four.

Theorem 2.13 Let R be a non-reduced ring such that R is not ringisomorphic to $\mathbb{Z}_2 \times B$, where $B = \mathbb{Z}_4$ or $B = \mathbb{Z}_2[X]/(X^2)$. Then the following statements are equivalent:

- (1) $gr(AG(R)) = \infty;$
- (2) AG(R) is a star graph;
- (3) AG(R) is a bipartite graph;
- (4) AG(R) is a complete bipartite graph;
- (5) $\Sigma^* = Ass(R) = \{ann_R(x), ann_R(y)\}, \text{ for some } x, y \in Z(R).$ Furthermore, if $ann_R(x) = ann_R(y)$, then $|ann_R(x)| = |Z(R)| = 3$. And if $ann_R(x) \neq ann_R(y)$, then $\Sigma^* = \{Z(R), ann_R(Z(R))\}$ and $|ann_R(Z(R))^*| = 1$.

Proof. $(2) \Rightarrow (3)$ is clear and $(3) \Rightarrow (4)$ follows from [5, Theorem 2.2].

 $(5) \Rightarrow (1)$ If |Z(R)| = 3, then obviously $AG(R) = K^2$. Moreover, if $|ann_R(Z(R))^*| = 1$, then the result follows from Theorem 2.10.

(1) \Rightarrow (2). By [5, Theorem 3.10], $|Nil(R)^*| \leq 2$. First assume that $|Nil(R)^*| = 2$ and $Nil(R)^* = \{a, b\}$, for some elements $a, b \in R$. It is easy to see that a = -b, and thus $ann_R(a) = ann_R(b)$. Since $gr(AG(R)) = \infty$, by Part (2) of Lemma 2.1, $AG(R) = K^{1,1}$. Now, assume that $Nil(R)^* = \{a\}$, for some $a \in R$. Thus Nil(R) is a minimal ideal of R and so $ann_R(a)$ is a maximal ideal. We show that $Z(R) = ann_R(a)$. Assume to the contrary, there exists $x \in Z(R) \setminus ann_R(a)$. Since $ann_R(a)$ is a prime ideal, $ann_R(x) \subseteq ann_R(a)$. Let $y \in ann_R(x)$ (since $xa \neq 0$ so $y \neq a$). If $y^n = y^{n+1}$, for some positive integer n, then Lemma 2.12 implies that $gr(AG(R)) \leq 4$, which is a contradiction. Also, if $y^n \neq y^{n+1}$, then $x - y^n - a - y^{n+1} - x$ is a cycle of length four, a contradiction. So $Z(R) = ann_R(a)$ and hence a is adjacent to all other vertices. This, together with $gr(AG(R)) = \infty$, implies that AG(R) is a star graph.

(4) \Rightarrow (5). Let AG(R) be complete bipartite. By [5, Corollary 2.10], $\Gamma(R) = AG(R)$. It follows from the proof of (1) \Rightarrow (2) that $|Nil(R)^*| \leq 2$. If $|Nil(R)^*| = 2$, then it is easy to see that $\Sigma^* = Ass(R) = \{ann_R(x)\}$ and $|ann_R(x)| = |Z(R)| = 3$. So, assume that $|Nil(R)^*| = 1$. For the unique element $a \in Nil(R)^*$, by Theorem 2.3 (2), $ann_R(a)$ is a prime ideal of R. Now, let $x \in Z(R) \setminus ann_R(a)$. Since AG(R) is a complete bipartite graph and $\Gamma(R) = AG(R)$, we infer that $ann_R(a) = ann_R(x)$. Since $|Nil(R)^*| = 1$ and $xa \neq 0$, we conclude that xa = a and so $x - 1 \in ann_R(a) = ann_R(x)$. Thus $x = x^2$ and hence by Brauer's Lemma (see [6, 10.22]), R is a decomposable ring. This contradicts [5, Theorem 3.15]. Therefore, $Z(R) = ann_R(a)$. Now, it is not hard to see that $ann_R(x) = ann_R(Z(R))$, for every $a \neq x \in Z(R)^*$, and $|\Sigma^*| = 2$. Thus by Theorem 2.11, $\Sigma^* = Ass(R) = \{Z(R), ann_R(Z(R))\}.$

Theorem 2.13, [5, Theorem 3.6] and [5, Theorem 3.16] lead to the following corollaries.

Corollary 2.14 Let R be a ring. Then AG(R) is a complete bipartite graph if and only if one of the following statements holds:

- (1) Nil(R) = (0) and |Min(R)| = 2;
- (2) $Nil(R) \neq (0)$ and either $AG(R) = K^{1,n}$, or $AG(R) = K^{2,3}$, where $1 \leq n \leq \infty$.

Theorem 2.13 provides an alternate proof for [5, Theorem 3.18].

Corollary 2.15 ([5, Theorem 3.18]) Let R be a non-reduced commutative ring with $|Z(R)^*| \ge 2$. Then the following statements are equivalent:

- (1) AG(R) is a star graph;
- (2) $gr(AG(R)) = \infty;$
- (3) $AG(R) = \Gamma(R)$ and $gr(\Gamma(R)) = \infty$;
- (4) Nil(R) is a prime ideal of R and either $Z(R) = Nil(R) = \{0, -w, w\}$ $(w \neq -w)$ for some nonzero $w \in R$ or $Z(R) \neq Nil(R)$ and $Nil(R) = \{0, w\}$ for some non-zero $w \in R$ (and hence $wZ(R) = \{0\}$);
- (5) Either $AG(R) = K^{1,1}$ or $AG(R) = K^{1,\infty}$;
- (6) Either $\Gamma(R) = K^{1,1}$ or $\Gamma(R) = K^{1,\infty}$.

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (3) are clear and (2) \Rightarrow (1) and (3) \Rightarrow (1) follow from Theorem 2.13.

(1) \Leftrightarrow (4) It is easy to see that AG(R) is a star graph if and only if either $\Gamma(R) = AG(R) = K^2 \vee \overline{K}^0$ or $\Gamma(R) = AG(R) = K^1 \vee \overline{K}^\infty$. Now, by Theorem 2.10, AG(R) is a star graph if and only if Nil(R) is a prime ideal of R and one of the following holds:

(i) $Z(R) = Nil(R) = \{0, -w, w\} \ (w \neq -w)$, for some non-zero $w \in R$.

(ii) $Z(R) \neq Nil(R)$ and $Nil(R) = \{0, w\}$, for some non-zero $w \in R$ (put $|Nil(R)^*| = n$ in Theorem 2.10).

 $(5) \Rightarrow (1)$ is obvious and $(1) \Rightarrow (5)$ follows from the proof of Theorem 2.13.

 $(1) \Rightarrow (6)$ is easily obtained by Theorem 2.13 and its proof.

 $(6) \Rightarrow (1)$ is obvious by [5, Theorem 3.17].

Let x be a vertex of AG(R) which is adjacent to every other vertex. In the following theorem, we provide conditions under which x is adjacent to every other vertex in $\Gamma(R)$.

Theorem 2.16 Let R be a ring and $\Sigma = \{ann_R(x) | 0 \neq x \in R\}$. Then the following statements are equivalent:

- (1) x is adjacent to every other vertex in $\Gamma(R)$;
- (2) $ann_R(x)$ is a maximal element of Σ and x is adjacent to every other vertex in AG(R).

Proof. (1) \Rightarrow (2) Suppose that x is adjacent to every other vertex in $\Gamma(R)$. Then by Part (2) of [5, Lemma 2.1], x is adjacent to every other vertex in AG(R). Also, by [3, Theorem 2.5], $ann_R(x)$ is a maximal element of Σ .

 $(2) \Rightarrow (1)$ Suppose that $ann_R(x)$ is a maximal element of Σ and x is adjacent to every other vertex in AG(R). To complete the proof, we consider the following two cases:

Case 1. Let $x \in ann_R(x)$. We claim that $Z(R) = ann_R(x)$. Assume to the contrary, $y \in Z(R) \setminus ann_R(x)$. So $xy \neq 0$ and since $ann_R(x)$ is a maximal element of Σ , we conclude that $ann_R(xy) = ann_R(y) \cup ann_R(x)$, a contradiction. Hence $Z(R) = ann_R(x)$ and so the claim is proved. Thus x is adjacent to every other vertex in $\Gamma(R)$.

Case 2. Let $x \notin ann_R(x)$. Since $ann_R(x)$ is a prime ideal of R, $x^n \neq 0$, for every positive integer n. If $x \neq x^2$, then $ann_R(x) \subsetneq ann_R(x^3)$, a contradiction. Thus $x = x^2$ and so $R \cong Rx \times R(1-x)$. Hence we may assume that $R \cong R_1 \times R_2$ where (1,0) adjacent to every other vertex. Now, we show that $R_1 \cong \mathbb{Z}_2$ and R_2 is an integral domain. To see this, let $a \in R_1 \setminus \{0, 1\}$. Obviously, (1,0)(a,0) = (a,0), i.e., (1,0) is not adjacent to (a,0), a contradiction. Also, if $Z(R_2) \neq 0$, then for any $x \in Z(R_2)^*$, (1,0)(1,x) = (1,0). That means (1,0) is not adjacent to (1,x) which is impossible. Thus $R_1 \cong \mathbb{Z}_2$ and R_2 is an integral domain. Now, by [3, Theorem 2.5], x is adjacent to every other vertex in $\Gamma(R)$.

Proposition 2.17 Let R be a non-reduced ring and for every $x \in Z(R)^*$, set $\Sigma_x = \{ann_R(x^i)\}$, where $i \in \mathbb{N}$. Then the following statements are equivalent:

(1) AG(R) is a complete graph and $|\Sigma_x| < \infty$, for every $x \in Z(R)^*$;

(2) Z(R) = Nil(R).

Proof. $(2) \Rightarrow (1)$ is easily obtained by [5, Theorem 3.10].

(1) \Rightarrow (2) Suppose that $x \in Z(R) \setminus Nil(R)$. If $x^n = x^{n+1}$, where n is a positive integer, then by the proof of Lemma 2.12, AG(R) is not a complete graph, a contradiction. So $x^i \neq x^{i+1}$, for every $i \in \mathbb{N}$. Since $|\Sigma_x| < \infty$, $ann_R(x^i) = ann_R(x^{i+1})$, for some $i \in \mathbb{N}$. This implies that $x - x^i$ is not an edge of AG(R), unless $xx^i = x^{i+1} = 0$, a contradiction. Thus Z(R) = Nil(R).

In view of above proposition, we have the following corollary.

Corollary 2.18 Let R be a non-reduced ring such that $Z(R) \neq Nil(R)$, and let AG(R) be a complete graph. Then:

(1) $\Gamma(R) \neq AG(R);$

(2) R is not a Noetherian ring.

Proof. (1) By Theorem 2.17, there is an element $x \in Z(R)^*$ such that $|\Sigma_x| = \infty$, and so $x \notin Nil(R)$. If $x^n = x^{n+1}$, where n is a positive integer, then by proof of Lemma 2.12, AG(R) is not a complete graph, a contradiction. So $x^i \neq x^{i+1}$, for every $i \in \mathbb{N}$. Now, $x - x^i$ is not an edge of $\Gamma(R)$. Hence $\Gamma(R) \neq AG(R)$

(2) Suppose that $x \in Z(R) \setminus Nil(R)$. Since AG(R) is a complete graph, $|\Sigma_x| = \infty$, and so the chain $ann_R(x) \subseteq ann_R(x^2) \subseteq \cdots \subseteq ann_R(x^i) \subseteq \cdots$ will not stabilize. Thus R is not a Noetherian ring.

We close this paper with the following example which is devoted to the study of relation between two graphs $\Gamma(\mathbb{Z}_n)$ and $AG(\mathbb{Z}_n)$.

Example 2.19 Let $R = \mathbb{Z}_n$. If \mathbb{Z}_n is not local, then $\Gamma(\mathbb{Z}_n) = AG(\mathbb{Z}_n)$ if and only if n = pq for distinct prime numbers p, q. Moreover in this case $\Gamma(\mathbb{Z}_n) = K^{p-1,q-1}$. If \mathbb{Z}_n is local, then $\Gamma(\mathbb{Z}_n) = AG(\mathbb{Z}_n)$ if and only if $n = p^2$, where p is a prime number. Moreover in this case $\Gamma(\mathbb{Z}_n) = K^{p-1}$. For instance it is easy to see that $\Gamma(\mathbb{Z}_{10}) = K^{1,4} = AG(\mathbb{Z}_{10})$. Also, for local rings \mathbb{Z}_{25} and \mathbb{Z}_8 , we can easily check that $\Gamma(\mathbb{Z}_{25}) = K^4 = AG(\mathbb{Z}_{25})$, but $\Gamma(\mathbb{Z}_8) = K^{1,2} \neq K^3 = AG(\mathbb{Z}_8)$.

Acknowledgements. The authors thank to the referee for his/her careful reading and his/her excellent suggestions.

References

- Akbari S. and Nikandish R., Some results on the intersection graphs of ideals of matrix algebras. Linear and Multilinear Algebra 62 (2014), 195– 206.
- [2] Akbari S., Nikandish R. and Nikmehr M. J., Some results on the intersection graphs of ideals of rings. J. Alg. Appl. 12 (2013).
- [3] Anderson D. F. and Livingston P. S., The zero-divisor graph of a commutative ring. J. Algebra 217 (1999), 434–447.
- [4] Atiyah M. F. and Macdonald I. G., Introduction to Commutative Algebra, Addison-Wesley Publishing Company (1969).
- [5] Badawi A., On the annihilator graph of a commutative ring. Comm. Algebra 42 (2014), 108–121.
- [6] Lam T. Y., A First Course in Non-Commutative Rings Springer-Verlag, New York, Inc 1991.
- [7] Nikmehr M. J. and Heydari F., The M-principal graph of a commutative ring. Period. Math. Hung. 68 (2014), 185–192.
- [8] Sharp R. Y., Steps in Commutative Algebra, 2nd ed, London Mathematical Society Student Texts 51, Cambridge University Press, Cambridge, 2000.
- [9] West D. B., Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River (2001).

M. J. NIKMEHR Faculty of Mathematics K.N. Toosi University of Technology P.O. BOX 16315-1618, Tehran, Iran E-mail: nikmehr@kntu.ac.ir

R. NIKANDISH
Department of Basic Sciences
Jundi-Shapur University of Technology
P.O. Box 64615-334, Dezful, Iran
E-mail: r.nikandish@jsu.ac.ir

M. BAKHTYIARI Department of Mathematics College of Basic Sciences Karaj Branch, Islamic Azad University Alborz, Iran E-mail: m.bakhtyiari55@gmail.com