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Abstract. Let R be a commutative ring with identity, and let Z(R) be the set of zero-

divisors of R. The annihilator graph of R is defined as the undirected graph AG(R)

with the vertex set Z(R)∗ = Z(R)\{0}, and two distinct vertices x and y are adjacent

if and only if annR(xy) 6= annR(x) ∪ annR(y). In this paper, we study the affinity

between annihilator graph and zero-divisor graph associated with a commutative ring.

For instance, for a non-reduced ring R, it is proved that the annihilator graph and

the zero-divisor graph of R are identical to the join of a complete graph and a null

graph if and only if annR(Z(R)) is a prime ideal if and only if R has at most two

associated primes. Among other results, under some assumptions, we give necessary

and sufficient conditions under which AG(R) is a star graph.

Key words: Annihilator graph, Zero-divisor graph, Associated prime ideal.

1. Introduction

Usually, after translating of algebraic properties of rings into graph-
theoretic language, some problems in ring theory might be more easily
solved. When one assigns a graph to a ring, numerous interesting algebraic
problems arise from the translation of some graph-theoretic parameters such
as clique number, chromatic number, diameter, radius and so on. There are
many extensive studies of this topic, see for example [1], [2], [3], [5] and [7].

Throughout this paper, all rings are assumed to be non-domain commu-
tative rings with identity. We denote by Min(R), Nil(R) and Z(R), the set
of all minimal prime ideals, the set of all nilpotent elements and the set of
zero-divisors elements of R, respectively. Let A ⊆ R. The set of annihilators
of A is denoted by annR(A) and by A∗, we mean A\{0}. The ring R is said
to be reduced, if Nil(R) = 0. A prime ideal P of R is called an associated
prime ideal, if annR(x) = P , for some non-zero element x ∈ R. The set of
all associated prime ideals of R is denoted by Ass(R). For any undefined
notation or terminology in ring theory, we refer the reader to [4], [8].

Let G = (V, E) be a graph, where V = V (G) is the set of vertices and
E = E(G) is the set of edges. By G, we mean the complement graph of
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G. The girth of a graph G is denoted by gr(G). We write u− v, to denote
an edge with ends u, v. A graph H = (V0, E0) is called a subgraph of G

if V0 ⊆ V and E0 ⊆ E. Moreover, H is called an induced subgraph by V0,
denoted by G[V0], if V0 ⊆ V and E0 = {{u, v} ∈ E |u, v ∈ V0}. Let G1 and
G2 be two disjoint graphs. The join of G1 and G2, denoted by G1 ∨ G2,
is a graph with the vertex set V (G1 ∨ G2) = V (G1) ∪ V (G2) and edge set
E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {uv |u ∈ V (G1), v ∈ V (G2)}. Also G is
called a null graph if it has no edge. For a vertex x in G, we denote the
set of all vertices adjacent to x by NG(x). A complete bipartite graph of
part sizes m,n is denoted by Km,n. If m = 1, then the complete bipartite
graph is called star graph. Also, a complete graph of n vertices is denoted
by Kn. For any undefined notation or terminology in graph theory, we refer
the reader to [9].

The annihilator graph of a ring R is defined as the graph AG(R) with
the vertex set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are
adjacent if and only if annR(xy) 6= annR(x) ∪ annR(y). This graph was
first introduced and investigated in [5] and many of interesting properties of
annihilator graph were studied. For example, it was proved the annihilator
graph is a connected graph of diameter at most 2. Also, the author in
[5], studied some relations between two graphs AG(R) and Γ(R), where
Γ(R) is the zero-divisor graph of a ring R. The zero- divisor graph of a
ring R, denoted by Γ(R), is a graph with the vertex set Z(R)∗ and two
distinct vertices x and y are adjacent if and only if xy = 0. In this article,
we continue the study of annihilator graphs associated with commutative
rings. Especially, we focus on the conditions under which the annihilator
graph is identical to the zero-divisor graph. For instance, for a non-reduced
ring R, it is proved that the annihilator graph and the zero-divisor graph of
R are identical to the join of a complete graph and a null graph if and only
if annR(Z(R)) is a prime ideal if and only if R has at most two associated
primes.

2. Main Results

We begin with the following lemma.

Lemma 2.1 Let R be a ring.

(1) Let x, y be distinct elements of Z(R)∗, and suppose that Z(R) =
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annR(x) ∪ annR(y). Then x − y is an edge of Γ(R) if and only if
x− y is an edge of AG(R).

(2) Let x, y, z be elements of Z(R)∗, and suppose that annR(x) = annR(y).
Then x−z is an edge of AG(R) if and only if y−z is an edge of AG(R).

(3) Let Γ(R) = K1,n for some n ≥ 1 such that x is adjacent to every other
vertex. If annR(x) = annR(y) for some y ∈ Z(R)∗, then either x = y,
or Γ(R) = AG(R) = K1,1.

Proof. (1) If x − y is an edge of Γ(R), then by Part (2) of [5, Lemmad
2.1], x − y is an edge of AG(R). To prove the converse, assume that x − y

is an edge of AG(R). It is enough to show that xy = 0. Assume to the
contrary, xy 6= 0. Since annR(x)∪annR(y) ⊆ ann(xy), the equality Z(R) =
annR(x) ∪ annR(y) implies that annR(xy) = annR(x) ∪ annR(y). This
means that x− y is not an edge of AG(R), a contradiction.

(2) Suppose that x−z is an edge of AG(R). Then there exists an element
r ∈ R such that rxz = 0, rx 6= 0 and rz 6= 0. The equality rxz = 0 together
with the assumption annR(x) = annR(y) imply that ryz = 0. Also, it is
clear that ry 6= 0. Thus r ∈ annR(yz) \ annR(y) ∪ annR(z). Hence y − z is
an edge of AG(R). The converse is proved, similarly.

(3) is clear. ¤

By using Lemma 2.1, we provide a simple proof of [5, Theorem 3.17].

Theorem 2.2 ([5, Theorem 3.17]) Let R be a commutative ring such that
AG(R) 6= Γ(R). Then the following statements are equivalent :

(1) Γ(R) is a star graph;
(2) Γ(R) = K1,2;
(3) AG(R) = K3.

Proof. Since AG(R) 6= Γ(R), (3) ⇒ (1) and (3) ⇔ (2) are obvious. We
have only to prove (1) ⇒ (3). Let a be the center of the star graph Γ(R).
Since Γ(R) is a star graph and AG(R) 6= Γ(R), we deduce that |Z(R)∗| ≥ 3
and annR(x) = annR(y) = {0, a}, for every x, y ∈ Z(R) \ {0, a}. Further-
more, by [3, Theorem 2.5] and [5, Theorem 3.6], Z(R) = annR(a) for a non-
zero element a ∈ R. To complete the proof, we show that |Z(R)∗| = 3. Sup-
pose to the contrary, a, b, c, x are distinct elements of Z(R)∗. With no loss of
generality, one may assume that b−x is an edge of AG(R) (AG(R) 6= Γ(R)).
Since annR(b) = annR(c), Part (2) of Lemma 2.1 implies that c− x is also
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an edge of AG(R). Similarly, the equality annR(c) = annR(x) shows that
c−b is an edge of AG(R). Since bx 6= 0 and annR(bx) 6= annR(b)∪annR(x),
we have annR(bx) = annR(a). By Part (3) of Lemma 2.1, bx = a. Simi-
larly, cx = a and cb = a. Hance x(b − c) = b(c − x) = c(b − x) = 0 and so
b− x = c− x = b− c = a, a contradiction. ¤

To prove Theorem 2.5, the following lemma is needed.

Lemma 2.3 Let R be a ring and x ∈ Z(R)∗. Then

(1) If annR(x) is a prime ideal of R, then NΓ(R)(x) = NAG(R)(x).
(2) If x ∈ Nil(R)∗ and NΓ(R)(x) = NAG(R)(x), then annR(x) is a prime

ideal of R.

Proof. (1) By Part (2) of [5, Lemma 2.1], it is enough to show that
NAG(R)(x) ⊆ NΓ(R)(x). Assume to the contrary, x− y is an edge of AG(R)
such that xy 6= 0. Therefore, there exists an element r ∈ R such that
rxy = 0, rx 6= 0 and ry 6= 0. Thus ry ∈ annR(x). Since annR(x) is a
prime ideal of R and y /∈ annR(x), we have r ∈ annR(x), a contradiction.
So NΓ(R)(x) = NAG(R)(x).

(2) Assume that x ∈ Nil(R)∗ and NΓ(R)(x) = NAG(R)(x). Then by
[5, Theorem 3.10], Nil(R)∗ ⊆ NAG(R)(x). If x2 6= 0, then x3 = 0 and
x(x+x2) = 0. Thus x2 +x3 = x2 = 0, which is impossible. So x2 = 0. Now,
we show that annR(x) is a prime ideal of R. To prove this, let ab ∈ annR(x),
a /∈ annR(x) and b /∈ annR(x). Thus x 6= a and x 6= b. Since xab = 0 and
ax 6= 0 and bx 6= 0, we have a, b ∈ Z(R)∗. If ab 6= 0, then x is adjacent to a

in AG(R) which contradicts the assumption NΓ(R)(x) = NAG(R)(x). Hence
ab = 0 and so b ∈ annR(a) \ annR(x). Since x ∈ annR(x) \ annR(a), by
Part (4) of [5, Lemma 2.1], x− a is an edge of AG(R), a contradiction. ¤

In light of Lemma 2.3, we have the following corollary.

Corollary 2.4 Let R be a ring. If Γ(R) = AG(R), then for every x ∈
Nil(R)∗, annR(x) ∈ Ass(R).

Let R be a ring and Σ = {annR(x) | 0 6= x ∈ R}. Recall that the
set of all maximal elements of Σ (under ⊆) is a subset of Ass(R). We set
Σ∗ = Σ \ {(0)}. Now, we are ready to present the following result.

Theorem 2.5 Let R be a ring such that for every edge of AG(R), say x−y,
either annR(x) ∈ Ass(R) or annR(y) ∈ Ass(R). Then Γ(R) = AG(R).
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Proof. It follows from Part (1) of Lemma 2.3. ¤

Corollary 2.6 Let R be a ring. If Σ∗ = Ass(R), then Γ(R) = AG(R).

Proposition 2.7 Let R be a non-reduced ring such that Z(R) is not an
ideal of R. Then Σ∗ 6= Ass(R).

Proof. The result follows from Corollary 2.6 and [5, Theorem 3.15]. ¤

If R is a reduced ring, then the converse of Theorem 2.6 is also true
(see [5, Theorem 3.6]). The annihilator graph of a reduced ring has been
studied extensively in [5] and it has been characterized all reduced rings
R that Γ(R) = AG(R). So in the rest of this paper, almost everywhere,
we assume that R is a non-reduced ring. We are interested in characterize
non-reduced rings whose annihilator and zero-divisor graphs are identical.
Therefore, the following question is posed:

Question 2.8 Let R be a non-reduced ring and x−y be an edge of AG(R).
If Γ(R) = AG(R), then is it true either annR(x) ∈ Ass(R) or annR(y) ∈
Ass(R)?

In what follow, we provide some examples for which the Question 2.8
has an affirmative answer.

Example 2.9 (1) [5, Example 2.7] Let R = Z8. Then 2 − 6 is an edge
of AG(R) and annR(2) = annR(6) /∈ Ass(R). On the other hand, Γ(R) 6=
AG(R).

(2) [5, Example 2.8] Let R = Z2 × Z4 and let a = (0, 1) and b = (1, 2).
Then a− b is an edge of AG(R), annR(a) /∈ Ass(R) and annR(b) /∈ Ass(R).
Also, it is known that Γ(R) 6= AG(R) and so the Question 2.8 has an
affirmative answer.

(3) [5, Example 3.22] Let D = Z2[X, Y,W ], I = (X2, Y 2, XY, XW )D
be an ideal of D, and let R = D/I. It is not hard to check that if a− b is an
edge of AG(R), then either annR(a) ∈ Ass(R) or annR(b) ∈ Ass(R). Since
Γ(R) = AG(R), the Question 2.8 has an affirmative answer.

(4) [5, Example 3.23] Let D = Z2[X, Y,W ], I = (X2, Y 2, XY, XW,

Y W 3)D be an ideal of D, and let R = D/I. Then let x = X + I, y = Y + I

and w = W + I be elements of R. We have w − w2 is an edge of AG(R),
annR(w) /∈ Ass(R) and annR(w2) /∈ Ass(R). Moreover, it is known that
Γ(R) 6= AG(R).



112 M. J. Nikmehr, R. Nikandish and M. Bakhtyiari

In the following theorem, for a non-reduced ring R, we provide condi-
tions under which Γ(R) = AG(R).

Theorem 2.10 Let R be a non-reduced ring. Then the following state-
ments are equivalent :

(1) Γ(R) = AG(R) = Kn ∨ K
m

, where n = |Nil(R)∗| and m = |Z(R) \
Nil(R)|;

(2) annR(Z(R)) is a prime ideal of R;
(3) Σ∗ = Ass(R) and |Σ∗| ≤ 2.

Proof. (1) ⇒ (2) With no loss of generality, one may assume that m 6= 0.
Since Γ(R) = Kn ∨K

m
, every vertex of Kn is adjacent to all other vertices

of Γ(R) and there is no edge between vertices of K
m

. Thus annR(Z(R)) =
V (Kn) ∪ {0}, xy 6= 0 and annR(x) = annR(y) = annR(Z(R)), for every
x, y ∈ V (K

m
). Now, we show that annR(Z(R)) is a prime ideal of R. To see

this, let xy ∈ annR(Z(R)), x /∈ annR(Z(R)) and y /∈ annR(Z(R)). Thus
x 6= y, and hence Z(R) = annR(xy) 6= annR(x) ∪ annR(y) = annR(Z(R)).
Therefore, x− y is an edge of AG(R), a contradiction. So, annR(Z(R)) is a
prime ideal of R.

(2) ⇒ (1) Assume that annR(Z(R)) is a prime ideal of R. Thus xy = 0,
for all x, y ∈ annR(Z(R)), and xy 6= 0, for all x, y ∈ Z(R) \ annR(Z(R)).
Now, it is not hard to see that Γ(R)[annR(Z(R))∗] and Γ(R)[Z(R) \
annR(Z(R))] are two subgraph of Γ(R) such that Γ(R)[annR(Z(R))∗] is
complete, Γ(R)[Z(R)\annR(Z(R))] is null and Γ(R) = Γ(R)[annR(Z(R))∗]
∨Γ(R)[Z(R) \ annR(Z(R))]. To complete the proof, we have only to show
that Γ(R) = AG(R). Let x, y be non-adjacent vertices of Γ(R). Then
x, y, xy ∈ Z(R) \ annR(Z(R)). Since annR(Z(R)) is a prime ideal of R, we
conclude that ann(x) = ann(y) = annR(xy) = annR(Z(R)), i.e., x, y are
not adjacent in AG(R), as desired.

(2) ⇒ (3) Since annR(Z(R)) is a prime ideal of R, for every x ∈
Z(R)∗, either annR(x) = annR(Z(R)) or annR(x) = Z(R). Hence Σ∗ =
{annR(Z(R)), Z(R)} and so Σ∗ = Ass(R) and |Σ∗| ≤ 2.

(3) ⇒ (2) Let annR(x) and annR(y) be elements of Σ∗. Since Σ∗ =
Ass(R), by Corollary 2.6, Γ(R) = AG(R) and hence it follows from [5, The-
orem 3.15] that Z(R) is an ideal of R. This, together with the fact Z(R) =
annR(x) ∪ annR(y) imply that either annR(x) ⊆ annR(y) or annR(y) ⊆
annR(x). With no loss of generality, suppose that annR(x) ⊆ annR(y).
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Thus Z(R) = annR(y). Now, we have only to show that annR(x) =
annR(Z(R)). We consider the following two cases:

Case 1. Let a, b ∈ annR(x). Then either annR(a) = annR(x) or
annR(a) = Z(R). Thus ab = 0.

Case 2. Let a ∈ annR(x) and b /∈ annR(x). Then it is easily seen that
annR(b) = annR(x) and so ab = 0.

The proof is complete. ¤

Theorem 2.11 Let R be a non-reduced ring and |Σ∗| ≤ 2. If Γ(R) =
AG(R), then Σ∗ = Ass(R).

Proof. Assume that x, y ∈ Z(R)∗ and Σ∗ = {annR(x), annR(y)}. So
Z(R) = annR(x) ∪ annR(y). Since Γ(R) = AG(R), by [5, Theorem 3.15],
Z(R) is an ideal of R and so either annR(x) ⊆ annR(y) or annR(y) ⊆
annR(x). With no loss of generality, suppose that annR(x) ⊆ annR(y).
Since Z(R) = annR(y), we have only to show that annR(x) is a prime ideal
of R. Let ab ∈ annR(x), a /∈ annR(x) and b /∈ annR(x). If ab 6= 0, then x−a

is an edge of AG(R), by definition, and thus xa = 0 (since Γ(R) = AG(R)),
which is impossible. So a ∈ annR(b). On the other hand, we know that
annR(b) = annR(x) or annR(b) = annR(y). If annR(b) = annR(x), then
ax = 0, a contradiction. If annR(b) = annR(y), then it is easily seen that
bx = 0, again we get a contradiction. Hence Σ∗ = Ass(R). ¤

To characterize non-reduced rings whose annihilator graphs are star, the
following lemma is needed.

Lemma 2.12 Let R be a non-reduced ring and x ∈ Z(R) \ Nil(R). If
xn = xn+1, where n is a positive integer, then gr(AG(R)) ≤ 4.

Proof. Since xn = xn+1 for some x ∈ Z(R) \ Nil(R), there exists an
element e ∈ Z(R)∗ such that e = e2. So by Brauer

,

s Lemma (see [6, 10.22]),
R ∼= Re×R(1− e). Hence we may assume that R ∼= R1 ×R2. With no loss
of generality, one may assume that there exists a ∈ Nil(R2)∗ and a2 = 0.
Therefore, (1, 0)(0, a) = (1, 0)(0, 1) = (0, 0) and (1, a)(0, 1) = (0, a). Thus
annR((0, a)) 6= annR((1, a))∪annR((0, a)). So (1, 0)−(0, 1)−(1, a)−(0, a)−
(1, 0) is a cycle of length four. ¤

Theorem 2.13 Let R be a non-reduced ring such that R is not ring-
isomorphic to Z2×B, where B = Z4 or B = Z2[X]/(X2). Then the following
statements are equivalent :
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(1) gr(AG(R)) = ∞;
(2) AG(R) is a star graph;
(3) AG(R) is a bipartite graph;
(4) AG(R) is a complete bipartite graph;
(5) Σ∗ = Ass(R) = {annR(x), annR(y)}, for some x, y ∈ Z(R). Fur-

thermore, if annR(x) = annR(y), then |annR(x)| = |Z(R)| = 3.
And if annR(x) 6= annR(y), then Σ∗ = {Z(R), annR(Z(R))} and
|annR(Z(R))∗| = 1.

Proof. (2) ⇒ (3) is clear and (3) ⇒ (4) follows from [5, Theorem 2.2].
(5) ⇒ (1) If |Z(R)| = 3, then obviously AG(R) = K2. Moreover, if

|annR(Z(R))∗| = 1, then the result follows from Theorem 2.10.
(1) ⇒ (2). By [5, Theorem 3.10], |Nil(R)∗| ≤ 2. First assume that

|Nil(R)∗| = 2 and Nil(R)∗ = {a, b}, for some elements a, b ∈ R. It is easy
to see that a = −b, and thus annR(a) = annR(b). Since gr(AG(R)) = ∞, by
Part (2) of Lemma 2.1, AG(R) = K1,1. Now, assume that Nil(R)∗ = {a},
for some a ∈ R. Thus Nil(R) is a minimal ideal of R and so annR(a) is a
maximal ideal. We show that Z(R) = annR(a). Assume to the contrary,
there exists x ∈ Z(R)\annR(a). Since annR(a) is a prime ideal, annR(x) ⊆
annR(a). Let y ∈ annR(x) (since xa 6= 0 so y 6= a). If yn = yn+1, for some
positive integer n, then Lemma 2.12 implies that gr(AG(R)) ≤ 4, which is
a contradiction. Also, if yn 6= yn+1, then x− yn − a− yn+1 − x is a cycle of
length four, a contradiction. So Z(R) = annR(a) and hence a is adjacent to
all other vertices. This, together with gr(AG(R)) = ∞, implies that AG(R)
is a star graph.

(4) ⇒ (5). Let AG(R) be complete bipartite. By [5, Corollary 2.10],
Γ(R) = AG(R). It follows from the proof of (1) ⇒ (2) that |Nil(R)∗| ≤ 2.
If |Nil(R)∗| = 2, then it is easy to see that Σ∗ = Ass(R) = {annR(x)}
and |annR(x)| = |Z(R)| = 3. So, assume that |Nil(R)∗| = 1. For the
unique element a ∈ Nil(R)∗, by Theorem 2.3 (2), annR(a) is a prime
ideal of R. Now, let x ∈ Z(R) \ annR(a). Since AG(R) is a complete
bipartite graph and Γ(R) = AG(R), we infer that annR(a) = annR(x).
Since |Nil(R)∗| = 1 and xa 6= 0, we conclude that xa = a and so
x − 1 ∈ annR(a) = annR(x). Thus x = x2 and hence by Brauer

,

s Lemma
(see [6, 10.22]), R is a decomposable ring. This contradicts [5, Theo-
rem 3.15]. Therefore, Z(R) = annR(a). Now, it is not hard to see that
annR(x) = annR(Z(R)), for every a 6= x ∈ Z(R)∗, and |Σ∗| = 2. Thus by
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Theorem 2.11, Σ∗ = Ass(R) = {Z(R), annR(Z(R))}. ¤

Theorem 2.13, [5, Theorem 3.6] and [5, Theorem 3.16] lead to the fol-
lowing corollaries.

Corollary 2.14 Let R be a ring. Then AG(R) is a complete bipartite
graph if and only if one of the following statements holds:

(1) Nil(R) = (0) and |Min(R)| = 2;
(2) Nil(R) 6= (0) and either AG(R) = K1,n, or AG(R) = K2,3, where

1 ≤ n ≤ ∞.

Theorem 2.13 provides an alternate proof for [5, Theorem 3.18].

Corollary 2.15 ([5, Theorem 3.18]) Let R be a non-reduced commutative
ring with |Z(R)∗| ≥ 2. Then the following statements are equivalent :

(1) AG(R) is a star graph;
(2) gr(AG(R)) = ∞;
(3) AG(R) = Γ(R) and gr(Γ(R)) = ∞;
(4) Nil(R) is a prime ideal of R and either Z(R) = Nil(R) = {0,−w, w}

(w 6= −w) for some nonzero w ∈ R or Z(R) 6= Nil(R) and Nil(R) =
{0, w} for some non-zero w ∈ R (and hence wZ(R) = {0});

(5) Either AG(R) = K1,1 or AG(R) = K1,∞;
(6) Either Γ(R) = K1,1 or Γ(R) = K1,∞.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are clear and (2) ⇒ (1) and (3) ⇒ (1)
follow from Theorem 2.13.

(1) ⇔ (4) It is easy to see that AG(R) is a star graph if and only if
either Γ(R) = AG(R) = K2 ∨K

0
or Γ(R) = AG(R) = K1 ∨K

∞
. Now, by

Theorem 2.10, AG(R) is a star graph if and only if Nil(R) is a prime ideal
of R and one of the following holds:

( i ) Z(R) = Nil(R) = {0,−w, w} (w 6= −w), for some non-zero w ∈ R.
( ii ) Z(R) 6= Nil(R) and Nil(R) = {0, w}, for some non-zero w ∈ R (put

|Nil(R)∗| = n in Theorem 2.10).

(5) ⇒ (1) is obvious and (1) ⇒ (5) follows from the proof of Theorem
2.13.

(1) ⇒ (6) is easily obtained by Theorem 2.13 and its proof.
(6) ⇒ (1) is obvious by [5, Theorem 3.17]. ¤
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Let x be a vertex of AG(R) which is adjacent to every other vertex. In
the following theorem, we provide conditions under which x is adjacent to
every other vertex in Γ(R).

Theorem 2.16 Let R be a ring and Σ = {annR(x) | 0 6= x ∈ R}. Then
the following statements are equivalent :

(1) x is adjacent to every other vertex in Γ(R);
(2) annR(x) is a maximal element of Σ and x is adjacent to every other

vertex in AG(R).

Proof. (1) ⇒ (2) Suppose that x is adjacent to every other vertex in Γ(R).
Then by Part (2) of [5, Lemma 2.1], x is adjacent to every other vertex in
AG(R). Also, by [3, Theorem 2.5], annR(x) is a maximal element of Σ.

(2) ⇒ (1) Suppose that annR(x) is a maximal element of Σ and x is
adjacent to every other vertex in AG(R). To complete the proof, we consider
the following two cases:

Case 1. Let x ∈ annR(x). We claim that Z(R) = annR(x). Assume
to the contrary, y ∈ Z(R) \ annR(x). So xy 6= 0 and since annR(x) is a
maximal element of Σ, we conclude that annR(xy) = annR(y) ∪ annR(x),
a contradiction. Hence Z(R) = annR(x) and so the claim is proved. Thus
x is adjacent to every other vertex in Γ(R).

Case 2. Let x /∈ annR(x). Since annR(x) is a prime ideal of R,
xn 6= 0, for every positive integer n. If x 6= x2, then annR(x) $ annR(x3),
a contradiction. Thus x = x2 and so R ∼= Rx × R(1 − x). Hence we
may assume that R ∼= R1 ×R2 where (1, 0) adjacent to every other vertex.
Now, we show that R1

∼= Z2 and R2 is an integral domain. To see this, let
a ∈ R1 \ {0, 1}. Obviously, (1, 0)(a, 0) = (a, 0), i.e., (1, 0) is not adjacent
to (a, 0), a contradiction. Also, if Z(R2) 6= 0, then for any x ∈ Z(R2)∗,
(1, 0)(1, x) = (1, 0). That means (1, 0) is not adjacent to (1, x) which is
impossible. Thus R1

∼= Z2 and R2 is an integral domain. Now, by [3,
Theorem 2.5], x is adjacent to every other vertex in Γ(R). ¤

Proposition 2.17 Let R be a non-reduced ring and for every x ∈ Z(R)∗,
set Σx = {annR(xi)}, where i ∈ N. Then the following statements are
equivalent :

(1) AG(R) is a complete graph and |Σx| < ∞, for every x ∈ Z(R)∗;
(2) Z(R) = Nil(R).
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Proof. (2) ⇒ (1) is easily obtained by [5, Theorem 3.10].
(1) ⇒ (2) Suppose that x ∈ Z(R) \ Nil(R). If xn = xn+1, where n

is a positive integer, then by the proof of Lemma 2.12, AG(R) is not a
complete graph, a contradiction. So xi 6= xi+1, for every i ∈ N. Since
|Σx| < ∞, annR(xi) = annR(xi+1), for some i ∈ N. This implies that x−xi

is not an edge of AG(R), unless xxi = xi+1 = 0, a contradiction. Thus
Z(R) = Nil(R). ¤

In view of above proposition, we have the following corollary.

Corollary 2.18 Let R be a non-reduced ring such that Z(R) 6= Nil(R),
and let AG(R) be a complete graph. Then:

(1) Γ(R) 6= AG(R);
(2) R is not a Noetherian ring.

Proof. (1) By Theorem 2.17, there is an element x ∈ Z(R)∗ such that
|Σx| = ∞, and so x /∈ Nil(R). If xn = xn+1, where n is a positive integer,
then by proof of Lemma 2.12, AG(R) is not a complete graph, a contradic-
tion. So xi 6= xi+1, for every i ∈ N. Now, x − xi is not an edge of Γ(R).
Hence Γ(R) 6= AG(R)

(2) Suppose that x ∈ Z(R) \Nil(R). Since AG(R) is a complete graph,
|Σx| = ∞, and so the chain annR(x) ⊆ annR(x2) ⊆ · · · ⊆ annR(xi) ⊆ · · ·
will not stabilize. Thus R is not a Noetherian ring. ¤

We close this paper with the following example which is devoted to the
study of relation between two graphs Γ(Zn) and AG(Zn).

Example 2.19 Let R = Zn. If Zn is not local, then Γ(Zn) = AG(Zn) if
and only if n = pq for distinct prime numbers p, q. Moreover in this case
Γ(Zn) = Kp−1,q−1. If Zn is local, then Γ(Zn) = AG(Zn) if and only if
n = p2, where p is a prime number. Moreover in this case Γ(Zn) = Kp−1.
For instance it is easy to see that Γ(Z10) = K1,4 = AG(Z10). Also, for local
rings Z25 and Z8, we can easily check that Γ(Z25) = K4 = AG(Z25), but
Γ(Z8) = K1,2 6= K3 = AG(Z8).
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