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Abstract. In this paper, we discuss with n-dimensional complete orientable linear

Weingarten hypersurface in locally symmetric manifold and obtain some rigidity re-

sults.
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1. Introduction

Recently, many researchers studied the minimal hypersurfaces or hyper-
surfaces with constant mean (or scalar) curvature in the locally symmetric
manifolds and the δ-pinched manifolds, and obtained many rigidity results
about these hypersurfaces ([4], [10], [11] and the references therein). In this
paper, we modify Cheng-Yau’s technique to complete linear Weingarten hy-
persurfaces in locally symmetric manifolds and prove some rigidity theorems
under the hypothesis of the mean curvature and the normalized scalar cur-
vature being linearly related. More precisely, we have

Theorem 1.1 Let Nn+1 (n ≥ 3) be a locally symmetric manifold sat-
isfying 1/2 < δ ≤ KN ≤ 1 and Kn+1in+1i = c0. Let Mn be an n-
dimensional complete orientable linear Weingarten hypersurface of Nn+1,
such that r = aH + b with b > 1. If H attains its maximum on Mn and
S ≤ 2

√
n− 1(2δ − c0), then either Mn is totally umbilical hypersurface or

Mn has two distinct constant principal curvatures, one of which is simple.

When δ = c0 = 1, Nn+1 is a unit sphere Sn+1(1), so we have the
following corollary by the theorem 1.1(2i) of [9].

Corollary 1.2 Let Mn be an n-dimensional complete orientable linear
Weingarten hypersurface of Sn+1(1), such that r = aH + b with b > 1.
If H attains its maximum on Mn and S ≤ 2

√
n− 1, then either Mn is
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totally umbilical hypersurface or Mn is isometric to a Riemannian product
Sn−1(c)× S1(

√
1− c2).

Theorem 1.3 Let Nn+1 (n ≥ 3) be a locally symmetric Einstein man-
ifold satisfying 1/2 < δ ≤ KN ≤ 1 and Kn+1in+1i = c0. Let Mn be an
n-dimensional complete noncompact orientable linear Weingarten hypersur-
face of Nn+1, such that r = aH + b with b > 1. If S ≤ 2

√
n− 1(2δ − c0)

and |∇H| ∈ L1(M), then either Mn is totally umbilical hypersurface or Mn

has two distinct constant principal curvatures, one of which is simple.

2. Preliminaries

Let Nn+1 be a locally symmetric manifold and Mn be an n-dimensional
complete and orientable hpersurface in Nn+1. For any p ∈ M , we choose a
local orthonormal frame e1, . . . , en+1 in Nn+1 around p such that e1, . . . , en

are tangent to Mn. Let ω1, . . . , ωn+1 be the corresponding dual coframe.
We use the following standard convention for indices:

1 ≤ A,B, C, · · · ≤ n + 1, 1 ≤ i, j, k, · · · ≤ n.

The structure equations of Nn+1 are given by

dωA = −
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0, (2.1)

dωAB = −
∑

C

ωAC ∧ ωCB +
1
2

∑

C,D

εCεDKABCDωC ∧ ωD, (2.2)

where KABCD are the components of the curvature tensor of Nn+1.
Restricting these forms to Mn, we have ωn+1 = 0. Since 0 = dωn+1 =

−∑
i ωn+1i ∧ ωi, from Cartan lemma, we can write

ωn+1i =
∑

j

hijωj , hij = hji. (2.3)

Let B =
∑

i,j hijωiωjen+1 be the second fundamental form. We will denote
by h = (1/n)

∑
i hiien+1 and by H = |h| = (1/n)

∑
i hii the mean curvature

vector and the mean curvature of Mn, respectively.
The structure equations of Mn are
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dωi = −
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0, (2.4)

dωij = −
n∑

k=1

ωik ∧ ωkj +
1
2

n∑

k,l=1

Rijklωk ∧ ωl. (2.5)

The Gauss equations are

Rijkl = Kijkl + (hikhjl − hilhjk), (2.6)

n(n− 1)r =
∑

i,j

Kijij + n2H2 − S, (2.7)

where r is the normalized scalar curvature of Mn and S =
∑

i,j h2
ij is the

norm square of the second fundamental form of Mn.
The Codazzi and Ricci equations are

hijk − hikj = −Kn+1ijk, (2.8)

Kn+1ijkl = Kn+1in+1khjl + Kn+1ijn+1hkl −
∑
m

Kmijkhml, (2.9)

where the covariant derivative of hij is defined by

∑

k

hijkωk = dhij −
∑

k

hkjωki −
∑

k

hikωkj . (2.10)

Similarly, the components hijkl of the second derivative ∇2h are given by

∑

l

hijklωl = dhijk −
∑

l

hljkωli −
∑

l

hilkωlj −
∑

l

hijlωlk. (2.11)

The Laplacian 4hij of hij is defined by

4hij =
∑

k

hijkk.

By a simple and direct calculation, we have



32 X. Chao and P. Wang

4hij =
∑

k

[
(hijkk − hikjk) + (hikjk − hikkj) + (hikkj − hkkij) + hkkij

]

=
∑

k

Kn+1ikjk +
∑

k,m

(hmiRmkjk + hmkRmijk)

+
∑

k

Kn+1kkij +
∑

k

hkkij

= (nH)ij + nHKn+1in+1j −
∑

k

hijKn+1kn+1k + nH
∑

k

hikhkj

− Shij +
∑

k

[
hmiKmkjk + hmjKmkik + 2hkmKmijk

]
. (2.12)

We choose a local frame of orthonormal vectors fields {ei} such that at
arbitrary fixed point p of Mn

hij = λiδij , (2.13)

then it follows, at p, that

1
2
4S =

1
2

∑

i,j

4h2
ij =

∑

i,j,k

h2
ijk +

∑

i,j

hij4hij

=
∑

i,j,k

h2
ijk +

∑

i

λi(nH)ii − S2 + nH
∑

i

λ3
i

+ nH
∑

i

λiKn+1in+1i − S
∑

i

Kn+1in+1i

+
∑

i,j

(λi − λj)2Kijij . (2.14)

Set φij = hij −Hδij , it is easy to check that φ is traceless and

|φ|2 =
∑

i,j

(φij)2 = S − nH2, (2.15)

where φ denotes the matrix (φij). Moreover, |φ|2 = S − nH2 ≥ 0 with
equality holds if and only if Mn is totally umbilical.
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Lemma 2.1 ([7]) Let u1, u2, . . . , un be real numbers such that
∑

i ui = 0
and

∑
i u2

i = β. Then

− n− 2√
n(n− 1)

β3 ≤
∑

i

u3
i ≤

n− 2√
n(n− 1)

β3,

and equality holds if and only if at least n− 1 of u′is are equal.

Lemma 2.2 Let Nn+1 be a locally symmetric manifold satisfying 1/2 <

δ ≤ KN ≤ 1 and Mn be an n-dimensional complete orientable hypersurface
of Nn+1 with r = aH + b, a, b ∈ R and (n− 1)a2 + 4n(b− 1) ≥ 0. Then we
have

∑

i,j,k

h2
ijk ≥ n2|∇H|2, (2.16)

and equality holds if and only if |∇H|2 = 0 or 4n2S = (2n2H−n(n− 1)a)2.
Moreover, if (n − 1)a2 + 4n(b − 1) > 0 and the equality holds in (2.16) on
Mn, then H is constant on Mn.

Proof. From Gauss equation, we have

S =
∑

i,j

Kijij + n2H2 − n(n− 1)r

=
∑

i,j

Kijij + n2H2 − n(n− 1)(aH + b). (2.17)

Since Nn+1 is locally symmetric, taking the covariant derivative of the above
equation, we have

2
∑

i,j

hijhijk = 2n2HHk − n(n− 1)aHk.

Therefore,

4S
∑

i,j,k

h2
ijk ≥ 4

∑

k

( ∑

i,j

hijhijk

)2

= (2n2H − n(n− 1)a)2|∇H|2. (2.18)

We know from 0 < δ ≤ Kijij ≤ 1 that
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(2n2H − n(n− 1)a)2 − 4n2S

= 4n4H2 + n2(n− 1)2a2 − 4n3(n− 1)aH

− 4n2

( ∑

i,j

Kijij + n2H2 − n(n− 1)(aH + b)
)

≥ 4n4H2 + n2(n− 1)2a2 − 4n3(n− 1)aH

− 4n2
(
n(n− 1) + n2H2 − n(n− 1)(aH + b)

)

= n2(n− 1)2a2 + 4n3(n− 1)(b− 1)

= n2(n− 1)
(
(n− 1)a2 + 4n(b− 1)

) ≥ 0. (2.19)

It follows (2.18) and (2.19) that

4S
∑

i,j,k

h2
ijk ≥ (2n2H − n(n− 1)a)2|∇H|2 ≥ 4n2S|∇H|2. (2.20)

Thus either S = 0 and
∑

i,j,k h2
ijk = n2|∇H|2 or

∑
i,j,k h2

ijk ≥ n2|∇H|2.
If

∑
i,j,k h2

ijk = n2|∇H|2, from (2.18) and (2.19), we have

0 ≤ n2(n− 1)
(
(n− 1)a2 + 4n(b− 1)

)|∇H|2

≤ (2n2H − n(n− 1)a)2|∇H|2 − 4n2S|∇H|2

≤ 4S
∑

i,j,k

h2
ijk − 4n2S|∇H|2 = 4S

( ∑

i,j,k

h2
ijk − n2|∇H|2

)
= 0.

Then we conclude that |∇H|2 = 0 or 4n2S = (2n2H − n(n− 1)a)2.
Moreover, if (n− 1)a2 + 4n(b− 1) > 0 and

∑
i,j,k h2

ijk = n2|∇H|2, from
(2.19) and (2.20), we have |∇H|2 = 0 on Mn and, hence, H is constant on
Mn. ¤

Following Cheng-Yau [3], as in [2], we introduce a modified operator L

acting on any C2- function f by

L(f) =
∑

i,j

((
nH − n− 1

2
a

)
δij − hij

)
fij , (2.21)
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where fij is given by the following
∑

j

fijωj = dfi + fjωij .

Lemma 2.3 Let Nn+1 be a locally symmetric manifold satisfying 1/2 <

δ ≤ KN ≤ 1 and M be an n-dimensional orientable linear Weingarten
hypersurface with r = aH + b in Nn+1. If b > 1, then L is elliptic.

Proof. Since r = aH + b and KN ≤ 1, from Gauss equation (2.7), we get

n(n− 1)(aH + b) ≤ n(n− 1) + n2H2 − S,

i.e.

S ≤ n2H2 − n(n− 1)(b− 1)− n(n− 1)aH. (2.22)

Since b > 1, we know that

n2H2 − n(n− 1)aH − S ≥ n(n− 1)(b− 1) > 0. (2.23)

Therefore H 6= 0. Thus we can assume H > 0 on M . So L is elliptic if
and only if nH − ((n− 1)/2)a− λi > 0 for i = 1, 2, . . . , n, where λ′is are the
principal curvatures of M . From (2.22) we have

a ≤ 1
n(n− 1)H

(
n2H2 − S − n(n− 1)(b− 1)

)
.

Consequently, we obtain

nH − n− 1
2

a− λi

≥ 1
2nH

(
n2H2 + S − 2nHλi + n(n− 1)(b− 1)

)

=
1

2nH

(( ∑

j

λj

)2

+
∑

j

λ2
j − 2λi

∑

j

λj + n(n− 1)(b− 1)
)

=
1

2nH

(( ∑

j 6=i

λj

)2

+
∑

j 6=i

λ2
j + n(n− 1)(b− 1)

)
.
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Therefore, since b > 1, we conclude that L is an elliptic operator. ¤

3. The proof of theorems

Firstly, we give the following proposition.

Proposition 3.1 Let Nn+1 (n ≥ 3) be a locally symmetric manifold sat-
isfying 1/2 < δ ≤ KN ≤ 1, Kn+1in+1i = c0 and Mn be an n-dimensional
complete orientable hypersurface of Nn+1 with r = aH + b, a, b ∈ R and
(n− 1)a2 + 4n(b− 1) ≥ 0. Then the following inequality holds

L(nH) ≥ − n

2
√

n− 1

[
S − 2

√
n− 1(2δ − c0)

]|φ|2. (3.1)

Proof. From (2.21) we have

L(nH) =
∑

i,j

((
nH − 1

2
(n− 1)a

)
δij − hn+1

ij

)
(nH)ij

=
(

nH − 1
2
(n− 1)a

)
4(nH)−

∑

i,j

hn+1
ij (nH)ij

=
(

nH − 1
2
(n− 1)a

)
4

(
nH − 1

2
(n− 1)a

)
−

∑

i,j

hn+1
ij (nH)ij

=
1
2
4

(
nH − 1

2
(n− 1)a

)2

−
∣∣∣∣∇

(
nH − 1

2
(n− 1)a

)∣∣∣∣
2

−
∑

i,j

hn+1
ij (nH)ij

=
1
2
4

(
nH − 1

2
(n− 1)a

)2

− n2|∇H|2 −
∑

i,j

hn+1
ij (nH)ij . (3.2)

Since the scalar curvature R̄ of locally symmetric manifold is constant.
Then, from

R̄ = 2
∑

i

Kn+1in+1i +
∑

i,j

Kijij = 2nc0 +
∑

i,j

Kijij ,
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we know that
∑

i,j Kijij is constant. Therefore, from Gauss equation and
r = aH + b, we have

4S = 4
( ∑

i,j

Kijij + n2H2 − n(n− 1)r
)

= 4(n2H2 − n(n− 1)(aH + b))

= 4(n2H2 − n(n− 1)aH)

= 4
(

nH − 1
2
(n− 1)a

)2

. (3.3)

From (2.14), (3.2) and (3.3), we get

L(nH) =
1
2
4S − n2|∇H|2 −

∑

i,j

hn+1
ij (nH)ij

=
∑

i,j,k

h2
ijk − n2|∇H|2 − S2 + nH

∑

i

λ3
i +

∑

i,j

(λi − λj)2Kijij

+ nH
∑

i

λiKn+1in+1i − S
∑

i

Kn+1in+1i. (3.4)

On the other hand, putting µi = λi −H, we can obtain

∑

i

µi = 0,
∑

i

µ2
i = |φ|2 = S − nH2,

∑

i

µ3
i =

∑

i

λ3
i − 3HS + 2nH3.

Then, for any ε > 0, we have

−S2 + nH
∑

i

λ3
i = −S2 + nH

∑

i

µ3
i + 3nH2S − 2n2H4

≥ − n(n− 2)√
n(n− 1)

|H||φ|3 + nH2|φ|2 − |φ|4

≥ − n− 2
2
√

n− 1

(
nεH2 +

1
ε
|φ|2

)
|φ|2 + nH2|φ|2 − |φ|4.

(3.5)
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When n ≥ 3, taking ε = (n + 2
√

n− 1)/(n− 2) in (3.5), we get

−S2 + nH
∑

i

λ3
i ≥ − n

2
√

n− 1
(nH2|φ|2 + |φ|4) = − n

2
√

n− 1
S|φ|2. (3.6)

Since N is a δ-pinched manifold, we have

∑

i,j

(λi − λj)2Kijij ≥ δ
∑

i,j

(λi − λj)2 = 2nδ|φ|2, (3.7)

At the same time, using the curvature condition, we get

nH
∑

i

λiKn+1in+1i−S
∑

i

Kn+1in+1i = nc0(n2H2−S) = −nc0|φ|2. (3.8)

From (3.4), (3.6), (3.7), (3.8) and Lemma 2.2, we see that

L(nH) ≥ −nc0|φ|2 + 2nδ|φ|2 − n

2
√

n− 1
S|φ|2

= − n

2
√

n− 1

[
S − 2

√
n− 1(2δ − c0)

]|φ|2. (3.9)
¤

Proof of theorem 1.1. From (3.1) and the assumption S ≤ 2
√

n− 1(2δ −
c0), we get

L(nH) ≥ − n

2
√

n− 1

[
S − 2

√
n− 1(2δ − c0)

]|φ|2 ≥ 0. (3.10)

Since Lemma 2.3 guarantees that L is elliptic and as we are supposing that
H attains its maximum on Mn, from (3.10) we conclude that H is constant
on Mn. Thus (3.10) become an equality. If S < 2

√
n− 1(2δ − c0), then

|φ|2 ≡ 0 and Mn is totally umbilical. If S = 2
√

n− 1(2δ − c0), then all
the equalities to obtain (3.10) become equalities. Especially the equality in
Lemma 2.1 holds, we have that Mn has two distinct principle curvature, one
of which is simple. Since H and S are constants, it is easy to know that Mn

has two distinct constant principal curvatures, one of them being simple. ¤

Lemma 3.2 ([1]) Let X be a smooth vector field on the n-dimensional
complete noncompact oriented Riemannian manifold Mn, such that divMX
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does not change sign on Mn. If |X| ∈ L1(M), then divMX = 0.

Proof of theorem 1.3. Firstly, we easily obtain from (2.21) that

L(nH) = divM (P (∇H)), (3.11)

where P = (n2H−(n(n− 1)/2)a)I−nA and I denotes the identity operator
and A denotes the second fundamental form of Mn.

Moreover, since nH2 ≤ S ≤ 2
√

n− 1(2δ − c0), then H and A are both
bounded on Mn. Therefore, the operator P is bounded, and noticing the
assumption |∇H| ∈ L1(M), we have

|P (∇H)| ∈ L1(M). (3.12)

Thus, from (3.1), (3.12) and using Lemma 3.2, we obtain that L(nH) = 0
on Mn. Then we can reason as in the proof of Theorem 1.1 to conclude that
either |φ|2 ≡ 0 and Mn is totally umbilical, or S = 2

√
n− 1(2δ − c0) and

Mn has two distinct principle curvatures, one of which is simple. ¤
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