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A generalization of starlike functions of order alpha
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Abstract. For every q ∈ (0, 1) and 0 ≤ α < 1 we define a class of analytic functions,

the so-called q-starlike functions of order α, on the open unit disk. We study this class

of functions and explore some inclusion properties with the well-known class of starlike

functions of order α. The paper is also devoted to the discussion on the Herglotz

representation formula for analytic functions zf ′(z)/f(z) when f(z) is q-starlike of

order α. As an application we also discuss the Bieberbach conjecture problem for the

q-starlike functions of order α.
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1. Introduction and Main Results

In view of the well-known Riemann mapping theorem in classical com-
plex analysis, the unit disk D = {z ∈ C : |z| < 1} is usually considered as a
standard domain. The analytic functions such as convex, starlike, and close-
to-convex functions defined in the unit disk have been extensively studied
and found numerous applications to various problems in complex analysis
and related topics. Part of this development is the study of subclasses of
the class of univalent functions, more general than the classes of convex,
starlike, and close-to-convex functions. Analytic and geometric characteri-
zations of such functions are of quite interesting to all function theorists in
general. Background knowledge in this theory can be found from standard
books (see for instance [8], [11]).

In 1916, Bieberbach first posed a conjecture on the coefficient estimate
of univalent functions. This conjecture was a long standing open problem in
univalent function theory and was a challenge to all mathematicians. In this
regard a lot of methods and concepts were developed. One of the important
concepts is the Herglotz representation theorem for univalent functions with
positive real part. Initially, the Bieberbach conjecture was proved for first
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few coefficients of univalent functions. Then the conjecture was considered
in many special cases. In one direction, it was considered for certain sub-
classes of univalent functions like starlike, convex, close-to-convex, typically
real functions etc. The concept of order for the starlike and convex was
also introduced, which are the subclasses of the class of starlike and convex
functions respectively, and the conjecture was proved in these subclasses.
In other direction, discussion on many conjectures, namely, the Zalcman
conjecture, the Robertson conjecture, the Littlewood-Paley conjecture, etc.
were investigated to prove the Bieberbach conjecture. Finally, the full con-
jecture for univalent functions was settled down by L. de Branges in 1985
[6].

In 1990, Ismail et al. [12] introduced a link between starlike functions
and the q-theory by introducing a q-analog of the starlike functions. We
call these functions as q-starlike functions. They proved the Bieberbach
conjecture for the q-starlike functions through the Herglotz representation
theorem for these functions. In this connection, we aim to introduce the
concept of order of q-starlikeness and prove the Bieberbach conjecture for
q-starlike functions in terms of their order. In particular, we also discuss
several other basic properties on the order of q-starlike functions.

We now collect some standard notations and basic definitions used in the
sequel. We denote byH(D), the set of all analytic (or holomorphic) functions
in D. We use the symbol A for the class of functions f ∈ H(D) with the
standard normalization f(0) = 0 = f ′(0)−1. This means that the functions
f ∈ A have the power series representation of the form z +

∑∞
n=2 anzn.

The principal value of the logarithmic function log z for z 6= 0 is denoted by
Log z := ln |z|+ iArg(z), where −π ≤ Arg(z) < π.

For 0 < q < 1, the q-difference operator denoted as Dqf is defined by
the equation

(Dqf)(z) =
f(z)− f(qz)

z(1− q)
, z 6= 0, (Dqf)(0) = f ′(0).

The operator Dqf plays an important role in the theory of basic hyperge-
ometric series (see [2], [3], [10], [20]); see also Section 4 in this paper. It is
evident that, when q → 1−, the difference operator Dqf converges to the
ordinary differential operator Df = df/dz = f ′.

A function f ∈ A is called starlike of order α, 0 ≤ α < 1, if
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Re
(

zf ′(z)
f(z)

)
> α, z ∈ D.

We use the notation S∗(α) for the class of starlike functions of order α. Set
S∗ := S∗(0), the class of all starlike functions.

One way to generalize the starlike functions of order α is to replace
the derivative function f ′ by the q-difference operator Dqf and replace the
right-half plane {w : Re w > α} by a suitable domain in the above definition
of the starlike functions of order α. The appropriate definition turned out
to be the following:

Definition 1.1 A function f ∈ A is said to belong to the class S∗q (α),
0 ≤ α < 1, if

∣∣∣∣∣∣∣∣

z(Dqf)(z)
f(z)

− α

1− α
− 1

1− q

∣∣∣∣∣∣∣∣
≤ 1

1− q
, z ∈ D.

The following is the equivalent form of Definition 1.1.

f ∈ S∗q (α) ⇐⇒
∣∣∣∣
z(Dqf)(z)

f(z)
− 1− αq

1− q

∣∣∣∣ ≤
1− α

1− q
.

Observe that as q → 1− the closed disk |w− (1−αq)(1−q)−1| ≤ (1−α)(1−
q)−1 becomes the right-half plane Rew ≥ α and the class S∗q (α) reduces to
S∗(α), 0 ≤ α < 1. In particular, when α = 0, the class S∗q (α) coincides with
the class S∗q := S∗q (0), which was first introduced by Ismail et al. [12] in
1990 and later (also recently) it has been considered in [2], [17], [18], [19].
In words we call S∗q (α), the class of q-starlike functions of order α.

The main objective in this paper is to prove the following theorems.
The first main theorem describes the Herglotz Representation for functions
belonging to the class S∗q (α) in the form of a Poisson-Stieltjes integral (see
Herglotz Representation Theorem for analytic functions with positive real
part in [8, pp. 22]).

Theorem 1.1 Let f ∈ A. Then f ∈ S∗q (α) if and only if there exists a
probability measure µ supported on the unit circle such that
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zf ′(z)
f(z)

= 1 +
∫

|σ|=1

σzF ′q,α(σz)dµ(σ)

where

Fq,α(z) =
∞∑

n=1

(−2)
(
ln q

1−α(1−q)

)

1− qn
zn, z ∈ D. (1)

Remark 1.2 When q approaches 1, Theorem 1.1 leads to the Herglotz
Representation Theorem for starlike functions of order α (see for instance
[11, Problem 3, pp. 172]). Note that the coefficients of the function Fq,α are
all positive.

Our second main theorem concerns about the Bieberbach conjecture
problem for functions in S∗q (α). The extremal function is also explicitly
obtained in terms of exponential of the function Fq,α(z). This exponential
form generalizes the Koebe function kα(z) = z/(1−z)2(1−α), z ∈ D. That is,
when q → 1−, the exponential form Gq,α(z) := z exp[Fq,α(z)] representing
the extremal function for the class S∗q (α) turns into the Koebe function
kα(z).

Theorem 1.3 Let

Gq,α(z) := z exp[Fq,α(z)] = z +
∞∑

n=2

cnzn. (2)

Then Gq,α ∈ S∗q (α). Moreover, if f(z) = z +
∑∞

n=2 anzn ∈ S∗q (α), then
|an| ≤ cn with equality holding for all n if and only if f is a rotation of
Gq,α.

Remark 1.4 When q approaches 1, Theorem 1.3 leads to the Bieberbach
conjecture for starlike functions of order α (see for instance [11, Theorem 2,
pp. 140]).

Motivation behind this comes from the work of Ismail et al., where the
q-analog of starlike functions was introduced in 1990 (see [12]). The q-theory
has important role in special functions and quantum physics (see for instance
[3], [9], [10], [14], [15], [20]). For updated research work in function theory
related to q-analysis, readers can refer [2], [12], [17], [18], [19]. In [12], the
authors have obtained the Herglotz representation for functions of the class
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S∗q in the following form:

Theorem A ([12, Theorem 1.15]) Let f ∈ A. Then f ∈ S∗q if and only if
there exists a probability measure µ supported on the unit circle such that

zf ′(z)
f(z)

= 1 +
∫

|σ|=1

σzF ′q(σz)dµ(σ)

where

Fq(z) =
∞∑

n=1

−2 ln q

1− qn
zn, z ∈ D.

Also they have proved the Bieberbach conjecture problem for q-starlike func-
tions in the following form:

Theorem B ([12, Theorem 1.18]) Let

Gq(z) := z exp[Fq(z)] = z +
∞∑

n=2

cnzn.

Then Gq ∈ S∗q . Moreover, if f(z) = z +
∑∞

n=2 anzn ∈ S∗q , then |an| ≤ cn

with equality holding for all n if and only if f is a rotation of Gq.

Remark 1.5 Note that Theorem 1.1 and Theorem 1.3 are respectively
generalizations of Theorem A and Theorem B.

Structure of rest of the paper is as follows. Section 2 is devoted for
basic interesting properties of the class S∗q (α), which are used in the proof
of main theorems. In Section 3, we prove our main results. Finally, we focus
on concluding remarks with few questions in Section 4 for future research
in this direction.

2. Properties of the class S∗
q(α)

As a matter of fact the following proposition says that a function f in
S∗q (α) can be obtained in terms of a function g in S∗q . The proof is obvious
and it follows from the definition of S∗q (α), 0 ≤ α < 1.

Proposition 2.1 Let f ∈ S∗q (α). Then there exists a unique function
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g ∈ S∗q such that

z(Dqf)(z)
f(z)

− α

1− α
=

z(Dqg)(z)
g(z)

or
f(qz)− αqf(z)

(1− α)f(z)
=

g(qz)
g(z)

(3)

holds. Similarly, for a given function g ∈ S∗q there exists f ∈ S∗q (α) satisfy-
ing the above relation. Uniqueness follows trivially.

Next we present an easy characterization of functions in the class S∗q (α).
This shows that if f ∈ S∗q (α) then f(z) = 0 implies z = 0, otherwise
f(qz)/f(z) would have a pole at a zero of f(z) with least nonzero modulus.

Theorem 2.2 Let f ∈ A. Then f ∈ S∗q (α) if and only if

∣∣∣∣
f(qz)
f(z)

− αq

∣∣∣∣ ≤ 1− α, z ∈ D.

Proof. The proof can be easily obtained from the fact

z(Dqf)(z)
f(z)

=
(

1
1− q

)(
1− f(qz)

f(z)

)

and the definition of S∗q (α). ¤

The next result is an immediate consequence of Theorem 2.2.

Corollary 2.3 The class S∗q (α) satisfies the inclusion relation

⋂
q<p<1

S∗p (α) ⊂ S∗q (α) and
⋂

0<q<1

S∗q (α) = S∗(α).

Proof. The inclusions

⋂
q<p<1

S∗p (α) ⊂ S∗q (α) and
⋂

0<q<1

S∗q (α) ⊂ S∗(α)

clearly hold. It remains to show that

S∗(α) ⊂
⋂

0<q<1

S∗q (α)
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holds. For this, we let f ∈ S∗(α). Then it is enough to show that f ∈ S∗q (α)
for all q ∈ (0, 1). Since f ∈ S∗(α) there exists a unique g ∈ S∗ satisfying

zf ′(z)
f(z)

− α

1− α
=

zg′(z)
g(z)

, |z| < 1.

Since S∗ =
⋂

0<q<1 S∗q , it follows that g ∈ S∗q for all q ∈ (0, 1). Thus, by
Proposition 2.1 there exists a unique h ∈ S∗q (α) satisfying the identity (3)
with h(z) = f(z). The proof now follows immediately. ¤

We now define two sets and proceed to prepare some basic results which
are being used to prove our main results in this section. They are

Bq = {g : g ∈ H(D), g(0) = q and g : D→ D} and

B0
q = {g : g ∈ Bq and 0 /∈ g(D)}.

Lemma 2.4 If h ∈ Bq then the infinite product
∏∞

n=0{((1 − α)h(zqn) +
αq)/q} converges uniformly on compact subsets of D.

Proof. We set (1−α)h(z)+αq = g(z). Since h ∈ Bq, it easily follows that
g ∈ Bq. By [12, Lemma 2.1], the conclusion of our lemma follows. ¤

Lemma 2.5 If h ∈ B0
q then the infinite product

∏∞
n=0{((1 − α)h(zqn) +

αq)/q} converges uniformly on compact subsets of D to a nonzero function
in H(D) with no zeros. Furthermore, the function

f(z) =
z∏∞

n=0{((1− α)h(zqn) + αq)/q} (4)

belongs to S∗q (α) and h(z) = ((f(qz)/f(z))− αq)/(1− α).

Proof. The convergence of the infinite product is proved in Lemma 2.4.
Since h ∈ B0

q , we have h(z) 6= 0 in D and the infinite product does not
vanish in D. Thus, the function f ∈ A and we find the relation

f(qz)
f(z)

= (1− α)h(z) + αq, equivalently

f(qz)
f(z)

− αq

1− α
= h(z).
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Since h ∈ B0
q , we get f ∈ S∗q (α) and the proof of our lemma is complete. ¤

We define two classes Bq,α and B0
q,α by

Bq,α =
{

g : g ∈ H(D), g(0) =
q

1− α(1− q)
and g : D→ D

}

and

B0
q,α = {g : g ∈ Bq,α and 0 /∈ g(D)}.

Lemma 2.6 A function g ∈ B0
q,α if and only if it has the representation

g(z) = exp
{(

ln
q

1− α(1− q)

)
p(z)

}
, (5)

where p(z) belongs to the class

P = {p : p ∈ H(D), p(0) = 1 and Re{p(z)} > 0 for z ∈ D}.

Proof. For g ∈ B0
q,α, define the function L(z) = Log g(z). Then it is easy

to show that the function p(z) = L(z)/(ln(q/(1−α(1−q)))) ∈ P and satisfies
(5). Conversely, if g is given by (5), then it is obvious that g ∈ B0

q,α. ¤

Theorem 2.7 The mapping ρ : S∗q (α) → B0
q defined by

ρ(f)(z) =

f(qz)
f(z)

− αq

1− α

is a bijection.

Proof. For h ∈ B0
q , define a mapping σ : B0

q → A by

σ(h)(z) =
z∏∞

n=0{((1− α)h(zqn) + αq)/q} .

It is clear from Lemma 2.5 that σ(h) ∈ S∗q (α) and (ρ◦σ)(h) = h. Considering
the composition mapping σ ◦ ρ we compute that
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(σ ◦ ρ)(f)(z) =
z∏∞

n=0{(f(zqn+1)/qf(zqn)} =
z

z/f(z)
= f(z).

Hence σ ◦ρ and ρ◦σ are identity mappings and σ is the inverse of ρ, i.e. the
map ρ(f) is invertible. Hence ρ(f) is a bijection. This completes the proof
of our theorem. ¤

3. Proof of the main theorems

This section is devoted to the proofs of main theorems using the sup-
plementary results proved in Section 2.

Graph of F5/6,1/2(z), |z| < 1 Graph of G5/6,1/2(z), |z| < 1

Figure 1. Graphs of the functions F5/6,1/2(z) and G5/6,1/2(z) for |z| < 1.

Proof of Theorem 1.1. For 0 < q < 1 and 0 ≤ α < 1, let Fq,α be defined
by (1). Geometry of Fq,α is described in Figure 1 for different ranges over
the parameters q and α. Suppose that f ∈ S∗q (α). Then by Theorem 2.7
and Lemma 2.5, it is clear that f(z) has the representation (4) with h ∈ B0

q .
The logarithmic derivative of f gives
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zf ′(z)
f(z)

= 1−
∞∑

n=0

(1− α)zqnh′(zqn)
(1− α)h(zqn) + αq

. (6)

Now, let us assume that

g(z) =
(1− α)h(z) + αq

1− α(1− q)
.

Clearly, g ∈ B0
q,α and hence Lemma 2.6 guarantees that g(z) has the repre-

sentation (5). Taking the logarithmic derivative of g we have

zg′(z)
g(z)

=
(

ln
q

1− α(1− q)

)
zp′(z), (7)

where Re{p(z)} ≥ 0. By Herglotz representation of p(z), there exists a
probability measure µ supported on the unit circle |σ| = 1 such that

zp′(z) =
∫

|σ|=1

2σz(1− σz)−2dµ(σ). (8)

Using (7) and (8) in (6), we have

zf ′(z)
f(z)

= 1− 2
(

ln
q

1− α(1− q)

) ∞∑
n=0

∫

|σ|=1

σzqn(1− σzqn)−2dµ(σ)

= 1− 2
(

ln
q

1− α(1− q)

) ∫

|σ|=1

{ ∞∑
n=0

∞∑
m=1

mσmzmqmn

}
dµ(σ)

= 1− 2
(

ln
q

1− α(1− q)

) ∫

|σ|=1

{ ∞∑
m=1

mσmzm 1
1− qm

}
dµ(σ)

= 1 +
∫

|σ|=1

σzF ′q,α(σz)dµ(σ).

This completes the proof of our theorem. ¤

Proof of Theorem 1.3. For 0 < q < 1 and 0 ≤ α < 1, let Gq,α be defined
by (2). Geometry of the mapping Gq,α is described in Figure 1 for different
ranges over the parameters q and α. As a special case to Theorem 1.1,
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when the measure has a unit mass, it is clear that Gq,α ∈ S∗q (α). Let
f ∈ S∗q (α). Then by Theorem 2.7, there exists a function h ∈ B0

q such that
h(z) = ((f(qz)/f(z)) − αq)/(1 − α). Since h ∈ B0

q , g(z) = ((1 − α)h(z) +
αq)/(1 − α(1 − q)) ∈ B0

q,α. By Lemma 2.6, g(z) has the representation (5)
and on solving we get,

f(qz)
f(z)

= (1− α(1− q)) exp
{(

ln
q

1− α(1− q)

)
p(z)

}
.

Define the function φ(z) = Log{f(z)/z} and set

φ(z) = Log
f(z)

z
=

∞∑
n=1

φnzn. (9)

On solving, we get

ln
q

1− α(1− q)
+ φ(qz) = φ(z) +

(
ln

q

1− α(1− q)

)
p(z).

This implies

φn = pn

(
ln

q

1− α(1− q)

)/
(qn − 1).

Since |pn| ≤ 2, we have

|φn| ≤
(−2)

(
ln q

1−α(1−q)

)

1− qn
.

From this inequality, together with the expression of Gq,α(z) and (9), the
conclusion follows. ¤

4. Concluding remarks

At the beginning of the last century, studies on q-difference equations
appeared in intensive works especially by Jackson [13], Carmichael [7], Ma-
son [16], Adams [1], Trjitzinsky [21], and later by others such as Poincaré,
Picard, Ramanujan. Unfortunately, from the thirties up to the beginning
of the eighties only non-significant interest in this area was investigated.
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Recently some research in this topic is carried out by Bangerezako [4]; see
also references therein for other related work. Research works in connection
with function theory and q-theory together were first introduced by Ismail
et al. [12]. Later it is also studied in [2], [17], [18], [19]. Since only few
work have been carried out in this direction, as indicated in [2], there are a
lot can be done. For instance, q-analog of convexity of analytic functions in
the unit disk and even more general in arbitrary simply connected domains
may be interesting for researchers in this field. Recently, the concept of q-
convexity for basic hypergeometric functions is considered in [5]. Bieberbach
conjecture problem for q-close-to-convex functions is estimated optimally in
a recent paper [19]. In fact sharpness of this result is still an open problem
and concerning this, a conjecture is stated there.
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