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Carleson inequalities on parabolic Hardy spaces
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Abstract. We study Carleson inequalities in a framework of parabolic Hardy spaces.

Similar results for parabolic Bergman spaces are discussed in [NSY1] (see also [NSY2]),

where τ-Carleson measures play an important roll. In the present case, Tτ -Carleson

measures are useful. We give an relation between these measures.
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1. Introduction

For an integer n ≥ 1, let Rn+1
+ := {(x, t) ∈ Rn+1 | x = (x1, x2, . . . , xn) ∈

Rn, t > 0} denote the upper half space. For 0 < α ≤ 1, let L(α) be a
parabolic operator

L(α) := ∂t + (−∆x)α, ∆x :=
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

.

We say that a continuous function u on Rn+1
+ is an L(α)-harmonic function

if L(α)u = 0 in the sense of distributions, which is defined later.
For 1 < p < ∞, we denote by hp

α := hp
α(Rn+1

+ ) the set of all L(α)-
harmonic functions with ‖u‖hp

α
< ∞, where

‖u‖hp
α

:= sup
t>0

( ∫

Rn

|u(x, t)|pdx

)1/p

.

It is shown that hp
α is a Banach space under the norm ‖ · ‖hp

α
(see Section

2). We call hp
α the α-parabolic Hardy space of order p.

Let 1 < p < ∞ and 1 < q < ∞. We say that a positive Borel measure
µ on Rn+1

+ satisfies a (p, q)-Carleson inequality on parabolic Hardy spaces
if the inclusion mapping from hp

α to Lq(Rn+1
+ , dµ) is bounded, that is, there

exists a positive constant C such that
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‖u‖Lq(Rn+1
+ , dµ) ≤ C‖u‖hp

α
(1)

holds for all u ∈ hp
α. To study (1), the following definition is useful.

Definition 1 Let µ be a positive Borel measure on Rn+1
+ and τ be a

positive number. We say that µ is a Tτ -Carleson measure if there exists a
positive constant C such that

µ(T (α)(x, t)) ≤ Ct(n/2α)τ (2)

holds for all (x, t) ∈ Rn+1
+ , where

T (α)(x, t) :=
{
(y, s) ∈ Rn+1

+

∣∣ |y − x|2α + s ≤ t
}
. (3)

We are now ready to state our main theorem.

Theorem 1 Let 1 < p ≤ q < ∞ and µ be a positive Borel measure on
Rn+1

+ . Then µ satisfies a (p, q)-Carleson inequality if and only if µ is a
Tq/p-Carleson measure.

A Carleson inequality on parabolic Bergman spaces is already proved
in [NSY1] (see also [NSY2]). We discuss a relation between two inequalities
in Section 4. As a result, we will see that a positive Borel measure µ satis-
fies a (p, q)-Carleson inequality on parabolic Hardy spaces if and only if µ

satisfies a (p′, q′)-Carleson inequality on parabolic Bergman spaces, where
(q/p)(n/2α) = (q′/p′)(n/2α + 1) (see Corollary 1 below).

Throughout the paper, we will use the same letter C to denote various
positive constants; it may vary even within a line.

2. Preliminaries

In order to define an L(α)-harmonic function, we recall how the adjoint
operator L̃(α) = −∂t + (−∆x)α acts on C∞c (Rn+1

+ ), where C∞c (Rn+1
+ ) is the

set of all C∞-functions with compact support on Rn+1
+ . Since it is trivial

when α = 1, we only consider for 0 < α < 1 here. Then (−∆x)α is the
convolution operator defined by −cn,α p.f.|x|−n−2α, where

cn,α = 4απ−n/2Γ((2n + α)/2)/|Γ(−α)|, |x| = (x2
1 + x2

2 + · · ·+ x2
n)1/2,
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and Γ(·) is the gamma function. Hence for ϕ ∈ C∞c (Rn+1
+ ),

L̃(α)ϕ(x, t) = − ∂

∂t
ϕ(x, t)− cn,α lim

δ↓0

∫

|y|>δ

(ϕ(x + y, t)− ϕ(x, t))|y|−n−2αdy.

A function h on Rn+1
+ is said to be L(α)-harmonic if h is continuous,

∫ t2

t1

∫

Rn

|h(x, t)|(1 + |x|)−n−2αdxdt < ∞ (4)

for every 0 < t1 < t2 < ∞ and
∫∫
Rn+1

+
h · L̃(α)ϕdxdt = 0 holds for all

ϕ ∈ C∞c (Rn+1
+ ). Note that the condition (4) is equivalent to

∫∫
Rn+1

+
|h ·

L̃(α)ϕ| dxdt < ∞ for all ϕ ∈ C∞c (Rn+1
+ ) (see [NSS1]).

We use the fundamental solution W (α) of L(α), which is defined by

W (α)(x, t) =





(2π)−n

∫

Rn

e−t|ξ|2α

eix·ξ dξ t > 0

0 t ≤ 0

where x · ξ is the inner product of x and ξ. It is known that when α = 1/2,
W (1/2) coincides with the Poisson kernel on Rn+1

+ , that is, for t > 0,

W (1/2)(x, t) =
Γ

(
n+1

2

)

π(n+1)/2

t

(|x|2 + t2)(n+1)/2
. (5)

Note also that W (1)(x, t) = (4πt)−n/2e−|x|
2/4t is the Gauss kernel. We

recall some properties of the fundamental solution (see [NSS1] and [NSS2]
for details).

For any compact set K in Rn+1
+ , there exists a positive constant C such

that

inf
(x,t)∈K

W (α)(x, t) > C. (6)

For every positive t,
∫

Rn

W (α)(x, t) dx = 1 (7)
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and for any positive s, t with 0 < s < t,

W (α)(x, t) =
∫

Rn

W (α)(x− y, t− s)W (α)(y, s) dy. (8)

By a change of variables, we see

W (α)(x, t) = t−n/2αW (α)(t−1/2αx, 1). (9)

The following estimate is useful: there exists a constant C > 0 such that

W (α)(x, t) ≤ C
t

(t + |x|2α)n/2α+1
. (10)

It is known that the usual harmonic Hardy space Hp on the upper half
space is naturally equivalent with the space Lp(Rn). The same identity also
holds in our case. For f ∈ Lp(Rn), we set

P (α)[f ](x, t) :=
∫

Rn

W (α)(x− y, t)f(y)dy. (11)

Then we have the following proposition.

Proposition 1 Let 1 < p < ∞. For each u ∈ hp
α, there exists a

unique function f ∈ Lp(Rn) such that u = P (α)[f ]. Conversely, for any
f ∈ Lp(Rn), P (α)[f ] ∈ hp

α. Moreover, ‖P (α)[f ]‖hp
α

= ‖f‖Lp(Rn) holds.

Proof. By (7), (8) and (10), the assertion follows from a quite similar proof
to the usual harmonic Hardy space (cf. [S, p. 62 and p. 200]). Here we only
check that P (α)[f ] is L(α)-harmonic when f ∈ Lp(Rn). Let q be such as
1/p + 1/q = 1. For 0 < t1 < t2 < ∞, by (10) and the Hölder inequality, we
have

∫ t2

t1

∫

Rn

|P (α)[f ](x, t)|(1 + |x|)−n−2αdxdt

≤
∫ t2

t1

∫

Rn

( ∫

Rn

(W (α)(x− y, t))qdy

)1/q

× ‖f‖Lp(Rn)(1 + |x|)−n−2αdxdt
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≤ C

∫ t2

t1

∫

Rn

( ∫

Rn

tq

(|x− y|2α + t)(n/2α+1)q
dy

)1/q

× ‖f‖Lp(Rn)(1 + |x|)−n−2αdxdt

≤ C

(
ωn−1

2α

∫ ∞

0

ζn/2α−1(1 + ζ)−(n/2α+1)qdζ

)1/q

× ‖f‖Lp(Rn)

∫ t2

t1

t−(n/2α)(1/p)dt

∫

Rn

(1 + |x|)−n−2αdx

< ∞

where ωn−1 is the surface area of unit sphere in Rn. Hence by the Fubini
theorem,

∫∫

Rn+1
+

P (α)[f ](x, t) · L̃(α)ϕ(x, t) dxdt

=
∫∫

Rn+1
+

( ∫

Rn

W (α)(x− y, t)f(y) dy

)
L̃(α)ϕ(x, t) dxdt

=
∫

Rn

( ∫∫

Rn+1
+

W (α)(x− y, t)L̃(α)ϕ(x, t) dxdt

)
f(y) dy

= 0,

because the fundamental solution is L(α)-harmonic. ¤

When u = Pα[f ], then |u(x, t)| ≤ ‖W (x − ·, t)‖Lq(Rn)‖f‖Lp(Rn) holds
for 1/p + 1/q = 1. This shows that a Cauchy sequence {un} in hp

α implies
compact uniform convergence of {un}, so that hp

α forms a Banach space.
This proposition also shows that hp

1/2 is just the usual harmonic Hardy
space Hp.

3. Proof of Theorem 1

In this section, we will give a proof of Theorem 1. The “only if” part is
not difficult. It follows from direct computations of integrals of W (α). Let
1 < p < ∞ , 1 < q < ∞ and suppose that µ satisfies a Carleson inequality
(1). We fix (x, t) ∈ Rn+1

+ and put u(y, s) = W (α)(x−y, t+ s). Then u ∈ hp
α.
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In fact, by (10),

‖u‖p
hp

α
= sup

s>0

∫

Rn

W (α)(x− y, t + s)pdy

≤ C sup
s>0

∫

Rn

(
t + s

(t + s + |x− y|2α)n/2α+1

)p

dy

= C
ωn−1

2α
sup
s>0

(t + s)(n/2α)(1−p)

∫ ∞

0

ηn/2α−1

(1 + η)(n/2α+1)p
dη

≤ Ct(n/2α)(1−p)

On the other hand, since |x−y|2α ≤ t−s < t+s for every (y, s) ∈ T (α)(x, t),
(6) and (9) show

u(y, s) = (t + s)−n/2αW (α)

(
x− y

(t + s)1/2α
, 1

)
≥ C(t + s)−n/2α ≥ C(2t)−n/2α

with some constant C > 0. This implies that

‖u‖q

Lq(Rn+1
+ ,dµ)

≥
∫∫

T (α)(x,t)

u(y, s)qdµ(y, s) ≥ Ct−(n/2α)qµ(T (α)(x, t)).

Hence the inequality (1) gives us

t−n/2αµ(T (α)(x, t))1/q ≤ C‖u‖Lq(Rn+1
+ ,dµ) ≤ C‖u‖hp

α
≤ Ct(n/2α)(1/p−1),

which shows µ is a Tq/p-Carleson measure. Here we remark that we do not
assume p ≤ q in the above argument.

To show the “if” part, we use a Luecking’s idea (see [L]). In the sequel,
we denote by B(x, r) the ball with center x and radius r in the boundary of
upper half space, that is B(x, r) = {y ∈ Rn | |x− y| < r}. For an open set
E in Rn, we set

Ê :=
{
(x, t) ∈ Rn+1

+ | B(x, t1/2α) ⊆ E}. (12)

Let (x, t) ∈ Rn+1
+ . When α ≤ 1/2, then (t − s)1/2α ≤ t1/2α − s1/2α ≤

(2t−s)1/2α holds for 0 < s ≤ t. Hence T (α)(x, t) ⊂ ̂B(x, t1/2α) ⊂ T (α)(x, 2t).
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When α > 1/2, then t1/2α− s1/2α ≤ (t− s)1/2α ≤ (2t)1/2α− s1/2α holds for

0 < s ≤ t, and hence ̂B(x, t1/2α) ⊂ T (α)(x, t) ⊂ ̂B(x, (2t)1/2α). Therefore

̂B(x, (t/2)1/2α) ⊂ T (α)(x, t) ⊂ ̂B(x, (2t)1/2α) (13)

holds for all 0 < α ≤ 1.
Let 1 < p < ∞. We also use the maximal function Mf , which is defined

by

Mf(x) := sup
r>0

1
rn

∫

B(x,r)

|f(y)| dy.

for f ∈ Lp(Rn). It is known that

‖Mf‖Lp(Rn) ≤ Cp,n‖f‖Lp(Rn) (14)

where Cp,n = 2(5np/(p− 1))1/p (see [S, p. 5]).
Now we return to the proof of the “if” part. Assume that 1 < p ≤ q < ∞

and µ is a Tq/p-Carleson measure. Then by (13),

µ( ̂B(x, t1/2α)) ≤ Ct(n/2α)(q/p) (15)

with some constant C > 0. We use the following notations. For u ∈ hp
α and

x ∈ Rn, we set

u∗(x) := sup
(y,s)∈Ω(x)

|u(y, s)| (16)

where Ω(x) := {(y, s) ∈ Rn+1
+ | |y − x| < s1/2α} and for λ > 0, we set

Eλ := {x ∈ Rn | u∗(x) > λ},
Gλ := {(x, t) ∈ Rn+1

+ | |u(x, t)| > λ}.

Let (x0, t0) ∈ Gλ and take any z ∈ B(x0, t
1/2α
0 ). Since (x0, t0) ∈ Ω(z), we

have u∗(z) > λ, and hence B(x0, t
1/2α
0 ) ⊂ Eλ. This shows

Gλ ⊂ Êλ. (17)
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For subsets X and Y in Rn, we denote by ∂X the boundary of X, by
diam(X) the diameter of X and by dist(X, Y ) the distance between X and
Y . Since u∗ is lower semicontinuous, Eλ is an open set. Hence we have the
following Whitney decomposition;

Eλ =
∞⋃

k=1

Qk, (18)

where {Qk} are closed cubes whose sides are parallel to the axes and whose
interiors are mutually disjoint, and satisfy

diam(Qk) ≤ dist(Qk, ∂Eλ) ≤ 4diam(Qk)

(see [S, p. 16]). Then there exists a constant C > 0 such that

Êλ ⊂
∞⋃

k=1

ĈQk (19)

where CQk is a cube with C times diameter and the common center as
Qk. In fact, take (x, t) ∈ Êλ. Since B(x, t1/2α) ⊂ Eλ, we choose t0 ≥ t

such that dist(B(x, t
1/2α
0 ), ∂Eλ) = 0. By (18), x ∈ Qk0 for some integer

k0 ≥ 1. Let x0 be the center of Qk0 and x̃0 be a point in Qk0 such that
dist(x̃0, ∂Eλ) = dist(Qk0 , ∂Eλ). Then for any y ∈ B(x, t

1/2α
0 ), we have

|y − x0| ≤ |y − x|+ |x− x0|

≤ t
1/2α
0 + diam(Qk0)

≤ |x− x̃0|+ dist(Qk0 , ∂Eλ) + diam(Qk0)

≤ diam(Qk0) + 4diam(Qk0) + diam(Qk0)

= 6diam(Qk0).

This shows that y ∈ CQk0 , where C = 12
√

n. Since y is an arbitary point in
B(x, t

1/2α
0 ), we have B(x, t1/2α) ⊂ B(x, t

1/2α
0 ) ⊂ CQk0 , and hence (x, t) ∈

ĈQk0 . This shows (19).
Next we estimate the Lp norm of u∗. There exists a positive constant

C such that for every u ∈ hp
α,
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‖u∗‖Lp(Rn) ≤ C‖u‖hp
α
. (20)

In fact, as in Proposition 1, we take f ∈ Lp(Rn) such that u = P (α)[f ] and
let x ∈ Rn. Take (y, s) ∈ Ω(x) and z ∈ Rn arbitrarily. Then

s + |x− z|2α ≤ s + (|x− y|+ |y − z|)2α ≤ s + (s1/2α + |y − z|)2α

≤ (22α + 1)(s + |y − z|2α).

Hence by (5), we have

|u(y, s)| ≤
∫

Rn

|f(z)|W (α)(y − z, s) dz

≤ C

∫

Rn

s|f(z)|
(s + |y − z|2α)n/2α+1

dz

≤ C

∫

Rn

s|f(z)|
(s + |x− z|2α)n/2α+1

dz

= C
∞∑

m=0

Im,

where

I0 :=
∫

|x−z|<s1/2α

s|f(z)|
(s + |x− z|2α)n/2α+1

dz

Im :=
∫

(2m−1s)1/2α≤|x−z|<(2ms)1/2α

s|f(z)|
(s + |x− z|2α)n/2α+1

dz

(m = 1, 2, . . . ).

Then

I0 ≤
∫

|x−z|<s1/2α

s|f(z)|
sn/2α+1

dz = s−n/2α

∫

|x−z|<s1/2α

|f(z)| dz ≤ Mf(x)

and



10 H. Nakagawa and N. Suzuki

Im =
∫

(2m−1s)1/2α≤|x−z|<(2ms)1/2α

s|f(z)|
(s + 2m−1s)n/2α+1

dz

≤ 1
(1 + 2m−1)n/2α+1

1
sn/2α

∫

|x−z|<(2ms)1/2α

|f(z)| dz

≤ 2−m2(n/2α+1)(2ms)−n/2α

∫

|x−z|<(2ms)1/2α

|f(z)| dz

≤ 2−m2(n/2α+1)Mf(x)

implies

∞∑
m=1

Im ≤ 2(n/2α+1)Mf(x),

and hence |u(y, s)| ≤ C Mf(x) holds. Since (y, s) ∈ Ω(x) is arbitrary, we
have u∗(x) ≤ CMf(x) for all x ∈ Rn. This and (14) show (20).

Now we will finish the proof of the “if” part. By (15), we see µ(Q̂) ≤
C|Q|q/p for every cube Q, and hence (17), (18) and (19) show

µ(Gλ) ≤ µ(Êλ) ≤
∞∑

k=1

µ(ĈQk) ≤ C
∞∑

k=1

|Qk|q/p ≤ C|Eλ|q/p, (21)

because q/p ≥ 1, where |G| denotes the volume of a Borel set G in Rn. Then
by (21)

‖u‖q

Lq(Rn+1
+ ,dµ)

=
∫∫

Rn+1
+

|u(x, t)|q dµ(x, t) = q

∫ ∞

0

µ(Gλ)λq−1dλ

≤ C

∫ ∞

0

|Eλ|q/pλq−1dλ = C
∞∑

k=−∞

∫ 2k+1

2k

|Eλ|q/pλq−1dλ

≤ C
∞∑

k=−∞

∫ 2k+1

2k

|E2k |q/p2(k+1)(q−1)dλ

≤ C

∞∑

k=−∞
2(k+1)q|E2k |q/p.
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On the other hand,

‖u∗‖p
Lp(Rn) =

∫

Rn

|u∗(x)|pdx = p

∫ ∞

0

|Eλ|λp−1dλ

≥ p
∞∑

k=−∞

∫ 2k

2k−1
|E2k |2(k−1)(p−1)dλ

= p
∞∑

k=−∞
2(k−1)p|E2k | = p

22p

∞∑

k=−∞
2(k+1)p|E2k |.

Since p ≤ q, we have

‖u‖p

Lq(Rn+1
+ ,dµ)

≤ C

( ∞∑

k=−∞
2(k+1)q|E2k |q/p

)p/q

≤ C

∞∑

k=−∞
2(k+1)p|E2k | ≤ C‖u∗‖p

Lp(Rn).

This together with (20) gives us the Carleson inequality (1). This completes
the proof.

4. A relation between Tτ -Carleson measures and τ -Carleson
measures

We recall a result for parabolic Bergman spaces. For 1 ≤ p < ∞, we
denote by bp

α := bp
α(Rn+1

+ ) the set of all L(α)-harmonic functions u with
‖u‖Lp(Rn+1

+ ) < ∞, where

‖u‖Lp(Rn+1
+ ) :=

( ∫∫

Rn+1
+

|u(x, t)|pdxdt

)1/p

.

We call bp
α the α-parabolic Bergman space of order p. As in the Hardy

case, bp
1/2 coincides with the usual harmonic Bergman space on the upper

half space. Let µ be a positive Borel measure on Rn+1
+ and τ be a positive

number. We say that µ is a τ -Carleson measure if there exists a positive
constant C such that
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µ(Q(α)(x, t)) ≤ Ct(n/2α+1)τ (22)

holds for all (x, t) ∈ Rn+1
+ , where

Q(α)(x, t) :=
{
(y1, y2, . . . , yn, s) ∈ Rn+1

+

∣∣ t ≤ s ≤ 2t,

|yi − xi| ≤ t1/2α/2, i = 1, 2, . . . , n
}
.

Carleson inequalities on parabolic Bergman spaces are studied in [NSY1]:
Let 1 ≤ p ≤ q < ∞ and µ be a positive Borel measure on Rn+1

+ . Then µ is a
q/p-Carleson measure if and only if there exists a positive constant C such
that the inequality

‖u‖Lq(Rn+1
+ , dµ) ≤ C‖u‖Lp(Rn+1

+ ) (23)

holds for all u ∈ bp
α.

We have the following proposition.

Proposition 2 Let µ be a positive Borel measure on Rn+1
+ . For τ > 0,

we set τb := τ(n/2α)/(n/2α + 1). Then

(a) if µ is a Tτ -Carleson measure, then µ is a τb-Carleson measure,
(b) if τ > 1 and µ is a τb-Carleson measure, then µ is a Tτ -Carleson mea-

sure.

Proof. Since Q(α)(x, t) ⊂ T (α)(x, ((n/4)α + 2)t) for (x, t) ∈ Rn+1
+ , we have

µ(Q(α)(x, t)) ≤ µ

(
T (α)

(
x,

((
n

4

)α

+ 2
)

t

))

≤ C

((
n

4

)α

+ 2
)(n/2α)τ

t(n/2α)τ ≤ Ct(n/2α+1)τb ,

which shows (a). To show (b), we set

Tk :=
{
(y, s) ∈ T (α)(x, t)

∣∣ t/2k+1 ≤ s ≤ t/2k
}

for k = 0, 1, 2, . . . and take a natural number c(k) such that (2(k+1/2α+1) +
1)n ≤ c(k) ≤ 2((k+1)/2α+2)n. Since
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[
(t− t/2k+1)1/2α

(t/2k+1)1/2α

]
+ 1 ≤ 2((k+1)/2α+1) + 1

where [t] is the largest integer smaller than or equal to t, we can choose c(k)
points {(xk,i, t/2k+1)} in Tk such that Tk ⊂

⋃c(k)
i=1 Q(α)(xk,i, t/2k+1). Hence

µ(T (α)(x, t)) ≤
∞∑

k=0

µ(Tk) ≤
∞∑

k=0

c(k)∑

i=1

µ(Q(α)(xk,i, t/2k+1))

≤
∞∑

k=0

c(k)∑

i=1

C(t/2k+1)(n/2α+1)τb

≤ C

∞∑

k=0

2((k+1)/2α+2)n(t/2k+1)(n/2α+1)τb

≤ Ct(n/2α)τ
∞∑

k=0

2k(n/2α−(n/2α+1)τb).

Since n/2α− (n/2α+1)τb = (n/2α)(1− τ) < 0, µ is a Tτ -Carleson measure.
¤

Theorem 1 and Proposition 2 give us the following corollary.

Corollary 1 1 < p ≤ q < ∞ and let 1 ≤ p′ ≤ q′ < ∞. Sup-
pose that (n/2α)(q/p) = (n/2α + 1)(q′/p′) holds. Then for every posi-
tive Borel measure µ on Rn+1

+ , there exist positive constants C and C ′

such that ‖u‖Lq(Rn+1
+ , dµ) ≤ C‖u‖hp

α
holds for all u ∈ hp

α if and only if

‖u‖Lq′ (Rn+1
+ , dµ) ≤ C ′‖u‖Lp′ (Rn+1

+ ) holds for all u ∈ bp′
α .
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