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Local symmetry on almost Kenmotsu three-manifolds
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Abstract. We prove that a locally symmetric almost Kenmotsu three-manifold is

locally isometric to either the hyperbolic space H3(−1) or a product space H2(−4)×R.
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1. Introduction

Let M be a manifold of odd dimension m = 2n + 1. Then M is said to
be an almost contact manifold if its structure group GLm(R) of the linear
frame bundle is reducible to U(n)× {1}. This is equivalent to the existence
of an endomorphism field ϕ, a vector field ξ and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

We call ξ the Reeb vector field. Then M admits a Riemannian metric g

satisfying

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y )

for any vector fields X, Y on M . Such (M ;ϕ, ξ, η, g) is said to be an al-
most contact metric manifold. The fundamental 2-form Φ is defined by
Φ(X, Y ) = g(X, ϕY ). If M satisfies in addition dη = Φ, then M is called
a contact metric manifold. An almost contact metric manifold M is said
to be almost Kenmotsu if dη = 0 and dΦ = 2η ∧ Φ. The warped products
of an almost Kählerian manifold and a real line give examples of almost
Kenmotsu manifolds.

For an almost contact structure (ϕ, ξ, η) of M , the normality defined as
follows. One may define naturally an almost complex structure J on M ×R
by
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J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)
,

where X is a vector field tangent to M , t the coordinate of R and f a
function on M × R. If the almost complex structure J is integrable, M

is said to be normal. A normal almost Kenmotsu manifold is said to be
Kenmotsu. It is known that a normal almost contact metric structure has
the CR-integrable structure (cf. [1]). For further properties and examples
of (almost) Kenmotsu manifolds, we refer to [4] and [5].

E. Boeckx and the present author [2] proved that a locally symmetric
contact metric manifold is either normal and of constant curvature 1 or
locally isometric to the product space Rn+1 × Sn(4). On the other hand, K.
Kenmotsu [5] proved that a locally symmetric Kenmotsu manifold M2n+1 is
locally isometric to the hyperbolic space H2n+1(−1) (of constant curvature
−1). Due to G. Dileo and A. M. Pastore [4] we know that if an almost
Kenmotsu manifold is locally symmetric and in addition the curvature tensor
R satisfies R(X, Y )ξ = 0 for any vector fields X, Y orthogonal to ξ, then
it is either a Kenmotsu manifold of constant curvature −1 or locally the
product space Hn+1(−4)× Rn. Then, in the same paper [4] they raised a
following question: is a locally symmetric almost Kenmotsu manifold either
a Kenmotsu manifold of constant curvature −1 or locally isometric to the
product Hn+1(−4)× Rn? Very recently, Y. Wang and X. Liu [8] gave a
partial affirmative answer to the question under some additional conditions.
Namely, they proved that if an almost Kenmotsu manifold M2n+1 with
n > 1 has the CR-integrable structure and it is locally symmetric, then M

is locally isometric to either a Kenmotsu manifold of constant curvature −1
or locally isometric to the product Hn+1(−4)× Rn. As a crucial part in their
proof, they proved that for a locally symmetric almost Kenmotsu manifold
with CR-integrable structure the Reeb vector field ξ is an eigenvector of the
Ricci operator, when n > 1 (Lemma 4.3 in [8]). In the present paper, we
prove the three-dimensional case.

Main Theorem An almost Kenmotsu three-manifold is locally symmetric
if and only if it is locally isometric to the hyperbolic space H3(−1) or a
product space H2(−4)× R.

In the proof of our main theorem, we find that for locally symmetric
almost Kenmotsu three-manifolds the Reeb vector field ξ is an eigenvector
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of the Ricci operator (Corollary 8).

2. Almost Kenmotsu three-manifolds and local symmetry

All manifolds in the present paper are assumed to be connected and of
class C∞. Let (M ;ϕ, ξ, η, g) be a 3-dimensional almost Kenmotsu manifold.
We prepare some fundamental formulas which are mainly established in [4]
(we refer also to [6]). Then we have

∇ξξ = 0, ∇ξϕ = 0 (2.1)

and

∇Xξ = X − η(X)ξ − ϕhX (2.2)

for any vector field X on M where h = (1/2)£ξϕ. We find that the linear
operator h is self-adjoint and moreover we have

hϕ + ϕh = 0, hξ = 0, tr h = 0. (2.3)

From (2.2) and (2.3) we obtain that div ξ = 2. Then we observe that a
compact manifold does not admit almost Kenmotsu structure.

Proposition 1 ([6]) An almost Kenmotsu three-manifold is normal if and
only if h = 0. In such a case, the canonical foliation F , which is generated
by the contact distribution D = ker η, yields a totally umbilical foliation.

We note that F is Riemannian, but the 1-dimensional foliation F⊥ can
not be Riemannian.

For a Kenmotsu three-manifold M , we have from (2.2)

R(X, Y )ξ = η(X)Y − η(Y )X, (2.4)

and

Sξ = −2ξ. (2.5)

Remind that the curvature tensor R of a 3-dimensional Riemannian manifold
is expressed by
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R(X, Y )Z = ρ(Y, Z)X − ρ(X, Z)Y + g(Y, Z)SX − g(X, Z)SY

− r

2
{g(Y, Z)X − g(X, Z)Y } (2.6)

for all vector fields X, Y, Z, where ρ(Y, X) = g(SY,X) and r denotes the
scalar curvature. Then together with (2.4) we have

Proposition 2 For a Kenmotsu three-manifold we have the Ricci opera-
tor :

S =
(

1 +
r

2

)
I −

(
3 +

r

2

)
η ⊗ ξ, (2.7)

where I denotes the identity transformation.

Theorem 3 ([3]) A Kenmotsu three-manifold M satisfies ∇ξS = 0 if and
only if M is locally isometric to the hyperbolic space H3(−1).

Corollary 4 ([5]) A locally symmetric Kenmotsu three-manifold is locally
isometric to the hyperbolic space H3(−1).

Now we prove

Theorem 5 A 3-dimensional almost Kenmotsu manifold M is locally
symmetric if and only if M is locally isometric to either the hyperbolic space
H3(−1) or a product space H2(−4)× R.

Proof. Let M = (M3;ϕ, ξ, η, g) be an almost Kenmotsu three-manifold.
Suppose that M is locally symmetric. Then, in case that M is normal we
already know that M is locally isometric to the hyperbolic space H3(−1).
Now suppose that h is not identically zero. We consider on M the maximal
open subset U1 on which h 6= 0 and the maximal open subset U2 on which h

is identically zero. U1 ∪ U2 is open and dense in M . Then U1 is non-empty
and there is a local orthonormal frame field {e1 = e, e2 = ϕe, e3 = ξ} on U1

such that h(e1) = µe1, h(e2) = −µe2 for some positive function µ. From
now our arguments will be done in U1. Then, using the 2nd equation of
(2.1) and (2.2) we have
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Lemma 6 ([3])

∇ξξ = 0, ∇ξe1 = ae2, ∇ξe2 = −ae1,

∇e1ξ = −µe2 + e1, ∇e1e1 = −be2 − ξ, ∇e1e2 = be1 + µξ, (2.8)

∇e2ξ = −µe1 + e2, ∇e2e1 = ce2 + µξ ∇e2e2 = −ce1 − ξ,

where a, b, c are smooth functions.

From (2.8) we compute the Poisson brackets:

[e3, e1] = (a+µ)e2−e1, [e1, e2] = be1−ce2, [e2, e3] = (a−µ)e1+e2. (2.9)

From the Jacobi identity

[e3, [e1, e2]] + [e1, [e2, e3]] + [e2, [e3, e1]] = 0,

we get the following:

{−e1µ + e3b + e1a + c(a− µ) + b = 0,

e2µ− e3c + e2a + b(a + µ)− c = 0.
(2.10)

By using (2.8) and (2.9), we compute the Riemann curvature tensor
R(X, Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z, and then we have the Ricci curvature
tensor ρ(X, Y ):





ρ(e3, e3) = −2(µ2 + 1),

ρ(e3, e1) = ρ(e1, e3) = −e2µ− 2bµ,

ρ(e3, e2) = ρ(e2, e3) = −e1µ− 2cµ,

ρ(e1, e1) = −e1c− e2b− b2 − c2 − 2aµ− 2,

ρ(e1, e2) = ρ(e2, e1) = ξµ + 2µ,

ρ(e2, e2) = −e1c− e2b− b2 − c2 + 2aµ− 2,

(2.11)

where we have used (2.10).
Since M satisfies ∇R = 0, we first find that ∇S = 0 and the scalar

curvature r is constant. Since ρ33 = −2(µ2 + 1), from (2.8) we obtain
e3µ = 0. Then we get
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ρ12 = 2µ, (2.12)

where we have put ρij = ρ(ei, ej) for i, j = 1, 2, 3. Differentiating (2.12)
covariantly along ξ again, then since ∇3ρ12 = 0 we get

a(ρ11 − ρ22) = 0, (2.13)

where a = g(∇e3e1, e2). Together (2.11) and (2.13) we find that a = 0 and
moreover we have

ρ11 = ρ22 = 1 + µ2 +
r

2
. (2.14)

Then we prove

Lemma 7 µ is constant.

Proof. Differentiating ρii covariantly for ei, i = 1, 2, respectively, then
since ∇iρjk = 0 using (2.8) and (2.11) we get

e2µ = µ(e1µ), e1µ = µ(e2µ), (2.15)

respectively. From the two equations in (2.15) we have e1µ = e2µ = 0.
Thus, together with ξµ = 0 we have µ is constant along M . ¤

Differentiating (2.12) covariantly for e1, e2, respectively, then using
(2.8), (2.11) and Lemma 7 we have

µρ13 = ρ23, µρ23 = ρ13, (2.16)

respectively. From (2.16) we have either µ = 1 (assuming µ > 0) or ξ is an
eigenvector of the Ricci operator S. Now we divide our arguments into two
cases.

First, we consider the case e3 = ξ is an eigenvector of the Ricci operator
S, that is, Se3 = σe3, where σ = −2µ2 − 2. Then from (2.11) we see that
b = c = 0 and ρ11 = ρ22 = −2. Moreover, the bracket relations (2.9) is
reduced to

[e3, e1] = µe2 − e1, [e1, e2] = 0, [e2, e3] = −µe1 + e2.

Then, owing to J. Milnor’s result ([7]) we find that M is locally isometric to
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a non-unimodular Lie group. That is, its Lie algebra m is not unimodular
and its unimodular kernel a = {X ∈ m : trace adX = 0} is 2-dimensional
and abelian. Indeed, {e1, e2} is a basis of a and trace ade3 = −2 6= 0. The
Ricci operator S is represented as:

Se1 = −2e1 + 2µe2,

Se2 = 2µe1 − 2e2, (2.17)

Se3 = (−2µ2 − 2)e3,

If M is irreducible, then it is Einstein. If M is a locally a product space of
three 1-dimensional manifolds, then it is locally flat. But, from Theorem 4
in [4] we see that h vanishes for an almost Kenmotsu manifold of constant
sectional curvature. So, the both cases cannot occur. Thus, M should be
a locally product space of R and 2-dimensional manifold N2 of constant
curvature k. Then, solving the eigenvalue and eigenvector of Ricci operator
S, we have

Sẽ1 = (−2 + 2µ)ẽ1,

Sẽ2 = (−2− 2µ)ẽ2, (2.18)

Sẽ3 = (−2µ2 − 2)ẽ3,

where ẽ1 = (1/
√

2)(e1 + e2), ẽ2 = (1/
√

2)(−e1 + e2) and ẽ3 = e3. From
(2.18) we see that ẽ1 is tangent to R and {ẽ2, ẽ3} span TN . Hence µ = 1
and k = −4.

Next, we consider the case µ = 1. Then from (2.11) and (2.16) it follows
that b = c and ρ13 = ρ23 = −2b. Also, from (2.10) we have e3b = 0. If we
differentiate ρ13 = −2b covariantly for e1 and e2, then we have e1b = −e2b

and ρ11 = −2(e1b)−2b2−2. If we differentiate ρ23 = −2b covariantly for e1,
then we have ρ22 = 2(e1b)− 2b2 − 2. But, we already know that ρ11 = ρ22.
Thus we have e1b = e2b = 0. After all, we have that b = c are constants and
ρ11 = ρ22 = −2b2−2. Now we compute ∇1ρ11 = e1ρ11 +2b ρ12. Then, since
ρ12 = 2 we have that b = 0. This yields that ξ is an eigenvector of the Ricci
operator S. Thus, we conclude that M is locally isometric to H2(−4) × R.
This completes the proof. ¤

Corollary 8 The Reeb vector field of a locally symmetric almost Kenmotsu
three-manifold is an eigenvector of the Ricci operator.
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