A New Characterization of Some Simple Groups by Order and Degree Pattern of Solvable Graph

B. Akbari, N. Iiyori and A. R. Moghaddamfar
(Received April 21, 2014; Revised August 4, 2014)

Abstract

The solvable graph of a finite group G, denoted by $\Gamma_{\mathrm{s}}(G)$, is a simple graph whose vertices are the prime divisors of $|G|$ and two distinct primes p and q are joined by an edge if and only if there exists a solvable subgroup of G such that its order is divisible by $p q$. Let $p_{1}<p_{2}<\cdots<p_{k}$ be all prime divisors of $|G|$ and let $\mathrm{D}_{\mathrm{s}}(G)=\left(d_{\mathrm{s}}\left(p_{1}\right), d_{\mathrm{s}}\left(p_{2}\right), \ldots, d_{\mathrm{s}}\left(p_{k}\right)\right)$, where $d_{\mathrm{s}}(p)$ signifies the degree of the vertex p in $\Gamma_{\mathrm{s}}(G)$. We will simply call $\mathrm{D}_{\mathrm{s}}(G)$ the degree pattern of solvable graph of G. In this paper, we determine the structure of any finite group G (up to isomorphism) for which $\Gamma_{\mathrm{s}}(G)$ is star or bipartite. It is also shown that the sporadic simple groups and some of projective special linear groups $L_{2}(q)$ are characterized via order and degree pattern of solvable graph.

Key words: solvable graph, degree pattern, simple group, $\mathrm{OD}_{\mathbf{s}}$-characterization of a finite group.

1. Introduction

All groups considered in this paper will be finite. Let G be a finite group, $\pi(G)$ the set of all prime divisors of its order and $\operatorname{Spec}(G)$ be the spectrum of G, that is the set of its element orders. The prime graph $\operatorname{GK}(G)$ of G (or Gruenberg-Kegel graph) is a simple graph whose vertex set is $\pi(G)$ and two distinct vertices p and q are joined by an edge if and only if $p q \in \operatorname{Spec}(G)$. The prime graph of a group can be generalized in the following way (see [1], [2]).

Let \mathcal{P} be a group-theoretic property. Given a finite group G, we define $S_{\mathcal{P}}(G)$ to be the set of all \mathcal{P}-subgroups of G. Let σ be a mapping of $S_{\mathcal{P}}(G)$ to the the set of natural numbers. Following the notation of [1], [2], we define its (\mathcal{P}, σ)-graph as follows: its vertices are the primes dividing an element of $\sigma\left(S_{\mathcal{P}}(G)\right)$ and two vertices p and q are joined by an edge if there is a natural number in $\sigma\left(S_{\mathcal{P}}(G)\right)$ which can be divided by $p q$. We illustrate this with the following examples.
(1) $\mathcal{P} \equiv$ cyclic and $\sigma(H) \equiv$ order of H for each $H \in S_{\mathcal{P}}(G)$. In this case, $S_{\mathcal{P}}(G)$ is the set of all cyclic subgroups of G and the (\mathcal{P}, σ)-graph is called the "cyclic graph" of G (see [2]). In fact, in the cyclic graph of G, the vertices are the prime numbers dividing the order of G and two different vertices p and q are joined by an edge (and we write $p \sim q$) when G has a cyclic subgroup whose order is divisible by $p q$. We will denote by $\Gamma_{\mathrm{c}}(G)$ the cyclic graph of a group G. It is worth noting that $\sigma\left(S_{\mathcal{P}}(G)\right)=\operatorname{Spec}(G)$ and the cyclic graph and the prime graph of a group are exactly one thing. Also, if we take $\mathcal{P} \equiv$ abelian or nilpotent, then (\mathcal{P}, σ)-graph of G and the cyclic graph of G coincide.
(2) $\mathcal{P} \equiv$ solvable and $\sigma(H) \equiv$ order of H for each $H \in S_{\mathcal{P}}(G)$. Here $S_{\mathcal{P}}(G)$ is the set of all solvable subgroups of G and the (\mathcal{P}, σ)-graph of G is called the "solvable graph" of G (see [2]). We will denote by $\Gamma_{\mathrm{s}}(G)$ the solvable graph of a group G. Note that the solvable graph of G is a generalization of the cyclic graph of G. In fact, the vertices are, like in the cyclic graph, the prime numbers dividing the order of G, but two different vertices p and q are adjacent (we write $p \approx q$) when G has a solvable subgroup of order divisible by $p q$.
(3) $\mathcal{P} \equiv$ commutativity of an element and $\sigma(H) \equiv$ index of H in G for each $H \in S_{\mathcal{P}}(G)$. In this case, $S_{\mathcal{P}}(G)$ is the set of centralizers of all elements of G and the (\mathcal{P}, σ)-graph of G is called the "conjugacy class graph" of G (see [6]).

In this paper we will focus our attention on the solvable graph associated with a finite group. Especially, we will determine the structure of any finite group G (up to isomorphism) for which $\Gamma_{\mathrm{s}}(G)$ is star or bipartite.

In the case of a generic group G, it is sometimes convenient to represent the graph $\Gamma_{\mathrm{c}}(G)$ (resp. $\left.\Gamma_{\mathrm{s}}(G)\right)$ in a compact form. By the compact form we mean a graph whose vertices are labeled with disjoint subsets of $\pi(G)$. Actually, a vertex labeled U represents the complete subgraph of $\Gamma_{\mathrm{c}}(G)$ (resp. $\left.\Gamma_{\mathrm{s}}(G)\right)$ on U. Moreover, an edge connecting U and W represents the set of edges of $\Gamma_{\mathrm{c}}(G)\left(\right.$ resp. $\left.\Gamma_{\mathrm{s}}(G)\right)$ that connect each vertex in U with each vertex in W. For instance, we draw in the following the compact form of the cyclic and solvable graph of some simple groups.

- $R(q)={ }^{2} G_{2}(q)$: the simple Ree group defined over the field with $q=3^{2 m+1} \geqslant 27$ elements. Figures 1 and 2 depict the compact forms of the cyclic and solvable graphs of the Ree group $R(q)$. In constructing
these graphs, we used the following facts:
The spectrum of $R(q)$ is as follows (see [5, Lemma 4]):

$$
\begin{aligned}
\operatorname{Spec}(R(q))= & \{3,6,9, \text { all factors of } q-1,(q+1) / 2, \\
& q-\sqrt{3 q}+1 \text { and } q+\sqrt{3 q}+1\}
\end{aligned}
$$

The list of maximal subgroups of $R(q)$ in [12] can be summarized as follows. Here, $\left[q^{3}\right]$ denotes an unspecified group of order q^{3} and $A: B$ denotes a split extension.

Structure	Order	Structure	Order
$\left[q^{3}\right]: \mathbb{Z}_{q-1}$	$q^{3}(q-1)$	$\mathbb{Z}_{q+\sqrt{3 q}+1}: \mathbb{Z}_{6}$	$6(q+\sqrt{3 q}+1)$
$\mathbb{Z}_{2} \times L_{2}(q)$	$q\left(q^{2}-1\right)$	$\mathbb{Z}_{q-\sqrt{3 q}+1}: \mathbb{Z}_{6}$	$6(q-\sqrt{3 q}+1)$
$\left(2^{2}: D_{(q+1) / 2}\right): 3$	$6(q+1)$	$R\left(q_{0}\right), q=q_{0}^{\alpha}, \alpha$ prime	$q_{0}^{3}\left(q_{0}^{3}+1\right)\left(q_{0}+1\right)$

Figure 1. $\Gamma_{\mathrm{c}}(R(q)), q=3^{2 m+1}>3$.

Figure 2. $\quad \Gamma_{\mathrm{s}}(R(q)), q=3^{2 m+1}>3$.

- $\operatorname{Sz}(q)$: the Suzuki simple group defined over the field with $q=2^{2 m+1}$ elements. Again, we need information about the spectrum and the structure of maximal subgroups of $\mathrm{Sz}(q)$ in order to draw its cyclic and solvable graphs.

The spectrum of $\mathrm{Sz}(q)$ is as follows (see [16, Theorem 2]):
$\operatorname{Spec}(\operatorname{Sz}(q))=\{2,4$, all factors of $q-1, q-\sqrt{2 q}+1$ and $q+\sqrt{2 q}+1\}$.
Every maximal subgroup of $\mathrm{Sz}(q)$ is isomorphic to one of the following (Suzuki [17]):

$$
\begin{gathered}
\mathbb{Z}_{q^{2}}: \mathbb{Z}_{q-1}, \quad \mathbb{Z}_{q-1}: \mathbb{Z}_{2}, \quad \mathbb{Z}_{q+\sqrt{2 q}+1}: \mathbb{Z}_{4}, \quad \mathbb{Z}_{q-\sqrt{2 q}+1}: \mathbb{Z}_{4}, \\
\operatorname{Sz}\left(q_{0}\right), q=q_{0}^{\alpha}, \alpha \in \mathbb{Z} .
\end{gathered}
$$

According to these information, we can draw the cyclic and solvable
graph of the Suzuki groups $\mathrm{Sz}(q)$ as shown in Figures 3 and 4 .

Figure 3. $\quad \Gamma_{\mathrm{c}}(\mathrm{Sz}(q)), q=2^{2 m+1}>2$.

Figure 4. $\quad \Gamma_{\mathrm{s}}(\mathrm{Sz}(q)), q=2^{2 m+1}>2$.

The degree $d_{\mathrm{s}}(p)$ (resp. $d_{\mathrm{c}}(p)$) of a vertex $p \in \pi(G)$ is the number of adjacent vertices to p in $\Gamma_{\mathrm{s}}(G)\left(\right.$ resp. $\left.\Gamma_{\mathrm{c}}(G)\right)$. Clearly, $d_{\mathrm{c}}(p) \leqslant d_{\mathrm{s}}(p)$ for every vertex $p \in \pi(G)$. In the case when $\pi(G)=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ with $p_{1}<p_{2}<\cdots<p_{k}$, we define

$$
\mathrm{D}_{\mathrm{s}}(G)=\left(d_{\mathrm{s}}\left(p_{1}\right), d_{\mathrm{s}}\left(p_{2}\right), \ldots, d_{\mathrm{s}}\left(p_{k}\right)\right)
$$

which is called the degree pattern of the solvable graph of G. For every non-negative integer $m \in\{0,1,2, \ldots, k-1\}$, we put

$$
\Delta_{m}(G):=\left\{p \in \pi(G) \mid d_{\mathrm{s}}(p)=m\right\}
$$

Clearly,

$$
\pi(G)=\bigcup_{m=0}^{k-1} \Delta_{m}(G)
$$

When $\Delta_{k-1}(G) \neq \emptyset$, the prime p with $d_{\mathrm{s}}(p)=k-1$ is called a complete prime.

Given a finite group G, denote by $h_{\mathrm{OD}_{\mathrm{s}}}(G)$ the number of isomorphism classes of finite groups H such that $|H|=|G|$ and $\mathrm{D}_{\mathrm{s}}(H)=\mathrm{D}_{\mathrm{s}}(G)$. In terms of the function $h_{\mathrm{OD}_{\mathrm{s}}}(\cdot)$, we have the following definition.

Definition 1 A finite group G is said to be k-fold OD_{s}-characterizabale if $h_{\mathrm{OD}_{\mathrm{s}}}(G)=k$. The group G is OD_{s}-characterizabale if $h_{\mathrm{OD}_{\mathrm{s}}}(G)=1$. Moreover, we will say that the OD_{s}-characterization problem is solved for a group G, if the value of $h_{\mathrm{OD}_{\mathrm{s}}}(G)$ is known.

One of the purposes of this paper is to characterize some simple groups
by order and degree pattern of solvable graph. For instance, we will prove the following theorems.

Theorem A All sporadic simple groups are OD_{s}-characterizable.
Theorem B Let $L=L_{2}(q), q=p^{n}>3$, and one of the following conditions is fulfilled:
(a) $p=2,|\pi(q+1)|=1$ or $|\pi(q-1)|=1$,
(b) $q \equiv 1(\bmod 4),|\pi(q+1)|=2$ or $|\pi(q-1)| \leqslant 2$,
(c) $q \equiv-1(\bmod 4)$.

Then L is OD_{s}-characterizable.
It is important to notice that there exist some groups which are not OD_{s}-characterizable. For example, the following groups:

$$
S_{6}(3), O_{7}(3), \quad H \times \mathrm{Sz}(8)
$$

where H is an arbitrary group of order $2^{3} \cdot 3^{9}$, have the same order and degree pattern of solvable graph. In fact, we have

$$
\left|S_{6}(3)\right|=\left|O_{7}(3)\right|=|H \times \operatorname{Sz}(8)|=2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13
$$

and

$$
\mathrm{D}_{\mathrm{s}}\left(S_{6}(3)\right)=\mathrm{D}_{\mathrm{s}}\left(O_{7}(3)\right)=\mathrm{D}_{\mathrm{s}}(H \times \mathrm{Sz}(8))=(4,4,2,2,2)
$$

In [8], the authors proved that if a finite group G and a finite simple group S have the same sets of all orders of solvable subgroups, then G is isomorphic to S, or G and S are isomorphic to $O_{2 n+1}(q), S_{2 n}(q)$, where $n \geqslant 3$ and q is odd. This immediately implies the following:

Corollary C If $G \in\left\{O_{2 n+1}(q), S_{2 n}(q)\right\}$, where $n \geqslant 3$ and q is odd, then $h_{\mathrm{OD}_{\mathrm{s}}}(G) \geqslant 2$.

More Notation and Terminology. Given a graph Γ, Γ^{c} is said to be complementary graph if the set of vertices of Γ and Γ^{c} coincide with each other and two vertices u and v of Γ^{c} are joined in Γ^{c} if and only if u and v are not joined in Γ. An acyclic graph is one that contains no cycles. A connected acyclic graph is called a tree. In the case when $U \subseteq V$, the graph $\Gamma-U$ is defined to be a graph whose vertex set is $V-U$ and two vertices
u and v are joined if they are joined in Γ. In addition, $\Gamma[U]$ denotes the induced subgraph of Γ whose vertex set is U and whose edges are precisely the edges of Γ which have both ends in U. The union of graphs $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ is the graph $\Gamma_{1} \cup \Gamma_{2}$ with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. If Γ_{1} and Γ_{2} are disjoint (we recall that two graphs are disjoint if they have no vertex in common), we refer to their union as a disjoint union, and generally denote it by $\Gamma_{1} \oplus \Gamma_{2}$. Given a natural number m and a prime number p, we denote by m_{p} the p-part of m, that is the largest power of p dividing m. Let G be a finite group and p be a prime divisor of $|G|$. We denote by $O_{p}(G)$ the maximal normal p-subgroup of G, and by $O^{p}(G)$ the smallest normal subgroup of G for which $G / O^{p}(G)$ is a p-group.

2. Preliminary Results

In this section, we first state some fundamental results for our studies of solvable graphs of finite groups, and then we find the structure of a group that its solvable graph has certain properties. We begin with some fundamental lemmas.

Lemma 1 ([2, Lemma 2]) Let G be a finite group. Let H and N be two subgroups of G with $N \unlhd G$. Then the following statements hold:
(1) If p and q are joined in $\Gamma_{\mathrm{s}}(H)$ for $p, q \in \pi(H)$, then p and q are joined in $\Gamma_{\mathrm{s}}(G)$, in other words, $\Gamma_{\mathrm{s}}(H)$ is a subgraph of $\Gamma_{\mathrm{s}}(G)$.
(2) If p and q are joined in $\Gamma_{\mathrm{s}}(G / N)$ for $p, q \in \pi(G / N)$, then p and q are joined in $\Gamma_{\mathrm{s}}(G)$, in other words, $\Gamma_{\mathrm{s}}(G / N)$ is a subgraph of $\Gamma_{\mathrm{s}}(G)$.
(3) For $p \in \pi(N)$ and $q \in \pi(G) \backslash \pi(N)$, p and q are joined in $\Gamma_{\mathrm{s}}(G)$.

Lemma 2 Let G be a finite group with $|\pi(G)|=k$. Then, the following statements hold:
(1) If $\Delta_{k-1}(G)=\emptyset$, then G is a non-abelian simple group.
(2) If G is not isomorphic to a non-abelian simple group, then $\Gamma_{\mathrm{s}}(G)$ is regular if and only if $\Gamma_{\mathrm{s}}(G)$ is complete.

Proof. Part (1) is Lemma 3 in [1]. Part (2) is an easy consequence of part (1).

Lemma 3 Let G be a finite group with $|\pi(G)|=k$. Then the following statements hold:
(1) If G is a solvable group, then $\Gamma_{\mathrm{s}}(G)$ is complete.
(2) $\Gamma_{\mathrm{s}}(G)$ is always connected. In particular, $\Delta_{0}(G) \neq \emptyset$ if and only if G is a p-group for some prime p.
(3) If G is a non-abelian simple group, then $\Gamma_{\mathrm{s}}(G)$ is not complete.
(4) If R is the solvable radical of G, then $\pi(R) \subseteq \Delta_{k-1}(G) \subseteq \pi(G)$.

Proof. Parts (1)-(3) are Lemma 1 (2), Corollary 2 and Theorem 2 in [2], respectively. Part (4) follows immediately from part (1) and Lemma 1 (2).

Corollary 1 Let N be a normal subgroup of a finite group G. Then there hold:
(1) If $\{p, q\} \subseteq \pi(G) \backslash \pi(N)$, then $p \approx q$ in $\Gamma_{\mathrm{s}}(G / N)$ if and only if $p \approx q$ in $\Gamma_{\mathrm{s}}(G)$.
(2) If N is a normal Hall subgroup of G, then $\Gamma_{\mathrm{s}}(G)$ is complete if and only if $\Gamma_{\mathrm{s}}(N)$ and $\Gamma_{\mathrm{s}}(G / N)$ are complete too.

Proof. (1) In view of Lemma 1 (2), it is enough to prove the sufficiency. Let $\{p, q\} \subseteq \pi(G) \backslash \pi(N)$ and $p \approx q$ in $\Gamma_{\mathrm{s}}(G)$. Then by the definition there exists a solvable subgroup H of G such that $|H|$ is divisible by $p q$. Let K be a $\{p, q\}$-Hall subgroup of H and put $\bar{K}:=K N / N$. Clearly $\bar{K}=K N / N \cong K /(N \cap K) \cong K$ is a solvable subgroup of G / N such that its order is divisible by $p q$. This means that $p \approx q$ in $\Gamma_{\mathrm{s}}(G / N)$, as required.
(2) Sufficiency follows immediately from part (1), so we just need to prove the necessity. Let N be a normal Hall subgroup of G for which $\Gamma_{\mathrm{s}}(G)$ is complete. First of all, considering part (1), it is easy to see that $\Gamma_{\mathrm{s}}(G / N)$ is complete. Next, we show that $\Gamma_{\mathrm{s}}(N)$ is complete, too. Since $|N|$ and $|G / N|$ are relatively prime integers, a theorem of Schur [10, p. 224] asserts that in this case G must contain a subgroup K such that $G=K N$ and $K \cap N=1$. Now, suppose p and q are two primes in $\pi(N)$. Since $p \approx q$ in $\Gamma_{s}(G)$, there exists a solvable subgroup H of G such that $|H|$ is divisible by $p q$. Let H_{0} be a Hall $\{p, q\}$-subgroup of H. Obviously, $H_{0} \leqslant N$. This forces $p \approx q$ in $\Gamma_{s}(N)$. Therefore, $\Gamma_{s}(N)$ is a complete graph.

Remark It is not true in general that if N is a normal subgroup of G then $\Gamma_{\mathrm{s}}(N)$ and $\Gamma_{\mathrm{s}}(G / N)$ are complete if $\Gamma_{\mathrm{s}}(G)$ is complete. An example is provided by $G=\mathbb{Z}_{3} \times \mathbb{A}_{5}, N=\mathbb{A}_{5}$ and $M=\mathbb{Z}_{3}$. In this case, $\Gamma_{\mathrm{s}}(G)$ is complete while $\Gamma_{\mathrm{s}}(N)$ and $\Gamma_{\mathrm{s}}(G / M)$ are not complete.

Corollary 2 Let G be a finite group such that $\Gamma_{s}(G)$ is a complete graph. Moreover, let R be the solvable radical of G. Then, one of the following statements holds:
(i) $\pi(R)=\pi(G)$,
(ii) $\pi(R) \subset \pi(G)$ and G is an extension of R by a non-solvable group Q for which the induced subgraph $\Gamma_{s}(Q)[\pi(Q) \backslash \pi(R)]$ is a complete graph.

Proof. If $\pi(R)=\pi(G)$, then there is nothing to prove. Suppose now that $\pi(R) \subset \pi(G)$. Clearly $Q:=G / R$ is a non-solvable group and in view of Corollary 1 we conclude that $\Gamma_{s}(Q)[\pi(Q) \backslash \pi(R)]$ is a complete graph, as required.

Lemma 4 ([2, Theorem 3]) Let G be a finite group and $\{p, q\} \subseteq \pi(G)$. Then p and q are not joined in $\Gamma_{\mathrm{s}}(G)$ if and only if there exists a series of normal subgroups of G, say

$$
1 \unlhd M \triangleleft N \unlhd G,
$$

such that M and G / N are $\{p, q\}^{\prime}$-groups and N / M is a non-abelian simple group such that p and q are not joined in $\Gamma_{\mathrm{s}}(N / M)$.

Following the conventions of [1] and [2] for notation concerning solvable graphs, such a series as in Lemma 4, is called a GKS-series of G and we will say p and q are expressed to be disjoint by this GKS-series.

Lemma 5 ([1, Lemma 4]) Let G be a finite group with $|\pi(G)|=k$ and $\widetilde{\Gamma}(G)=\left(\Gamma_{\mathrm{s}}(G)-\Delta_{k-1}(G)\right)^{c}$. If the number of connected components of $\widetilde{\Gamma}(G)$ equals n, then at most n GKS-series of G is necessary to express any pair of vertices of $\Gamma_{\mathrm{s}}(G)$ to be disjoined.
Lemma 6 Let G be a finite group with $|\pi(G)|=k \geqslant 4$ and $\widetilde{\Gamma}(G):=$ $\left(\Gamma_{\mathrm{s}}(G)-\Delta_{k-1}(G)\right)^{c}$. If one of the following conditions holds, then any disjoined pair of vertices of $\Gamma_{\mathrm{s}}(G)$ can be expressed by only one GKS-series.
(1) $\Delta_{k-1}(G) \neq \emptyset$ and $\Delta_{1}(G) \neq \emptyset$.
(2) $\Delta_{k-1}(G) \neq \emptyset$ and $\Delta_{2}(G) \neq \emptyset$.

Proof. We only prove (2), and (1) goes similarly. By Lemma 5, it is enough to show that $\widetilde{\Gamma}(G)$ is connected. Since $\Delta_{2}(G) \neq \emptyset$, we can consider some
vertex in $\pi(G)$, say p, with $d_{\mathbf{S}}(p)=2$. It is clear that $\left|\Delta_{k-1}(G)\right| \leqslant d_{\mathrm{s}}(p)=2$. We now distinguish two cases.

Case 1. $\left|\Delta_{k-1}(G)\right|=1$. In this case, $\Gamma_{\mathrm{s}}(G)-\Delta_{k-1}(G)$ is a graph with $\left|\pi(G) \backslash \Delta_{k-1}(G)\right|=k-1$ vertices, which contains the vertex p as a vertex of degree 1 (Note $p \notin \Delta_{k-1}(G)$, because $k \geqslant 4$). Therefore, the vertex p in $\widetilde{\Gamma}(G)$ has degree $k-2$, which forces the graph $\widetilde{\Gamma}(G)$ is connected.

Case 2. $\left|\Delta_{k-1}(G)\right|=2$. Here, $\Gamma_{\mathrm{s}}(G)-\Delta_{k-1}(G)$ is a graph with $\mid \pi(G) \backslash$ $\Delta_{k-1}(G) \mid=k-2$ vertices, and it contains the vertex p as an isolated vertex. Thus p is a vertex of $\widetilde{\Gamma}(G)$ of degree $k-3$, which shows that $\widetilde{\Gamma}(G)$ is connected.

We state also the following well-known result due to Artin (see [3] and [4]).

Lemma 7 (Artin Theorem) Two finite simple groups of the same order are isomorphic except for the pairs $\left\{L_{4}(2) \cong \mathbb{A}_{8}, L_{3}(4)\right\}$ and $\left\{O_{2 n+1}(q), S_{2 n}(q)\right.$: $n \geqslant 3$ and q is odd $\}$.

Remark Notice that by [7] one can draw the solvable graphs $\Gamma_{\mathrm{s}}\left(L_{4}(2)\right)$ and $\Gamma_{\mathrm{s}}\left(L_{3}(4)\right)$ and obtain their degree patterns as $\mathrm{D}_{\mathrm{s}}\left(L_{4}(2)\right)=(2,3,2,1)$ and $\mathrm{D}_{\mathrm{s}}\left(L_{3}(4)\right)=(2,2,1,1)$.

The following lemma is due to K. Zsigmondy (See [21]).
Lemma 8 (Zsigmondy Theorem) Let q and f be integers greater than 1. There exists a prime divisor r of $q^{f}-1$ such that r does not divide $q^{e}-1$ for all $0<e<f$, except in the following cases:
(a) $f=6$ and $q=2$;
(b) $f=2$ and $q=2^{l}-1$ for some natural number l.

Such a prime r is called a primitive prime divisor of $q^{f}-1$. When $q>1$ is fixed, we denote by $\operatorname{ppd}\left(q^{f}-1\right)$ any primitive prime divisor of $q^{f}-1$. Of course, there may be more than one primitive prime divisor of $q^{f}-1$, however the symbol $\operatorname{ppd}\left(q^{f}-1\right)$ denotes any one of these primes. For example, the primitive prime divisors of $53^{5}-1$ are $11,131,5581$ and thus $\operatorname{ppd}\left(53^{5}-1\right)$ denotes any one of these primes.

As an immediate consequence of Lemma 8, we have the following corollary.

Corollary 3 Let p and q be two primes and m, n be natural numbers such that $p^{m}-q^{n}=1$. Then one of the following holds:
(a) $(p, n)=(2,1)$, and $q=2^{m}-1$ is a Mersenne prime;
(b) $(q, m)=(2,1)$, and $p=2^{n}+1$ is a Fermat prime;
(c) $(p, n)=(3,3)$ and $(q, m)=(2,2)$.

A finite group G is called a Frobenius group with kernel N and complement M, if $G=N M$ where N is a normal subgroup of G and $M \leqslant G$, and for all $1 \neq g \in N, C_{G}(g) \subseteq N$. Also, a finite group G is called a 2 -Frobenius group if it has a normal series $1 \unlhd M \unlhd N \unlhd G$ such that N is a Frobenius group with kernel M and G / M is a Frobenius group with kernel N / M.

Lemma 9 Let G be a Frobenius group. Then, one of the following statements holds:
(1) G is solvable and $\Gamma_{\mathrm{s}}(G)=K_{|\pi(G)|}$.
(2) G is non-solvable and $\Gamma_{\mathrm{s}}(G)$ can be obtained from the complete graph on $\pi(G)$ by deleting the edge $\{3,5\}$.

Proof. (1) This is a special case of Lemma 3 (1).
(2) Suppose $G=N M$ is a Frobenius group with kernel N and complement M. Note that $\Gamma_{\mathrm{c}}(N)$ and $\Gamma_{\mathrm{c}}(M)$ are connected components of $\Gamma_{\mathrm{c}}(G)$, and in fact

$$
\Gamma_{\mathrm{c}}(G)=\Gamma_{\mathrm{c}}(N) \oplus \Gamma_{\mathrm{c}}(M)
$$

In addition, $\Gamma_{\mathrm{c}}(N)$ and so $\Gamma_{\mathrm{s}}(N)$ is complete, because N is a nilpotent group. Note that, by Lemma 1 (3), any prime of $\pi(N)$ is joint to any prime of $\pi(G / N)=\pi(M)$ in $\Gamma_{\mathrm{s}}(G)$. On the other hand, M is non-solvable, as G is non-solvable. Thus, by the structure of non-solvable complement, M has a normal subgroup M_{0} with $\left|M: M_{0}\right| \leqslant 2$ such that $M_{0}=\operatorname{SL}(2,5) \times Z$, where every Sylow subgroup of Z is cyclic and $\pi(Z) \cap \pi(30)=\emptyset$ (see Theorem 18.6 in [15]). Moreover, $\Gamma_{\mathrm{c}}(M)$ and so $\Gamma_{\mathrm{s}}(M)$ can be obtained from the complete graph on $\pi(M)$ by deleting the edge $\{3,5\}$ (see Lemma 5 in [14]). Finally, it is easy to see that the group $\operatorname{SL}(2,5)$ and so G has no solvable subgroup whose order is divisible by 15 , hence 3 and 5 are not joint in $\Gamma_{\mathrm{s}}(G)$. This completes the proof.

Lemma 10 The solvable graph of a 2-Frobenius group is always complete.
Proof. The conclusion follows immediately from Lemma 3 (1), because 2-Frobenius groups are always solvable.

3. Solvable Graphs with Certain Properties

We begin with recalling some definitions in Graph Theory. A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so that every edge has one end in X and one end in Y, such a partition (X, Y) is called a bipartition of the graph, and X and Y its parts. We recall that a graph is bipartite if and only if it contains no odd cycle (a cycle of odd length). A bipartite graph with bipartition (X, Y) in which every two vertices from X and Y are adjacent is called a complete bipartite graph and denoted by $K_{|X|,|Y|}$. A star graph is a complete bipartite graph of the form $K_{1, n}$ which consists of one central vertex having edges to other vertices in it.

Proposition 1 Let G be a finite group. Let R stand for the solvable radical of G and $\bar{G}=G / R$. Let \bar{M} be the smallest normal subgroup of \bar{G} among subgroups \bar{L} such that \bar{G} / \bar{L} is solvable. The solvable graph of G is a star graph if and only if
(a) G is solvable with $|\pi(G)| \leqslant 2$ or
(b) there exists a prime $r \in \pi(G)$ such that $R=O_{r}(G), \bar{M}=O^{r}(\bar{G})$ is a simple group and (\bar{M}, r) is one of the following pairs:

$$
\begin{array}{llll}
\left(\mathbb{A}_{5}, 2\right), & \left(\mathbb{A}_{6}, 2\right), & \left(U_{4}(2), 2\right), & \left(L_{2}(7), 3\right), \quad\left(L_{2}(8), 2\right), \tag{1}\\
\left(L_{2}(17), 2\right), & \left(L_{3}(3), 3\right), & \left(U_{3}(3), 3\right), & \text { or } \\
& (\mathrm{Sz}(8), 2) .
\end{array}
$$

Proof. Let G be a finite group such that $\Gamma_{\mathrm{s}}(G)$ is a star graph. If G is a solvable group, then it follows from Lemma 3 (1) that $\Gamma_{\mathrm{s}}(G)=K_{|\pi(G)|}$ is a complete graph, which forces $|\pi(G)| \leqslant 2$.

Thus, we may assume that G is a non-solvable group. Clearly $|\pi(G)| \geqslant$ 3. Let R be the solvable radical of G. Since $\Gamma_{\mathrm{s}}(R)=K_{|\pi(R)|}$ is a subgraph of $\Gamma_{\mathrm{s}}(G)$, as before, it concludes that $|\pi(R)| \leqslant 2$. We distinguish three cases separately: $|\pi(R)|=2,|\pi(R)|=1$ or $|\pi(R)|=0$ (i.e., $R=1$).

Assume first that $|\pi(R)|=2$. If p, q are two distinct primes that divide $|R|$, then $p \approx q$ in $\Gamma_{\mathrm{s}}(R)$ and so in $\Gamma_{\mathrm{s}}(G)$, by Lemma 1 (1). Since $|\pi(G)| \geqslant 3$, we can consider the prime $r \in \pi(G) \backslash\{p, q\}$. Now, by Lemma 1 (3), it follows that $p \approx r \approx q \approx p$ in $\Gamma_{\mathrm{s}}(G)$, which contradicts the fact that $\Gamma_{\mathrm{s}}(G)$ is a star graph.

Assume next that $|\pi(R)|=1$. Clearly, $R=O_{r}(G)$ for some prime $r \in \pi(G)$. Put $\bar{G}:=G / R$. Then $S:=\operatorname{Soc}(\bar{G})=P_{1} \times \cdots \times P_{k}$, where P_{i}
are non-abelian simple groups and $S \leqslant \bar{G} \leqslant \operatorname{Aut}(S)$. It is clear that $k=1$, otherwise $\Gamma_{\mathrm{c}}(G)$ and so $\Gamma_{\mathrm{s}}(G)$ contains a cycle, which is a contradiction. Therefore, we have $P \leqslant \bar{G} \leqslant \operatorname{Aut}(P)$, for a non-abelian simple group P.

If $\bar{G} / P \neq 1$, then there exist primes $p \in \pi(\bar{G} / P), q_{i} \in \pi(P)-\{r\}$ $(i=1,2)$. Let $\overline{Q_{i}}$ be a Sylow q_{i}-subgroup of P. Since $N_{\bar{G}}\left(\overline{Q_{i}}\right) P=\bar{G}$, there exists an element $\overline{x_{i}} \in N_{\bar{G}}\left(\overline{Q_{i}}\right)$ of order p for each i. Let $L_{i}(<G)$ be the inverse image of $\left\langle\overline{x_{i}}\right\rangle \overline{Q_{i}}$. Then L_{i} is a solvable group with $\pi\left(L_{i}\right)=\left\{p, r, q_{i}\right\}$ for $i=1,2$. Since $\Gamma_{\mathrm{s}}(G)$ is a star graph, we have $p=r$ and $\Gamma_{\mathrm{s}}(G)=\Gamma_{\mathrm{s}}(M)$, where $M(<G)$ is the inverse image of P. Hence we may assume $G=M$, i.e., $\bar{G}=P$.

If $r \notin \pi(\bar{G})$, then any prime in $\pi(G) \backslash \pi(R)$ is joined to r in $\Gamma_{\mathrm{s}}(G)$, and since $\Gamma_{\mathrm{s}}(\bar{G})$ is connected with more than two vertices, we conclude that $\Gamma_{\mathrm{s}}(G)$ has a 3-cycle containing r, a contradiction. Therefore, $r \in \pi(\bar{G})$ and $\Gamma_{\mathrm{s}}(\bar{G}) \subseteq \Gamma_{\mathrm{s}}(G)$ which is a star graph with central vertex r. Since $\Gamma_{\mathrm{c}}(P) \subseteq \Gamma_{\mathrm{s}}(P) \subseteq \Gamma_{\mathrm{s}}(\bar{G})$, therefore $\Gamma_{\mathrm{s}}(P)$ is also star with central vertex r, while $\Gamma_{\mathrm{c}}(P)$ is a forest and its connected components consist of the following possibilities: $\{r$ and its neighbours $\}$ and $\{q$, a single prime $\}$ (see Fig. 5).

Figure 5. The cyclic graph $\Gamma_{c}(P)$.
Note that, from the structures of the solvable graph $\Gamma_{\mathrm{s}}(P)$ and the cyclic graph $\Gamma_{\mathrm{c}}(P)$, it is easily seen that they do not contain two vertices with degrees greater than or equal 2 . Since $\Gamma_{\mathrm{c}}(P)$ is a forest, P is isomorphic to one of the following simple groups $([13 \text {, Proposition } 4])^{* 1}$:
(1) $\mathbb{A}_{5}, \mathbb{A}_{6}, \mathbb{A}_{7}, \mathbb{A}_{8} ; M_{11}, M_{12}, M_{22}, M_{23}$;
(2) $L_{4}(3), B_{2}(3), G_{2}(3), U_{4}(3), U_{5}(2),{ }^{2} F_{4}(2)^{\prime}$;
(3) $L_{2}(q)$ with $q \geqslant 4,|\pi((q-1) /(2, q-1))| \leqslant 2$ and $|\pi((q+1) /(2, q-1))| \leqslant 2$;
(4) $L_{3}(q)$ with $\left|\pi\left(\left(q^{2}+q+1\right) /(3, q-1)\right)\right| \leqslant 2$ and $\left|\pi\left(\left(q^{2}-1\right) /(3, q-1)\right)\right| \leqslant 2$;
(5) $U_{3}(q)$ with $\left|\pi\left(\left(q^{2}-q+1\right) /(3, q+1)\right)\right| \leqslant 2$ and $\left|\pi\left(\left(q^{2}-1\right) /(3, q+1)\right)\right| \leqslant 2$;
(6) $\mathrm{Sz}(q)$, with $|\pi(q \pm \sqrt{2 q}+1)| \leqslant 2$ and $|\pi(q-1)| \leqslant 2$, where $q=2^{2 m+1}>2$ and $2 m+1$ is an odd prime;
(7) $R(q)$ with $|\pi(q \pm \sqrt{3 q}+1)| \leqslant 2$ and $|\pi(q \pm 1)| \leqslant 2$, where $q=3^{2 m+1}>3$ and $2 m+1$ is an odd prime.

[^0]Case (1). $P \cong \mathbb{A}_{5}, \mathbb{A}_{6}, \mathbb{A}_{7}, \mathbb{A}_{8}, M_{11}, M_{12}, M_{22}$ or M_{23}. In this case, the alternating groups \mathbb{A}_{5} and \mathbb{A}_{6} are the only simple groups among others whose solvable graphs are stars (with central vertex 2 for both of them). Note that, from [7], the solvable graphs of these groups as follows:

$$
\begin{aligned}
& \Gamma_{\mathrm{s}}\left(\mathbb{A}_{5}\right)=\Gamma_{\mathrm{s}}\left(\mathbb{A}_{6}\right): 3 \approx 2 \approx 5 ; \quad \Gamma_{\mathrm{s}}\left(\mathbb{A}_{7}\right): 5 \approx 2 \approx 3 \approx 7 \\
& \Gamma_{\mathrm{s}}\left(\mathbb{A}_{8}\right): 3 \approx 2 \approx 5 \approx 3 \approx 7 ; \\
& \Gamma_{\mathrm{s}}\left(M_{11}\right)=\Gamma_{\mathrm{s}}\left(M_{12}\right): 3 \approx 2 \approx 5 \approx 11 ; \quad \Gamma_{\mathrm{s}}\left(M_{22}\right): 11 \approx 5 \approx 2 \approx 3 \approx 7 \approx 2 \\
& \Gamma_{\mathrm{s}}\left(M_{23}\right): 23 \approx 11 \approx 5 \approx 2 \approx 3 \approx 7 \approx 2 \bigcup 3 \approx 5
\end{aligned}
$$

Case (2). $P \cong L_{4}(3), U_{4}(2), G_{2}(3), U_{4}(3), U_{5}(2)$ or ${ }^{2} F_{4}(2)^{\prime}$. Again, from [7], we can easily determine the solvable graphs of these groups, as shown below:

$$
\begin{array}{ll}
\Gamma_{\mathrm{s}}\left(L_{4}(3)\right): 5 \approx 2 \approx 3 \approx 13 ; & \Gamma_{\mathrm{s}}\left(U_{4}(2)\right): 5 \approx 2 \approx 3 \\
\Gamma_{\mathrm{s}}\left(G_{2}(3)\right): 2 \approx 7 \approx 3 \approx 13 \approx 2 \approx 3 ; & \Gamma_{\mathrm{s}}\left(U_{4}(3)\right): 5 \approx 2 \approx 3 \approx 7 \\
\Gamma_{\mathrm{s}}\left(U_{5}(2)\right): 11 \approx 5 \approx 2 \approx 3 \approx 5 ; & \Gamma_{\mathrm{s}}\left({ }^{2} F_{4}(2)^{\prime}\right): 5 \approx 2 \approx 3 \approx 13 \approx 2
\end{array}
$$

Clearly, $U_{4}(2)$ is the only simple group for which the solvable graph is star. Therefore, P can only be isomorphic to $U_{4}(2)$.

Case (3). $P \cong L_{2}(q)$ with $q=p^{f} \geqslant 4$ and $|\pi((q \pm 1) /(2, q-1))| \leqslant 2$.
First of all, we recall that

$$
\mu\left(L_{2}(q)\right)=\left\{p, \frac{q-1}{d}, \frac{q+1}{d}\right\}
$$

where q is a power of the prime p and $d=(q-1,2)$. Moreover, in order to draw $\Gamma_{\mathrm{s}}(P)$ we need some information about the structure of subgroups of P. We state here a result [18, Theorem 6.25] which determines the structure of all subgroups of $L_{2}(q)$: Let q be a power of the prime p and let $d=(q-1,2)$. Then, a subgroup of $L_{2}(q)$ is isomorphic to one of the following groups:

- The dihedral groups of order $2(q \pm 1) / d$ and their subgroups.
- The group $\left(\mathbb{Z}_{p}\right)^{f} \rtimes \mathbb{Z}_{(q-1) / d}$ of order $q(q-1) / d$ and its subgroups.
- $L_{2}(r)$ or $\operatorname{PGL}(2, r)$, where r is a power of p such that $r^{m}=q$.
- $\mathbb{A}_{4}, \mathbb{S}_{4}$ or \mathbb{A}_{5}.

We deal with odd and even q cases separately.
(3.1) $q \geqslant 4$ is even. In this case, we get the compact form of $\Gamma_{\mathrm{s}}(P)$ as follows:

Figure 6. $\quad \Gamma_{\mathrm{s}}\left(L_{2}(q)\right), q \geqslant 2$ is even.
Since $\Gamma_{\mathrm{s}}(P)$ is a star graph, this forces $|\pi(q-1)|=|\pi(q+1)|=1$. From Corollary 3, we conclude that $q=4,8$, and so P is isomorphic to $L_{2}(4) \cong \mathbb{A}_{5}$ or $L_{2}(8)$.
(3.2) $q \geqslant 5$ is odd. Here, we get the compact form of $\Gamma_{\mathrm{s}}(P)$ as follows:

Figure 7. $\quad \Gamma_{\mathrm{s}}\left(L_{2}(q)\right), 5<q \equiv-1$ $(\bmod 4)$.

Figure 8. $\quad \Gamma_{\mathrm{s}}\left(L_{2}(q)\right), 5 \leqslant q \equiv 1$ $(\bmod 4)$.

If $q \equiv-1(\bmod 4)$, then $\Gamma_{\mathbf{s}}(P)$ is a star graph if and only if $|\pi(q+1)|=$ $\left|\pi\left(\frac{q-1}{2}\right)\right|=1$. Since $|\pi(q+1)|=1$, Corollary 3 implies that q is a Mersenne prime, say $q:=2^{r}-1$ for some odd prime r. But then, we obtain $|\pi((q-1) / 2)|=\left|\pi\left(2^{r-1}-1\right)\right|=1$. In view of Corollary 3 this is possible only for $r=3$. Therefore $q=7$ and $P \cong L_{2}(7)$.
If $q \equiv 1(\bmod 4)$, then $\Gamma_{\mathrm{s}}(P)$ is a star graph if and only if $|\pi(q-1)|=$ $\left|\pi\left(\frac{q+1}{2}\right)\right|=1$. Since $|\pi(q-1)|=1$, in view of Corollary 3 it follows that $q=9$ or q is a Fermat prime. Let $q:=2^{2^{t}}+1$. Now, easy calculations show that $\left|\pi\left(\frac{q+1}{2}\right)\right|=\left|\pi\left(2^{2^{t}-1}+1\right)\right|=1$. Again, by Corollary 3 this is possible only for $t=2$, and so $q=17$. Therefore, P is isomorphic to $L_{2}(9) \cong \mathbb{A}_{6}$ or $L_{2}(17)$.

Before proceeding to other cases, it seems appropriate to point out that the spectra of the simple groups $L_{3}(q)$ and $U_{3}(q)$. We will study together these groups, and, in order to unify our treatment, we introduce the following useful notation. For $\epsilon \in\{+,-\}$ we let $L_{3}^{\epsilon}(q)=L_{3}(q)$ if $\epsilon=+$; and $L_{3}^{\epsilon}(q)=$ $U_{3}(q)$ if $\epsilon=-$. For simplicity, we always identify $q-\epsilon$ with $q-\epsilon 1$. Now, the set of maximal elements in the spectrum of $L_{3}^{\epsilon}(q), \epsilon= \pm$, is as follows:

$$
\mu\left(L_{3}^{\epsilon}(q)\right)= \begin{cases}\left\{q-\epsilon, \frac{p(q-\epsilon)}{3}, \frac{q^{2}-1}{3}, \frac{q^{2}+\epsilon q+1}{3}\right\} & \text { if } d=3 \\ \left\{p(q-\epsilon), q^{2}-1, q^{2}+\epsilon q+1\right\} & \text { if } d=1\end{cases}
$$

where $q=p^{n}$ is odd and $d=(3, q-\epsilon)$, and

$$
\mu\left(L_{3}^{\epsilon}\left(2^{n}\right)\right)= \begin{cases}\left\{4,2^{n}-\epsilon, \frac{2\left(2^{n}-\epsilon\right)}{3}, \frac{2^{2 n}-1}{3}, \frac{2^{2 n}+\epsilon 2^{n}+1}{3}\right\} & \text { if } d=3 \\ \left\{4,2\left(2^{n}-\epsilon\right), 2^{2 n}-1,2^{2 n}+\epsilon 2^{n}+1\right\} & \text { if } d=1\end{cases}
$$

where $d=\left(3,2^{n}-\epsilon\right)$, except $(\epsilon, n) \in\{(+, 1),(+, 2)\}$. It can be checked in the Atlas [7], that if $(\epsilon, n)=(+, 1)$, then $L_{3}(2) \cong L_{2}(7)$ and $\mu\left(L_{3}(2)\right)=\{3,4,7\}$, while if $(\epsilon, n)=(+, 2)$, then $\mu\left(L_{3}(4)\right)=\{3,4,5,7\}$.

Case (4). $P \cong L_{3}(q)$ with $\left|\pi\left(\left(q^{2}+q+1\right) /(3, q-1)\right)\right| \leqslant 2$ and $\mid \pi\left(\left(q^{2}-1\right) /\right.$ $(3, q-1)) \mid \leqslant 2$. First of all, the latter inequality forces (see [13, Lemma 2]): $q=2,3,4,5,7,8,9,16,17,25,49,97$ or q is a prime number satisfies the conditions $q-1=3 \cdot 2^{\alpha}$ and $q+1=2 t$, where $\alpha \geqslant 2$ and t is an odd prime. Moreover, note that the simple group $L_{3}(q)$ has a maximal subgroup of order $3\left(q^{2}+q+1\right) /(3, q-1)$ (see for example [11, Theorems 2.4 and 2.5]). Now, from this fact and the spectra of these groups, it is easy to check that:

- if $q=5,7,9,17,25,49,97$ or q is a prime number satisfies the conditions $q-1=3 \cdot 2^{\alpha}$ and $q+1=2 t$, where $\alpha \geqslant 2$ and t is an odd prime, then $d_{\mathrm{s}}(2), d_{\mathrm{s}}(3) \geqslant 2$; while
- if $q=8$ or 16 , then $d_{\mathrm{s}}(3), d_{\mathrm{s}}(7) \geqslant 2$,
which show that $\Gamma_{s}(P)$ can not be a star graph. If $q=4$, then $\Gamma_{\mathrm{s}}\left(L_{3}(4)\right)$: $2 \approx 3 \approx 5 \approx 7$, which is not a star graph. Therefore, the simple groups $L_{3}(2) \cong L_{2}(7)$ and $L_{3}(3)$ are the only simple groups among others whose solvable graphs are stars (with central vertex 3 for both of them).

Case (5). $P \cong U_{3}(q)$ with $\left|\pi\left(\left(q^{2}-q+1\right) /(3, q+1)\right)\right| \leqslant 2$ and $\mid \pi\left(\left(q^{2}-\right.\right.$ $1) /(3, q+1)) \mid \leqslant 2$. We conclude from the latter inequality that (see $[13$, Lemma 2]): $q=2^{f}, f$ a prime, $q=3$ or 9 or q is a prime number such that $q+1=3 \cdot 2^{\alpha}$. Again, we recall that the simple group $U_{3}(q)$ has a maximal subgroup of order $3\left(q^{2}-q+1\right) /(3, q+1)$ (see for example [11, Theorems 2.6 and 2.7$]$). As previous case, it is easy to verify that $d_{s}(2), d_{s}(3) \geqslant 2$ in all cases except $q \neq 3$. On the other hand, the solvable graph $\Gamma_{s}\left(U_{3}(3)\right)$ is
a star graph (with central vertex 3), that is: $2 \approx 3 \approx 7$.
Case (6). $P \cong \operatorname{Sz}(q)$ with $|\pi(q \pm \sqrt{2 q}+1)| \leqslant 2$ and $|\pi(q-1)| \leqslant 2$, where $q=2^{2 m+1}>2$ and $2 m+1$ is an odd prime. Since $\Gamma_{\mathrm{s}}(P)$ is a star graph with central vertex 2 (see Fig. 4), it follows that $\left|\pi\left(2^{2 m+1}-1\right)\right|=1$, and from Corollary 3 we conclude that $m=1$ and $q=8$. Thus, $p=2$ and P is isomorphic to $\mathrm{Sz}(8)$.

Case (7). $P \cong R(q)$, with $|\pi(q \pm \sqrt{3 q}+1)| \leqslant 2$ and $|\pi(q \pm 1)| \leqslant 2$, where $q=3^{2 m+1}>3$ and $2 m+1$ is an odd prime. In this case we have a 3 -cycle in $\Gamma_{\mathrm{s}}(R(q))$ (see Fig. 2).

Finally, we assume that $|\pi(R)|=0$, i.e., $R=1$. Since $\Gamma_{\mathrm{s}}(G)$ is a star graph, $S=\operatorname{Soc}(G)$ is a non-abelian simple group. Let $p, q, r \in \pi(S)$ be distinct three primes such that $p \approx q$. If $\pi(G / S)$ contain two distinct primes u and v, then $\Gamma_{\mathrm{s}}(G)$ contains a 3 -cycle. Therefore we have $|\pi(G / S)| \leqslant 1$. Since $\Gamma_{\mathrm{s}}(G)$ is a star graph and $\Gamma_{\mathrm{s}}(S)$ is connected and $\Gamma_{\mathrm{s}}(S) \leqslant \Gamma_{\mathrm{s}}(G)$, it follows that $\Gamma_{\mathrm{s}}(S)=\Gamma_{\mathrm{s}}(G)$. Hence we may assume $G=S$. The rest of proof is similar to the proof of previous case.

Proposition 2 Let G be a finite group such that its solvable graph is bipartite, and let R be the solvable radical of G. Then, either G is solvable with $|\pi(G)|=2$ or G is non-solvable and one of the following statements holds:
(a) $R=O_{p}(G) \neq 1$ for some prime $p \in \pi(G)$ and $\Gamma_{\mathrm{S}}(G / R)$ is star with central vertex p. Furthermore, $S \leqslant G / R \leqslant \operatorname{Aut}(S)$ where S is one of the non-abelian simple groups as in (1).
(b) $R=1$ and G contains a normal subgroup N which is isomorphic to one of the following non-abelian simple groups:
(b.1) $\mathbb{A}_{5} \cong L_{2}(4) \cong L_{2}(5), \mathbb{A}_{6} \cong L_{2}(9) \cong S_{4}(2)^{\prime}, \mathbb{A}_{7}, M_{11}, M_{12}, U_{4}(2)$, $U_{4}(3), L_{4}(3), L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), L_{3}(4), U_{3}(3)$ or $\mathrm{Sz}(8)$.
(b.2) $L_{2}(q), q \equiv-1(\bmod 4),|\pi(q-1)|=|\pi(q+1)|=2$.

Proof. First of all, if G is a solvable group, then $\Gamma_{\mathrm{s}}(G)=K_{|\pi(G)|}$ which is bipartite if and only if $|\pi(G)|=2$. Therefore, we may assume that G is a non-solvable group and so $|\pi(G)| \geqslant 3$. With a similar reason, we observe that $|\pi(R)| \leqslant 2$, and hence we can consider three cases separately.

Case 1. $|\pi(R)|=2$. Let $\pi(R)=\left\{p_{1}, p_{2}\right\}$. Evidently $p_{1} \approx p_{2}$ in $\Gamma_{\mathrm{s}}(R)$ and so in $\Gamma_{\mathrm{s}}(G)$. On the other hand, since $|\pi(G)| \geqslant 3$, there exists a prime $q \in \pi(G) \backslash \pi(R)$. Now it follows from Lemma 1 (3) that $p_{1} \approx q \approx p_{2}$ in
$\Gamma_{\mathrm{s}}(G)$, and so $\Gamma_{\mathrm{s}}(G)$ has a 3-cycle $p_{1} \approx q \approx p_{2} \approx p_{1}$. But this contradicts our hypothesis that $\Gamma_{\mathrm{s}}(G)$ is a bipartite graph.

Case 2. $|\pi(R)|=1$. In this case, $R=O_{p}(G)$ for some prime $p \in \pi(G)$ and $d_{\mathrm{s}}(p)=|\pi(G)|-1$. If p does not divide the order of G / R, then since $\Gamma_{\mathrm{s}}(G / R)$ is connected with at least three vertices and the fact that every prime in $\pi(G) \backslash \pi(R)$ is adjacent to p, we obtain a 3-cycle in $\Gamma_{\mathrm{s}}(G)$, which is a contradiction. Thus $p \in \pi(G / R)$ and from Lemma 1 (2) we conclude that the induced graph $\Gamma_{\mathrm{s}}(G / R)[\pi(G) \backslash\{p\}]$ is an empty graph. This means that $\Gamma_{\mathrm{s}}(G / R)$ is a star graph with central vertex p. The rest of the proof follows immediately from Proposition 1 and the fact that G / R has trivial solvable radical.

Case 3. $|\pi(R)|=0$. In this case, $R=1$. Obviously, for every non-trivial normal subgroup N of $G,|\pi(N)| \geqslant 3$. Now, if $\pi(N) \neq \pi(G)$, then from the connectivity of solvable graph $\Gamma_{\mathrm{s}}(N)$ and part (3) of Lemma 1, one can easily obtain a 3-cycle in $\Gamma_{\mathrm{s}}(G)$, which is a contradiction. Finally, $\pi(N)=\pi(G)$ for every non-trivial normal subgroup N of G. On the other hand, since $\Gamma_{\mathrm{s}}(G)$ is not complete, there exist at least two primes, say $p, q \in \pi(G)$, such that they are not joined in $\Gamma_{\mathrm{s}}(G)$, and hence by Lemma 4, there exists a series of normal subgroups of G, say $1 \unlhd M \triangleleft N \unlhd G$, such that M and G / N are $\{p, q\}^{\prime}$-groups and N / M is a non-abelian simple group such that p and q are not joined in $\Gamma_{\mathrm{s}}(N / M)$. By what observed above we deduce that $M=1$, so N is a non-abelian simple group for which $\Gamma_{\mathrm{s}}(N)$ is a bipartite graph while $\Gamma_{\mathrm{c}}(N)$ is a forest (using the maximal tori when N is a simple group of Lie type). In a similar way as in the proof of Proposition 1 , it follows that N is isomorphic to one of the simple groups in (b.1) and (b.2).

We notice that a star graph is a tree consisting of one vertex adjacent to all the others. Since a tree has no cycle, every nontrivial tree is always bipartite. Therefore, from these facts and Lemma 2 we have the following corollary.

Corollary 4 Let G be a finite group which is not a non-abelian simple group. Then the following statements are equivalent:
(a) $\Gamma_{\mathrm{s}}(G)$ is a tree.
(b) $\Gamma_{\mathrm{s}}(G)$ is a bipartite graph.
(c) $\Gamma_{\mathrm{s}}(G)$ is a star graph.

Proof. We will illustrate only the proof of $(b) \Longrightarrow$ (c). The remaining
proofs are obvious. Let $\Gamma_{s}(G)$ be a bipartite graph. Since G is not a nonabelian simple group, Lemma 2 yields that $\Gamma_{s}(G)$ contains a complete prime (a vertex with full degree), which forces $\Gamma_{s}(G)$ is a star graph.

Note that, Corollary 4 is not true for non-abelian simple groups. For example, we consider the non-abelian simple group $L_{2}(11)$. Obviously, the solvable graph associated with $L_{2}(11)$ has the form $3 \approx 2 \approx 5 \approx 11$ which is a tree, while it is not a star graph.

4. OD_{s}-Characterization of Some Simple Groups

We begin this section with general results on OD_{s}-characterizability of some finite groups.

Theorem 1 Suppose H is a finite group and $|\pi(H)|=k \geqslant 3$. If $\Delta_{k-1}(H)=\emptyset$ and

$$
H \notin\left\{O_{2 n+1}(q), S_{2 n}(q): n \geqslant 3 \text { and } q \text { is odd }\right\}
$$

then H is OD_{s}-characterizable.
Proof. First of all, since $\Delta_{k-1}(H)=\emptyset$, Lemma 2 asserts that H is a nonabelian simple group. Now, we assume that G is a finite group satisfying the conditions $|G|=|H|$ and $\mathrm{D}_{\mathrm{s}}(G)=\mathrm{D}_{\mathrm{s}}(H)$. From these conditions we can easily deduce that $\Delta_{k-1}(G)=\Delta_{k-1}(H)=\emptyset$, and again by Lemma $2, G$ is a non-abelian simple group. Actually, G and H are two non-abelian simple groups with the same order, and thus the conclusion follows from Lemma 7.

In what follows, we introduce a new terminology. Let m be a positive integer with the following factorization into distinct prime power factors $m=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{k}^{e_{k}}$ for some positive integers e_{i} and k. We put (see [1])

$$
\operatorname{mpf}(m):=\max \left\{q_{i}^{e_{i}} \mid 1 \leqslant i \leqslant k\right\} .
$$

For convenience, in Tables 1, we tabulate $|S|$ and $\operatorname{mpf}(|S|)$ for sporadic simple groups S using Atlas [7]. Moreover, in a similar way as in the proof of [1, Proposition 1], we can compute the value of $\operatorname{mpf}(|S|)$ for all simple groups S of Lie type. Our results are summarized in Table 2.

Given a prime $p \geqslant 5$, we denote by \mathcal{S}_{p} the set of all finite non-abelian

Table 1. The order and degree pattern of solvable graph and mpf of a sporadic simple group.

S	$\|S\|$	$\mathrm{D}_{\mathrm{s}}(S)$	$\mathrm{mpf}(\|S\|)$
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	$(3,3,2,2)$	2^{7}
M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	$(2,1,2,1)$	2^{4}
M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	$(2,1,2,1)$	2^{6}
M_{22}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$	$(2,2,2,1,1)$	2^{7}
$H S$	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	$(2,3,3,1,1)$	2^{9}
$M^{c} L$	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	$(3,3,3,2,1)$	3^{6}
$S u z$	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	$(4,4,3,2,1,2)$	2^{13}
$F i_{22}$	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	$(5,4,3,2,2,2)$	2^{17}
$H e$	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$	$(4,3,2,2,1)$	2^{10}
J_{1}	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$	$(5,4,3,2,2,2)$	19
J_{3}	$2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$	$(3,3,2,1,1)$	3^{5}
$H N$	$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$	$(4,4,4,3,2,1)$	2^{14}
M_{23}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$	$(4,3,3,2,2,1)$	2^{7}
M_{24}	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$	$(4,3,3,2,3,1)$	2^{10}
$C o_{3}$	$2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$	$(3,3,3,2,2,1)$	3^{7}
$C o_{2}$	$2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$	$(6,4,4,3,3,2,1,1)$	2^{18}
$F i_{23}$	$2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23$	$(5,5,4,3,4,2,1)$	3^{13}
$C o_{1}$	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$	$(5,4,2,3,2,2)$	2^{21}
$R u$	$2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$	$(7,5,4,4,4,2,1,1,2)$	2^{14}
$F i_{24}^{\prime}$	$2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$		
$O^{\prime} N$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 31$	$(5,5,4,2,2,2,2)$	3^{16}
$T h$	$2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$	$(4,6,3,2,2,1,2)$	2^{9}
J_{4}	$2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$		
B	$2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$	$(8,7,5,3,4,2,1,2,3,2,1)$	3^{10}
$L y$	$2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$	2^{41}	
M	$\left.2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 5,2,4,1,2,2\right)$	5^{6}	
	$31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$	$(12,10,8,6,4,2,3,3,4,4,3$,	2_{46}^{21}
		$2,2,1,2)$	

simple groups with prime divisors at most p. Clearly, if $q \leqslant p$, then $\mathcal{S}_{q} \subseteq \mathcal{S}_{p}$. In the next theorem, we deal with the finite non-abelian simple groups in class \mathcal{S}_{71}. Note that, the full list of all groups in \mathcal{S}_{71} has been determined in [20]. Indeed, we will show that every sporadic simple group is characterized by order and degree pattern of its solvable graph.

Theorem 2 Let G be a finite group and S one of the 26 sporadic simple groups. Then G is isomorphic to S if and only if $|G|=|S|$ and $\mathrm{D}_{\mathrm{s}}(G)=$ $\mathrm{D}_{\mathrm{s}}(S)$.

Proof. We need only prove the sufficiency. Let G be a finite group satisfying the conditions $|G|=|S|=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}\left(p_{1}<p_{2}<\cdots<p_{k}\right)$ and

Table 2. The order and mpf of a simple group of Lie type.

S	Restrictions on S	$\|S\|$	$\operatorname{mpf}(\|S\|)$
$A_{n}(q)$	$n \geqslant 2$	$(n+1, q-1)^{-1} q^{n(n+1) / 2} \prod_{i=2}^{n+1}\left(q^{i}-1\right)$	$q^{n(n+1) / 2}$
$A_{1}(q)$	$\|\pi(q+1)\|=1$	$(2, q-1)^{-1} q(q-1)(q+1)$	$q+1$
$A_{1}(q)$	$\|\pi(q+1)\| \geqslant 2$	$(2, q-1)^{-1} q(q-1)(q+1)$	q
$B_{n}(q)$	$n \geqslant 2$	$(2, q-1)^{-1} q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)$	$q^{n^{2}}$
$C_{n}(q)$	$n \geqslant 3$	$(2, q-1)^{-1} q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)$	$q^{n^{2}}$
$D_{n}(q)$	$n \geqslant 4$	$\left(4, q^{n}-1\right)^{-1} q^{n(n-1)}\left(q^{n}-1\right) \prod_{i=1}^{n-1}\left(q^{2 i}-1\right)$	$q^{n(n-1)}$
$G_{2}(q)$		$q^{6}\left(q^{6}-1\right)\left(q^{2}-1\right)$	q^{6}
$F_{4}(q)$		$q^{24}\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)$	q^{24}
$E_{6}(q)$		$(3, q-1)^{-1} q^{12}\left(q^{9}-1\right)\left(q^{5}-1\right)\left\|F_{4}(q)\right\|$	q^{36}
$E_{7}(q)$		$(2, q-1)^{-1} q^{39}\left(q^{18}-1\right)\left(q^{14}-1\right)\left(q^{10}-1\right)\left\|F_{4}(q)\right\|$	q^{63}
$E_{8}(q)$		$\begin{aligned} & q^{96}\left(q^{30}-1\right)\left(q^{12}+1\right)\left(q^{20}-1\right)\left(q^{18}-1\right)\left(q^{14}-1\right) \\ & \left(q^{6}+1\right)\left\|F_{4}(q)\right\| \end{aligned}$	q^{120}
${ }^{2} A_{n}(q)$	$\begin{aligned} & n \geqslant 2 \\ & (n, q) \neq(2,3),(3,2) \end{aligned}$	$(n+1, q+1)^{-1} q^{n(n+1) / 2} \prod_{i=2}^{n+1}\left(q^{i}-(-1)^{i}\right)$	$q^{n(n+1) / 2}$
${ }^{2} A_{3}(2)$		$2^{6} \cdot 3^{4} \cdot 5$	3^{4}
${ }^{2} A_{2}$ (3)		$2^{5} \cdot 3^{3} \cdot 7$	2^{5}
${ }^{2} B_{2}(q)$	$\begin{aligned} & q=2^{2 m+1}, \\ & \left\|\pi\left(q^{2}+1\right)\right\| \geqslant 2 \end{aligned}$	$q^{2}\left(q^{2}+1\right)(q-1)$	q^{2}
${ }^{2} B_{2}(q)$	$\begin{aligned} & q=2^{2 m+1} \\ & \left\|\pi\left(q^{2}+1\right)\right\|=1 \end{aligned}$	$q^{2}\left(q^{2}+1\right)(q-1)$	$q^{2}+1$
${ }^{2} D_{n}(q)$	$n \geqslant 4$	$\left(4, q^{n}+1\right)^{-1} q^{n(n-1)}\left(q^{n}+1\right) \prod_{i=1}^{n-1}\left(q^{2 i}-1\right)$	$q^{n(n-1)}$
${ }^{3} D_{4}(q)$		$q^{12}\left(q^{8}+q^{4}+1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)$	q^{12}
${ }^{2} G_{2}(q)$	$q=3^{2 m+1}$	$q^{3}\left(q^{3}+1\right)(q-1)$	q^{3}
${ }^{2} F_{4}(q)$	$q=2^{2 m+1}$	$q^{12}\left(q^{6}+1\right)\left(q^{4}-1\right)\left(q^{3}+1\right)(q-1)$	q^{12}
${ }^{2} E_{6}(q)$		$(3, q+1)^{-1} q^{12}\left(q^{9}+1\right)\left(q^{5}+1\right)\left\|F_{4}(q)\right\|$	q^{36}

$\mathrm{D}_{\mathrm{s}}(G)=\mathrm{D}_{\mathrm{s}}(S)$, where S is one of the 26 sporadic finite simple groups. It will be convenient to consider two cases separately:

Case 1. Let S be one of the following sporadic simple groups: M_{11}, $M_{12}, M_{22}, H S, M^{c} L, S u z, J_{3}, H N, M_{23}, M_{24}, C o_{3}, C o_{2}, F i_{23}, C o_{1}$, $F i_{24}^{\prime}, O^{\prime} N, J_{4}, L y, B, M$. According to Table 1, it is easy to see that in these cases $\Delta_{k-1}(G)=\emptyset$. Therefore, it follows from Theorem 1 that G is OD_{s}-characterizable, that is $G \cong S$.

Case 2. Let S be one of the following sporadic simple groups: $J_{2}, F i_{22}$, $H e, J_{1}, R u$, Th. According to Table 1, in all cases we have $\Delta_{k-1}(G) \neq \emptyset \neq$ $\Delta_{2}(G)$. Thus, by Lemma 6, any disjoined pair of vertices of $\Gamma_{\mathrm{s}}(G)$ can be expressed by only one GKS-series, say

$$
\begin{equation*}
1 \unlhd M \triangleleft N \unlhd G . \tag{2}
\end{equation*}
$$

If we show that $N / M \cong S$, then it follows that $M=1$ and $G=N \cong S$, as required. Clearly, N / M is a non-abelian simple group in $\mathcal{S}_{p_{k}}$. Moreover, if $\left\{p_{i}, p_{j}\right\}$ is a pair of vertices of $\Gamma_{\mathrm{s}}(G)$ which is expressed to be disjoined by this GKS-series, then $|N / M|$ is divisible by $p_{i}^{\alpha_{i}} p_{j}^{\alpha_{j}}$. On the other hand, all non-abelian simple groups whose order prime divisors not exceeding 100 are determined in [20, Table 1]. Comparing the order of N / M with orders of non-abelian simple groups in [20, Table 1], we obtain $N / M \cong S$. This is illustrated here for two simple groups J_{2} and $H e$, other simple groups $F i_{22}$, $J_{1}, R u$ and $T h$ may be verified similarly.

- $S=J_{2}$. In this case, we have $|G|=2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$ and $\mathrm{D}_{\mathrm{s}}(G)=(3,3,2,2)$. Thus, $\{5,7\}$ is a pair of vertices of $\Gamma_{\mathrm{s}}(G)$ which is expressed to be disjoint by GKS-series (2), and so N / M is a non-abelian simple group in \mathcal{S}_{7} whose order is divisible by $5^{2} \cdot 7$. Using [20, Table 1], we conclude that $N / M \cong J_{2}$.
- $S=H e$. Here, we have $|G|=2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$ and $\mathrm{D}_{\mathrm{s}}(G)=$ $(4,3,2,2,1)$. Clearly, the pairs $\{3,17\},\{5,17\}$ and $\{7,17\}$ are expressed to be disjoint by GKS-series (2), and so N / M is a non-abelian simple group in \mathcal{S}_{17} whose order is divisible by $3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$. Again by [20, Table 1], it follows that $N / M \cong H e$.

This completes the proof.
Theorem 3 All simple groups $L_{2}\left(2^{f}\right)(f \geqslant 2)$, such that $\left|\pi\left(2^{f}+1\right)\right|=1$ or $\left|\pi\left(2^{f}-1\right)\right|=1$, are OD_{s}-characterizable.

Proof. Let G be a finite group such that $|G|=\left|L_{2}(q)\right|=q\left(q^{2}-1\right)$ and $\mathrm{D}_{\mathrm{s}}(G)=\mathrm{D}_{\mathrm{s}}\left(L_{2}(q)\right)$ where $q=2^{f}, f \geqslant 2$, and $|\pi(q+1)|=1$ or $|\pi(q-1)|=1$. We are going to show that $G \cong L_{2}(q)$. Generally, the solvable graph of $L=L_{2}(q)$, when $q=2^{f}$, is shown in Fig. 6. In addition, we have

- $d_{\mathrm{s}}(2)=|\pi(L)|-1$,
- $d_{\mathrm{s}}(s)=|\pi(q-1)|$ for every prime $s \in \pi(q-1)$,
- $d_{\mathrm{s}}(r)=|\pi(q+1)|$ for every prime $r \in \pi(q+1)$.

Under our assumptions, we may assume that $\pi(q-1)=\{p\}$ or $\pi(q+1)=\{p\}$, where p is a prime number. Now, it follows from Corollary 3 that $q-1=p$ or $q+1=p$, where p is a prime. Clearly, $\tilde{\Gamma}(G)=\left(\Gamma_{\mathrm{s}}(G)-\{2\}\right)^{c}$ is connected, and hence, any disjoint pair of vertices of $\Gamma_{\mathrm{s}}(G)$ can be expressed by only one GKS-series, say $1 \unlhd M \triangleleft N \unlhd G$, such that M and G / N are 2-groups.

Note that, 2 is the only vertex which is adjacent to all other vertices and $d_{\mathrm{s}}(p)=1$ (i.e. $p \approx 2$). Let $|M|=2^{m}$ and $|G / N|=2^{k}$. Thus, $q^{2}-1$ divides the order of N / M and since N / M is a non-abelian simple group, it follows that $|N / M|$ is also divisible by 4 . In more details, we have

$$
|N / M|=2^{f^{\prime}}\left(q^{2}-1\right)=2^{f^{\prime}}\left(2^{2 f}-1\right),
$$

where $f^{\prime}=f-(m+k)$. On the other hand, according to the classification of finite simple groups, the possibilities for N / M are: an alternating group \mathbb{A}_{m} on $m \geqslant 5$ letters, one of the 26 sporadic simple groups, and a simple group of Lie type.

If $N / M \cong L_{2}(q)$, then $M=1, N=G$ and so $G \cong L_{2}(q)$, as required. Therefore, from now on, we assume that N / M is isomorphic to non-abeilan simple group $S \nsubseteq L_{2}(q)$, and we will try to get a contradiction. First of all, we notice that $m \neq 0$ or $k \neq 0$. In fact, if $m=k=0$, then $M=1$, $N=G$, and $G=N=N / 1=N / M \cong S$. Thus S and $L_{2}(q)$ are nonisomorphic simple groups with the same order, which is a contradiction by Artin Theorem.

In the rest of proof we will try to get a contradiction from the following equality: ${ }^{*}$ 2

$$
\operatorname{mpf}(|S|)=\operatorname{mpf}(|N / M|)=\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{2 f}-1\right)\right)
$$

First, we compute the value $\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{2 f}-1\right)\right)$. In the case when $q+1=$ p, it is easy to see that

$$
\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{2 f}-1\right)\right)=\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{f}-1\right)\left(2^{f}+1\right)\right)=\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{f}-1\right) p\right)=p
$$

because $2^{f}-1<2^{f}<2^{f}+1=p$. Note that, the numbers $2^{f}-1,2^{f}$ and $2^{f}+1$ are pairwise coprime. Similarly, in the case when $q-1=p$, we obtain

$$
\begin{aligned}
\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{2 f}-1\right)\right) & =\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{f}-1\right)\left(2^{f}+1\right)\right) \\
& =\operatorname{mpf}\left(2^{f^{\prime}} p\left(2^{f}+1\right)\right)= \begin{cases}5 & \text { if } f=2, \\
p & \text { if } f \neq 2 .\end{cases}
\end{aligned}
$$

[^1](1) S is not isomorphic to an alternating group $\mathbb{A}_{m}, m \geqslant 5$.

Assume that S is isomorphic to an alternating group $\mathbb{A}_{m}, m \geqslant 5$. From the equality

$$
\operatorname{mpf}\left(\left|\mathbb{A}_{m}\right|\right)=\operatorname{mpf}(|S|)=\operatorname{mpf}(|N / M|)=\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{2 f}-1\right)\right)=p
$$

we deduce that $p=\max \pi\left(\mathbb{A}_{m}\right)$, and so $m \geqslant p$. On the other hand, we have

$$
\frac{m!}{2}=\left|\mathbb{A}_{m}\right|=|S|=|N / M|=2^{f^{\prime}}\left(2^{2 f}-1\right)=2^{f^{\prime}} p(p \pm 2)
$$

which is a contradiction.
(2) S is not isomorphic to one of the 26 sporadic simple groups.

Suppose that S is isomorphic to one of the 26 sporadic simple groups. An argument similar to that in the previous case shows that $\operatorname{mpf}(|S|)=$ $\operatorname{mpf}(|N / M|)=p$ (a prime number), which forces $S \cong J_{1}$ (see [7]). But then, $\operatorname{mpf}\left(\left|J_{1}\right|\right)=19=2^{f} \pm 1$, which is a contradiction.
(3) S is not isomorphic to a simple group of Lie type, except $L_{2}(q)$.

We only discuss on some of these cases, for example, we consider the cases $A_{n}\left(q_{0}\right),{ }^{3} D_{4}\left(q_{0}\right),{ }^{2} E_{6}\left(q_{0}\right)$, other cases are similar, so we omit them.

- Suppose that S is isomorphic to $A_{n}\left(q_{0}\right)$ for some integer $n \geqslant 2$ and for a power q_{0} of a prime p_{0}. Then, we have

$$
|S|=\left|A_{n}\left(q_{0}\right)\right|=\left(n+1, q_{0}-1\right)^{-1} \cdot q_{0}^{n(n+1) / 2} \prod_{i=2}^{n+1}\left(q_{0}^{i}-1\right)
$$

By [1], we have

$$
\operatorname{mpf}\left(\left|A_{n}\left(q_{0}\right)\right|\right)=q_{0}^{n(n+1) / 2} \quad(n \geqslant 2)
$$

and hence

$$
\begin{aligned}
q_{0}^{n(n+1) / 2} & =\operatorname{mpf}\left(\left|A_{n}\left(q_{0}\right)\right|\right)=\operatorname{mpf}(|S|)=\operatorname{mpf}(|N / M|) \\
& =\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{2 f}-1\right)\right)=p
\end{aligned}
$$

This shows that $q_{0}=p_{0}=p$ and $n(n+1) / 2=1$, which is a contradiction.

- Suppose that S is isomorphic to ${ }^{3} D_{4}\left(q_{0}\right)$. Then, we have

$$
\left|{ }^{3} D_{4}\left(q_{0}\right)\right|=q_{0}^{12}\left(q_{0}^{8}+q_{0}^{4}+1\right)\left(q_{0}^{6}-1\right)\left(q_{0}^{2}-1\right)
$$

One can easily obtain that $\operatorname{mpf}\left(\left|{ }^{3} D_{4}\left(q_{0}\right)\right|\right)=q_{0}^{12}$. But then, we observe that

$$
\begin{aligned}
q_{0}^{12} & =\operatorname{mpf}\left(\left.\right|^{3} D_{4}\left(q_{0}\right) \mid\right)=\operatorname{mpf}(|S|)=\operatorname{mpf}(|N / M|) \\
& =\operatorname{mpf}\left(2^{f^{\prime}}\left(2^{2 f}-1\right)\right)=p
\end{aligned}
$$

which is a contradiction.

- Suppose that S is isomorphic to ${ }^{2} E_{6}\left(q_{0}\right)$. Then, we have
$|S|=\left|{ }^{2} E_{6}\left(q_{0}\right)\right|=q_{0}^{36}\left(q_{0}^{12}-1\right)\left(q_{0}^{9}+1\right)\left(q_{0}^{8}-1\right)\left(q_{0}^{6}-1\right)\left(q_{0}^{5}+1\right)\left(q_{0}^{2}-1\right)$.
It is obvious that $\operatorname{mpf}\left(\left.\right|^{2} E_{6}\left(q_{0}\right) \mid\right)=q_{0}^{36}$, and so we deduce that $q_{0}^{36}=$ p, which is a contradiction.

This completes the proof of theorem.
Theorem 4 Let G be a finite group satisfying $|G|=\left|L_{2}(q)\right|$ and $\mathrm{D}_{\mathrm{s}}(G)=$ $\mathrm{D}_{\mathrm{s}}\left(L_{2}(q)\right)$, where $q=p^{f}>3$. Furthermore, assume one of the following conditions is fulfilled:
(a) $q \equiv 1(\bmod 4)$, and $|\pi(q+1)|=2$ or $|\pi(q-1)| \leqslant 2$;
(b) $q \equiv-1(\bmod 4)$.

Then $G \cong L_{2}(q)$.
Proof. (a) The solvable graph of $L_{2}(q)$, where $q \equiv 1(\bmod 4)$, is shown in Fig. 8. If $\left|\pi\left(\frac{q+1}{2}\right)\right|=1$ or $|\pi(q-1)| \leqslant 2$, then $\tilde{\Gamma}(G)$ is connected by Lemma 6 (1). Therefore, any disjoint pair of vertices of $\Gamma_{\mathrm{s}}(G)$ can be expressed by only one GKS-series, say $1 \unlhd M \triangleleft N \unlhd G$. Note that M and G / N are 2 -groups because 2 is the only prime whose degree is complete and N / M is a non-abelian simple group such that $\pi(G)=\pi(N / M)$. Let $|M|=2^{m}$ and $|G / N|=2^{k}$. Then, we have

$$
|N / M|=q\left(q^{2}-1\right) / 2^{k+m+1}
$$

We need first to compute $\operatorname{mpf}(|N / M|)$. If $|\pi(q+1)|=2$, then $(q+1) / 2<q, q-1<q$ and $|N / M|_{2} \leqslant|G|_{2} \leqslant q-1<q$, which shows that $\operatorname{mpf}(|N / M|)=q$. Similarly, if $|\pi(q-1)| \leqslant 2$, then it is easy to see that $\operatorname{mpf}(|N / M|)=q$.

If $N / M=L_{2}(q)$, then $M=1, N=G$ and $G=L_{2}(q)$, as desired. Therefore, from now on, we assume that $N / M \neq L_{2}(q)$. Now, we will compare the values $\operatorname{mpf}(|N / M|)$ and $\operatorname{mpf}(|S|)$ for all other non-abelian simple groups to get a contradiction.

Suppose first that N / M is a simple group of Lie type. If N / M is isomorphic to $A_{n}\left(q_{0}\right)$ for some integer $n \geqslant 2$ and for a power q_{0} of a prime p_{0}, then we have

$$
\begin{aligned}
q\left(q^{2}-1\right) / 2^{k+m+1} & =|N / M|=\left|A_{n}\left(q_{0}\right)\right| \\
& =\left(n+1, q_{0}-1\right)^{-1} q_{0}^{n(n+1) / 2} \prod_{i=2}^{n+1}\left(q_{0}^{i}-1\right)
\end{aligned}
$$

and also (see Table 2)

$$
q=\operatorname{mpf}(|N / M|)=\operatorname{mpf}\left(\left|A_{n}\left(q_{0}\right)\right|\right)=q_{0}^{n(n+1) / 2}
$$

We now observe that

$$
|N / M|=q\left(q^{2}-1\right) / 2^{k+m+1}=q_{0}^{n(n+1) / 2}\left(q_{0}^{n(n+1)}-1\right) / 2^{k+m+1}
$$

which forces $\operatorname{ppd}\left(q_{0}^{n(n+1)}-1\right) \in \pi(N / M)=\pi\left(A_{n}\left(q_{0}\right)\right)$, a contradiction.
If N / M is isomorphic to ${ }^{2} E_{6}\left(q_{0}\right)$, then we have

$$
|N / M|=q_{0}^{36}\left(q_{0}^{12}-1\right)\left(q_{0}^{9}+1\right)\left(q_{0}^{8}-1\right)\left(q_{0}^{6}-1\right)\left(q_{0}^{5}+1\right)\left(q_{0}^{2}-1\right)
$$

and also (see Table 2)

$$
q=\operatorname{mpf}(|N / M|)=\operatorname{mpf}\left(\left.\right|^{2} E_{6}\left(q_{0}\right) \mid\right)=q_{0}^{36}
$$

But then, we obtain

$$
|N / M|=q\left(q^{2}-1\right) / 2^{k+m+1}=q_{0}^{36}\left(q_{0}^{72}-1\right)
$$

and it follows that $\operatorname{ppd}\left(q_{0}^{72}-1\right) \in \pi(N / M)=\pi\left({ }^{2} E_{6}\left(q_{0}\right)\right)$, a contradiction.

The possibility for N / M to be isomorphic to another simple group of Lie type would be terminated in the same way. Similarly, when N / M is isomorphic to an alternating or a sporadic simple group we can also derive a contradiction.
(b) The solvable graph of $L=L_{2}(q)$, where $q \equiv-1(\bmod 4)$, is shown in Fig. 7. Since $\Delta_{|\pi(L)|-1}(L)=\emptyset, L$ is OD_{s}-characterizable by Theorem 1.

References

[1] Abe S., A characterization of some finite simple groups by orders of their solvable subgroups. Hokkaido Math. J. 31 (2002), 349-361.
[2] Abe S. and Iiyori N., A generalization of prime graphs of finite groups. Hokkaido Math. J. 29 (2000), 391-407.
[3] Artin E., The orders of the linear groups. Comm. Pure Appl. Math. 8 (1955), 355-365.
[4] Artin E., The orders of the classical simple groups. Comm. Pure Appl. Math. 8 (1955), 455-472.
[5] Brandl R. and Shi W. J., A characterization of finite simple groups with abelian Sylow 2-subgroups. Ricerche Mat. 42 (1993), 193-198.
[6] Casolo C. and Dolfi S., Products of primes in conjugacy class sizes and irreducible character degrees. Israel J. Math. 174 (2009), 403-418.
[7] Conway J. H., Curtis R. T., Norton S. P., Parker R. A. and Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[8] Denecke K., Li X. H. and Bi J. X., A characterization of finite simple groups by the orders of solvable subgroups. Sci. China Ser. A 50 (2007), 715-726.
[9] Hagie M., The diameter of the solvable graph of a finite group. Hokkaido Math. J. 29 (2000), 553-561.
[10] Hall M., The Theory of Groups, Macmillan, New York, 1959.
[11] King O. H., The subgroup structure of finite classical groups in terms of geometric configurations. Surveys in combinatorics, (2005), 29-56.
[12] Kleidman P. B., The maximal subgroups of the Chevalley groups $G_{2}(q)$ with q odd, the Ree groups ${ }^{2} G_{2}(q)$, and their automorphism groups. J. Algebra 117 (1988), 30-71.
[13] Lucido M. S., Groups in which the prime graph is a tree. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), 131-148.
[14] Mazurov V. D., Recognition of finite simple groups $S_{4}(q)$ by their element orders. Algebra and Logic 41 (2002), 93-110.
[15] Passman D. S., Permutation Groups, W. A. Benjamin Inc., New York, (1968).
[16] Shi W. J., A characterization of Suzuki's simple groups. Proc. Amer. Math. Soc. 114 (1992), 589-591.
[17] Suzuki M., On a class of doubly transitive groups. Ann. of Math. (2) 75 (1962), 105-145.
[18] Suzuki M., Group Theory I, Springer-Verlag, Berlin-New York 1982.
[19] Williams J. S., Prime graph components of finite groups. J. Algebra 69 (1981), 487-513.
[20] Zavarnitsine A. V., Finite simple groups with narrow prime spectrum. Sib. Elektron. Mat. Izv. 6 (2009), 1-12.
[21] Zsigmondy K., Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265-284.

B. Akbari
Department of Mathematics
K. N. Toosi University of Technology
P. O. Box 16315-1618, Tehran, Iran
E-mails: b.akbari@dena.kntu.ac.ir
N. IIYORI
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753-8511, Japan
E-mail: iiyori@yamaguchi-u.ac.jp
A. R. Moghaddamfar
Department of Mathematics
K. N. Toosi University of Technology P. O. Box 16315-1618, Tehran, Iran
E-mails: moghadam@kntu.ac.ir

[^0]: ${ }^{*}$ Notice that there are two misprints in [13, List A], that is: M_{12} and M_{23}.

[^1]: ${ }^{*}$ The idea of proof was borrowed from [1].

