A New Characterization of Some Simple Groups by Order and Degree Pattern of Solvable Graph

B. AKBARI, N. IIYORI and A. R. MOGHADDAMFAR

(Received April 21, 2014; Revised August 4, 2014)

Abstract. The solvable graph of a finite group G, denoted by $\Gamma_{\rm s}(G)$, is a simple graph whose vertices are the prime divisors of |G| and two distinct primes p and q are joined by an edge if and only if there exists a solvable subgroup of G such that its order is divisible by pq. Let $p_1 < p_2 < \cdots < p_k$ be all prime divisors of |G| and let $D_{\rm s}(G) = (d_{\rm s}(p_1), d_{\rm s}(p_2), \ldots, d_{\rm s}(p_k))$, where $d_{\rm s}(p)$ signifies the degree of the vertex p in $\Gamma_{\rm s}(G)$. We will simply call $D_{\rm s}(G)$ the degree pattern of solvable graph of G. In this paper, we determine the structure of any finite group G (up to isomorphism) for which $\Gamma_{\rm s}(G)$ is star or bipartite. It is also shown that the sporadic simple groups and some of projective special linear groups $L_2(q)$ are characterized via order and degree pattern of solvable graph.

Key words: solvable graph, degree pattern, simple group, $\rm OD_s\text{-}characterization$ of a finite group.

1. Introduction

All groups considered in this paper will be finite. Let G be a finite group, $\pi(G)$ the set of all prime divisors of its order and $\operatorname{Spec}(G)$ be the spectrum of G, that is the set of its element orders. The prime graph $\operatorname{GK}(G)$ of G (or Gruenberg-Kegel graph) is a simple graph whose vertex set is $\pi(G)$ and two distinct vertices p and q are joined by an edge if and only if $pq \in \operatorname{Spec}(G)$. The prime graph of a group can be generalized in the following way (see [1], [2]).

Let \mathcal{P} be a group-theoretic property. Given a finite group G, we define $S_{\mathcal{P}}(G)$ to be the set of all \mathcal{P} -subgroups of G. Let σ be a mapping of $S_{\mathcal{P}}(G)$ to the the set of natural numbers. Following the notation of [1], [2], we define its (\mathcal{P}, σ) -graph as follows: its vertices are the primes dividing an element of $\sigma(S_{\mathcal{P}}(G))$ and two vertices p and q are joined by an edge if there is a natural number in $\sigma(S_{\mathcal{P}}(G))$ which can be divided by pq. We illustrate this with the following examples.

²⁰⁰⁰ Mathematics Subject Classification: 20D05, 20D06, 20D08, 20D10, 05C25.

- (1) $\mathcal{P} \equiv cyclic$ and $\sigma(H) \equiv order$ of H for each $H \in S_{\mathcal{P}}(G)$. In this case, $S_{\mathcal{P}}(G)$ is the set of all cyclic subgroups of G and the (\mathcal{P}, σ) -graph is called the "cyclic graph" of G (see [2]). In fact, in the cyclic graph of G, the vertices are the prime numbers dividing the order of G and two different vertices p and q are joined by an edge (and we write $p \sim q$) when G has a cyclic subgroup whose order is divisible by pq. We will denote by $\Gamma_{c}(G)$ the cyclic graph of a group G. It is worth noting that $\sigma(S_{\mathcal{P}}(G)) = \operatorname{Spec}(G)$ and the cyclic graph and the prime graph of a group are exactly one thing. Also, if we take $\mathcal{P} \equiv abelian$ or nilpotent, then (\mathcal{P}, σ) -graph of G and the cyclic graph of G coincide.
- (2) $\mathcal{P} \equiv solvable$ and $\sigma(H) \equiv order$ of H for each $H \in S_{\mathcal{P}}(G)$. Here $S_{\mathcal{P}}(G)$ is the set of all solvable subgroups of G and the (\mathcal{P}, σ) -graph of G is called the "solvable graph" of G (see [2]). We will denote by $\Gamma_{s}(G)$ the solvable graph of a group G. Note that the solvable graph of G is a generalization of the cyclic graph of G. In fact, the vertices are, like in the cyclic graph, the prime numbers dividing the order of G, but two different vertices p and q are adjacent (we write $p \approx q$) when G has a solvable subgroup of order divisible by pq.
- (3) $\mathcal{P} \equiv commutativity of an element and <math>\sigma(H) \equiv index of H in G$ for each $H \in S_{\mathcal{P}}(G)$. In this case, $S_{\mathcal{P}}(G)$ is the set of centralizers of all elements of G and the (\mathcal{P}, σ) -graph of G is called the "conjugacy class graph" of G (see [6]).

In this paper we will focus our attention on the solvable graph associated with a finite group. Especially, we will determine the structure of any finite group G (up to isomorphism) for which $\Gamma_{\rm s}(G)$ is star or bipartite.

In the case of a generic group G, it is sometimes convenient to represent the graph $\Gamma_{\rm c}(G)$ (resp. $\Gamma_{\rm s}(G)$) in a compact form. By the compact form we mean a graph whose vertices are labeled with disjoint subsets of $\pi(G)$. Actually, a vertex labeled U represents the complete subgraph of $\Gamma_{\rm c}(G)$ (resp. $\Gamma_{\rm s}(G)$) on U. Moreover, an edge connecting U and W represents the set of edges of $\Gamma_{\rm c}(G)$ (resp. $\Gamma_{\rm s}(G)$) that connect each vertex in U with each vertex in W. For instance, we draw in the following the compact form of the cyclic and solvable graph of some simple groups.

• $R(q) = {}^{2}G_{2}(q)$: the simple Ree group defined over the field with $q = 3^{2m+1} \ge 27$ elements. Figures 1 and 2 depict the compact forms of the cyclic and solvable graphs of the Ree group R(q). In constructing

these graphs, we used the following facts:

The spectrum of R(q) is as follows (see [5, Lemma 4]):

Spec(R(q)) = {3, 6, 9, all factors of
$$q - 1, (q + 1)/2,$$

 $q - \sqrt{3q} + 1$ and $q + \sqrt{3q} + 1$ }.

The list of maximal subgroups of R(q) in [12] can be summarized as follows. Here, $[q^3]$ denotes an unspecified group of order q^3 and A: B denotes a split extension.

Structure	Order	Structure	Order
$\boxed{[q^3]:\mathbb{Z}_{q-1}}$	$q^3(q-1)$	$\mathbb{Z}_{q+\sqrt{3q}+1}:\mathbb{Z}_6$	$6(q+\sqrt{3q}+1)$
$\mathbb{Z}_2 \times L_2(q)$	$q(q^2 - 1)$	$\mathbb{Z}_{q-\sqrt{3q}+1}:\mathbb{Z}_6$	$6(q - \sqrt{3q} + 1)$
$(2^2: D_{(q+1)/2}): 3$	6(q+1)	$R(q_0), q = q_0^{\alpha}, \alpha$ prime	$q_0^3(q_0^3+1)(q_0+1)$
$\{3\}$		<i>—</i>	<i>—</i>
•	$\bullet \pi (q - \sqrt{3q} +$	$\pi(q + \sqrt{3}q + 1)$	$\bullet \pi(q - \sqrt{3}q + 1)$
	• •	·	\setminus /
			$\langle \rangle$
• • •	$\bullet \pi (q + \sqrt{3q} +$	- 1)	` •
$\pi(\frac{q-1}{2}) \{2\} \pi(\frac{q+1}{4}) \setminus \{2\}$	2}	$\pi(\frac{q-1}{2})$	$\{2,3\} \pi(\tfrac{q+1}{4}) \setminus \{2\}$
Figure 1. $\Gamma_{\rm c}(R(q))$,	$q = 3^{2m+1} >$	• 3. Figure 2. $\Gamma_{\rm s}(h)$	$R(q)), q = 3^{2m+1} > 3.$

• Sz(q): the Suzuki simple group defined over the field with $q = 2^{2m+1}$ elements. Again, we need information about the spectrum and the

and solvable graphs.

The spectrum of Sz(q) is as follows (see [16, Theorem 2]):

 $\operatorname{Spec}(\operatorname{Sz}(q)) = \big\{2, 4, \text{all factors of } q - 1, q - \sqrt{2q} + 1 \text{ and } q + \sqrt{2q} + 1\big\}.$

structure of maximal subgroups of Sz(q) in order to draw its cyclic

Every maximal subgroup of Sz(q) is isomorphic to one of the following (Suzuki [17]):

$$\mathbb{Z}_{q^2} : \mathbb{Z}_{q-1}, \quad \mathbb{Z}_{q-1} : \mathbb{Z}_2, \quad \mathbb{Z}_{q+\sqrt{2q}+1} : \mathbb{Z}_4, \quad \mathbb{Z}_{q-\sqrt{2q}+1} : \mathbb{Z}_4,$$
$$\operatorname{Sz}(q_0), \quad q = q_0^{\alpha}, \quad \alpha \in \mathbb{Z}.$$

According to these information, we can draw the cyclic and solvable

graph of the Suzuki groups Sz(q) as shown in Figures 3 and 4.

The degree $d_s(p)$ (resp. $d_c(p)$) of a vertex $p \in \pi(G)$ is the number of adjacent vertices to p in $\Gamma_s(G)$ (resp. $\Gamma_c(G)$). Clearly, $d_c(p) \leq d_s(p)$ for every vertex $p \in \pi(G)$. In the case when $\pi(G) = \{p_1, p_2, \ldots, p_k\}$ with $p_1 < p_2 < \cdots < p_k$, we define

$$\mathbf{D}_{\mathbf{s}}(G) = \big(d_{\mathbf{s}}(p_1), d_{\mathbf{s}}(p_2), \dots, d_{\mathbf{s}}(p_k)\big),$$

which is called the *degree pattern of the solvable graph of G*. For every non-negative integer $m \in \{0, 1, 2, ..., k-1\}$, we put

$$\Delta_m(G) := \{ p \in \pi(G) | d_{\mathbf{s}}(p) = m \}.$$

Clearly,

$$\pi(G) = \bigcup_{m=0}^{k-1} \Delta_m(G).$$

When $\Delta_{k-1}(G) \neq \emptyset$, the prime p with $d_s(p) = k - 1$ is called a *complete* prime.

Given a finite group G, denote by $h_{OD_s}(G)$ the number of isomorphism classes of finite groups H such that |H| = |G| and $D_s(H) = D_s(G)$. In terms of the function $h_{OD_s}(\cdot)$, we have the following definition.

Definition 1 A finite group G is said to be k-fold OD_s -characterizabale if $h_{OD_s}(G) = k$. The group G is OD_s -characterizabale if $h_{OD_s}(G) = 1$. Moreover, we will say that the OD_s -characterization problem is solved for a group G, if the value of $h_{OD_s}(G)$ is known.

One of the purposes of this paper is to characterize some simple groups

by order and degree pattern of solvable graph. For instance, we will prove the following theorems.

Theorem A All sporadic simple groups are OD_s-characterizable.

Theorem B Let $L = L_2(q)$, $q = p^n > 3$, and one of the following conditions is fulfilled:

(a) p = 2, $|\pi(q+1)| = 1$ or $|\pi(q-1)| = 1$, (b) $q \equiv 1 \pmod{4}$, $|\pi(q+1)| = 2$ or $|\pi(q-1)| \leq 2$, (c) $q \equiv -1 \pmod{4}$.

Then L is OD_s -characterizable.

It is important to notice that there exist some groups which are not OD_s -characterizable. For example, the following groups:

$$S_6(3), O_7(3), H \times Sz(8),$$

where H is an arbitrary group of order $2^3 \cdot 3^9$, have the same order and degree pattern of solvable graph. In fact, we have

$$|S_6(3)| = |O_7(3)| = |H \times Sz(8)| = 2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13,$$

and

$$D_s(S_6(3)) = D_s(O_7(3)) = D_s(H \times Sz(8)) = (4, 4, 2, 2, 2).$$

In [8], the authors proved that if a finite group G and a finite simple group S have the same sets of all orders of solvable subgroups, then G is isomorphic to S, or G and S are isomorphic to $O_{2n+1}(q)$, $S_{2n}(q)$, where $n \ge 3$ and q is odd. This immediately implies the following:

Corollary C If $G \in \{O_{2n+1}(q), S_{2n}(q)\}$, where $n \ge 3$ and q is odd, then $h_{OD_s}(G) \ge 2$.

More Notation and Terminology. Given a graph Γ , Γ^c is said to be complementary graph if the set of vertices of Γ and Γ^c coincide with each other and two vertices u and v of Γ^c are joined in Γ^c if and only if u and v are not joined in Γ . An acyclic graph is one that contains no cycles. A connected acyclic graph is called a tree. In the case when $U \subseteq V$, the graph $\Gamma - U$ is defined to be a graph whose vertex set is V - U and two vertices u and v are joined if they are joined in Γ . In addition, $\Gamma[U]$ denotes the induced subgraph of Γ whose vertex set is U and whose edges are precisely the edges of Γ which have both ends in U. The union of graphs $\Gamma_1 = (V_1, E_1)$ and $\Gamma_2 = (V_2, E_2)$ is the graph $\Gamma_1 \cup \Gamma_2$ with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$. If Γ_1 and Γ_2 are disjoint (we recall that two graphs are disjoint if they have no vertex in common), we refer to their union as a disjoint union, and generally denote it by $\Gamma_1 \oplus \Gamma_2$. Given a natural number m and a prime number p, we denote by m_p the p-part of m, that is the largest power of pdividing m. Let G be a finite group and p be a prime divisor of |G|. We denote by $O_p(G)$ the maximal normal p-subgroup of G, and by $O^p(G)$ the smallest normal subgroup of G for which $G/O^p(G)$ is a p-group.

2. Preliminary Results

In this section, we first state some fundamental results for our studies of solvable graphs of finite groups, and then we find the structure of a group that its solvable graph has certain properties. We begin with some fundamental lemmas.

Lemma 1 ([2, Lemma 2]) Let G be a finite group. Let H and N be two subgroups of G with $N \leq G$. Then the following statements hold:

- (1) If p and q are joined in $\Gamma_{s}(H)$ for $p, q \in \pi(H)$, then p and q are joined in $\Gamma_{s}(G)$, in other words, $\Gamma_{s}(H)$ is a subgraph of $\Gamma_{s}(G)$.
- (2) If p and q are joined in $\Gamma_{s}(G/N)$ for $p, q \in \pi(G/N)$, then p and q are joined in $\Gamma_{s}(G)$, in other words, $\Gamma_{s}(G/N)$ is a subgraph of $\Gamma_{s}(G)$.
- (3) For $p \in \pi(N)$ and $q \in \pi(G) \setminus \pi(N)$, p and q are joined in $\Gamma_{s}(G)$.

Lemma 2 Let G be a finite group with $|\pi(G)| = k$. Then, the following statements hold:

- (1) If $\Delta_{k-1}(G) = \emptyset$, then G is a non-abelian simple group.
- (2) If G is not isomorphic to a non-abelian simple group, then $\Gamma_{s}(G)$ is regular if and only if $\Gamma_{s}(G)$ is complete.

Proof. Part (1) is Lemma 3 in [1]. Part (2) is an easy consequence of part (1). \Box

Lemma 3 Let G be a finite group with $|\pi(G)| = k$. Then the following statements hold:

- (1) If G is a solvable group, then $\Gamma_{s}(G)$ is complete.
- (2) $\Gamma_{\rm s}(G)$ is always connected. In particular, $\Delta_0(G) \neq \emptyset$ if and only if G is a p-group for some prime p.
- (3) If G is a non-abelian simple group, then $\Gamma_{s}(G)$ is not complete.
- (4) If R is the solvable radical of G, then $\pi(R) \subseteq \Delta_{k-1}(G) \subseteq \pi(G)$.

Proof. Parts (1)-(3) are Lemma 1 (2), Corollary 2 and Theorem 2 in [2], respectively. Part (4) follows immediately from part (1) and Lemma 1 (2). \Box

Corollary 1 Let N be a normal subgroup of a finite group G. Then there hold:

- (1) If $\{p,q\} \subseteq \pi(G) \setminus \pi(N)$, then $p \approx q$ in $\Gamma_s(G/N)$ if and only if $p \approx q$ in $\Gamma_s(G)$.
- (2) If N is a normal Hall subgroup of G, then $\Gamma_{s}(G)$ is complete if and only if $\Gamma_{s}(N)$ and $\Gamma_{s}(G/N)$ are complete too.

Proof. (1) In view of Lemma 1 (2), it is enough to prove the sufficiency. Let $\{p,q\} \subseteq \pi(G) \setminus \pi(N)$ and $p \approx q$ in $\Gamma_{\rm s}(G)$. Then by the definition there exists a solvable subgroup H of G such that |H| is divisible by pq. Let K be a $\{p,q\}$ -Hall subgroup of H and put $\overline{K} := KN/N$. Clearly $\overline{K} = KN/N \cong K/(N \cap K) \cong K$ is a solvable subgroup of G/N such that its order is divisible by pq. This means that $p \approx q$ in $\Gamma_{\rm s}(G/N)$, as required.

(2) Sufficiency follows immediately from part (1), so we just need to prove the necessity. Let N be a normal Hall subgroup of G for which $\Gamma_{\rm s}(G)$ is complete. First of all, considering part (1), it is easy to see that $\Gamma_{\rm s}(G/N)$ is complete. Next, we show that $\Gamma_{\rm s}(N)$ is complete, too. Since |N| and |G/N| are relatively prime integers, a theorem of Schur [10, p. 224] asserts that in this case G must contain a subgroup K such that G = KN and $K \cap N = 1$. Now, suppose p and q are two primes in $\pi(N)$. Since $p \approx q$ in $\Gamma_{s}(G)$, there exists a solvable subgroup H of G such that |H| is divisible by pq. Let H_0 be a Hall $\{p, q\}$ -subgroup of H. Obviously, $H_0 \leq N$. This forces $p \approx q$ in $\Gamma_{s}(N)$. Therefore, $\Gamma_{s}(N)$ is a complete graph. \Box

Remark It is not true in general that if N is a normal subgroup of G then $\Gamma_{\rm s}(N)$ and $\Gamma_{\rm s}(G/N)$ are complete if $\Gamma_{\rm s}(G)$ is complete. An example is provided by $G = \mathbb{Z}_3 \times \mathbb{A}_5$, $N = \mathbb{A}_5$ and $M = \mathbb{Z}_3$. In this case, $\Gamma_{\rm s}(G)$ is complete while $\Gamma_{\rm s}(N)$ and $\Gamma_{\rm s}(G/M)$ are not complete. **Corollary 2** Let G be a finite group such that $\Gamma_s(G)$ is a complete graph. Moreover, let R be the solvable radical of G. Then, one of the following statements holds:

- (i) $\pi(R) = \pi(G),$
- (ii) $\pi(R) \subset \pi(G)$ and G is an extension of R by a non-solvable group Q for which the induced subgraph $\Gamma_s(Q)[\pi(Q) \setminus \pi(R)]$ is a complete graph.

Proof. If $\pi(R) = \pi(G)$, then there is nothing to prove. Suppose now that $\pi(R) \subset \pi(G)$. Clearly Q := G/R is a non-solvable group and in view of Corollary 1 we conclude that $\Gamma_s(Q)[\pi(Q) \setminus \pi(R)]$ is a complete graph, as required.

Lemma 4 ([2, Theorem 3]) Let G be a finite group and $\{p,q\} \subseteq \pi(G)$. Then p and q are not joined in $\Gamma_{s}(G)$ if and only if there exists a series of normal subgroups of G, say

$$1 \trianglelefteq M \lhd N \trianglelefteq G,$$

such that M and G/N are $\{p,q\}'$ -groups and N/M is a non-abelian simple group such that p and q are not joined in $\Gamma_s(N/M)$.

Following the conventions of [1] and [2] for notation concerning solvable graphs, such a series as in Lemma 4, is called a GKS-series of G and we will say p and q are expressed to be disjoint by this GKS-series.

Lemma 5 ([1, Lemma 4]) Let G be a finite group with $|\pi(G)| = k$ and $\widetilde{\Gamma}(G) = (\Gamma_{s}(G) - \Delta_{k-1}(G))^{c}$. If the number of connected components of $\widetilde{\Gamma}(G)$ equals n, then at most n GKS-series of G is necessary to express any pair of vertices of $\Gamma_{s}(G)$ to be disjoined.

Lemma 6 Let G be a finite group with $|\pi(G)| = k \ge 4$ and $\widetilde{\Gamma}(G) := (\Gamma_{s}(G) - \Delta_{k-1}(G))^{c}$. If one of the following conditions holds, then any disjoined pair of vertices of $\Gamma_{s}(G)$ can be expressed by only one GKS-series.

(1) $\Delta_{k-1}(G) \neq \emptyset$ and $\Delta_1(G) \neq \emptyset$. (2) $\Delta_{k-1}(G) \neq \emptyset$ and $\Delta_2(G) \neq \emptyset$.

Proof. We only prove (2), and (1) goes similarly. By Lemma 5, it is enough to show that $\widetilde{\Gamma}(G)$ is connected. Since $\Delta_2(G) \neq \emptyset$, we can consider some

vertex in $\pi(G)$, say p, with $d_s(p) = 2$. It is clear that $|\Delta_{k-1}(G)| \leq d_s(p) = 2$. We now distinguish two cases.

Case 1. $|\Delta_{k-1}(G)| = 1$. In this case, $\Gamma_s(G) - \Delta_{k-1}(G)$ is a graph with $|\pi(G) \setminus \Delta_{k-1}(G)| = k - 1$ vertices, which contains the vertex p as a vertex of degree 1 (Note $p \notin \Delta_{k-1}(G)$, because $k \ge 4$). Therefore, the vertex p in $\widetilde{\Gamma}(G)$ has degree k - 2, which forces the graph $\widetilde{\Gamma}(G)$ is connected.

Case 2. $|\Delta_{k-1}(G)| = 2$. Here, $\Gamma_s(G) - \Delta_{k-1}(G)$ is a graph with $|\pi(G) \setminus \Delta_{k-1}(G)| = k - 2$ vertices, and it contains the vertex p as an isolated vertex. Thus p is a vertex of $\widetilde{\Gamma}(G)$ of degree k - 3, which shows that $\widetilde{\Gamma}(G)$ is connected.

We state also the following well-known result due to Artin (see [3] and [4]).

Lemma 7 (Artin Theorem) Two finite simple groups of the same order are isomorphic except for the pairs $\{L_4(2) \cong \mathbb{A}_8, L_3(4)\}$ and $\{O_{2n+1}(q), S_{2n}(q) : n \ge 3 \text{ and } q \text{ is odd } \}.$

Remark Notice that by [7] one can draw the solvable graphs $\Gamma_s(L_4(2))$ and $\Gamma_s(L_3(4))$ and obtain their degree patterns as $D_s(L_4(2)) = (2, 3, 2, 1)$ and $D_s(L_3(4)) = (2, 2, 1, 1)$.

The following lemma is due to K. Zsigmondy (See [21]).

Lemma 8 (Zsigmondy Theorem) Let q and f be integers greater than 1. There exists a prime divisor r of $q^f - 1$ such that r does not divide $q^e - 1$ for all 0 < e < f, except in the following cases:

- (a) f = 6 and q = 2;
- (b) f = 2 and $q = 2^{l} 1$ for some natural number l.

Such a prime r is called a primitive prime divisor of $q^f - 1$. When q > 1 is fixed, we denote by $ppd(q^f - 1)$ any primitive prime divisor of $q^f - 1$. Of course, there may be more than one primitive prime divisor of $q^f - 1$, however the symbol $ppd(q^f - 1)$ denotes any one of these primes. For example, the primitive prime divisors of $53^5 - 1$ are 11, 131, 5581 and thus $ppd(53^5 - 1)$ denotes any one of these primes.

As an immediate consequence of Lemma 8, we have the following corollary.

Corollary 3 Let p and q be two primes and m, n be natural numbers such that $p^m - q^n = 1$. Then one of the following holds:

- (a) (p,n) = (2,1), and $q = 2^m 1$ is a Mersenne prime;
- (b) (q,m) = (2,1), and $p = 2^n + 1$ is a Fermat prime;
- (c) (p,n) = (3,3) and (q,m) = (2,2).

A finite group G is called a *Frobenius group* with kernel N and complement M, if G = NM where N is a normal subgroup of G and $M \leq G$, and for all $1 \neq g \in N$, $C_G(g) \subseteq N$. Also, a finite group G is called a 2-*Frobenius* group if it has a normal series $1 \leq M \leq N \leq G$ such that N is a Frobenius group with kernel M and G/M is a Frobenius group with kernel N/M.

Lemma 9 Let G be a Frobenius group. Then, one of the following statements holds:

- (1) G is solvable and $\Gamma_{s}(G) = K_{|\pi(G)|}$.
- (2) G is non-solvable and $\Gamma_s(G)$ can be obtained from the complete graph on $\pi(G)$ by deleting the edge $\{3,5\}$.

Proof. (1) This is a special case of Lemma 3 (1).

(2) Suppose G = NM is a Frobenius group with kernel N and complement M. Note that $\Gamma_{\rm c}(N)$ and $\Gamma_{\rm c}(M)$ are connected components of $\Gamma_{\rm c}(G)$, and in fact

$$\Gamma_{\rm c}(G) = \Gamma_{\rm c}(N) \oplus \Gamma_{\rm c}(M).$$

In addition, $\Gamma_{\rm c}(N)$ and so $\Gamma_{\rm s}(N)$ is complete, because N is a nilpotent group. Note that, by Lemma 1 (3), any prime of $\pi(N)$ is joint to any prime of $\pi(G/N) = \pi(M)$ in $\Gamma_{\rm s}(G)$. On the other hand, M is non-solvable, as G is non-solvable. Thus, by the structure of non-solvable complement, M has a normal subgroup M_0 with $|M : M_0| \leq 2$ such that $M_0 = \operatorname{SL}(2,5) \times Z$, where every Sylow subgroup of Z is cyclic and $\pi(Z) \cap \pi(30) = \emptyset$ (see Theorem 18.6 in [15]). Moreover, $\Gamma_{\rm c}(M)$ and so $\Gamma_{\rm s}(M)$ can be obtained from the complete graph on $\pi(M)$ by deleting the edge $\{3,5\}$ (see Lemma 5 in [14]). Finally, it is easy to see that the group $\operatorname{SL}(2,5)$ and so G has no solvable subgroup whose order is divisible by 15, hence 3 and 5 are not joint in $\Gamma_{\rm s}(G)$. This completes the proof.

Lemma 10 The solvable graph of a 2-Frobenius group is always complete.

Proof. The conclusion follows immediately from Lemma 3 (1), because 2-Frobenius groups are always solvable. \Box

3. Solvable Graphs with Certain Properties

We begin with recalling some definitions in Graph Theory. A graph is *bipartite* if its vertex set can be partitioned into two subsets X and Y so that every edge has one end in X and one end in Y, such a partition (X, Y) is called a *bipartition* of the graph, and X and Y its *parts*. We recall that a graph is bipartite if and only if it contains no odd cycle (a cycle of odd length). A bipartite graph with bipartition (X, Y) in which every two vertices from X and Y are adjacent is called a *complete bipartite graph* and denoted by $K_{|X|,|Y|}$. A *star graph* is a complete bipartite graph of the form $K_{1,n}$ which consists of one central vertex having edges to other vertices in it.

Proposition 1 Let G be a finite group. Let R stand for the solvable radical of G and $\overline{G} = G/R$. Let \overline{M} be the smallest normal subgroup of \overline{G} among subgroups \overline{L} such that $\overline{G}/\overline{L}$ is solvable. The solvable graph of G is a star graph if and only if

- (a) G is solvable with $|\pi(G)| \leq 2$ or
- (b) there exists a prime $r \in \pi(G)$ such that $R = O_r(G)$, $\overline{M} = O^r(\overline{G})$ is a simple group and (\overline{M}, r) is one of the following pairs:

Proof. Let G be a finite group such that $\Gamma_{\rm s}(G)$ is a star graph. If G is a solvable group, then it follows from Lemma 3 (1) that $\Gamma_{\rm s}(G) = K_{|\pi(G)|}$ is a complete graph, which forces $|\pi(G)| \leq 2$.

Thus, we may assume that G is a non-solvable group. Clearly $|\pi(G)| \ge$ 3. Let R be the solvable radical of G. Since $\Gamma_{\rm s}(R) = K_{|\pi(R)|}$ is a subgraph of $\Gamma_{\rm s}(G)$, as before, it concludes that $|\pi(R)| \le 2$. We distinguish three cases separately: $|\pi(R)| = 2$, $|\pi(R)| = 1$ or $|\pi(R)| = 0$ (i.e., R = 1).

Assume first that $|\pi(R)| = 2$. If p, q are two distinct primes that divide |R|, then $p \approx q$ in $\Gamma_{\rm s}(R)$ and so in $\Gamma_{\rm s}(G)$, by Lemma 1 (1). Since $|\pi(G)| \ge 3$, we can consider the prime $r \in \pi(G) \setminus \{p, q\}$. Now, by Lemma 1 (3), it follows that $p \approx r \approx q \approx p$ in $\Gamma_{\rm s}(G)$, which contradicts the fact that $\Gamma_{\rm s}(G)$ is a star graph.

Assume next that $|\pi(R)| = 1$. Clearly, $R = O_r(G)$ for some prime $r \in \pi(G)$. Put $\overline{G} := G/R$. Then $S := \operatorname{Soc}(\overline{G}) = P_1 \times \cdots \times P_k$, where P_i

are non-abelian simple groups and $S \leq \overline{G} \leq \operatorname{Aut}(S)$. It is clear that k = 1, otherwise $\Gamma_{c}(G)$ and so $\Gamma_{s}(G)$ contains a cycle, which is a contradiction. Therefore, we have $P \leq \overline{G} \leq \operatorname{Aut}(P)$, for a non-abelian simple group P.

If $\overline{G}/P \neq 1$, then there exist primes $p \in \pi(\overline{G}/P)$, $q_i \in \pi(P) - \{r\}$ (i = 1, 2). Let $\overline{Q_i}$ be a Sylow q_i -subgroup of P. Since $N_{\overline{G}}(\overline{Q_i})P = \overline{G}$, there exists an element $\overline{x_i} \in N_{\overline{G}}(\overline{Q_i})$ of order p for each i. Let $L_i(< G)$ be the inverse image of $\langle \overline{x_i} \rangle \overline{Q_i}$. Then L_i is a solvable group with $\pi(L_i) = \{p, r, q_i\}$ for i = 1, 2. Since $\Gamma_s(G)$ is a star graph, we have p = r and $\Gamma_s(G) = \Gamma_s(M)$, where M(< G) is the inverse image of P. Hence we may assume G = M, i.e., $\overline{G} = P$.

If $r \notin \pi(\overline{G})$, then any prime in $\pi(G) \setminus \pi(R)$ is joined to r in $\Gamma_{\rm s}(G)$, and since $\Gamma_{\rm s}(\overline{G})$ is connected with more than two vertices, we conclude that $\Gamma_{\rm s}(G)$ has a 3-cycle containing r, a contradiction. Therefore, $r \in \pi(\overline{G})$ and $\Gamma_{\rm s}(\overline{G}) \subseteq \Gamma_{\rm s}(G)$ which is a star graph with central vertex r. Since $\Gamma_{\rm c}(P) \subseteq \Gamma_{\rm s}(P) \subseteq \Gamma_{\rm s}(\overline{G})$, therefore $\Gamma_{\rm s}(P)$ is also star with central vertex r, while $\Gamma_{\rm c}(P)$ is a forest and its connected components consist of the following possibilities: {r and its neighbours} and {q, a single prime} (see Fig. 5).

Figure 5. The cyclic graph $\Gamma_{\rm c}(P)$.

Note that, from the structures of the solvable graph $\Gamma_{\rm s}(P)$ and the cyclic graph $\Gamma_{\rm c}(P)$, it is easily seen that they do not contain two vertices with degrees greater than or equal 2. Since $\Gamma_{\rm c}(P)$ is a forest, P is isomorphic to one of the following simple groups ([13, Proposition 4])^{*1}:

- (1) \mathbb{A}_5 , \mathbb{A}_6 , \mathbb{A}_7 , \mathbb{A}_8 ; M_{11} , M_{12} , M_{22} , M_{23} ;
- (2) $L_4(3), B_2(3), G_2(3), U_4(3), U_5(2), {}^2F_4(2)';$
- (3) $L_2(q)$ with $q \ge 4$, $|\pi((q-1)/(2,q-1))| \le 2$ and $|\pi((q+1)/(2,q-1))| \le 2$;
- (4) $L_3(q)$ with $|\pi((q^2+q+1)/(3,q-1))| \leq 2$ and $|\pi((q^2-1)/(3,q-1))| \leq 2;$
- (5) $U_3(q)$ with $|\pi((q^2-q+1)/(3,q+1))| \leq 2$ and $|\pi((q^2-1)/(3,q+1))| \leq 2;$
- (6) Sz(q), with $|\pi(q \pm \sqrt{2q} + 1)| \leq 2$ and $|\pi(q-1)| \leq 2$, where $q = 2^{2m+1} > 2$ and 2m + 1 is an odd prime;
- (7) R(q) with $|\pi(q \pm \sqrt{3q} + 1)| \leq 2$ and $|\pi(q \pm 1)| \leq 2$, where $q = 3^{2m+1} > 3$ and 2m + 1 is an odd prime.

^{*1}Notice that there are two misprints in [13, List A], that is: M_{12} and M_{23} .

Case (1). $P \cong \mathbb{A}_5$, \mathbb{A}_6 , \mathbb{A}_7 , \mathbb{A}_8 , M_{11} , M_{12} , M_{22} or M_{23} . In this case, the alternating groups \mathbb{A}_5 and \mathbb{A}_6 are the only simple groups among others whose solvable graphs are stars (with central vertex 2 for both of them). Note that, from [7], the solvable graphs of these groups as follows:

$$\begin{split} \Gamma_{\rm s}(\mathbb{A}_5) &= \Gamma_{\rm s}(\mathbb{A}_6) : 3 \approx 2 \approx 5; \quad \Gamma_{\rm s}(\mathbb{A}_7) : 5 \approx 2 \approx 3 \approx 7; \\ \Gamma_{\rm s}(\mathbb{A}_8) : 3 \approx 2 \approx 5 \approx 3 \approx 7; \\ \Gamma_{\rm s}(M_{11}) &= \Gamma_{\rm s}(M_{12}) : 3 \approx 2 \approx 5 \approx 11; \quad \Gamma_{\rm s}(M_{22}) : 11 \approx 5 \approx 2 \approx 3 \approx 7 \approx 2; \\ \Gamma_{\rm s}(M_{23}) : 23 \approx 11 \approx 5 \approx 2 \approx 3 \approx 7 \approx 2 \bigcup 3 \approx 5. \end{split}$$

Case (2). $P \cong L_4(3)$, $U_4(2)$, $G_2(3)$, $U_4(3)$, $U_5(2)$ or ${}^2F_4(2)'$. Again, from [7], we can easily determine the solvable graphs of these groups, as shown below:

$$\begin{split} &\Gamma_{\rm s}(L_4(3)):5\approx2\approx3\approx13; &\Gamma_{\rm s}(U_4(2)):5\approx2\approx3; \\ &\Gamma_{\rm s}(G_2(3)):2\approx7\approx3\approx13\approx2\approx3; &\Gamma_{\rm s}(U_4(3)):5\approx2\approx3\approx7; \\ &\Gamma_{\rm s}(U_5(2)):11\approx5\approx2\approx3\approx5; &\Gamma_{\rm s}(^2F_4(2)'):5\approx2\approx3\approx13\approx2 \end{split}$$

Clearly, $U_4(2)$ is the only simple group for which the solvable graph is star. Therefore, P can only be isomorphic to $U_4(2)$.

Case (3). $P \cong L_2(q)$ with $q = p^f \ge 4$ and $|\pi((q \pm 1)/(2, q - 1))| \le 2$. First of all, we recall that

$$\mu(L_2(q)) = \left\{ p, \frac{q-1}{d}, \frac{q+1}{d} \right\},\,$$

where q is a power of the prime p and d = (q - 1, 2). Moreover, in order to draw $\Gamma_{\rm s}(P)$ we need some information about the structure of subgroups of P. We state here a result [18, Theorem 6.25] which determines the structure of all subgroups of $L_2(q)$: Let q be a power of the prime p and let d = (q - 1, 2). Then, a subgroup of $L_2(q)$ is isomorphic to one of the following groups:

- The dihedral groups of order $2(q \pm 1)/d$ and their subgroups.
- The group $(\mathbb{Z}_p)^f \rtimes \mathbb{Z}_{(q-1)/d}$ of order q(q-1)/d and its subgroups.
- $L_2(r)$ or PGL(2, r), where r is a power of p such that $r^m = q$.
- \mathbb{A}_4 , \mathbb{S}_4 or \mathbb{A}_5 .

We deal with odd and even q cases separately.

(3.1) $q \ge 4$ is even. In this case, we get the compact form of $\Gamma_{\rm s}(P)$ as follows:

$$\pi(q-1) \bullet \underbrace{\qquad }_{2} \bullet \pi(q+1)$$

Figure 6. $\Gamma_{\rm s}(L_2(q)), q \ge 2$ is even.

Since $\Gamma_{\rm s}(P)$ is a star graph, this forces $|\pi(q-1)| = |\pi(q+1)| = 1$. From Corollary 3, we conclude that q = 4, 8, and so P is isomorphic to $L_2(4) \cong \mathbb{A}_5$ or $L_2(8)$.

(3.2) $q \ge 5$ is odd. Here, we get the compact form of $\Gamma_{\rm s}(P)$ as follows:

Figure 7. $\Gamma_{\rm s}(L_2(q)), 5 < q \equiv -1$ Figure 8. $\Gamma_{\rm s}(L_2(q)), 5 \leq q \equiv 1 \pmod{4}$.

If $q \equiv -1 \pmod{4}$, then $\Gamma_{\rm s}(P)$ is a star graph if and only if $|\pi(q+1)| = |\pi(\frac{q-1}{2})| = 1$. Since $|\pi(q+1)| = 1$, Corollary 3 implies that q is a Mersenne prime, say $q := 2^r - 1$ for some odd prime r. But then, we obtain $|\pi((q-1)/2)| = |\pi(2^{r-1}-1)| = 1$. In view of Corollary 3 this is possible only for r = 3. Therefore q = 7 and $P \cong L_2(7)$. If $q \equiv 1 \pmod{4}$, then $\Gamma_{\rm s}(P)$ is a star graph if and only if $|\pi(q-1)| = |\pi(\frac{q+1}{2})| = 1$. Since $|\pi(q-1)| = 1$, in view of Corollary 3 it follows that q = 9 or q is a Fermat prime. Let $q := 2^{2^t} + 1$. Now, easy calculations show that $|\pi(\frac{q+1}{2})| = |\pi(2^{2^t-1}+1)| = 1$. Again, by Corollary 3 this is possible only for t = 2, and so q = 17. Therefore, P is isomorphic to $L_2(9) \cong \mathbb{A}_6$ or $L_2(17)$.

Before proceeding to other cases, it seems appropriate to point out that the spectra of the simple groups $L_3(q)$ and $U_3(q)$. We will study together these groups, and, in order to unify our treatment, we introduce the following useful notation. For $\epsilon \in \{+, -\}$ we let $L_3^{\epsilon}(q) = L_3(q)$ if $\epsilon = +$; and $L_3^{\epsilon}(q) =$ $U_3(q)$ if $\epsilon = -$. For simplicity, we always identify $q - \epsilon$ with $q - \epsilon 1$. Now, the set of maximal elements in the spectrum of $L_3^{\epsilon}(q)$, $\epsilon = \pm$, is as follows:

Recognizing simple groups by order and solvable graph

$$\mu(L_3^{\epsilon}(q)) = \begin{cases} \left\{ q - \epsilon, \frac{p(q - \epsilon)}{3}, \frac{q^2 - 1}{3}, \frac{q^2 + \epsilon q + 1}{3} \right\} & \text{if } d = 3; \\ \left\{ p(q - \epsilon), q^2 - 1, q^2 + \epsilon q + 1 \right\} & \text{if } d = 1, \end{cases}$$

where $q = p^n$ is odd and $d = (3, q - \epsilon)$, and

$$\mu(L_3^{\epsilon}(2^n)) = \begin{cases} \left\{4, 2^n - \epsilon, \frac{2(2^n - \epsilon)}{3}, \frac{2^{2n} - 1}{3}, \frac{2^{2n} + \epsilon 2^n + 1}{3}\right\} & \text{if } d = 3; \\ \left\{4, 2(2^n - \epsilon), 2^{2n} - 1, 2^{2n} + \epsilon 2^n + 1\right\} & \text{if } d = 1, \end{cases}$$

where $d = (3, 2^n - \epsilon)$, except $(\epsilon, n) \in \{(+, 1), (+, 2)\}$. It can be checked in the Atlas [7], that if $(\epsilon, n) = (+, 1)$, then $L_3(2) \cong L_2(7)$ and $\mu(L_3(2)) = \{3, 4, 7\}$, while if $(\epsilon, n) = (+, 2)$, then $\mu(L_3(4)) = \{3, 4, 5, 7\}$.

Case (4). $P \cong L_3(q)$ with $|\pi((q^2+q+1)/(3,q-1))| \leq 2$ and $|\pi((q^2-1)/(3,q-1))| \leq 2$. First of all, the latter inequality forces (see [13, Lemma 2]): q = 2, 3, 4, 5, 7, 8, 9, 16, 17, 25, 49, 97 or q is a prime number satisfies the conditions $q - 1 = 3 \cdot 2^{\alpha}$ and q + 1 = 2t, where $\alpha \geq 2$ and t is an odd prime. Moreover, note that the simple group $L_3(q)$ has a maximal subgroup of order $3(q^2+q+1)/(3,q-1)$ (see for example [11, Theorems 2.4 and 2.5]). Now, from this fact and the spectra of these groups, it is easy to check that:

- if q = 5, 7, 9, 17, 25, 49, 97 or q is a prime number satisfies the conditions $q 1 = 3 \cdot 2^{\alpha}$ and q + 1 = 2t, where $\alpha \ge 2$ and t is an odd prime, then $d_{s}(2), d_{s}(3) \ge 2$; while
- if q = 8 or 16, then $d_s(3), d_s(7) \ge 2$,

which show that $\Gamma_s(P)$ can not be a star graph. If q = 4, then $\Gamma_s(L_3(4))$: $2 \approx 3 \approx 5 \approx 7$, which is not a star graph. Therefore, the simple groups $L_3(2) \cong L_2(7)$ and $L_3(3)$ are the only simple groups among others whose solvable graphs are stars (with central vertex 3 for both of them).

Case (5). $P \cong U_3(q)$ with $|\pi((q^2 - q + 1)/(3, q + 1))| \leq 2$ and $|\pi((q^2 - 1)/(3, q + 1))| \leq 2$. We conclude from the latter inequality that (see [13, Lemma 2]): $q = 2^f$, f a prime, q = 3 or 9 or q is a prime number such that $q + 1 = 3 \cdot 2^{\alpha}$. Again, we recall that the simple group $U_3(q)$ has a maximal subgroup of order $3(q^2 - q + 1)/(3, q + 1)$ (see for example [11, Theorems 2.6 and 2.7]). As previous case, it is easy to verify that $d_s(2), d_s(3) \geq 2$ in all cases except $q \neq 3$. On the other hand, the solvable graph $\Gamma_s(U_3(3))$ is

a star graph (with central vertex 3), that is: $2 \approx 3 \approx 7$.

Case (6). $P \cong \operatorname{Sz}(q)$ with $|\pi(q \pm \sqrt{2q} + 1)| \leq 2$ and $|\pi(q-1)| \leq 2$, where $q = 2^{2m+1} > 2$ and 2m + 1 is an odd prime. Since $\Gamma_{\rm s}(P)$ is a star graph with central vertex 2 (see Fig. 4), it follows that $|\pi(2^{2m+1} - 1)| = 1$, and from Corollary 3 we conclude that m = 1 and q = 8. Thus, p = 2 and P is isomorphic to Sz(8).

Case (7). $P \cong R(q)$, with $|\pi(q \pm \sqrt{3q} + 1)| \leq 2$ and $|\pi(q \pm 1)| \leq 2$, where $q = 3^{2m+1} > 3$ and 2m + 1 is an odd prime. In this case we have a 3-cycle in $\Gamma_{\rm s}(R(q))$ (see Fig. 2).

Finally, we assume that $|\pi(R)| = 0$, i.e., R = 1. Since $\Gamma_{\rm s}(G)$ is a star graph, $S = \operatorname{Soc}(G)$ is a non-abelian simple group. Let $p, q, r \in \pi(S)$ be distinct three primes such that $p \approx q$. If $\pi(G/S)$ contain two distinct primes u and v, then $\Gamma_{\rm s}(G)$ contains a 3-cycle. Therefore we have $|\pi(G/S)| \leq 1$. Since $\Gamma_{\rm s}(G)$ is a star graph and $\Gamma_{\rm s}(S)$ is connected and $\Gamma_{\rm s}(S) \leq \Gamma_{\rm s}(G)$, it follows that $\Gamma_{\rm s}(S) = \Gamma_{\rm s}(G)$. Hence we may assume G = S. The rest of proof is similar to the proof of previous case.

Proposition 2 Let G be a finite group such that its solvable graph is bipartite, and let R be the solvable radical of G. Then, either G is solvable with $|\pi(G)| = 2$ or G is non-solvable and one of the following statements holds:

- (a) $R = O_p(G) \neq 1$ for some prime $p \in \pi(G)$ and $\Gamma_s(G/R)$ is star with central vertex p. Furthermore, $S \leq G/R \leq \operatorname{Aut}(S)$ where S is one of the non-abelian simple groups as in (1).
- (b) R = 1 and G contains a normal subgroup N which is isomorphic to one of the following non-abelian simple groups:
 - (b.1) $\mathbb{A}_5 \cong L_2(4) \cong L_2(5), \mathbb{A}_6 \cong L_2(9) \cong S_4(2)', \mathbb{A}_7, M_{11}, M_{12}, U_4(2), U_4(3), L_4(3), L_2(7), L_2(8), L_2(17), L_3(3), L_3(4), U_3(3) \text{ or } Sz(8).$ (b.2) $L_2(q), q \equiv -1 \pmod{4}, |\pi(q-1)| = |\pi(q+1)| = 2.$

Proof. First of all, if G is a solvable group, then $\Gamma_{\rm s}(G) = K_{|\pi(G)|}$ which is bipartite if and only if $|\pi(G)| = 2$. Therefore, we may assume that G is a non-solvable group and so $|\pi(G)| \ge 3$. With a similar reason, we observe that $|\pi(R)| \le 2$, and hence we can consider three cases separately.

Case 1. $|\pi(R)| = 2$. Let $\pi(R) = \{p_1, p_2\}$. Evidently $p_1 \approx p_2$ in $\Gamma_s(R)$ and so in $\Gamma_s(G)$. On the other hand, since $|\pi(G)| \ge 3$, there exists a prime $q \in \pi(G) \setminus \pi(R)$. Now it follows from Lemma 1 (3) that $p_1 \approx q \approx p_2$ in

 $\Gamma_{\rm s}(G)$, and so $\Gamma_{\rm s}(G)$ has a 3-cycle $p_1 \approx q \approx p_2 \approx p_1$. But this contradicts our hypothesis that $\Gamma_{\rm s}(G)$ is a bipartite graph.

Case 2. $|\pi(R)| = 1$. In this case, $R = O_p(G)$ for some prime $p \in \pi(G)$ and $d_s(p) = |\pi(G)| - 1$. If p does not divide the order of G/R, then since $\Gamma_s(G/R)$ is connected with at least three vertices and the fact that every prime in $\pi(G) \setminus \pi(R)$ is adjacent to p, we obtain a 3-cycle in $\Gamma_s(G)$, which is a contradiction. Thus $p \in \pi(G/R)$ and from Lemma 1 (2) we conclude that the induced graph $\Gamma_s(G/R)[\pi(G) \setminus \{p\}]$ is an empty graph. This means that $\Gamma_s(G/R)$ is a star graph with central vertex p. The rest of the proof follows immediately from Proposition 1 and the fact that G/R has trivial solvable radical.

Case 3. $|\pi(R)| = 0$. In this case, R = 1. Obviously, for every non-trivial normal subgroup N of G, $|\pi(N)| \ge 3$. Now, if $\pi(N) \ne \pi(G)$, then from the connectivity of solvable graph $\Gamma_{\rm s}(N)$ and part (3) of Lemma 1, one can easily obtain a 3-cycle in $\Gamma_{\rm s}(G)$, which is a contradiction. Finally, $\pi(N) = \pi(G)$ for every non-trivial normal subgroup N of G. On the other hand, since $\Gamma_{\rm s}(G)$ is not complete, there exist at least two primes, say $p, q \in \pi(G)$, such that they are not joined in $\Gamma_{\rm s}(G)$, and hence by Lemma 4, there exists a series of normal subgroups of G, say $1 \le M < N \le G$, such that M and G/N are $\{p,q\}'$ -groups and N/M is a non-abelian simple group such that p and q are not joined in $\Gamma_{\rm s}(N/M)$. By what observed above we deduce that M = 1, so N is a non-abelian simple group for which $\Gamma_{\rm s}(N)$ is a bipartite graph while $\Gamma_{\rm c}(N)$ is a forest (using the maximal tori when N is a simple group of Lie type). In a similar way as in the proof of Proposition 1, it follows that N is isomorphic to one of the simple groups in (b.1) and (b.2).

We notice that a star graph is a tree consisting of one vertex adjacent to all the others. Since a tree has no cycle, every nontrivial tree is always bipartite. Therefore, from these facts and Lemma 2 we have the following corollary.

Corollary 4 Let G be a finite group which is not a non-abelian simple group. Then the following statements are equivalent:

- (a) Γ_s(G) is a tree.
 (b) Γ_s(G) is a bipartite graph.
- (c) $\Gamma_{s}(G)$ is a star graph.

Proof. We will illustrate only the proof of $(b) \implies (c)$. The remaining

proofs are obvious. Let $\Gamma_s(G)$ be a bipartite graph. Since G is not a nonabelian simple group, Lemma 2 yields that $\Gamma_s(G)$ contains a complete prime (a vertex with full degree), which forces $\Gamma_s(G)$ is a star graph.

Note that, Corollary 4 is not true for non-abelian simple groups. For example, we consider the non-abelian simple group $L_2(11)$. Obviously, the solvable graph associated with $L_2(11)$ has the form $3 \approx 2 \approx 5 \approx 11$ which is a tree, while it is not a star graph.

4. OD_s-Characterization of Some Simple Groups

We begin this section with general results on OD_s -characterizability of some finite groups.

Theorem 1 Suppose *H* is a finite group and $|\pi(H)| = k \ge 3$. If $\Delta_{k-1}(H) = \emptyset$ and

$$H \notin \{O_{2n+1}(q), S_{2n}(q) : n \ge 3 \text{ and } q \text{ is odd}\},\$$

then H is OD_s -characterizable.

Proof. First of all, since $\Delta_{k-1}(H) = \emptyset$, Lemma 2 asserts that H is a nonabelian simple group. Now, we assume that G is a finite group satisfying the conditions |G| = |H| and $D_s(G) = D_s(H)$. From these conditions we can easily deduce that $\Delta_{k-1}(G) = \Delta_{k-1}(H) = \emptyset$, and again by Lemma 2, G is a non-abelian simple group. Actually, G and H are two non-abelian simple groups with the same order, and thus the conclusion follows from Lemma 7.

In what follows, we introduce a new terminology. Let m be a positive integer with the following factorization into distinct prime power factors $m = q_1^{e_1} q_2^{e_2} \cdots q_k^{e_k}$ for some positive integers e_i and k. We put (see [1])

$$mpf(m) := \max\{q_i^{e_i} \mid 1 \leqslant i \leqslant k\}.$$

For convenience, in Tables 1, we tabulate |S| and mpf(|S|) for sporadic simple groups S using Atlas [7]. Moreover, in a similar way as in the proof of [1, Proposition 1], we can compute the value of mpf(|S|) for all simple groups S of Lie type. Our results are summarized in Table 2.

Given a prime $p \ge 5$, we denote by \mathcal{S}_p the set of all finite non-abelian

Table 1. The order and degree pattern of solvable graph and mpf of a sporadic simple group.

S	S	$\mathrm{D}_{\mathrm{s}}(S)$	mpf(S)
J_2	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$	(3, 3, 2, 2)	2^{7}
M_{11}	$2^4 \cdot 3^2 \cdot 5 \cdot 11$	(2, 1, 2, 1)	2^{4}
M_{12}	$2^6 \cdot 3^3 \cdot 5 \cdot 11$	(2, 1, 2, 1)	2^{6}
M_{22}	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$	(2, 2, 2, 1, 1)	2^{7}
HS	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$	(2, 3, 3, 1, 1)	2^{9}
$M^{c}L$	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	(3, 3, 3, 2, 1)	3^{6}
Suz	$2^{13} \cdot 3^7 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	(4, 4, 3, 2, 1, 2)	2^{13}
$F_{i_{22}}$	$2^{17}\cdot 3^9\cdot 5^2\cdot 7\cdot 11\cdot 13$	(5, 4, 3, 2, 2, 2)	2^{17}
He	$2^{10} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$	(4, 3, 2, 2, 1)	2^{10}
J_1	$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$	(5, 4, 3, 2, 2, 2)	19
J_3	$2^7 \cdot 3^5 \cdot 5 \cdot 17 \cdot 19$	(3, 3, 2, 1, 1)	3^{5}
HN	$2^{14}\cdot 3^6\cdot 5^6\cdot 7\cdot 11\cdot 19$	(4, 4, 4, 3, 2, 1)	2^{14}
M_{23}	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$	(3, 3, 3, 2, 2, 1)	2^{7}
M_{24}	$2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$	(4, 3, 3, 2, 3, 1)	2^{10}
Co_3	$2^{10} \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$	(4, 3, 3, 2, 3, 1)	3^{7}
Co_2	$2^{18} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$	(3, 3, 3, 2, 2, 1)	2^{18}
$F_{i_{23}}$	$2^{18} \cdot 3^{13} \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23$	(6, 4, 4, 3, 3, 2, 1, 1)	3^{13}
Co_1	$2^{21} \cdot 3^9 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23$	(5, 5, 4, 3, 4, 2, 1)	2^{21}
Ru	$2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29$	(5, 4, 2, 3, 2, 2)	2^{14}
Fi'_{24}	$2^{21} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$	(7, 5, 4, 4, 4, 2, 1, 1, 2)	3^{16}
O'N	$2^9\cdot 3^4\cdot 5\cdot 7^3\cdot 11\cdot 19\cdot 31$	(5, 5, 4, 2, 2, 2, 2)	2^{9}
Th	$2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 19 \cdot 31$	(4, 6, 3, 2, 2, 1, 2)	3^{10}
J_4	$2^{21}\cdot 3^3\cdot 5\cdot 7\cdot 11^3\cdot 23\cdot 29\cdot 31\cdot 37\cdot 43$	(8, 5, 5, 5, 4, 1, 2, 2, 2, 2)	2^{21}
B	$2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$	(8, 7, 5, 3, 4, 2, 1, 2, 3, 2, 1)	2^{41}
Ly	$2^8\cdot 3^7\cdot 5^6\cdot 7\cdot 11\cdot 31\cdot 37\cdot 67$	(6, 6, 3, 2, 4, 1, 2, 2)	5^{6}
M	$2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot$	(12, 10, 8, 6, 4, 2, 3, 3, 4, 4, 3,	2^{46}
	$31\cdot 41\cdot 47\cdot 59\cdot 71$	2, 2, 1, 2)	

simple groups with prime divisors at most p. Clearly, if $q \leq p$, then $S_q \subseteq S_p$. In the next theorem, we deal with the finite non-abelian simple groups in class S_{71} . Note that, the full list of all groups in S_{71} has been determined in [20]. Indeed, we will show that every sporadic simple group is characterized by order and degree pattern of its solvable graph.

Theorem 2 Let G be a finite group and S one of the 26 sporadic simple groups. Then G is isomorphic to S if and only if |G| = |S| and $D_s(G) = D_s(S)$.

Proof. We need only prove the sufficiency. Let G be a finite group satisfying the conditions $|G| = |S| = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ $(p_1 < p_2 < \cdots < p_k)$ and

S	Restrictions on S	S	mpf(S)
$A_n(q)$	$n \ge 2$	$(n+1, q-1)^{-1}q^{n(n+1)/2}\prod_{i=2}^{n+1}(q^i-1)$	$q^{n(n+1)/2}$
$A_1(q)$	$ \pi(q+1) = 1$	$(2, q-1)^{-1}q(q-1)(q+1)$	q + 1
$A_1(q)$	$ \pi(q+1) \geqslant 2$	$(2, q-1)^{-1}q(q-1)(q+1)$	q
$B_n(q)$	$n \geqslant 2$	$(2, q-1)^{-1}q^{n^2}\prod_{i=1}^n (q^{2i}-1)$	q^{n^2}
$C_n(q)$	$n \ge 3$	$(2, q-1)^{-1}q^{n^2}\prod_{i=1}^n (q^{2i}-1)$	q^{n^2}
$D_n(q)$	$n \ge 4$	$(4, q^n - 1)^{-1} q^{n(n-1)} (q^n - 1) \prod_{i=1}^{n-1} (q^{2i} - 1)$	$q^{n(n-1)}$
$G_2(q)$		$q^{6}(q^{6}-1)(q^{2}-1)$	q^6
$F_4(q)$		$q^{24}(q^{12}-1)(q^8-1)(q^6-1)(q^2-1)$	q^{24}
$E_6(q)$		$(3, q-1)^{-1}q^{12}(q^9-1)(q^5-1) F_4(q) $	q^{36}
$E_7(q)$		$(2, q-1)^{-1}q^{39}(q^{18}-1)(q^{14}-1)(q^{10}-1) F_4(q) $	q^{63}
$E_8(q)$		$q^{96}(q^{30}-1)(q^{12}+1)(q^{20}-1)(q^{18}-1)(q^{14}-1)$	q^{120}
		$(q^6+1) F_4(q) $	
$^{2}A_{n}(q)$	$n \ge 2,$	$(n+1, q+1)^{-1}q^{n(n+1)/2}\prod_{i=2}^{n+1}(q^i - (-1)^i)$	$q^{n(n+1)/2}$
	$(n,q) \neq (2,3), (3,2)$		
$^{2}A_{3}(2)$		$2^6 \cdot 3^4 \cdot 5$	3^{4}
$^{2}A_{2}(3)$		$2^5 \cdot 3^3 \cdot 7$	2^{5}
$^{2}B_{2}(q)$	$q = 2^{2m+1},$	$q^2(q^2+1)(q-1)$	q^2
	$ \pi(q^2+1) \geqslant 2$		
$^{2}B_{2}(q)$	$q = 2^{2m+1},$	$q^2(q^2+1)(q-1)$	$q^2 + 1$
	$ \pi(q^2 + 1) = 1$		
$ ^2D_n(q)$	$n \ge 4$	$(4, q^{n} + 1)^{-1} q^{n(n-1)} (q^{n} + 1) \prod_{i=1}^{n-1} (q^{2i} - 1)$	$q^{n(n-1)}$
$ ^{3}D_{4}(q)$		$q^{12}(q^8 + q^4 + 1)(q^6 - 1)(q^2 - 1)$	q^{12}
$ ^{2}G_{2}(q)$	$q = 3^{2m+1}$	$q^{3}(q^{3}+1)(q-1)$	q^3
$^{2}F_{4}(q)$	$q = 2^{2m+1}$	$q^{12}(q^6+1)(q^4-1)(q^3+1)(q-1)$	q^{12}
$^{2}E_{6}(q)$		$(3, q+1)^{-1}q^{12}(q^9+1)(q^5+1) F_4(q) $	q^{36}

Table 2. The order and mpf of a simple group of Lie type.

 $D_s(G) = D_s(S)$, where S is one of the 26 sporadic finite simple groups. It will be convenient to consider two cases separately:

Case 1. Let S be one of the following sporadic simple groups: M_{11} , M_{12} , M_{22} , HS, M^cL , Suz, J_3 , HN, M_{23} , M_{24} , Co_3 , Co_2 , Fi_{23} , Co_1 , Fi'_{24} , O'N, J_4 , Ly, B, M. According to Table 1, it is easy to see that in these cases $\Delta_{k-1}(G) = \emptyset$. Therefore, it follows from Theorem 1 that G is OD_s -characterizable, that is $G \cong S$.

Case 2. Let S be one of the following sporadic simple groups: J_2 , Fi_{22} , He, J_1 , Ru, Th. According to Table 1, in all cases we have $\Delta_{k-1}(G) \neq \emptyset \neq \Delta_2(G)$. Thus, by Lemma 6, any disjoined pair of vertices of $\Gamma_s(G)$ can be expressed by only one GKS-series, say

$$1 \leq M < N \leq G. \tag{2}$$

If we show that $N/M \cong S$, then it follows that M = 1 and $G = N \cong S$, as required. Clearly, N/M is a non-abelian simple group in S_{p_k} . Moreover, if $\{p_i, p_j\}$ is a pair of vertices of $\Gamma_s(G)$ which is expressed to be disjoined by this GKS-series, then |N/M| is divisible by $p_i^{\alpha_i} p_j^{\alpha_j}$. On the other hand, all non-abelian simple groups whose order prime divisors not exceeding 100 are determined in [20, Table 1]. Comparing the order of N/M with orders of non-abelian simple groups in [20, Table 1], we obtain $N/M \cong S$. This is illustrated here for two simple groups J_2 and He, other simple groups Fi_{22} , J_1 , Ru and Th may be verified similarly.

- $S = J_2$. In this case, we have $|G| = 2^7 \cdot 3^3 \cdot 5^2 \cdot 7$ and $D_s(G) = (3, 3, 2, 2)$. Thus, $\{5, 7\}$ is a pair of vertices of $\Gamma_s(G)$ which is expressed to be disjoint by GKS-series (2), and so N/M is a non-abelian simple group in \mathcal{S}_7 whose order is divisible by $5^2 \cdot 7$. Using [20, Table 1], we conclude that $N/M \cong J_2$.
- S = He. Here, we have $|G| = 2^{10} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$ and $D_s(G) = (4,3,2,2,1)$. Clearly, the pairs $\{3,17\}$, $\{5,17\}$ and $\{7,17\}$ are expressed to be disjoint by GKS-series (2), and so N/M is a non-abelian simple group in S_{17} whose order is divisible by $3^3 \cdot 5^2 \cdot 7^3 \cdot 17$. Again by [20, Table 1], it follows that $N/M \cong He$.

This completes the proof.

Theorem 3 All simple groups $L_2(2^f)$ $(f \ge 2)$, such that $|\pi(2^f + 1)| = 1$ or $|\pi(2^f - 1)| = 1$, are OD_s-characterizable.

Proof. Let G be a finite group such that $|G| = |L_2(q)| = q(q^2 - 1)$ and $D_s(G) = D_s(L_2(q))$ where $q = 2^f$, $f \ge 2$, and $|\pi(q+1)| = 1$ or $|\pi(q-1)| = 1$. We are going to show that $G \cong L_2(q)$. Generally, the solvable graph of $L = L_2(q)$, when $q = 2^f$, is shown in Fig. 6. In addition, we have

- $d_{s}(2) = |\pi(L)| 1$,
- $d_{s}(s) = |\pi(q-1)|$ for every prime $s \in \pi(q-1)$,
- $d_{s}(r) = |\pi(q+1)|$ for every prime $r \in \pi(q+1)$.

Under our assumptions, we may assume that $\pi(q-1) = \{p\}$ or $\pi(q+1) = \{p\}$, where p is a prime number. Now, it follows from Corollary 3 that q-1 = por q+1 = p, where p is a prime. Clearly, $\tilde{\Gamma}(G) = (\Gamma_{s}(G) - \{2\})^{c}$ is connected, and hence, any disjoint pair of vertices of $\Gamma_{s}(G)$ can be expressed by only one GKS-series, say $1 \leq M \leq N \leq G$, such that M and G/N are 2-groups.

Note that, 2 is the only vertex which is adjacent to all other vertices and $d_s(p) = 1$ (i.e. $p \approx 2$). Let $|M| = 2^m$ and $|G/N| = 2^k$. Thus, $q^2 - 1$ divides the order of N/M and since N/M is a non-abelian simple group, it follows that |N/M| is also divisible by 4. In more details, we have

$$|N/M| = 2^{f'}(q^2 - 1) = 2^{f'}(2^{2f} - 1),$$

where f' = f - (m + k). On the other hand, according to the classification of finite simple groups, the possibilities for N/M are: an alternating group \mathbb{A}_m on $m \ge 5$ letters, one of the 26 sporadic simple groups, and a simple group of Lie type.

If $N/M \cong L_2(q)$, then M = 1, N = G and so $G \cong L_2(q)$, as required. Therefore, from now on, we assume that N/M is isomorphic to non-abeilan simple group $S \ncong L_2(q)$, and we will try to get a contradiction. First of all, we notice that $m \neq 0$ or $k \neq 0$. In fact, if m = k = 0, then M = 1, N = G, and $G = N = N/1 = N/M \cong S$. Thus S and $L_2(q)$ are nonisomorphic simple groups with the same order, which is a contradiction by Artin Theorem.

In the rest of proof we will try to get a contradiction from the following equality: *2

$$\operatorname{mpf}(|S|) = \operatorname{mpf}(|N/M|) = \operatorname{mpf}(2^{f'}(2^{2f} - 1)).$$

First, we compute the value $mpf(2^{f'}(2^{2f}-1))$. In the case when q+1 = p, it is easy to see that

$$mpf(2^{f'}(2^{2f}-1)) = mpf(2^{f'}(2^f-1)(2^f+1)) = mpf(2^{f'}(2^f-1)p) = p,$$

because $2^f - 1 < 2^f < 2^f + 1 = p$. Note that, the numbers $2^f - 1$, 2^f and $2^f + 1$ are pairwise coprime. Similarly, in the case when q - 1 = p, we obtain

$$mpf(2^{f'}(2^{2f} - 1)) = mpf(2^{f'}(2^f - 1)(2^f + 1))$$
$$= mpf(2^{f'}p(2^f + 1)) = \begin{cases} 5 & \text{if } f = 2\\ p & \text{if } f \neq 2 \end{cases}$$

 $^{^{*2}}$ The idea of proof was borrowed from [1].

(1) S is not isomorphic to an alternating group \mathbb{A}_m , $m \ge 5$.

Assume that S is isomorphic to an alternating group \mathbb{A}_m , $m \ge 5$. From the equality

$$\operatorname{mpf}(|\mathbb{A}_m|) = \operatorname{mpf}(|S|) = \operatorname{mpf}(|N/M|) = \operatorname{mpf}(2^{f'}(2^{2f} - 1)) = p,$$

we deduce that $p = \max \pi(\mathbb{A}_m)$, and so $m \ge p$. On the other hand, we have

$$\frac{m!}{2} = |\mathbb{A}_m| = |S| = |N/M| = 2^{f'}(2^{2f} - 1) = 2^{f'}p(p \pm 2),$$

which is a contradiction.

(2) S is not isomorphic to one of the 26 sporadic simple groups.

Suppose that S is isomorphic to one of the 26 sporadic simple groups. An argument similar to that in the previous case shows that mpf(|S|) = mpf(|N/M|) = p (a prime number), which forces $S \cong J_1$ (see [7]). But then, $mpf(|J_1|) = 19 = 2^f \pm 1$, which is a contradiction.

(3) S is not isomorphic to a simple group of Lie type, except $L_2(q)$.

We only discuss on some of these cases, for example, we consider the cases $A_n(q_0)$, ${}^{3}D_4(q_0)$, ${}^{2}E_6(q_0)$, other cases are similar, so we omit them.

• Suppose that S is isomorphic to $A_n(q_0)$ for some integer $n \ge 2$ and for a power q_0 of a prime p_0 . Then, we have

$$|S| = |A_n(q_0)| = (n+1, q_0 - 1)^{-1} \cdot q_0^{n(n+1)/2} \prod_{i=2}^{n+1} (q_0^i - 1).$$

By [1], we have

$$\operatorname{mpf}(|A_n(q_0)|) = q_0^{n(n+1)/2} \ (n \ge 2),$$

and hence

$$q_0^{n(n+1)/2} = \operatorname{mpf}(|A_n(q_0)|) = \operatorname{mpf}(|S|) = \operatorname{mpf}(|N/M|)$$
$$= \operatorname{mpf}(2^{f'}(2^{2f} - 1)) = p.$$

This shows that $q_0 = p_0 = p$ and n(n+1)/2 = 1, which is a contradiction.

• Suppose that S is isomorphic to ${}^{3}D_{4}(q_{0})$. Then, we have

$$|{}^{3}D_{4}(q_{0})| = q_{0}^{12}(q_{0}^{8} + q_{0}^{4} + 1)(q_{0}^{6} - 1)(q_{0}^{2} - 1).$$

One can easily obtain that $mpf(|^{3}D_{4}(q_{0})|) = q_{0}^{12}$. But then, we observe that

$$q_0^{12} = mpf(|^3D_4(q_0)|) = mpf(|S|) = mpf(|N/M|)$$

= mpf(2^{f'}(2^{2f} - 1)) = p,

which is a contradiction.

• Suppose that S is isomorphic to ${}^{2}E_{6}(q_{0})$. Then, we have

$$|S| = |{}^{2}E_{6}(q_{0})| = q_{0}^{36}(q_{0}^{12} - 1)(q_{0}^{9} + 1)(q_{0}^{8} - 1)(q_{0}^{6} - 1)(q_{0}^{5} + 1)(q_{0}^{2} - 1).$$

It is obvious that $mpf(|^2E_6(q_0)|) = q_0^{36}$, and so we deduce that $q_0^{36} = p$, which is a contradiction.

This completes the proof of theorem.

Theorem 4 Let G be a finite group satisfying $|G| = |L_2(q)|$ and $D_s(G) = D_s(L_2(q))$, where $q = p^f > 3$. Furthermore, assume one of the following conditions is fulfilled:

(a) $q \equiv 1 \pmod{4}$, and $|\pi(q+1)| = 2 \text{ or } |\pi(q-1)| \leq 2$; (b) $q \equiv -1 \pmod{4}$.

Then
$$G \cong L_2(q)$$
.

Proof. (a) The solvable graph of $L_2(q)$, where $q \equiv 1 \pmod{4}$, is shown in Fig. 8. If $|\pi(\frac{q+1}{2})| = 1$ or $|\pi(q-1)| \leq 2$, then $\tilde{\Gamma}(G)$ is connected by Lemma 6 (1). Therefore, any disjoint pair of vertices of $\Gamma_s(G)$ can be expressed by only one GKS-series, say $1 \leq M < N \leq G$. Note that M and G/N are 2-groups because 2 is the only prime whose degree is complete and N/M is a non-abelian simple group such that $\pi(G) = \pi(N/M)$. Let $|M| = 2^m$ and $|G/N| = 2^k$. Then, we have

$$|N/M| = q(q^2 - 1)/2^{k+m+1}$$

We need first to compute $\operatorname{mpf}(|N/M|)$. If $|\pi(q+1)| = 2$, then (q+1)/2 < q, q-1 < q and $|N/M|_2 \leq |G|_2 \leq q-1 < q$, which shows that $\operatorname{mpf}(|N/M|) = q$. Similarly, if $|\pi(q-1)| \leq 2$, then it is easy to see that $\operatorname{mpf}(|N/M|) = q$.

If $N/M = L_2(q)$, then M = 1, N = G and $G = L_2(q)$, as desired. Therefore, from now on, we assume that $N/M \neq L_2(q)$. Now, we will compare the values mpf(|N/M|) and mpf(|S|) for all other non-abelian simple groups to get a contradiction.

Suppose first that N/M is a simple group of Lie type. If N/M is isomorphic to $A_n(q_0)$ for some integer $n \ge 2$ and for a power q_0 of a prime p_0 , then we have

$$q(q^{2}-1)/2^{k+m+1} = |N/M| = |A_{n}(q_{0})|$$
$$= (n+1, q_{0}-1)^{-1}q_{0}^{n(n+1)/2} \prod_{i=2}^{n+1} (q_{0}^{i}-1),$$

and also (see Table 2)

$$q = mpf(|N/M|) = mpf(|A_n(q_0)|) = q_0^{n(n+1)/2}$$

We now observe that

$$|N/M| = q(q^2 - 1)/2^{k+m+1} = q_0^{n(n+1)/2}(q_0^{n(n+1)} - 1)/2^{k+m+1},$$

which forces $\operatorname{ppd}(q_0^{n(n+1)}-1) \in \pi(N/M) = \pi(A_n(q_0))$, a contradiction. If N/M is isomorphic to ${}^2E_6(q_0)$, then we have

$$|N/M| = q_0^{36}(q_0^{12} - 1)(q_0^9 + 1)(q_0^8 - 1)(q_0^6 - 1)(q_0^5 + 1)(q_0^2 - 1),$$

and also (see Table 2)

$$q = mpf(|N/M|) = mpf(|^2E_6(q_0)|) = q_0^{36}$$

But then, we obtain

$$|N/M| = q(q^2 - 1)/2^{k+m+1} = q_0^{36}(q_0^{72} - 1),$$

and it follows that $ppd(q_0^{72}-1) \in \pi(N/M) = \pi({}^2E_6(q_0))$, a contradiction.

The possibility for N/M to be isomorphic to another simple group of Lie type would be terminated in the same way. Similarly, when N/M is isomorphic to an alternating or a sporadic simple group we can also derive a contradiction.

(b) The solvable graph of $L = L_2(q)$, where $q \equiv -1 \pmod{4}$, is shown in Fig. 7. Since $\Delta_{|\pi(L)|-1}(L) = \emptyset$, L is OD_s-characterizable by Theorem 1.

References

- Abe S., A characterization of some finite simple groups by orders of their solvable subgroups. Hokkaido Math. J. **31** (2002), 349–361.
- [2] Abe S. and Iiyori N., A generalization of prime graphs of finite groups. Hokkaido Math. J. 29 (2000), 391–407.
- [3] Artin E., The orders of the linear groups. Comm. Pure Appl. Math. 8 (1955), 355–365.
- [4] Artin E., The orders of the classical simple groups. Comm. Pure Appl. Math. 8 (1955), 455–472.
- [5] Brandl R. and Shi W. J., A characterization of finite simple groups with abelian Sylow 2-subgroups. Ricerche Mat. 42 (1993), 193–198.
- [6] Casolo C. and Dolfi S., Products of primes in conjugacy class sizes and irreducible character degrees. Israel J. Math. 174 (2009), 403–418.
- [7] Conway J. H., Curtis R. T., Norton S. P., Parker R. A. and Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [8] Denecke K., Li X. H. and Bi J. X., A characterization of finite simple groups by the orders of solvable subgroups. Sci. China Ser. A 50 (2007), 715–726.
- [9] Hagie M., The diameter of the solvable graph of a finite group. Hokkaido Math. J. 29 (2000), 553–561.
- [10] Hall M., The Theory of Groups, Macmillan, New York, 1959.
- [11] King O. H., The subgroup structure of finite classical groups in terms of geometric configurations. Surveys in combinatorics, (2005), 29–56.
- [12] Kleidman P. B., The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups. J. Algebra **117** (1988), 30–71.
- [13] Lucido M. S., Groups in which the prime graph is a tree. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), 131–148.
- [14] Mazurov V. D., Recognition of finite simple groups $S_4(q)$ by their element orders. Algebra and Logic **41** (2002), 93–110.
- [15] Passman D. S., Permutation Groups, W. A. Benjamin Inc., New York, (1968).

- [16] Shi W. J., A characterization of Suzuki's simple groups. Proc. Amer. Math. Soc. 114 (1992), 589–591.
- [17] Suzuki M., On a class of doubly transitive groups. Ann. of Math. (2) 75 (1962), 105–145.
- [18] Suzuki M., Group Theory I, Springer-Verlag, Berlin-New York 1982.
- [19] Williams J. S., Prime graph components of finite groups. J. Algebra 69 (1981), 487–513.
- [20] Zavarnitsine A. V., Finite simple groups with narrow prime spectrum. Sib. Elektron. Mat. Izv. 6 (2009), 1–12.
- [21] Zsigmondy K., Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265–284.

B. AKBARIDepartment of MathematicsK. N. Toosi University of TechnologyP. O. Box 16315-1618, Tehran, IranE-mails: b.akbari@dena.kntu.ac.ir

N. IIYORI Department of Mathematics Faculty of Education Yamaguchi University Yamaguchi 753-8511, Japan E-mail: iiyori@yamaguchi-u.ac.jp

A. R. MOGHADDAMFARDepartment of MathematicsK. N. Toosi University of TechnologyP. O. Box 16315-1618, Tehran, IranE-mails: moghadam@kntu.ac.ir