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Abstract. A natural algebraic generalization of V.F.R. Jones’ theory of subfactors
is defined and studied. Noncommutative finite separable extensions of K-algebras are
defined from the algebraic notions of relative separability, split extension, and a counit
condition. Examples are drawn from group, field and general Galois theory, which is

of interest due to the existing comparisons between Jones’ subfactor theory and these
other algebraic theories. Finite separable extensions possess the main properties of the
subfactor theory such as index and iterative aspects that lead to a tower of algebras
and braid group representations. We prove that global dimension and other homological
properties are the same for overalgebra and subalgebra in a finite separable extension.

Key words: finite separable extension, Galois extension, conditional expectation, index,
endomorphism ring, global dimension, braid group.

1. Introduction

M. Pimsner and S. Popa took up a study in [26] of index and alge-
braic structure in the type II_{1} subfactor theory pioneered by Jones [13].
A question that appears implicitly in their article asks what properties are
shared by a subalgebra S and an algebra A given the structure of a separable
Frobenius extension. Pimsner and Popa had proved that the type II_{1} factor
von Neumann algebra pairs N\subseteq M under study are finite projective ex-
tensions, but they provided formulas indicating something rather stronger:
the algebra pairs are separable Frobenius extensions (as developed in [18],
[30] and [33] ) . We show that N\subseteq M is something even stronger than sep-
arable Frobenius: M is a split, separable extension of N with counitality
condition. In this paper, we define and make an algebraic study of such
extensions, which we call finite separable extensions. We prove in Theorem
4.2 that the endomorphism ring of the extension is itself a finite separable
extension of the overalgebra, a type of endomorphism ring theorem such as
the one in [19] and [21]. On the one hand, the endomorphism ring theorem
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suggests a symmetrization of finite separable extension and a weakening of
Morita equivalence of rings. This leads us to an algebraic answer to the
question of Pimsner and Popa: M and N share homological properties like
global dimension. The notion of homological property of a ring is defined
in Section 6. On the other hand, the endomorphism ring theorem is the
basic mechanism permitting the iteration of a tower of algebras, which has
a sequence of idempotents satisfying the braid-like relations. We show that
V. Jones’ theory applies to finite separable extensions in Section 7, which
is much more general than previously considered [8].

2. Relative Separability

Throughout this paper, we let k be a commutative ring with unit, A

a k-algebra with subalgebra S such that 1\in S . Let \mu s : A\otimes_{S}A – A

be the multiplication map defined by a\otimes b\mapsto ab . This is evidently an
A-A-bimodule morphism. For any k algebra B , let B^{e} denote the algebra
B\otimes_{k}B^{op} .

Definition 2.1 A is said to be a separable extension of S iff there exists
an e\in A\otimes_{S}A (called a separability element) such that

(i) \mu_{S}(e)=1

(ii) ae=ea \forall a\in A .

Proposition 2.1 The following conditions on a ring extension A\supseteq S are
equivalent:

1. A is a separable extension of S ;
2. A has relative Hochschild cohomological dimension 0 over S ;
3. A is an S^{e} relative projective A^{e} -module;
4. The universal derivation d:Aarrow A\otimes s A is inner;
5. The module condition in Proposition 2.2
6. Every S^{e} -split epi is A^{e} -split

Proof Relative Hochschild cohomology was introduced in [11] and sep-
arable extensions in [10]. The equivalence of conditions 1,2,3 and 4 may
be found in [6] or [16]. We next show the equivalence of conditions 1 and
6. First assume 6. The multiplication map \mu s is an epimorphism of A^{e}-

module S^{e}-split by the map sending a\mapsto a\otimes_{S}1 . Hence there exists an
A^{e}-splitting \eta : Aarrow A\otimes_{S}A , and e=\eta(1) is a separability element. The
equivalence of 1 and 5 is given in the proof of Proposition 2.2 below.
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Two applications of the next lemma makes an S^{e} split epi of A^{e}-modules
into a split epi to show that condition 1 implies 6. \square

The next lemma uses a known generalization of the trace argument for
proving Maschke’s theorem in finite group representation theory.

Lemma 2.1 If A is a separable extension of S , and C is an arbitrary
unital k -algebra, then a C-S-split epi of C-A bimodules is C-A-split. Also,
an S-C-split epi of A-C bimodules is A-C-split. Hence, A has relative global
dimension zero over S : short exact sequences of A-modules that split over
S can be made to split over A .

Proof. Let e= \sum_{i=1}^{n}x_{i}\otimes_{S}y_{i} be a separability element, \sigma : N – M an
epi of C-A bimodules with splitting f\in Homc_{-}s(M, N) We now apply a
trace operator to alter f to a C-A module morphism \gamma satisfying \sigma\gamma=1 .

Let x= \sum_{i=1}^{r}z_{i}\otimes w_{i} and g\in Homc-s(M, N) . The trace operator
Tr_{(-)}(-) : Homc_{-}s(M, N)\otimes_{k}A\otimes_{S}Aarrow Hom_{C-k}(M, N) is defined by

Tr_{x}(g)(m)= \sum_{i=1}^{r}g(mz_{i})w_{i} .

Clearly, Tr_{x}(g) is C-k linear for arbitrary x . In fact, Tr_{e}(g)\in Hom_{C-A}

(M, N) , since

Tr_{e}(g) (ma)=Tr_{ae}(g)(m)=Tr_{ea}(g)(m)=Tr_{e}(g)(m)a .

Then \gamma=Tr_{e}(f) is C-A linear. By property (i) we have \sigma\circ\gamma(m)=

\sum_{i=1}^{n}\sigma f(mx_{i})y_{i}=m\sum x_{i}y_{i}=m . \square

Remark 2.1. We adopt the following notation: if an R module M contains
a direct summand that is isomorphic to an R module N. we write N|M .

Proposition 2.2 A is a separable extension of S iff for every k-algebra
B and A-B bimodule N, N|A\otimes_{S}N as A-B bimodules iff for every B-A
bimodule N. N|N\otimes_{S}A .

Proof. (\Rightarrow) The multiplication map \mu : A\otimes_{S}Narrow N given by a\otimes_{S}n\mapsto n

is split by the S-B bimodule map n\mapsto 1\otimes n . By lemma, \mu is A-B-split.
Hence, N|A\otimes_{S}N .

(\Leftarrow) Let N=A. Note that A\otimes_{S} A is an S-relative projective A-module
[11]. Then A is also an S-relative projective module, so the S-A split map
\mu_{S} (split by s\mapsto s\otimes_{S}1 ) has an A-A splitting f , so f(1) is a separability
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element. \square

Remark 2.2. We review some of the many favorable properties of relative
separability. First, we have just seen in the proof of the lemma 2.1 that
relative separability is stronger than the condition, relative global dimen-
sion zero. Second, by proposition 2.2, a separable extension of rings is a
semisimple extension of rings (cf. [10] and [11]). Thirdly, the class of sep-
arable algebras has closure properties even better than those of separable
k-algebras. Suppose A_{1} is a separable extension of S_{1} , and A_{2} is a separable
extension of S_{2} . Then A_{1}\oplus A_{2} is a separable extension of S_{1}\oplus S_{2} , A_{1}\otimes_{k}A_{2}

is a separable extension of S_{1}\otimes_{k}S_{2} , and if f is an algebra homomorphism
with domain A then f(A_{1}) is a separable extension of f(S_{1})[6] . In par-
ticular, f may be an automorphism of A_{1} so that relative separability is
a conjugacy invariant property of a subalgebra [22]. In addition, if I is an
ideal in an algebra A containing the separable extension A_{1}\supset S_{1} such that
A=A_{1}\oplus I , then A is separable extension of S=S_{1}\oplus I , as one may check.

Examples of separable extensions are ring epimorphisms such as a ring
inside a localization [2], a ring R with elements a and b such that ab =1
but ba\neq 1 over the subring S generated by 1 and bRa[2] , and matrix rings
over an arbitrary algebra [11]. Other examples are treated in Section 3.

Proposition 2.3 ([6]) Suppose A is a separable extension of S. If S is
semisimple (von Neumann regular), then A is semisimple (von Neumann
regular).

Proof Recall that for any subalgebra S of A, an A-module N may be
restricted to an S-module sN while an S-module P may be induced to
an A-module A\otimes_{S}P . Inducing always takes flat modules to flat modules
and projectives to projectives. Also recall that a ring R is semisimple (von
Neumann regular) iff every left R-module is projective (flat).

Given any A-module M , its restriction sM is projective (flat) since S
is semisimple (von Neumann regular). Then the induced module A\otimes sM

is projective (flat). But M|A\otimes_{S}M as noted, whence inherits projectivity
(flatness). Hence, A is semisimple (von Neumann regular). \square

Remark 2.3. The converse of this proposition is false. If S\subseteq T\subseteq A is a
pair of extensions such that A a separable extension of T, and T a separable
extension of S , then A is a separable extension of S . If A is a separable
extension of S , then A is a separable extension of any intermediate algebra
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T[25] . Then a separable k-algebra A may separably extend an algebra S

that is not semisimple: e.g., A=M_{2}(k) and S=a triangular algebra inside
A.

In addition, separable extensions are not always projective extensions,
as the rationals extending the common integers shows.

The next proposition is useful in studying algebraic number theory.

Proposition 2.4 Let A be a separable extension of S. Then every A-
module that restricts to an injective S-module is itself injective. As a con-
sequence, if A is an integral domain with S a Dedekind domain, then A is
a Dedekind domain.

Proof. Assume M is an A-module such that sM is injective and AQ is an
injective envelope. It follows that the inclusion Marrow Q is S-split, therefore
A-split by the lemma 2.1. Therefore,M|Q , so M is injective.

Let A be a domain with S a Dedekind domain. It will suffice to consider
a divisible A-module M and show it is injective [28]. But its restriction sM
is trivially divisible, therefore injective, so M is injective. \square

3. Finite Separable Extensions

The next definition refers to the natural S-S bimodule structures on S
and A resulting from multiplication.

Definition 3.1 A is a split extension of S iff as S-S bimodules, S is a
direct summand of A .

Proposition 3.1 The following conditions on a subalgebra S of A are
equivalent:

1. A is split extension of S ;
2. There exists an S-S bimodule morphism E : Aarrow S , such that E|s=

Id_{S} (called a conditional expectation);
3. For every k -algebra B and S-B bimodule N, N|A\otimes_{S}N (iff N|N\otimes_{S}A

for every B-S bimodule N).

Proof. (1)\Leftrightarrow(2) results from noting that the inclusion S -A splits:
E is a choice of splitting. (2)\Rightarrow(3) : Note that \iota : N - A\otimes_{S}N defined by
n\mapsto 1\otimes_{S}n is split as S-B bimodule maps by E\otimes_{S}Id_{N} under the obvious
identification of S\otimes_{S}N with N. (3) implies (1): let N=S, B=S, and
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make the identification of A\otimes_{S}S with A. \square

Remark 3.1. If A is a split extension of S , then 1\otimes_{S}a=0 or a\otimes_{S}1=0

implies a=0. This follows from an application of the mapping E\otimes Id

followed by a canonical isomorphism, S\otimes_{S}A\cong A .

The next proposition, due to D.E . Cohen, gives an inequality of right
global dimension D(-) between S and A: we note its validity for left and
weak global dimensions as well.

Proposition 3.2 If A is a split extension of S, then D(S)\leq D(A)+
pr.dim.A_{S} .

Proof Let M be a right S-module. By proposition 3.1, M|M\otimes_{S}A ,
whence the projective dimension, pr.dim. M_{S}\leq pr.dim.(M\otimes_{S}A)s- By a
well-known change of rings spectral sequence in ext functors (tor functors),
we have pr.dim. (M\otimes_{S}A)_{S}\leq pr.dim.(M\otimes_{S}A)_{A}+pr.dim . A_{S} . Then
D(S)= \sup pr.dim. M_{S}\leq D(A)+pr.dim.A5 . This argument works for left
modules and left global dimension, or weak global dimension by replacing
pr . dim with flat dimension of modules. \square

Definition 3.2 A is a finite separable extension of S iff the following three
conditions are met:
(I) A is a separable extension of S ;
(II) A is a split extension of S ;
(III) There exists a separability element e\in A\otimes_{S}A , conditional expectation

E:Aarrow S , and invertible element \tau in k such that

\mu s(Id\otimes s E)e=\tau 1_{A}=\mu s(E\otimes sId)e .

We call \tau^{-1} the \underline{index} (of S in A relative to E).
It is trivial to see that conditions (I), (II) and (III) are equivalent to

condition (III’) (\forall a\in A)\exists conditional expectation E , invertible dement \tau

and separability element \tau\sum_{i=1}^{n}x_{i}\otimes y_{i} such that

\sum_{i=1}^{n}E(ax_{i})y_{i}=\sum_{i=1}^{n}x_{i}E(y_{i}a)=a .

We call condition (III’) the counitality condition, since A is in fact an
S-c0-ring [33], where a \mapsto\sum_{i=1}^{n}ax_{i}\otimes_{S}y_{i} is a coassociative comultiplication
[32], E is the counit, and condition (III’) is the counitality condition.
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The conditional expectation E : Aarrow S will also be called the Frobenius
homomorphism, since A is in fact a Frobenius extension of S with Frobenius
system (x_{i}, y_{i}, E)[31] . We call (E, x_{i}, y_{i}, \tau) a fifinite separable system for the
finite separable extension A of S defined above. We say that conditional
expectation E and a separability element e are compatible when they satisfy
condition (III).

Example 3.1. Let G be a discrete group, H a subgroup of finite index
[G:H] , and k a ground ring in which the index inverts. If \{g_{i}|i=1, . . ’ n\}

is the set of left coset representatives, then e= \sum_{i=1}^{n}g_{i}\otimes_{k[H]}g_{i}^{-1} is a sep-
arability element. Let E:k[G] – k[H] be the canonical projection defined
by E( \sum_{g\in G}a_{g}g)=\sum_{g\in H}a_{g}g . Then (E, g_{1}, . , g_{n}; g_{1}^{-1}, \ldots, g_{n}^{-1}, \frac{1}{[G.H]}.) is a
finite separable system, since

\mu_{S}(E\otimes_{S}Id)e=\frac{1}{[G.H]}.\sum_{i=1}^{n}E(g_{i})g_{i}^{-1}=\frac{1}{[G.H]}.=\mu s(Id\otimes E)e .

This example may be generalized in several directions: to crossed product
algebras (an exercise), and to Hopf-Galois extensions (cf. [5]).

Example 3.2. Von Neumann algebra II_{1} factors N\subseteq M , N a subfactor of
M of finite Jones index form a finite separable extension (cf. [18]). M is
a II_{1} factor in the Murray-von Neumann classification scheme if the values
of the normalized trace on projections range over the interval [0, 1] , and
the center is trivial. Let E : M – N denote the unique trace-preserving
conditional expectation of M onto N .

The basic construction builds a finite factor M_{1} containing M as a
subfactor with properties among which we mention:

\circ M_{1} is singly generated as an M-M bimodule by a projection e_{1} .
\circ e_{1}me_{1}=E(m)e_{1}=e_{1}E(m) .
\circ me_{1}=0 or e_{1}m=0\Rightarrow m=0 , \forall m\in M .
o The unique trace-preserving conditional expectation E_{1} : M_{1} – M

satisfies E_{1}(e_{1})=\tau 1 for some positive real number \tau .

V. Jones has defined an index for II_{1} subfactors, denoted by [M : N] , and
shown that values of this index lie in a semi-continuous spectrum of the
positive reals [13] [8].

Theorem 3.1 (Pimsner,Popa [26]) If [M : N]<\infty with n the integer
part of [M : N] , then there exists a family \{m_{j}\}_{j=1}^{n+1} of elements in M
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satisfying the properties:
(a) E(m_{j}^{*}m_{k})=0 , j\neq k ,
(b) E(m_{j}^{*}m_{j})=1,1\leq j\leq n ;
(c) E(m_{n+1}^{*}m_{n+1}) is a projection in N of trace [M : N]\cdot n .
(d) \sum_{j=1}^{n+1}m_{j}e_{1}m_{j}^{*}=1 ;
(e) \sum_{j=1}^{n+1}m_{j}m_{j}^{*}=[M : N] .

It follows from the theorem that M is a finitely generated projective
right (or left) N-module with dual basis \{m_{j}\}_{j=1}^{n+1} in M and \{E(m_{j}^{*}-)\}_{j=1}^{n+1}

in Hom_{N}(M, N) .
One can use the Pimsner-Popa basis to prove that M_{1}\cong M\otimes_{N}M as

M-M bimodules [15]. Then properties (d) and (e) above show that

\frac{1}{[M\cdot N]}.\sum_{i=1}^{n+1}m_{i}\otimes_{N}m_{i}^{*}

is a separability element (observed independently in [33] and [18]). Com-
patibility with E follows from an application of the properties of M_{1} above.

Example 3.3. The full matrix extension M_{n}(A) of any k-algebra A is a
finite separable extension with separability element

e= \frac{1}{n}\sum_{i=1j}^{n}\sum_{=1}^{n}E_{ij}\otimes_{A}E_{ji} ,

where E_{ij} is the (i, j)-matrix unit. A conditional expectation is defined
by E(X)= \frac{1}{n}\sum_{i=1}^{n}X_{ii} where X=(X_{ij})\in M_{n}(A) . Then e and E satisfy
condition (III) with \tau=\frac{1}{n^{2}} . E might be defined as a different weighted sum
of diagonal elements: this will result in a finite separable extension with
different index.

Example 3.4. Finite separable extensions of fields F_{2}/F_{1} with characteris-
tic coprime to the degree n are an example. Let \alpha be a primitive element,
F_{2}=F_{1}(\alpha) , with minimal polynomial

p(x)=x^{n}- \sum_{i=0}^{n-1}c_{i}x^{i}

Let

E= \frac{1}{n} trace : F_{2}arrow F_{1} ,
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the normalized trace , where trace is a nondegenerate bilinear form on the
F_{1} -vector space F_{2} with dual bases \{\alpha^{i}\}_{i=0}^{n-1} and

\{\frac{\sum_{j=0}^{i}c_{j}\alpha^{j}}{p’(\alpha)\alpha^{i+1}}\}_{i=0}^{n-1}

A separability element is given [24] by

f= \sum_{i=0}^{n-1}\alpha^{i}\otimes_{F_{1}}\frac{\sum_{j=0}^{i}c_{j}\alpha^{j}}{p’(\alpha)\alpha^{i+1}} .

Denoting f by \sum_{i=0}^{n-1}u_{i}\otimes v_{i} where E(u_{i}v_{j})= \frac{1}{n}\delta_{i,j} , we easily compute
\sum u_{i}E(v_{i})=\sum u_{i}E(u_{0}v_{i})=\frac{1}{n} , since u_{0}=1 . Letting 1= \sum b_{i}v_{i} , we get
\sum E(u_{i})v_{i}=\sum b_{j}E(u_{i}v_{j})v_{i}=\frac{1}{n}\sum b_{j}v_{j}=\frac{1}{n} . Hence, f and E are compatible
with index n . In characteristic p the index is n (mod p).

Example 3.5. Let A be a Galois extension (of commutative rings) of S
with finite group G , [1]. Then A is a finite separable extension of S if
\tau=\frac{1}{|G|}\in S (cf. [4]). One example of such a Galois extension is a ring of G-
invariant functions within the ring of continuous complex-valued functions
on a compact Haussdorf space where G acts by homeomorphisms without
fixed points [3].

Example 3.6. The quaternion algebras ( \frac{a,b}{F}) over a field F of characteristic
\neq 2 are a finite separable extension of F\tau The trace E serves as a compatible
Frobenius homomorphism to the separability idempotent:

e= \frac{1}{4}(1\otimes 1+i\otimes ia^{-1}+j\otimes jb^{-1}-k\otimes ka^{-1}b^{-1})

Note that \tau=\frac{1}{4} .

Example 3.7. More generally, a crossed product algebra E*G of a Galois
extension field E of F with Galois group G is a finite separable extension of
E (whence of F by example 3.5 and proposition 7.2). A calculation shows
that the following is a separability element over E , compatible with the
canonical projection:

e= \frac{1}{|G|\delta_{S,S^{-1}}}\sum_{S\in G}u_{S}\otimes_{E}u_{S^{-1}}

where \delta_{S,T} is the defining tw0-cocycle and \{us\}_{S\in G} is the standard basis of
the crossed product algebra.
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4. The Endomorphism Ring Theorem

We continue to suppose A is a finite separable extension of S with finite
separable system (E, x_{i}, y_{i}, \tau) and e the separability element \tau\sum x_{i}\otimes y_{i} . In
this section we prove Theorems 4.1 and 4.2, which together show that the
endomorphism ring of the natural S-module, End A_{S} , is a finite separable
extension with same index over A , where we view A embedded by the left
regular representation.

Proposition 4.1 Suppose A is a fifinite separable extension of S. Then
A\otimes s A is a unital algebra with multiplication given by

(a_{0}\otimes_{S}a_{1})(a_{2}\otimes_{S}a_{3})=a_{0}E(a_{1}a_{2})\otimes_{S}
a_{3} (4.1)

with unity element

1= \sum_{i=1}^{n}x_{i}\otimes y_{i} .

Proof. The multiplication (due to Jones in [14]) is associative because

a\circ E(a_{1}a_{2})E(a_{3}a_{4})\otimes sa_{5}=a0E(a_{1}a_{2}E(a_{3}a_{4}))\otimes sa_{5}

by S-linearity of E from both sides.
\tau^{-1}e is the identity by property (III). For we have

( \sum_{i=1}^{n}x_{i}\otimes y_{i})(a\otimes b)=\sum_{i=1}^{n}x_{i}E(y_{i}a)\otimes b=a\otimes b .

One makes use of \sum E(ax_{i})y_{i}=a to show that \tau^{-1}e is a right identity.
\square

Theorem 4.1 Given the unital algebra structure of the previous proposi-
tion, A\otimes s A is a fifinite separable extension of A with index \tau^{-1} .

Proof. Let A_{1} denote the algebra A\otimes_{S} A and denote the map \tau\mu_{S} : A_{1}arrow

A by E_{1} . Note that E_{1} is a conditional expectation since
(i) E_{1}(a)=\tau\mu_{S}(a\tau^{-1}e)=a ,

(ii) \mu_{S} is an A-A bimodule homomorphism.
An A_{1^{-}}A_{1} -bimodule structure on A\otimes_{S}A\otimes_{S} A is given by (a_{0}\otimes a_{1})(a_{2}\otimes

a_{3}\otimes a_{4})=a_{0}E(a_{1}a_{2})\otimes a_{3}\otimes a_{4} , and (a_{0}\otimes a_{1}\otimes a_{2})(a_{3}\otimes a_{4})=a_{0}\otimes a_{1}\otimes

E(a_{2}a_{3})a_{4} . Then the map \wedge r : a_{1}\otimes_{S}a_{2}\otimes_{A}a_{3}\otimes_{S}a_{4} – a_{1}\otimes_{S}a_{2}a_{3}\otimes_{S}a_{4} defines
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an isomorphism of A_{1} - A_{1} bimodules, A_{1}\otimes_{A}A_{1}arrow A\cong\otimes_{S}A\otimes_{S}A . Under the
identification by T , the multiplication map \mu_{A} is given by a_{0}\otimes a_{1}\otimes a_{2}\mapsto

a_{0}E(a_{1})\otimes_{S}a_{2} .
We next claim that the element f= \sum_{i=1}^{n}x_{i}\otimes 1\otimes y_{i} is a separability

element, which together with E_{1} satisfies the counitality condition. We
have:

1. \mu_{A}(f)=\sum_{i=1}^{n}x_{i}\otimes y_{i}=1_{A_{1}}

2. (a_{0} \otimes_{S}a_{1})f=\sum_{i=1}^{n}a_{0}E(a_{1}x_{i})\otimes_{S}1\otimes sy_{i}

=a_{0} \otimes 1\otimes\sum_{i=1}^{n}E(a_{1}x_{i})y_{i}=a_{0}\otimes 1\otimes a_{1}

= \sum x_{i}E(y_{i}a_{0})\otimes 1\otimes a_{1}=f(a_{0}\otimes a_{1}) ,

3. \mu_{A}(1\otimes E_{1})f=\mu_{A}(\tau\sum_{i=1}^{n}x_{i}\otimes 1\otimes y_{i})

= \tau\sum x_{i}\otimes y_{i}=\tau 1=\mu_{A}(E_{1}\otimes 1)f .
Hence, A_{1} is a finite separable extension of A with index \tau^{-1} . \square

Proposition 4.2 If A is a fifinite separable extension of S , then A is a
fifinitely generated projective generator S-module.

Proof. We claim that \phi_{i}\in Hom_{S}(A, S) defined by \phi_{i}(x)=E(y_{i}x) , i=
1 , \ldots , n , and x_{i}\in A , i=1 , \ldots , n , form a dual basis for A_{S} ,. This follows
from condition (III’). sA is f.g . projective by condition (III’) as well. That
A_{S} or sA are generator modules both follow from E(1)=1 , which implies
that the trace ideal is all of S. \square

Theorem 4.2 If A is a fifinite separable extension of S, then A\otimes s A with
the unital algebra structure above is isomorphic to the endomorphism ring
End A_{S} , and therefore is Morita equivalent to S .

Proof. End A_{S} denotes the algebra of right S-module endomorphisms of
A . Establishing the claim of isomorphism shows A_{1} Morita equivalent to S
by the previous proposition and the Morita theorems.

We note the important idempotent in A_{1} given by e_{1}=1\otimes_{S}1 . e_{1} is a
cyclic generator of A_{1} as an A-A-bimodule. Moreover, the multiplication is
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seen to be determined by the relations, (\forall a\in A)

e_{1}ae_{1}=e_{1}E(a)=E(a)e_{1} .

Now, E is an idempotent in End A_{S} since E(s)=s(\forall s\in S) . For each
a\in A let \lambda(a) denote left multiplication by a , an element of End A_{S} . We
claim that the linear map \theta : A_{1} -End A_{S} defined by

\theta(ae_{1}b)=\lambda(a)E\lambda(b)

is an isomorphism of k-algebras.
\theta is a homomorphism, since E\lambda(b)E=\lambda(E(b))E=E\lambda(E(b)) .
\theta is surjective: given g\in EndA_{S} and a\in A ,

g(a)=g( \sum_{i=1}^{n}x_{i}E(y_{i}a))=\sum g(x_{i})E(y_{i}a)

so \theta(\sum_{i=1}^{n}g(x_{i})e_{1}y_{i})=g .
\theta is injective: this is a three step proof. First, the left S-module

morphism \eta : Aarrow Hom_{S}(A, S) given by a\mapsto E(a-) is injective since
E(ab)=0 \forall b\in A implies a= \sum_{i=1}^{n}E(ax_{j})y_{j}=0 (i.e., E is a faith-
ful or nondegenerate bilinear form). Second, A_{S} is projective, so 1\otimes\eta :
A\otimes_{S}Aarrow A\otimes_{S}Hom_{S}(A, S) is injective. Third, \theta factors as \psi(1\otimes\eta) where
\psi : A\otimes_{S}Hom_{S}(A, S)arrow End As defined by \psi(a\otimes\gamma)=a\gamma(-) , is injec-
tive because given \psi(\sum_{i=1}^{N}a_{i}\otimes\eta_{i})=\sum a_{i}\eta_{i}=0 , then \sum_{i=1}^{N}a_{i}\otimes\eta_{i}=

\sum a_{i}\otimes\eta_{i}\sum_{j=1}^{n}x_{j}E(y_{j}-)=

\sum a_{i}\otimes\eta_{i}(x_{j})E(y_{j}-)=\sum_{i,j}a_{i}\eta_{i}(x_{j})\otimes_{S}E(y_{j}-)=0
.

Since \theta factors into injective maps, \theta is injective. \square

Remark 4.1. \lambda is the left regular representation of A in End A_{S} . The
results of this section show that if A is a finite separable extension of S
with index \tau^{-1} , then End A_{S} is a finite separable extension of A with
the same index relative to conditional expectation E_{1} composed with the
identification of End A_{S} with A\otimes_{S}A (which assigns the value \tau\sum_{i=1}^{m}z_{i}w_{i}

to the endomorphism, \sum_{i=1}^{m}\lambda(z_{i})E\lambda(w_{i}) .
A_{1} is the basic construction for finite separable extensions in analogy

with von Neumann operator algebra theory [18].
Let k be a field. It follows from the last proof and the observation
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that the mapping Sarrow A_{1} given by s\mapsto se_{1} is injective, that A_{1} is an E-
extension [8] of the faithful conditional expectation, E : A - S . However,
the converse is not true: if A\otimes s A is an E-extension with respect to a
split extension A of S with faithful conditional expectation E : A - S,
then A may not be a finite separable extension. For example, let k to be
a field of characteristic p , let G=Z_{p}\cross Z_{p} , a product of two cyclic groups
of prime order, and let H to be the left factor Z_{p} . Then k[G] has infinitely
many non-isomorphic indecomposable representations, while k[H] has only
finitely many by Higman’s theorem [9]. By Jans’ theorem [12], k[G] is not
a separable extension of k[H] , although the conditional expectation defined
in example 3.1 is faithful and makes A\otimes s A a unital E-extension.

An alternative definition of a finite separable extension A of S is in fact
given by the following proposition:

Proposition 4.3 A is a fifinite separable extension of S with index \tau iff A
is a split extension of S with conditional expectation E : Aarrow S such that
A\otimes_{S} A is a unital algebra equipped with the multiplication given by equation
(4.1) and \tau^{-1}\mu s : A\otimes_{S}A - A, a conditional expectation.

Proof. If the unity element is g= \sum x_{i}\otimes_{S}y_{i} , then \tau^{-1}g is a separability
element. Compatibility with E follows from the equations (1\otimes a)g=1\otimes a ,
g(a\otimes 1)=a\otimes 1 and remark 7.1. \square

5. Global Dimension of Algebra and Subalgebra

The next theorem considerably sharpens the results of propositions 2.3,
2.4, and 3.2 for finite separable extensions.

Theorem 5.1 If A is a fifinite separable extension of a subalgebra S, then
(weak, right, or left) global dimension D(A)=D(S) .

Proof. Since A is a split extension of S , it follows from Proposition 3.2
that

D(S)\leq D(A)+pr . dim. sA.

But A is a projective S-module by proposition, so D(S)\leq D(A) . Since
the basic construction A_{1} is a finite separable extension of A, we also have
D(A)\leq D(A_{1}) . But A_{1} is Morita equivalent to S , so D(A_{1})=D(S) .
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Whence D(S)=D(A) . \square

Remark 5.1. Another proof that is valid for left or right global dimension:
since A is a semisimple, split, projective extension of S , one may apply
proposition 2.1 of [29].

Cohomological dimension of a group G (with subgroup H of finite in-
dex) over a field k coincides with left or right global dimension of the group
algebra, k[G][24] . Thus, the last theorem generalizes the Serre extension
theorem for groups (though not the difficult case where k=fifie1d of charac-
teristic p and p|[G : H] : cf., [24] ) .

There are many other properties shared by overalgebra and subalgebra
of a finite separable extension.

Theorem 5.2 Suppose A is a fifinite separable extension of S. Then
1. S is a polynomial identity algebra \Leftrightarrow A is polynomial identity algebra.
2. S is left Noetherian\Leftrightarrow A is left Noetherian;
3. S is a quasi-Frobenius ring\Leftrightarrow A is a quasi-Frobenius ring;
4. S is a left perfect ring\Leftrightarrow A is a left perfect ring;
5. S is a left coherent ring\Leftrightarrow A is a left coherent ring.

Proof. If S is a polynomial identity algebra, then so is M_{n}(S) by a
theorem of Regev [27]. Trivially, any subalgebra (not necessarily unital) of a
polynomial identity algebra is itself satisfying the same polynomial identity.
But A is a subalgebra of the basic construct A_{1} , which is Morita equivalent
to S , whence of the form gM_{n}(S)g for some integer n and idempotent g in
M_{n}(S) . Hence, A satisfies a polynomial identity.

The forward implication of the next claim only uses that A is finitely
generated (f.g.) over S . Suppose M is an f.g . left A-module, and N is
any A-submodule of M . It will suffice to show that N is f.g . Since sA is
f.g . by proposition, it follows that the restriction sM is f.g. Since S is left
Noetherian, the submodule sN of sM is also f.g . Then A\otimes_{S}N is f.g . over
A . But N is the image of A\otimes_{S}N under an A-module map, so N is f.g.

The reverse implication depends only on a f.g . split extension. Let
M be a f.g . left S-module with N a submodule. Then A\otimes_{S}N is an A-
submodule of A\otimes s M. the latter being f.g . so the former is f.g . since A is
left Noetherian. Then s(A\otimes_{S}N) is f.g . But N|_{S}(A\otimes_{S}N) since A is a split
extension of S , so N is f.g .
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The other claims are established by using propositions 2.2 and 3.1 re-
peatedly with theorems in a recent book on homological algebra such as
[28]. \square

Remark 5.2. In spite of being so similar homologically, it is clear from
the many examples in Section 3 that A and S are not necessarily Morita
equivalent. Indeed, Morita equivalent rings have isomorphic centers, but it
is easy to compute that k\cross k is a finite separable extension of k . Another
example is the one-t0-0ne correspondence between tw0-sided ideals given by
a Morita context, but clearly not the case for finite separable extensions.
The best one can say is that for any split extension A over S , it is easy to
show that for any right ideal I in S , we have IA\cap S=I . In the next section
we clarify the relation of finite separable extension and Morita equivalence.

6. Finite Separably Equivalent Rings

It is clear that behind the results of Section 5 is a metatheorem, much
like a metatheorem would exist for properties shared by Morita equivalent
rings. In this section, we define an equivalence relation among rings that
we call finite separable equivalence. We then show that A and S are finite
separably equivalent if A is a finite separable extension of S , or if A is
Morita equivalent to S . We then prove a metatheorem that such A and S
share homological properties.

Definition 6.1 Rings A and B are finite separably equivalent if there exist
bimodules {}_{AB}P and BQ_{A} , with split surjections as A-A and B-B bimodule
morphisms, respectively,

lJ : P\otimes_{B}Qarrow A

\mu : Q\otimes_{A}Parrow B

and elements of adjunction \sum_{j=1}^{n}p_{j}\otimes q_{j} and \sum_{i=1}^{m}q_{i}’\otimes p_{i}’ such that (\forall p\in P ,
q\in Q)\nu satisfies

\sum_{i=1}^{m}\nu(p\otimes q_{i}’)p_{i}’=p , \sum_{i=1}^{m}q_{i}’\nu(p_{i}’\otimes q)=q

and u satisfies
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\sum_{j=1}^{n}\mu(q\otimes p_{j})q_{j}=q , \sum_{j=1}^{n}p_{j}\mu(q_{j}\otimes p)=p .

Remark 6.1. The last four conditions above imply that the functors
F=P\otimes- : B- Modarrow A-Mod, and G=Q\otimes- : A-Mod arrow B-Mod,
form adjunctions in either order. They also entail that P and Q are pr0-

generators as A- and B-modules. The first two conditions above imply that
the counits of these adjunctions are split epis.

This definition can be extended to categories as follows: two categories
C and D are finite separably equivalent iff there exist adjunctions (F : Carrow

D, G , \eta , \epsilon) and (G, F’, \eta, \epsilon’) such that the counits \epsilon and \epsilon’ are spit epi natural
transformations. Adjunction with split epi counit is clearly closed under
composition, so the equivalence relation is indeed transitive. Symmetry
and refiexivity of the relation among rings and categories is obvious.

Note that any additive category C is finite separably equivalent to a
finite product of itself C\cross \cross C , since the diagonal functor has left ad-
joint the coproduct, right adjoint the product [20], which coincide in the
biproduct, and both counits of adjunction are split epis.

Note that much of the structure in Section 4 carries over to P\otimes_{B}Q and
Q\otimes_{A}P as well as (a not necessarily invertible) index [A : B] and [B : A]
(in a notation to be introduced in Section 7).

Proposition 6.1 If A is a fifinite separable extension of S, then A and S
are fifinite separably equivalent.

Proof. Using the notation of definition 6.1, we let B=S,{}_{A}P_{S}=AAS ,
sQ_{A}=sA_{A} , \nu=\mu_{S} : A\otimes_{S}Aarrow A , and \mu : A\otimes_{A}A\cong Aarrow ES . The
multiplication map \mu_{S} and E are both split epis. The elements of adjunction
in P\otimes Q and Q\otimes P are given by \sum x_{i}\otimes y_{i} and 1\otimes 1 , respectively. \square

Proposition 6.2 If A and B are Morita equivalent rings, then A and B
are fifinite separably equivalent.

Proof. It is well-known that one of several equivalent ways to define
Morita equivalent rings A and B is to stipulate bimodules {}_{A}P_{B} and BQ_{A}

that satisfy
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P\otimes_{B}Q\cong A

Q\otimes_{A}P\cong B

as A-A and B-B bimodules, respectively where the bimodule isomorphisms
are associative (cf. [4]). The elements of adjunction are then the inverse
images of 1_{A} and 1_{B} , and associativity yields the four equations of adjunc-
tion. \square

We shall informally say that a property of left modules, such as projec-
tivity or flatness, is an assignment of subclass \Phi_{R} of R-mod for each ring R.
A property of modules is said to induce (under a finite projective change of
rings) if given any two rings R and S and a bimodule {}_{R}P_{S} , which is finite
projective on either side, then M\in\Phi_{S}\Rightarrow P\otimes_{S}M\in\Phi_{R} . A property of
modules is direct sum invariant, if, for any ring R and M\in\Phi_{R} , we have
N|M\Rightarrow N\in\Phi_{R} . A property of modules is good if it is both direct sum
invariant and induces under a finite projective change of rings. For example,
both flatness and projectivity are good properties.

It is well-known that certain desirable properties of rings are expressible
in terms of the coincidence of classes of modules. For example, “all mod-
ules are projective (flat),” “all modules are quotients of projectives” or “all
flat modules are projective” characterize important classes of rings, viz. ,
semisimple (von Neumann regular), left hereditary, or left perfect rings,
resp. [28]. This idea may be captured as follows. Define a property of
rings to be a subclass of rings. Define a homological property of rings to
be a subclass of rings R where two good properties of modules coincide,
\Phi_{R}=\Psi_{R} .

Metatheorem 6.1 If A and B are fifinite separably equivalent rings, then
A and B share homological properties.

Proof. Let \Phi_{R} and \Psi_{R} be good properties of modules, and suppose A is
a ring such that \Phi_{A}=\Psi_{A} . It suffices by symmetry to prove that \Phi_{B}\subseteq\Psi_{B} .
Suppose as before {}_{A}P_{B} and BQ_{A} satisfy the conditions of definition 6.1.
Given M\in\Phi_{B} , we have P\otimes_{B}M\in\Phi_{A} since good properties induce, whence
P\otimes_{B}M\in\Psi_{A} by assumption. Again by inducing Q\otimes_{A}P\otimes_{B}M\in\Psi_{B} . But
M|Q\otimes_{A}P\otimes_{B}M by one of the split surjectivity conditions. So M\in\Psi_{B}

by direct sum invariance of good properties. Hence, \Phi_{B}\subseteq\Psi_{B} . \square

For example, one may establish proposition 5.2, (3), (4), and (5) by



544 L. Kadison

showing that the properties of left coherent, left perfect and quasi-Frobenius
are homological properties. Note that the proof of the metatheorem does
not require the elements of adjunction of finite separable equivalence but
only the assumption that P and Q are finite projective as A- and B-modules,
and that we have the split epimorphisms: the latter carry over to the Tor
functors on modules in the following way.

Proposition 6.3 Let A and B be rings where \mu_{A} : P\otimes_{A}Q – B and
\mu_{B} : Q\otimes_{B}Parrow A are split epimorphisms of B-B and A-A bimodules,
respectively, with {}_{BA}P and AQ_{B} bimodules fifinite projective on either side.
Then for arbitrary A modules M_{A} and aN, there is a split epi

\mu_{n} : Tor_{n}^{B}(M\otimes_{A}Q, P\otimes_{A}N)arrow Tor_{n}^{A}(M, N)

induced from the map Id_{M}\otimes\mu_{B}\otimes Id .

Proof. If X. arrow M is a projective resolution of M_{A} , then X.\otimes Qarrow M\otimes Q

is a projective resolution of M\otimes Q since AQ is flat and Q_{B} is projective.
If \mu_{B} is split by an A-A bimodule map \sigma , then \sigma(1)=\sum q_{i}\otimes p_{i} satisfies
\sum\mu_{B}(q_{i}\otimes p_{i})=1 and a \sum q_{i}\otimes p_{i}=\sum q_{i}\otimes p_{i}a . Define two morphisms
of complexes as follows: f : X . \otimes_{A}Narrow X . \otimes Q\otimes P\otimes N we define by
x \otimes n\mapsto\sum x\otimes q_{i}\otimes p_{i}\otimes n and g : X . \otimes Q\otimes P\otimes Narrow X . \otimes_{A}N we define
by x\otimes q\otimes p\otimes n\mapsto x\mu_{B}(q\otimes p)\otimes_{A}n . Now g\circ f=Id . Then passing to the
homology groups of these two complexes, g induces the split epimorphism
\mu_{n} as claimed. \square

A symmetrical statement is of course true for the map \mu_{A} in the pro of
sition. It is elementary to see that global dimension \leq n is a homological
property of rings. However, the last proposition provides a convenient proof
of the following.

Corollary 6.1 If A and B are fifinite separably equivalent rings, then
D(A)=D(B) .

Proof. With the same notation as in proposition 6.3, Tor_{n}^{A}(M, N)|

Tor_{n}^{B}(M\otimes_{A}Q, P\otimes_{A}N) , so that D(B)\geq D(A) . By the symmetry in
our definition of f. s . equivalence, we also get D(A)\geq D(B) . \square
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7. Tower of Algebras and Index

In each of the seven examples given in Section 3, the quantity
\tau=\mu_{S}(E\otimes s1)e is the inverse of the Jones index defined in [15]. This
suggests that we adopt the notation [A : S]_{E} for the index \tau^{-1} . Note that
this index is an element of k , not a positive real unless extra conditions are
attached to finite separable extensions. The next proposition shows that if
the conditional expectation is fixed, as it often is in examples, the index is
well-defined, i.e. independent of the compatible separability element (which
is indeed unique).

Proposition 7.1 Suppose A is a fifinite separable extension of S with con-
ditional expectation E and two separability elements e and e’ both satisfying
the counitality condition. Suppose \mu_{S}(E\otimes 1)e=\tau and \mu_{S}(E\otimes 1)e’=\tau’ .
Then e=e’ and \tau=\tau’

Proof. Recall that e= \tau\sum_{i=1}^{n}x_{i}\otimes_{S}y_{i} and let e’= \tau’\sum_{j=1}^{m}x_{j}’\otimes_{S}y_{j}’ . Now
the unity element in A_{1} has two expressions: \tau^{-1}e=1=\tau^{\prime-1}e’ . Applying
the mapping \mu_{S} we obtain \tau^{-1}=\tau^{\prime-1} . \square

Remark 7.1. If A is a finite separable extension of S with basic construction
A_{1} , then [A_{1} : A]_{E_{1}}=[A : S]_{E} , by Theorem 4.1.

Proposition 7.2 Suppose A is a fifinite separable extension of B , and B
is a fifinite separable extension of C. Then A is a fifinite separable extension
of C with index [A:C]=[A : B][B : C] .

Proof. Let E_{1} : Aarrow B and E_{2} : Barrow C be the conditional expectations
that together with the separability elements e_{1}= \tau_{1}\sum_{i=1}^{m}u_{i}\otimes_{B}v_{i} and
e_{2}= \tau_{2}\sum_{j=1}^{n}x_{i}\otimes cy_{i} satisfy the counitality condition.

It is easy to check that E=E_{2}\circ E_{1} : Aarrow C is a conditional expectation.
We claim that e= \tau_{1}\tau_{2}\sum_{i=1}^{n}\sum_{j=1}^{m}u_{i}x_{j}\otimes_{C}y_{j}v_{i} is a separability element.
Trivially, multiplication \mu c : A\otimes_{C}Aarrow A sends e to 1. We obtain ae=ea
\forall a\in A as follows. If M is a B-B bimodule denote the S-centralized
submodule of M by M^{B}=\{m\in M : bm=mb\forall b\in B\} . As in lemma 2.1,
one defines an obvious mapping \Psi : A\otimes_{B}A\otimes_{k}(B\otimes_{C}B)^{B}arrow A\otimes_{C}A , such
that ea and ae belong to the image of the same point.

Finally, E and e satisfy the counitality condition by the following com-
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putation:

\mu(1\otimes_{S}E)e=\tau_{1}\tau_{2}\sum_{i}\sum_{j}u_{i}x_{j}E_{2}\circ E_{1}(y_{j}v_{i})

= \tau_{1}\tau_{2}\sum_{i}u_{i}(\sum_{j}x_{j}E_{2}(y_{j}E_{1}(v_{i}))

= \tau_{1}\tau_{2}\sum_{i}u_{i}E_{1}(v_{i})=\tau_{1}\tau_{2}

Similarly, \mu(E\otimes_{S}1)e=\tau_{1}\tau_{2} . Hence, A is a finite separable extension of C

with index \tau_{1}^{-1}\tau_{2}^{-1} \square

In the next theorem we iterate the basic construction to obtain a tower
of algebras above A , i.e. a sequence of unital k-algebras each included in
the next by an algebra monomorphism x – x1 . A countable sequence of
idempotents satisfying braid-like relations is obtained.

Theorem 7.1 Let A be a fifinite separable extension of S with index \tau^{-1} .
Then there is a tower of algebras

Sarrow Aarrow A_{1}arrow . 1arrow A_{i}arrow A_{i+1}arrow

where each A_{i} (i=1,2, \ldots) is the basic construction for the fifinite separable
extension A_{i-1} of A_{i-2} {where A_{0}= A and A_{-1}=S ) with index \tau^{-1}

and conditional expectation E_{i-1}=\tau\mu_{A_{i-2}} {where E_{0}=E ). The family of
idempotents \{e_{i}\}_{i=1}^{\infty} determined by e_{i}=1_{A_{i-1}}\otimes_{A_{i-2}}1_{A_{i-1}} s\^a sfy the braid-
like relations:

1. e_{i+1}e_{i}e_{i+1}=\tau e_{i+1} ;
2. e_{i}e_{i+1}e_{i}=\tau e_{i} ;
3. e_{i}e_{j}=e_{j}e_{i} whenever i-j\geq 2 .

Proof The properties of the basic construction A_{i}=A_{i-1}\otimes_{A_{i-2}}A_{i-1} are
given in Section 4. In the proof of Theorem 4.2 we have noted that e_{i} is an
idempotent, a cyclic generator of A_{i} as an A_{i-1^{-}}^{e}module, and satisfies, for
each a\in A_{i-1} ,

(*) e_{i}ae_{i}=E_{i-1}(a)e_{i} .

Finally, it is easy to see that the conditional expectation E_{i} satisfies E_{i}(e_{i})=

\tau .

Now it follows from (*) that e_{i+1}e_{i}e_{i+1}=E_{i}(e_{i})e_{i+1}=\tau e_{i+1} , whence
relation 1. For relation 2, let A_{i+1}=A_{2}=A_{1}\otimes_{A}A_{1} , and return to our
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fixed notation: in the proof of Theorem 4.1 we made an identification,
A_{1}\otimes_{A}A_{1}\cong A\otimes_{S}A\otimes_{S}A . The resulting multiplication structure is given
by

(a_{0}\otimes a_{1}\otimes a_{2})(b_{0}\otimes b_{1}\otimes b_{2})=\tau a_{0}\otimes a_{1}E(a_{2}b_{0})b_{1}\otimes b_{2} .

Now e_{2} is the element \sum_{i,j=1}^{n}x_{i}\otimes y_{i}x_{j}\otimes y_{j} . By condition (III), we have
e_{2}e_{1}= \sum x_{i}\otimes y_{i}\otimes 1 , and hence e_{2}e_{1}e_{2}=\tau e_{2} .

Since e_{j}e_{i}=e_{j}(1\otimes_{A_{i-2}}1)=e_{i}e_{j} if i-j\geq 2 , relation 3 follows. \square

Remark 7.2. We could equally well have chosen to iterate the endomor-
phism ring in the last theorem: i.e. , define A_{i+1}=EndA_{i_{A_{i-1}}} and e_{i}=E_{i-1} .
Choosing to tensor leads to something that resembles the standard complex
in relative homological algebra, since A_{n}\cong A\otimes s\cdot\cdot\otimes_{S}A (n+1 times).

Theorem 7.2 Same hypotheses and notation as in Theorem 7.1. If the
ground ring k has an invertible solution q of q^{2}\tau=q-1 , then there exists
a nontrivial homomorphism of k-algebras \Phi_{n} : k[B_{n}] – A_{n-1} for each braid
group on n letters, B_{n} .

Proof. It is a classical fact of E. Artin’s that B_{n} has the following finite
presentation,

B_{n}=\{g_{1} , \ldots , g_{n-1}|g_{i}g_{j}=g_{j}g_{i} ,

g_{i+1}g_{i}g_{i+1}=gigi+1gi , 1\leq i , j\geq n , |i-j|>1\}

It suffices to let \Phi_{n} assign invertible elements w_{i} in A_{n-1} to each g_{i} and
check the Artin relations. We define w_{i}=qe_{i}-1 (i=1, \ldots, n-1) . which
is invertible since (qe_{i}-1)(qe_{i}+(1-q))=1-q , but q and \tau are invertible.

The relation w_{i}w_{j}=w_{j}w_{i} for |i-j|>1 is clear from relation 3 in
Theorem 7.1. Using relation 1 and 2 of Theorem 7.1 and the idempotency
of the e_{i} ’s, we have

w_{i+1}w_{i}w_{i+1}=e_{i+1}(\tau q^{3}-q^{2}+2q)+qe_{i}-q^{2}(e_{i}e_{i+1}+e_{i+1}e_{i})-1

=w_{i}w_{i+1}w_{i}

=e_{i}(\tau q^{3}-q^{2}+2q)+qe_{i+1}-q^{2}(e_{i}e_{i+1}+e_{i+1}e_{i})-1 ,

since \tau q^{3}-q^{2}+2q=q . \square

Remark 7.3. Also the Hecke algebra H(q-1, n) maps homomorphically
into A_{n-1} , since the Hecke relation is satisfied by w_{i} , i=1,2 , . , n-1 : one
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has, for each i , w_{i}^{2}=(q-2)w_{i}+q-1 .
It is a consequence of the Alexander closure process in knot theory,

whereby braids are closed to produce oriented links, and the Markov equiv-
alence relation for braids that a sequence of (Markov) traces \phi_{n} : A_{n} – k

satisfying

\phi_{n+1}(x(qe_{n+1}-1)^{\pm 1})=\phi_{n}(x) \forall x\in A_{n} .

gives an invariant of oriented links in R^{3} under ambient isotopy: an exp0-

sition is given in [17].
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