On split, separable subalgebras with counitality condition

In memory of Oscar Goldman

Lars Kadison

(Received October 31, 1994)

Abstract

A natural algebraic generalization of V.F.R. Jones' theory of subfactors is defined and studied. Noncommutative finite separable extensions of K-algebras are defined from the algebraic notions of relative separability, split extension, and a counit condition. Examples are drawn from group, field and general Galois theory, which is of interest due to the existing comparisons between Jones' subfactor theory and these other algebraic theories. Finite separable extensions possess the main properties of the subfactor theory such as index and iterative aspects that lead to a tower of algebras and braid group representations. We prove that global dimension and other homological properties are the same for overalgebra and subalgebra in a finite separable extension.

Key words: finite separable extension, Galois extension, conditional expectation, index, endomorphism ring, global dimension, braid group.

1. Introduction

M. Pimsner and S. Popa took up a study in [26] of index and algebraic structure in the type $I I_{1}$ subfactor theory pioneered by Jones [13]. A question that appears implicitly in their article asks what properties are shared by a subalgebra S and an algebra A given the structure of a separable Frobenius extension. Pimsner and Popa had proved that the type $I I_{1}$ factor von Neumann algebra pairs $N \subseteq M$ under study are finite projective extensions, but they provided formulas indicating something rather stronger: the algebra pairs are separable Frobenius extensions (as developed in [18], [30] and [33]). We show that $N \subseteq M$ is something even stronger than separable Frobenius: M is a split, separable extension of N with counitality condition. In this paper, we define and make an algebraic study of such extensions, which we call finite separable extensions. We prove in Theorem 4.2 that the endomorphism ring of the extension is itself a finite separable extension of the overalgebra, a type of endomorphism ring theorem such as the one in [19] and [21]. On the one hand, the endomorphism ring theorem
suggests a symmetrization of finite separable extension and a weakening of Morita equivalence of rings. This leads us to an algebraic answer to the question of Pimsner and Popa: M and N share homological properties like global dimension. The notion of homological property of a ring is defined in Section 6. On the other hand, the endomorphism ring theorem is the basic mechanism permitting the iteration of a tower of algebras, which has a sequence of idempotents satisfying the braid-like relations. We show that V. Jones' theory applies to finite separable extensions in Section 7, which is much more general than previously considered [8].

2. Relative Separability

Throughout this paper, we let k be a commutative ring with unit, A a k-algebra with subalgebra S such that $1 \in S$. Let $\mu_{S}: A \otimes_{S} A \rightarrow A$ be the multiplication map defined by $a \otimes b \longmapsto a b$. This is evidently an A - A-bimodule morphism. For any k-algebra B, let B^{e} denote the algebra $B \otimes_{k} B^{o p}$.

Definition 2.1 A is said to be a separable extension of S iff there exists an $e \in A \otimes_{S} A$ (called a separability element) such that
$\mu_{S}(e)=1$
(ii) $\quad a e=e a \quad \forall a \in A$.

Proposition 2.1 The following conditions on a ring extension $A \supseteq S$ are equivalent:

1. A is a separable extension of S;
2. A has relative Hochschild cohomological dimension 0 over S;
3. A is an S^{e}-relative projective A^{e}-module;
4. The universal derivation $d: A \rightarrow A \otimes_{S} A$ is inner;
5. The module condition in Proposition 2.2
6. Every S^{e}-split epi is A^{e}-split.

Proof. Relative Hochschild cohomology was introduced in [11] and separable extensions in [10]. The equivalence of conditions $1,2,3$ and 4 may be found in [6] or [16]. We next show the equivalence of conditions 1 and 6. First assume 6. The multiplication map μ_{S} is an epimorphism of A^{e} modules, S^{e}-split by the map sending $a \longmapsto a \otimes_{S} 1$. Hence there exists an A^{e}-splitting $\eta: A \rightarrow A \otimes_{S} A$, and $e=\eta(1)$ is a separability element. The equivalence of 1 and 5 is given in the proof of Proposition 2.2 below.

Two applications of the next lemma makes an S^{e}-split epi of A^{e}-modules into a split epi to show that condition 1 implies 6.

The next lemma uses a known generalization of the trace argument for proving Maschke's theorem in finite group representation theory.

Lemma 2.1 If A is a separable extension of S, and C is an arbitrary unital k-algebra, then a C-S-split epi of C - A bimodules is C - A-split. Also, an S-C-split epi of $A-C$ bimodules is $A-C$-split. Hence, A has relative global dimension zero over S : short exact sequences of A-modules that split over S can be made to split over A.

Proof. Let $e=\sum_{i=1}^{n} x_{i} \otimes_{S} y_{i}$ be a separability element, $\sigma: N \rightarrow M$ an epi of $C-A$ bimodules with splitting $f \in \operatorname{Hom}_{C-S}(M, N)$. We now apply a trace operator to alter f to a C - A module morphism γ satisfying $\sigma \gamma=1$.

Let $x=\sum_{i=1}^{r} z_{i} \otimes w_{i}$ and $g \in \operatorname{Hom}_{C-S}(M, N)$. The trace operator $\operatorname{Tr}_{(-)}(-): \operatorname{Hom}_{C-S}(M, N) \otimes_{k} A \otimes_{S} A \longrightarrow \operatorname{Hom}_{C-k}(M, N)$ is defined by

$$
\operatorname{Tr}_{x}(g)(m)=\sum_{i=1}^{r} g\left(m z_{i}\right) w_{i}
$$

Clearly, $\operatorname{Tr}_{x}(g)$ is $C-k$ linear for arbitrary x. In fact, $\operatorname{Tr}_{e}(g) \in \operatorname{Hom}_{C-A}$ (M, N), since

$$
\operatorname{Tr}_{e}(g)(m a)=T r_{a e}(g)(m)=T r_{e a}(g)(m)=\operatorname{Tr}_{e}(g)(m) a
$$

Then $\gamma=\operatorname{Tr}_{e}(f)$ is C - A linear. By property (i) we have $\sigma \circ \gamma(m)=$ $\sum_{i=1}^{n} \sigma f\left(m x_{i}\right) y_{i}=m \sum x_{i} y_{i}=m$.

Remark 2.1. We adopt the following notation: if an R-module M contains a direct summand that is isomorphic to an R-module N, we write $N \mid M$.

Proposition $2.2 A$ is a separable extension of S iff for every k-algebra B and $A-B$ bimodule $N, N \mid A \otimes_{S} N$ as $A-B$ bimodules iff for every $B-A$ bimodule $N, N \mid N \otimes_{S} A$.

Proof. $\quad(\Rightarrow)$ The multiplication map $\mu: A \otimes_{S} N \rightarrow N$ given by $a \otimes_{S} n \longmapsto n$ is split by the $\mathrm{S}-\mathrm{B}$ bimodule map $n \longmapsto 1 \otimes n$. By lemma, μ is A - B-split. Hence, $N \mid A \otimes_{S} N$.
(\Leftarrow) Let $N=A$. Note that $A \otimes_{S} A$ is an S-relative projective A-module [11]. Then A is also an S-relative projective module, so the S - A split map μ_{S} (split by $s \longmapsto s \otimes_{S} 1$) has an $A-A$ splitting f, so $f(1)$ is a separability
element.
Remark 2.2. We review some of the many favorable properties of relative separability. First, we have just seen in the proof of the lemma 2.1 that relative separability is stronger than the condition, relative global dimension zero. Second, by proposition 2.2 , a separable extension of rings is a semisimple extension of rings (cf. [10] and [11]). Thirdly, the class of separable algebras has closure properties even better than those of separable k-algebras. Suppose A_{1} is a separable extension of S_{1}, and A_{2} is a separable extension of S_{2}. Then $A_{1} \oplus A_{2}$ is a separable extension of $S_{1} \oplus S_{2}, A_{1} \otimes_{k} A_{2}$ is a separable extension of $S_{1} \otimes_{k} S_{2}$, and if f is an algebra homomorphism with domain A then $f\left(A_{1}\right)$ is a separable extension of $f\left(S_{1}\right)$ [6]. In particular, f may be an automorphism of A_{1} so that relative separability is a conjugacy invariant property of a subalgebra [22]. In addition, if I is an ideal in an algebra A containing the separable extension $A_{1} \supset S_{1}$ such that $A=A_{1} \oplus I$, then A is separable extension of $S=S_{1} \oplus I$, as one may check.

Examples of separable extensions are ring epimorphisms such as a ring inside a localization [2], a ring R with elements a and b such that $a b=1$ but $\mathrm{ba} \neq 1$ over the subring S generated by 1 and bRa [2], and matrix rings over an arbitrary algebra [11]. Other examples are treated in Section 3.

Proposition 2.3 ([6]) Suppose A is a separable extension of S. If S is semisimple (von Neumann regular), then A is semisimple (von Neumann regular).

Proof. Recall that for any subalgebra S of A, an A-module N may be restricted to an S-module ${ }_{S} N$ while an S-module P may be induced to an A-module $A \otimes_{S} P$. Inducing always takes flat modules to flat modules and projectives to projectives. Also recall that a ring R is semisimple (von Neumann regular) iff every left R-module is projective (flat).

Given any A-module M, its restriction ${ }_{S} M$ is projective (flat) since S is semisimple (von Neumann regular). Then the induced module $A \otimes_{S} M$ is projective (flat). But $M \mid A \otimes_{S} M$ as noted, whence inherits projectivity (flatness). Hence, A is semisimple (von Neumann regular).

Remark 2.3. The converse of this proposition is false. If $S \subseteq T \subseteq A$ is a pair of extensions such that A a separable extension of T, and T a separable extension of S, then A is a separable extension of S. If A is a separable extension of S, then A is a separable extension of any intermediate algebra
T [25]. Then a separable k-algebra A may separably extend an algebra S that is not semisimple: e.g., $\mathrm{A}=M_{2}(k)$ and $\mathrm{S}=$ a triangular algebra inside A.

In addition, separable extensions are not always projective extensions, as the rationals extending the common integers shows.

The next proposition is useful in studying algebraic number theory.
Proposition 2.4 Let A be a separable extension of S. Then every A module that restricts to an injective S-module is itself injective. As a consequence, if A is an integral domain with S a Dedekind domain, then A is a Dedekind domain.

Proof. Assume M is an A-module such that ${ }_{S} M$ is injective and ${ }_{A} Q$ is an injective envelope. It follows that the inclusion $M \rightarrow Q$ is S-split, therefore A-split by the lemma 2.1. Therefore, $M \mid Q$, so M is injective.

Let A be a domain with S a Dedekind domain. It will suffice to consider a divisible A-module M and show it is injective [28]. But its restriction ${ }_{S} M$ is trivially divisible, therefore injective, so M is injective.

3. Finite Separable Extensions

The next definition refers to the natural S - S bimodule structures on S and A resulting from multiplication.

Definition 3.1 A is a split extension of S iff as $S-S$ bimodules, S is a direct summand of A.

Proposition 3.1 The following conditions on a subalgebra S of A are equivalent:

1. A is split extension of S;
2. There exists an S-S bimodule morphism $E: A \rightarrow S$, such that $\left.E\right|_{S}=$ $I d_{S}$ (called a conditional expectation);
3. For every k-algebra B and S-B bimodule $N, N \mid A \otimes_{S} N$ (iff $N \mid N \otimes_{S} A$ for every $B-S$ bimodule N).

Proof. (1) $\Longleftrightarrow(2)$ results from noting that the inclusion $S \rightarrow A$ splits: E is a choice of splitting. (2) $\Rightarrow(3)$: Note that $\iota: N \rightarrow A \otimes_{S} N$ defined by $n \longmapsto 1 \otimes_{S} n$ is split as S-B bimodule maps by $E \otimes_{S} I d_{N}$ under the obvious identification of $S \otimes_{S} N$ with N. (3) implies (1): let $N=S, B=S$, and
make the identification of $A \otimes_{S} S$ with A.
Remark 3.1. If A is a split extension of S, then $1 \otimes_{S} a=0$ or $a \otimes_{S} 1=0$ implies $a=0$. This follows from an application of the mapping $E \otimes I d$ followed by a canonical isomorphism, $S \otimes_{S} A \cong A$.

The next proposition, due to D.E. Cohen, gives an inequality of right global dimension $D(-)$ between S and A : we note its validity for left and weak global dimensions as well.

Proposition 3.2 If A is a split extension of S, then $D(S) \leq D(A)+$ pr.dim. A_{S}.

Proof. Let M be a right S-module. By proposition 3.1, $M \mid M \otimes_{S} A$, whence the projective dimension, pr.dim. $M_{S} \leq \operatorname{pr} \cdot \operatorname{dim} .\left(M \otimes_{S} A\right)_{S}$. By a well-known change of rings spectral sequence in ext functors (tor functors), we have pr.dim. $\left(M \otimes_{S} A\right)_{S} \leq \operatorname{pr.dim} .\left(M \otimes_{S} A\right)_{A}+\operatorname{pr.dim} . A_{S}$. Then $D(S)=$ sup pr.dim. $M_{S} \leq D(A)+$ pr.dim. A_{S}. This argument works for left modules and left global dimension, or weak global dimension by replacing pr. dim with flat dimension of modules.

Definition 3.2 A is a finite separable extension of S iff the following three conditions are met:
(I) A is a separable extension of S;
(II) A is a split extension of S;
(III) There exists a separability element $e \in A \otimes_{S} A$, conditional expectation $E: A \rightarrow S$, and invertible element τ in k such that

$$
\mu_{S}\left(I d \otimes_{S} E\right) e=\tau 1_{A}=\mu_{S}\left(E \otimes_{S} I d\right) e
$$

We call τ^{-1} the index (of S in A relative to E).
It is trivial to see that conditions (I), (II) and (III) are equivalent to condition (III^{\prime}) $(\forall a \in A) \exists$ conditional expectation E, invertible dement τ and separability element $\tau \sum_{i=1}^{n} x_{i} \otimes y_{i}$ such that

$$
\sum_{i=1}^{n} E\left(a x_{i}\right) y_{i}=\sum_{i=1}^{n} x_{i} E\left(y_{i} a\right)=a .
$$

We call condition (III') the counitality condition, since A is in fact an S-co-ring [33], where $a \mapsto \sum_{i=1}^{n} a x_{i} \otimes_{S} y_{i}$ is a coassociative comultiplication [32], E is the counit, and condition (III^{\prime}) is the counitality condition.

The conditional expectation $E: A \rightarrow S$ will also be called the Frobenius homomorphism, since A is in fact a Frobenius extension of S with Frobenius system $\left(x_{i}, y_{i}, E\right)$ [31]. We call $\left(E, x_{i}, y_{i}, \tau\right)$ a finite separable system for the finite separable extension A of S defined above. We say that conditional expectation E and a separability element e are compatible when they satisfy condition (III).

Example 3.1. Let G be a discrete group, H a subgroup of finite index [$G: H$], and k a ground ring in which the index inverts. If $\left\{g_{i} \mid i=1, \ldots, n\right\}$ is the set of left coset representatives, then $e=\sum_{i=1}^{n} g_{i} \otimes_{k[H]} g_{i}^{-1}$ is a separability element. Let $E: k[G] \rightarrow k[H]$ be the canonical projection defined by $E\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in H} a_{g} g$. Then $\left(E, g_{1}, \ldots, g_{n} ; g_{1}^{-1}, \ldots, g_{n}^{-1}, \frac{1}{[G: H]}\right)$ is a finite separable system, since

$$
\mu_{S}\left(E \otimes_{S} I d\right) e=\frac{1}{[G: H]} \sum_{i=1}^{n} E\left(g_{i}\right) g_{i}^{-1}=\frac{1}{[G: H]}=\mu_{S}(I d \otimes E) e .
$$

This example may be generalized in several directions: to crossed product algebras (an exercise), and to Hopf-Galois extensions (cf. [5]).

Example 3.2. Von Neumann algebra $I I_{1}$ factors $N \subseteq M, N$ a subfactor of M of finite Jones index form a finite separable extension (cf. [18]). M is a $I I_{1}$ factor in the Murray-von Neumann classification scheme if the values of the normalized trace on projections range over the interval $[0,1]$, and the center is trivial. Let $E: M \rightarrow N$ denote the unique trace-preserving conditional expectation of M onto N.

The basic construction builds a finite factor M_{1} containing M as a subfactor with properties among which we mention:

- M_{1} is singly generated as an $M-M$ bimodule by a projection e_{1}.
- $e_{1} m e_{1}=E(m) e_{1}=e_{1} E(m)$.
- $m e_{1}=0$ or $e_{1} m=0 \Rightarrow m=0, \forall m \in M$.
- The unique trace-preserving conditional expectation $E_{1}: M_{1} \rightarrow M$ satisfies $E_{1}\left(e_{1}\right)=\tau 1$ for some positive real number τ.
V. Jones has defined an index for $I I_{1}$ subfactors, denoted by $[M: N]$, and shown that values of this index lie in a semi-continuous spectrum of the positive reals [13] [8].
Theorem 3.1 (Pimsner,Popa [26]) If $[M: N]<\infty$ with n the integer part of $[M: N]$, then there exists a family $\left\{m_{j}\right\}_{j=1}^{n+1}$ of elements in M
satisfying the properties:
(a) $E\left(m_{j}^{*} m_{k}\right)=0, j \neq k$,
(b) $E\left(m_{j}^{*} m_{j}\right)=1,1 \leq j \leq n$;
(c) $E\left(m_{n+1}^{*} m_{n+1}\right)$ is a projection in N of trace $[M: N]-n$.
(d) $\sum_{j=1}^{n+1} m_{j} e_{1} m_{j}^{*}=1$;
(e) $\sum_{j=1}^{n+1} m_{j} m_{j}^{*}=[M: N]$.

It follows from the theorem that M is a finitely generated projective right (or left) N-module with dual basis $\left\{m_{j}\right\}_{j=1}^{n+1}$ in M and $\left\{E\left(m_{j}^{*}-\right)\right\}_{j=1}^{n+1}$ in $\operatorname{Hom}_{N}(M, N)$.

One can use the Pimsner-Popa basis to prove that $M_{1} \cong M \otimes_{N} M$ as $M-M$ bimodules [15]. Then properties (d) and (e) above show that

$$
\frac{1}{[M: N]} \sum_{i=1}^{n+1} m_{i} \otimes_{N} m_{i}^{*}
$$

is a separability element (observed independently in [33] and [18]). Compatibility with E follows from an application of the properties of M_{1} above.

Example 3.3. The full matrix extension $M_{n}(A)$ of any k-algebra A is a finite separable extension with separability element

$$
e=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} E_{i j} \otimes_{A} E_{j i},
$$

where $E_{i j}$ is the (i, j)-matrix unit. A conditional expectation is defined by $E(X)=\frac{1}{n} \sum_{i=1}^{n} X_{i i}$ where $X=\left(X_{i j}\right) \in M_{n}(A)$. Then e and E satisfy condition (III) with $\tau=\frac{1}{n^{2}}$. E might be defined as a different weighted sum of diagonal elements: this will result in a finite separable extension with different index.

Example 3.4. Finite separable extensions of fields F_{2} / F_{1} with characteristic coprime to the degree n are an example. Let α be a primitive element, $F_{2}=F_{1}(\alpha)$, with minimal polynomial

$$
p(x)=x^{n}-\sum_{i=0}^{n-1} c_{i} x^{i}
$$

Let

$$
E=\frac{1}{n} \text { trace }: F_{2} \rightarrow F_{1},
$$

the normalized trace, where trace is a nondegenerate bilinear form on the F_{1}-vector space F_{2} with dual bases $\left\{\alpha^{i}\right\}_{i=0}^{n-1}$ and

$$
\left\{\frac{\sum_{j=0}^{i} c_{j} \alpha^{j}}{p^{\prime}(\alpha) \alpha^{i+1}}\right\}_{i=0}^{n-1}
$$

A separability element is given [24] by

$$
f=\sum_{i=0}^{n-1} \alpha^{i} \otimes_{F_{1}} \frac{\sum_{j=0}^{i} c_{j} \alpha^{j}}{p^{\prime}(\alpha) \alpha^{i+1}} .
$$

Denoting f by $\sum_{i=0}^{n-1} u_{i} \otimes v_{i}$ where $E\left(u_{i} v_{j}\right)=\frac{1}{n} \delta_{i, j}$, we easily compute $\sum u_{i} E\left(v_{i}\right)=\sum u_{i} E\left(u_{0} v_{i}\right)=\frac{1}{n}$, since $u_{0}=1$. Letting $1=\sum b_{i} v_{i}$, we get $\sum E\left(u_{i}\right) v_{i}=\sum b_{j} E\left(u_{i} v_{j}\right) v_{i}=\frac{1}{n} \sum b_{j} v_{j}=\frac{1}{n}$. Hence, f and E are compatible with index n. In characteristic p the index is $n(\bmod p)$.
Example 3.5. Let A be a Galois extension (of commutative rings) of S with finite group $G,[1]$. Then A is a finite separable extension of S if $\tau=\frac{1}{|G|} \in S$ (cf. [4]). One example of such a Galois extension is a ring of G invariant functions within the ring of continuous complex-valued functions on a compact Haussdorf space where G acts by homeomorphisms without fixed points [3].
Example 3.6. The quaternion algebras $\left(\frac{a, b}{F}\right)$ over a field F of characteristic $\neq 2$ are a finite separable extension of F. The trace E serves as a compatible Frobenius homomorphism to the separability idempotent:

$$
e=\frac{1}{4}\left(1 \otimes 1+i \otimes i a^{-1}+j \otimes j b^{-1}-k \otimes k a^{-1} b^{-1}\right)
$$

Note that $\tau=\frac{1}{4}$.
Example 3.7. More generally, a crossed product algebra $E * G$ of a Galois extension field E of F with Galois group G is a finite separable extension of E (whence of F by example 3.5 and proposition 7.2). A calculation shows that the following is a separability element over E, compatible with the canonical projection:

$$
e=\frac{1}{|G| \delta_{S, S^{-1}}} \sum_{S \in G} u_{S} \otimes_{E} u_{S^{-1}}
$$

where $\delta_{S, T}$ is the defining two-cocycle and $\left\{u_{S}\right\}_{S \in G}$ is the standard basis of the crossed product algebra.

4. The Endomorphism Ring Theorem

We continue to suppose A is a finite separable extension of S with finite separable system $\left(E, x_{i}, y_{i}, \tau\right)$ and e the separability element $\tau \sum x_{i} \otimes y_{i}$. In this section we prove Theorems 4.1 and 4.2, which together show that the endomorphism ring of the natural S-module, End A_{S}, is a finite separable extension with same index over A, where we view A embedded by the left regular representation.

Proposition 4.1 Suppose A is a finite separable extension of S. Then $A \otimes_{S} A$ is a unital algebra with multiplication given by

$$
\begin{equation*}
\left(a_{0} \otimes_{S} a_{1}\right)\left(a_{2} \otimes_{S} a_{3}\right)=a_{0} E\left(a_{1} a_{2}\right) \otimes_{S} a_{3} \tag{4.1}
\end{equation*}
$$

with unity element

$$
1=\sum_{i=1}^{n} x_{i} \otimes y_{i} .
$$

Proof. The multiplication (due to Jones in [14]) is associative because

$$
a_{0} E\left(a_{1} a_{2}\right) E\left(a_{3} a_{4}\right) \otimes_{S} a_{5}=a_{0} E\left(a_{1} a_{2} E\left(a_{3} a_{4}\right)\right) \otimes_{S} a_{5}
$$

by S-linearity of E from both sides.
$\tau^{-1} e$ is the identity by property (III). For we have

$$
\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)(a \otimes b)=\sum_{i=1}^{n} x_{i} E\left(y_{i} a\right) \otimes b=a \otimes b .
$$

One makes use of $\sum E\left(a x_{i}\right) y_{i}=a$ to show that $\tau^{-1} e$ is a right identity.

Theorem 4.1 Given the unital algebra structure of the previous proposition, $A \otimes_{S} A$ is a finite separable extension of A with index τ^{-1}.
Proof. Let A_{1} denote the algebra $A \otimes_{S} A$ and denote the map $\tau \mu_{S}: A_{1} \rightarrow$ A by E_{1}. Note that E_{1} is a conditional expectation since
(i) $E_{1}(a)=\tau \mu_{S}\left(a \tau^{-1} e\right)=a$,
(ii) μ_{S} is an $A-A$ bimodule homomorphism.

An A_{1} - A_{1}-bimodule structure on $A \otimes_{S} A \otimes_{S} A$ is given by $\left(a_{0} \otimes a_{1}\right)\left(a_{2} \otimes\right.$ $\left.a_{3} \otimes a_{4}\right)=a_{0} E\left(a_{1} a_{2}\right) \otimes a_{3} \otimes a_{4}$, and $\left(a_{0} \otimes a_{1} \otimes a_{2}\right)\left(a_{3} \otimes a_{4}\right)=a_{0} \otimes a_{1} \otimes$ $E\left(a_{2} a_{3}\right) a_{4}$. Then the map $\Upsilon: a_{1} \otimes_{S} a_{2} \otimes_{A} a_{3} \otimes_{S} a_{4} \longmapsto a_{1} \otimes_{S} a_{2} a_{3} \otimes_{S} a_{4}$ defines
an isomorphism of $A_{1}-A_{1}$ bimodules, $A_{1} \otimes_{A} A_{1} \xlongequal{\cong} A \otimes_{S} A \otimes_{S} A$. Under the identification by Υ, the multiplication map μ_{A} is given by $a_{0} \otimes a_{1} \otimes a_{2} \longmapsto$ $a_{0} E\left(a_{1}\right) \otimes_{S} a_{2}$.

We next claim that the element $f=\sum_{i=1}^{n} x_{i} \otimes 1 \otimes y_{i}$ is a separability element, which together with E_{1} satisfies the counitality condition. We have:

1. $\mu_{A}(f)=\sum_{i=1}^{n} x_{i} \otimes y_{i}=1_{A_{1}}$
2. $\left(a_{0} \otimes_{S} a_{1}\right) f=\sum_{i=1}^{n} a_{0} E\left(a_{1} x_{i}\right) \otimes_{S} 1 \otimes_{S} y_{i}$

$$
\begin{aligned}
& =a_{0} \otimes 1 \otimes \sum_{i=1}^{n} E\left(a_{1} x_{i}\right) y_{i}=a_{0} \otimes 1 \otimes a_{1} \\
& =\sum x_{i} E\left(y_{i} a_{0}\right) \otimes 1 \otimes a_{1}=f\left(a_{0} \otimes a_{1}\right),
\end{aligned}
$$

3. $\quad \mu_{A}\left(1 \otimes E_{1}\right) f=\mu_{A}\left(\tau \sum_{i=1}^{n} x_{i} \otimes 1 \otimes y_{i}\right)$

$$
=\tau \sum x_{i} \otimes y_{i}=\tau 1=\mu_{A}\left(E_{1} \otimes 1\right) f .
$$

Hence, A_{1} is a finite separable extension of A with index τ^{-1}.
Proposition 4.2 If A is a finite separable extension of S, then A is a finitely generated projective generator S-module.

Proof. We claim that $\phi_{i} \in \operatorname{Hom}_{S}(A, S)$ defined by $\phi_{i}(x)=E\left(y_{i} x\right), i=$ $1, \ldots, n$, and $x_{i} \in A, i=1, \ldots, n$, form a dual basis for A_{S}. This follows from condition (III^{\prime}). ${ }_{S} A$ is f.g. projective by condition (III') as well. That A_{S} or ${ }_{S} A$ are generator modules both follow from $E(1)=1$, which implies that the trace ideal is all of S.

Theorem 4.2 If A is a finite separable extension of S, then $A \otimes_{S} A$ with the unital algebra structure above is isomorphic to the endomorphism ring End A_{S}, and therefore is Morita equivalent to S.

Proof. End A_{S} denotes the algebra of right S-module endomorphisms of A. Establishing the claim of isomorphism shows A_{1} Morita equivalent to S by the previous proposition and the Morita theorems.

We note the important idempotent in A_{1} given by $e_{1}=1 \otimes_{S} 1 . e_{1}$ is a cyclic generator of A_{1} as an $A-A$-bimodule. Moreover, the multiplication is
seen to be determined by the relations, $(\forall a \in A)$

$$
e_{1} a e_{1}=e_{1} E(a)=E(a) e_{1}
$$

Now, E is an idempotent in End A_{S} since $E(s)=s(\forall s \in S)$. For each $a \in A$ let $\lambda(a)$ denote left multiplication by a, an element of End A_{S}. We claim that the linear map $\theta: A_{1} \rightarrow$ End A_{S} defined by

$$
\theta\left(a e_{1} b\right)=\lambda(a) E \lambda(b)
$$

is an isomorphism of k -algebras.
θ is a homomorphism, since $E \lambda(b) E=\lambda(E(b)) E=E \lambda(E(b))$.
θ is surjective: given $g \in \operatorname{End} A_{S}$ and $a \in A$,

$$
g(a)=g\left(\sum_{i=1}^{n} x_{i} E\left(y_{i} a\right)\right)=\sum g\left(x_{i}\right) E\left(y_{i} a\right)
$$

so $\theta\left(\sum_{i=1}^{n} g\left(x_{i}\right) e_{1} y_{i}\right)=g$.
θ is injective: this is a three step proof. First, the left S-module morphism $\eta: A \rightarrow \operatorname{Hom}_{S}(A, S)$ given by $a \longmapsto E(a-)$ is injective since $E(a b)=0 \quad \forall b \in A$ implies $a=\sum_{i=1}^{n} E\left(a x_{j}\right) y_{j}=0$ (i.e., E is a faithful or nondegenerate bilinear form). Second, A_{S} is projective, so $1 \otimes \eta$: $A \otimes_{S} A \rightarrow A \otimes_{S} \operatorname{Hom}_{S}(A, S)$ is injective. Third, θ factors as $\psi(1 \otimes \eta)$ where $\psi: A \otimes_{S} \operatorname{Hom}_{S}(A, S) \rightarrow$ End A_{S}, defined by $\psi(a \otimes \gamma)=a \gamma(-)$, is injective because given $\psi\left(\sum_{i=1}^{N} a_{i} \otimes \eta_{i}\right)=\sum a_{i} \eta_{i}=0$, then $\sum_{i=1}^{N} a_{i} \otimes \eta_{i}=$ $\sum a_{i} \otimes \eta_{i} \sum_{j=1}^{n} x_{j} E\left(y_{j}-\right)=$

$$
\sum a_{i} \otimes \eta_{i}\left(x_{j}\right) E\left(y_{j}-\right)=\sum_{i, j} a_{i} \eta_{i}\left(x_{j}\right) \otimes_{S} E\left(y_{j}-\right)=0
$$

Since θ factors into injective maps, θ is injective.
Remark 4.1. λ is the left regular representation of A in End A_{S}. The results of this section show that if A is a finite separable extension of S with index τ^{-1}, then End A_{S} is a finite separable extension of A with the same index relative to conditional expectation E_{1} composed with the identification of End A_{S} with $A \otimes_{S} A$ (which assigns the value $\tau \sum_{i=1}^{m} z_{i} w_{i}$ to the endomorphism, $\sum_{i=1}^{m} \lambda\left(z_{i}\right) E \lambda\left(w_{i}\right)$.
A_{1} is the basic construction for finite separable extensions in analogy with von Neumann operator algebra theory [18].

Let k be a field. It follows from the last proof and the observation
that the mapping $S \rightarrow A_{1}$ given by $s \longmapsto s e_{1}$ is injective, that A_{1} is an Eextension [8] of the faithful conditional expectation, $E: A \rightarrow S$. However, the converse is not true: if $A \otimes_{S} A$ is an E-extension with respect to a split extension A of S with faithful conditional expectation $E: A \rightarrow S$, then A may not be a finite separable extension. For example, let k to be a field of characteristic p , let $G=Z_{p} \times Z_{p}$, a product of two cyclic groups of prime order, and let H to be the left factor Z_{p}. Then $k[G]$ has infinitely many non-isomorphic indecomposable representations, while $k[H]$ has only finitely many by Higman's theorem [9]. By Jans' theorem [12], $k[G]$ is not a separable extension of $k[H]$, although the conditional expectation defined in example 3.1 is faithful and makes $A \otimes_{S} A$ a unital E-extension.

An alternative definition of a finite separable extension A of S is in fact given by the following proposition:

Proposition $4.3 A$ is a finite separable extension of S with index τ iff A is a split extension of S with conditional expectation $E: A \rightarrow S$ such that $A \otimes_{S} A$ is a unital algebra equipped with the multiplication given by equation (4.1) and $\tau^{-1} \mu_{S}: A \otimes_{S} A \rightarrow A$, a conditional expectation.

Proof. If the unity element is $g=\sum x_{i} \otimes_{S} y_{i}$, then $\tau^{-1} g$ is a separability element. Compatibility with E follows from the equations $(1 \otimes a) g=1 \otimes a$, $g(a \otimes 1)=a \otimes 1$ and remark 7.1.

5. Global Dimension of Algebra and Subalgebra

The next theorem considerably sharpens the results of propositions 2.3, 2.4 , and 3.2 for finite separable extensions.

Theorem 5.1 If A is a finite separable extension of a subalgebra S, then (weak, right, or left) global dimension $D(A)=D(S)$.

Proof. Since A is a split extension of S, it follows from Proposition 3.2 that

$$
D(S) \leq D(A)+\text { pr. dim. }{ }_{s} A .
$$

But A is a projective S-module by proposition, so $D(S) \leq D(A)$. Since the basic construction A_{1} is a finite separable extension of A, we also have $D(A) \leq D\left(A_{1}\right)$. But A_{1} is Morita equivalent to S, so $D\left(A_{1}\right)=D(S)$.

Whence $D(S)=D(A)$.
Remark 5.1. Another proof that is valid for left or right global dimension: since A is a semisimple, split, projective extension of S, one may apply proposition 2.1 of [29].

Cohomological dimension of a group G (with subgroup H of finite index) over a field k coincides with left or right global dimension of the group algebra, $k[G][24]$. Thus, the last theorem generalizes the Serre extension theorem for groups (though not the difficult case where $k=$ field of characteristic p and $p \mid[G: H]:$ cf., [24]).

There are many other properties shared by overalgebra and subalgebra of a finite separable extension.

Theorem 5.2 Suppose A is a finite separable extension of S. Then

1. S is a polynomial identity algebra $\Longleftrightarrow A$ is polynomial identity algebra.
2. S is left Noetherian $\Longleftrightarrow A$ is left Noetherian;
3. S is a quasi-Frobenius ring $\Longleftrightarrow A$ is a quasi-Frobenius ring;
4. S is a left perfect ring $\Longleftrightarrow A$ is a left perfect ring;
5. S is a left coherent ring $\Longleftrightarrow A$ is a left coherent ring.

Proof. If S is a polynomial identity algebra, then so is $M_{n}(S)$ by a theorem of Regev [27]. Trivially, any subalgebra (not necessarily unital) of a polynomial identity algebra is itself satisfying the same polynomial identity. But A is a subalgebra of the basic construct A_{1}, which is Morita equivalent to S, whence of the form $g M_{n}(S) g$ for some integer n and idempotent g in $M_{n}(S)$. Hence, A satisfies a polynomial identity.

The forward implication of the next claim only uses that A is finitely generated (f.g.) over S. Suppose M is an f.g. left A-module, and N is any A-submodule of M. It will suffice to show that N is f.g. Since ${ }_{S} A$ is f.g. by proposition, it follows that the restriction ${ }_{S} M$ is f.g. Since S is left Noetherian, the submodule ${ }_{S} N$ of ${ }_{S} M$ is also f.g. Then $A \otimes_{S} N$ is f.g. over A. But N is the image of $A \otimes_{S} N$ under an A-module map, so N is f.g.

The reverse implication depends only on a f.g. split extension. Let M be a f.g. left S-module with N a submodule. Then $A \otimes_{S} N$ is an A submodule of $A \otimes_{S} M$, the latter being f.g. so the former is f.g. since A is left Noetherian. Then ${ }_{S}\left(A \otimes_{S} N\right)$ is f.g. But $\left.N\right|_{S}\left(A \otimes_{S} N\right)$ since A is a split extension of S, so N is f.g.

The other claims are established by using propositions 2.2 and 3.1 repeatedly with theorems in a recent book on homological algebra such as [28].

Remark 5.2. In spite of being so similar homologically, it is clear from the many examples in Section 3 that A and S are not necessarily Morita equivalent. Indeed, Morita equivalent rings have isomorphic centers, but it is easy to compute that $k \times k$ is a finite separable extension of k. Another example is the one-to-one correspondence between two-sided ideals given by a Morita context, but clearly not the case for finite separable extensions. The best one can say is that for any split extension A over S, it is easy to show that for any right ideal I in S, we have $I A \cap S=I$. In the next section we clarify the relation of finite separable extension and Morita equivalence.

6. Finite Separably Equivalent Rings

It is clear that behind the results of Section 5 is a metatheorem, much like a metatheorem would exist for properties shared by Morita equivalent rings. In this section, we define an equivalence relation among rings that we call finite separable equivalence. We then show that A and S are finite separably equivalent if A is a finite separable extension of S, or if A is Morita equivalent to S. We then prove a metatheorem that such A and S share homological properties.

Definition 6.1 Rings A and B are finite separably equivalent if there exist bimodules ${ }_{A} P_{B}$ and ${ }_{B} Q_{A}$, with split surjections as $A-A$ and $B-B$ bimodule morphisms, respectively,

$$
\begin{array}{ll}
\nu: & P \otimes_{B} Q \rightarrow A \\
\mu: & Q \otimes_{A} P \rightarrow B
\end{array}
$$

and elements of adjunction $\sum_{j=1}^{n} p_{j} \otimes q_{j}$ and $\sum_{i=1}^{m} q_{i}^{\prime} \otimes p_{i}^{\prime}$ such that $(\forall p \in P$, $q \in Q) \nu$ satisfies

$$
\sum_{i=1}^{m} \nu\left(p \otimes q_{i}^{\prime}\right) p_{i}^{\prime}=p, \quad \sum_{i=1}^{m} q_{i}^{\prime} \nu\left(p_{i}^{\prime} \otimes q\right)=q
$$

and μ satisfies

$$
\sum_{j=1}^{n} \mu\left(q \otimes p_{j}\right) q_{j}=q, \quad \sum_{j=1}^{n} p_{j} \mu\left(q_{j} \otimes p\right)=p
$$

Remark 6.1. The last four conditions above imply that the functors $F=P \otimes-: B$-Mod $\rightarrow A$-Mod, and $G=Q \otimes-: A$-Mod $\rightarrow B$-Mod, form adjunctions in either order. They also entail that P and Q are progenerators as A - and B-modules. The first two conditions above imply that the counits of these adjunctions are split epis.

This definition can be extended to categories as follows: two categories \mathcal{C} and \mathcal{D} are finite separably equivalent iff there exist adjunctions $(F: \mathcal{C} \rightarrow$ $\mathcal{D}, G, \eta, \epsilon)$ and ($G, F, \eta^{\prime}, \epsilon^{\prime}$) such that the counits ϵ and ϵ^{\prime} are spit epi natural transformations. Adjunction with split epi counit is clearly closed under composition, so the equivalence relation is indeed transitive. Symmetry and reflexivity of the relation among rings and categories is obvious.

Note that any additive category \mathcal{C} is finite separably equivalent to a finite product of itself $\mathcal{C} \times \cdots \times \mathcal{C}$, since the diagonal functor has left adjoint the coproduct, right adjoint the product [20], which coincide in the biproduct, and both counits of adjunction are split epis.

Note that much of the structure in Section 4 carries over to $P \otimes_{B} Q$ and $Q \otimes_{A} P$ as well as (a not necessarily invertible) index $[A: B]$ and $[B: A]$ (in a notation to be introduced in Section 7).

Proposition 6.1 If A is a finite separable extension of S, then A and S are finite separably equivalent.

Proof. Using the notation of definition 6.1, we let $B=S,{ }_{A} P_{S}={ }_{A} A_{S}$, ${ }_{S} Q_{A}={ }_{S} A_{A}, \nu=\mu_{S}: A \otimes_{S} A \rightarrow A$, and $\mu: A \otimes_{A} A \cong A \xrightarrow{E} S$. The multiplication map μ_{S} and E are both split epis. The elements of adjunction in $P \otimes Q$ and $Q \otimes P$ are given by $\sum x_{i} \otimes y_{i}$ and $1 \otimes 1$, respectively.

Proposition 6.2 If A and B are Morita equivalent rings, then A and B are finite separably equivalent.

Proof. It is well-known that one of several equivalent ways to define Morita equivalent rings A and B is to stipulate bimodules ${ }_{A} P_{B}$ and ${ }_{B} Q_{A}$ that satisfy

$$
\begin{aligned}
& P \otimes_{B} Q \cong A \\
& Q \otimes_{A} P \cong B
\end{aligned}
$$

as $A-A$ and $B-B$ bimodules, respectively where the bimodule isomorphisms are associative (cf. [4]). The elements of adjunction are then the inverse images of 1_{A} and 1_{B}, and associativity yields the four equations of adjunction.

We shall informally say that a property of left modules, such as projectivity or flatness, is an assignment of subclass Φ_{R} of R - \bmod for each ring R. A property of modules is said to induce (under a finite projective change of rings) if given any two rings R and S and a bimodule ${ }_{R} P_{S}$, which is finite projective on either side, then $M \in \Phi_{S} \Rightarrow P \otimes_{S} M \in \Phi_{R}$. A property of modules is direct sum invariant, if, for any ring R and $M \in \Phi_{R}$, we have $N \mid M \Rightarrow N \in \Phi_{R}$. A property of modules is good if it is both direct sum invariant and induces under a finite projective change of rings. For example, both flatness and projectivity are good properties.

It is well-known that certain desirable properties of rings are expressible in terms of the coincidence of classes of modules. For example, "all modules are projective (flat)," "all modules are quotients of projectives" or "all flat modules are projective" characterize important classes of rings, viz., semisimple (von Neumann regular), left hereditary, or left perfect rings, resp. [28]. This idea may be captured as follows. Define a property of rings to be a subclass of rings. Define a homological property of rings to be a subclass of rings R where two good properties of modules coincide, $\Phi_{R}=\Psi_{R}$.

Metatheorem 6.1 If A and B are finite separably equivalent rings, then A and B share homological properties.

Proof. Let Φ_{R} and Ψ_{R} be good properties of modules, and suppose A is a ring such that $\Phi_{A}=\Psi_{A}$. It suffices by symmetry to prove that $\Phi_{B} \subseteq \Psi_{B}$. Suppose as before ${ }_{A} P_{B}$ and ${ }_{B} Q_{A}$ satisfy the conditions of definition 6.1. Given $M \in \Phi_{B}$, we have $P \otimes_{B} M \in \Phi_{A}$ since good properties induce, whence $P \otimes_{B} M \in \Psi_{A}$ by assumption. Again by inducing $Q \otimes_{A} P \otimes_{B} M \in \Psi_{B}$. But $M \mid Q \otimes_{A} P \otimes_{B} M$ by one of the split surjectivity conditions. So $M \in \Psi_{B}$ by direct sum invariance of good properties. Hence, $\Phi_{B} \subseteq \Psi_{B}$.

For example, one may establish proposition 5.2, (3), (4), and (5) by
showing that the properties of left coherent, left perfect and quasi-Frobenius are homological properties. Note that the proof of the metatheorem does not require the elements of adjunction of finite separable equivalence but only the assumption that P and Q are finite projective as A - and B-modules, and that we have the split epimorphisms: the latter carry over to the Tor functors on modules in the following way.

Proposition 6.3 Let A and B be rings where $\mu_{A}: P \otimes_{A} Q \rightarrow B$ and $\mu_{B}: Q \otimes_{B} P \rightarrow A$ are split epimorphisms of $B-B$ and $A-A$ bimodules, respectively, with ${ }_{B} P_{A}$ and ${ }_{A} Q_{B}$ bimodules finite projective on either side. Then for arbitrary A-modules M_{A} and ${ }_{A} N$, there is a split epi

$$
\mu_{n}: \operatorname{Tor}_{n}^{B}\left(M \otimes_{A} Q, P \otimes_{A} N\right) \rightarrow \operatorname{Tor}_{n}^{A}(M, N)
$$

induced from the $\operatorname{map} I d_{M} \otimes \mu_{B} \otimes I d_{N}$.
Proof. If $X . \rightarrow M$ is a projective resolution of M_{A}, then $X . \otimes Q \rightarrow M \otimes Q$ is a projective resolution of $M \otimes Q$ since ${ }_{A} Q$ is flat and Q_{B} is projective. If μ_{B} is split by an A-A bimodule map σ, then $\sigma(1)=\sum q_{i} \otimes p_{i}$ satisfies $\sum \mu_{B}\left(q_{i} \otimes p_{i}\right)=1$ and $a \sum q_{i} \otimes p_{i}=\sum q_{i} \otimes p_{i} a$. Define two morphisms of complexes as follows: $f: X . \otimes_{A} N \longrightarrow X . \otimes Q \otimes P \otimes N$ we define by $x \otimes n \longmapsto \sum x \otimes q_{i} \otimes p_{i} \otimes n$ and $g: X . \otimes Q \otimes P \otimes N \longrightarrow X . \otimes_{A} N$ we define by $x \otimes q \otimes p \otimes n \longmapsto x \mu_{B}(q \otimes p) \otimes_{A} n$. Now $g \circ f=I d$. Then passing to the homology groups of these two complexes, g induces the split epimorphism μ_{n} as claimed.

A symmetrical statement is of course true for the map μ_{A} in the proposition. It is elementary to see that global dimension $\leq \mathrm{n}$ is a homological property of rings. However, the last proposition provides a convenient proof of the following.

Corollary 6.1 If A and B are finite separably equivalent rings, then $D(A)=D(B)$.

Proof. With the same notation as in proposition $6.3, \operatorname{Tor}_{n}^{A}(M, N) \mid$ $\operatorname{Tor}_{n}^{B}\left(M \otimes_{A} Q, P \otimes_{A} N\right)$, so that $D(B) \geq D(A)$. By the symmetry in our definition of f . s. equivalence, we also get $D(A) \geq D(B)$.

7. Tower of Algebras and Index

In each of the seven examples given in Section 3, the quantity $\tau=\mu_{S}\left(E \otimes_{S} 1\right) e$ is the inverse of the Jones index defined in [15]. This suggests that we adopt the notation $[A: S]_{E}$ for the index τ^{-1}. Note that this index is an element of k, not a positive real unless extra conditions are attached to finite separable extensions. The next proposition shows that if the conditional expectation is fixed, as it often is in examples, the index is well-defined, i.e. independent of the compatible separability element (which is indeed unique).

Proposition 7.1 Suppose A is a finite separable extension of S with conditional expectation E and two separability elements e and e^{\prime} both satisfying the counitality condition. Suppose $\mu_{S}(E \otimes 1) e=\tau$ and $\mu_{S}(E \otimes 1) e^{\prime}=\tau^{\prime}$. Then $e=e^{\prime}$ and $\tau=\tau^{\prime}$.

Proof. Recall that $e=\tau \sum_{i=1}^{n} x_{i} \otimes_{S} y_{i}$ and let $e^{\prime}=\tau^{\prime} \sum_{j=1}^{m} x_{j}^{\prime} \otimes_{S} y_{j}^{\prime}$. Now the unity element in A_{1} has two expressions: $\tau^{-1} e=1=\tau^{\prime-1} e^{\prime}$. Applying the mapping μ_{S} we obtain $\tau^{-1}=\tau^{\prime-1}$.

Remark 7.1. If A is a finite separable extension of S with basic construction A_{1}, then $\left[A_{1}: A\right]_{E_{1}}=[A: S]_{E}$, by Theorem 4.1.

Proposition 7.2 Suppose A is a finite separable extension of B, and B is a finite separable extension of C. Then A is a finite separable extension of C with index $[A: C]=[A: B][B: C]$.

Proof. Let $E_{1}: A \rightarrow B$ and $E_{2}: B \rightarrow C$ be the conditional expectations that together with the separability elements $e_{1}=\tau_{1} \sum_{i=1}^{m} u_{i} \otimes_{B} v_{i}$ and $e_{2}=\tau_{2} \sum_{j=1}^{n} x_{i} \otimes_{C} y_{i}$ satisfy the counitality condition.

It is easy to check that $E=E_{2} \circ E_{1}: A \rightarrow C$ is a conditional expectation. We claim that $e=\tau_{1} \tau_{2} \sum_{i=1}^{n} \sum_{j=1}^{m} u_{i} x_{j} \otimes_{C} y_{j} v_{i}$ is a separability element. Trivially, multiplication $\mu_{C}: A \otimes_{C} A \rightarrow A$ sends e to 1 . We obtain $a e=e a$ $\forall a \in A$ as follows. If M is a $B-B$ bimodule denote the B-centralized submodule of M by $M^{B}=\{m \in M: b m=m b \forall b \in B\}$. As in lemma 2.1, one defines an obvious mapping $\Psi: A \otimes_{B} A \otimes_{k}\left(B \otimes_{C} B\right)^{B} \rightarrow A \otimes_{C} A$, such that $e a$ and $a e$ belong to the image of the same point.

Finally, E and e satisfy the counitality condition by the following com-
putation:

$$
\begin{aligned}
\mu\left(1 \otimes_{S} E\right) e & =\tau_{1} \tau_{2} \sum_{i} \sum_{j} u_{i} x_{j} E_{2} \circ E_{1}\left(y_{j} v_{i}\right) \\
& =\tau_{1} \tau_{2} \sum_{i} u_{i}\left(\sum_{j} x_{j} E_{2}\left(y_{j} E_{1}\left(v_{i}\right)\right)\right. \\
& =\tau_{1} \tau_{2} \sum_{i} u_{i} E_{1}\left(v_{i}\right)=\tau_{1} \tau_{2}
\end{aligned}
$$

Similarly, $\mu\left(E \otimes_{S} 1\right) e=\tau_{1} \tau_{2}$. Hence, A is a finite separable extension of C with index $\tau_{1}^{-1} \tau_{2}^{-1}$.

In the next theorem we iterate the basic construction to obtain a tower of algebras above A, i.e. a sequence of unital k-algebras each included in the next by an algebra monomorphism $x \mapsto x 1$. A countable sequence of idempotents satisfying braid-like relations is obtained.

Theorem 7.1 Let A be a finite separable extension of S with index τ^{-1}. Then there is a tower of algebras

$$
S \rightarrow A \rightarrow A_{1} \rightarrow \cdots \rightarrow A_{i} \rightarrow A_{i+1} \rightarrow \cdots
$$

where each $A_{i}(i=1,2, \ldots)$ is the basic construction for the finite separable extension A_{i-1} of $A_{i-2}\left(\right.$ where $A_{0}=A$ and $\left.A_{-1}=S\right)$ with index τ^{-1} and conditional expectation $E_{i-1}=\tau \mu_{A_{i-2}}\left(\right.$ where $\left.E_{0}=E\right)$. The family of idempotents $\left\{e_{i}\right\}_{i=1}^{\infty}$ determined by $e_{i}=1_{A_{i-1}} \otimes_{A_{i-2}} 1_{A_{i-1}}$ satisfy the braidlike relations:

1. $e_{i+1} e_{i} e_{i+1}=\tau e_{i+1}$;
2. $e_{i} e_{i+1} e_{i}=\tau e_{i}$;
3. $e_{i} e_{j}=e_{j} e_{i}$ whenever $i-j \geq 2$.

Proof. The properties of the basic construction $A_{i}=A_{i-1} \otimes_{A_{i-2}} A_{i-1}$ are given in Section 4. In the proof of Theorem 4.2 we have noted that e_{i} is an idempotent, a cyclic generator of A_{i} as an A_{i-1}^{e}-module, and satisfies, for each $a \in A_{i-1}$,
$(*) \quad e_{i} a e_{i}=E_{i-1}(a) e_{i}$.
Finally, it is easy to see that the conditional expectation E_{i} satisfies $E_{i}\left(e_{i}\right)=$ τ.

Now it follows from $(*)$ that $e_{i+1} e_{i} e_{i+1}=E_{i}\left(e_{i}\right) e_{i+1}=\tau e_{i+1}$, whence relation 1. For relation 2, let $A_{i+1}=A_{2}=A_{1} \otimes_{A} A_{1}$, and return to our
fixed notation: in the proof of Theorem 4.1 we made an identification, $A_{1} \otimes_{A} A_{1} \cong A \otimes_{S} A \otimes_{S} A$. The resulting multiplication structure is given by

$$
\left(a_{0} \otimes a_{1} \otimes a_{2}\right)\left(b_{0} \otimes b_{1} \otimes b_{2}\right)=\tau a_{0} \otimes a_{1} E\left(a_{2} b_{0}\right) b_{1} \otimes b_{2} .
$$

Now e_{2} is the element $\sum_{i, j=1}^{n} x_{i} \otimes y_{i} x_{j} \otimes y_{j}$. By condition (III), we have $e_{2} e_{1}=\sum x_{i} \otimes y_{i} \otimes 1$, and hence $e_{2} e_{1} e_{2}=\tau e_{2}$.

Since $e_{j} e_{i}=e_{j}\left(1 \otimes_{A_{i-2}} 1\right)=e_{i} e_{j}$ if $i-j \geq 2$, relation 3 follows.
Remark 7.2. We could equally well have chosen to iterate the endomorphism ring in the last theorem: i.e., define $A_{i+1}=$ End $A_{i_{A_{i-1}}}$ and $e_{i}=E_{i-1}$. Choosing to tensor leads to something that resembles the standard complex in relative homological algebra, since $A_{n} \cong A \otimes_{S} \cdots \otimes_{S} A$ ($n+1$ times).

Theorem 7.2 Same hypotheses and notation as in Theorem 7.1. If the ground ring k has an invertible solution q of $q^{2} \tau=q-1$, then there exists a nontrivial homomorphism of k-algebras $\Phi_{n}: k\left[B_{n}\right] \rightarrow A_{n-1}$ for each braid group on n letters, B_{n}.

Proof. It is a classical fact of E. Artin's that B_{n} has the following finite presentation,

$$
\begin{aligned}
B_{n}= & \left\{g_{1}, \ldots, g_{n-1} \mid g_{i} g_{j}=g_{j} g_{i},\right. \\
& \left.g_{i+1} g_{i} g_{i+1}=g_{i} g_{i+1} g_{i}, 1 \leq i, j \geq n,|i-j|>1\right\}
\end{aligned}
$$

It suffices to let Φ_{n} assign invertible elements w_{i} in A_{n-1} to each g_{i} and check the Artin relations. We define $w_{i}=q e_{i}-1 \quad(i=1, \ldots, n-1)$. which is invertible since $\left(q e_{i}-1\right)\left(q e_{i}+(1-q)\right)=1-q$, but q and τ are invertible.

The relation $w_{i} w_{j}=w_{j} w_{i}$ for $|i-j|>1$ is clear from relation 3 in Theorem 7.1. Using relation 1 and 2 of Theorem 7.1 and the idempotency of the e_{i} 's, we have

$$
\begin{aligned}
w_{i+1} w_{i} w_{i+1} & =e_{i+1}\left(\tau q^{3}-q^{2}+2 q\right)+q e_{i}-q^{2}\left(e_{i} e_{i+1}+e_{i+1} e_{i}\right)-1 \\
& =w_{i} w_{i+1} w_{i} \\
& =e_{i}\left(\tau q^{3}-q^{2}+2 q\right)+q e_{i+1}-q^{2}\left(e_{i} e_{i+1}+e_{i+1} e_{i}\right)-1,
\end{aligned}
$$

since $\tau q^{3}-q^{2}+2 q=q$.
Remark 7.3. Also the Hecke algebra $H(q-1, n)$ maps homomorphically into A_{n-1}, since the Hecke relation is satisfied by $w_{i}, i=1,2, \ldots, n-1$: one
has, for each $i, w_{i}^{2}=(q-2) w_{i}+q-1$.
It is a consequence of the Alexander closure process in knot theory, whereby braids are closed to produce oriented links, and the Markov equivalence relation for braids that a sequence of (Markov) traces $\phi_{n}: A_{n} \rightarrow k$ satisfying

$$
\phi_{n+1}\left(x\left(q e_{n+1}-1\right)^{ \pm 1}\right)=\phi_{n}(x) \quad \forall x \in A_{n}
$$

gives an invariant of oriented links in R^{3} under ambient isotopy: an exposition is given in [17].

References

[1] Auslander M. and Goldman O., The Brauer group of a commutative ring. Trans. A.M.S. 97 (1960), 367-409.
[2] Bergman G., Generic relative global dimension zero. U.C. Berkeley preprint.
[3] Chase S., Harrison D.K. and Rosenberg A., Galois theory and cohomology of commutative rings. Mem. A.M.S. 52 (1965).
[4] Demeyer F. and Ingraham E., Separable algebras over commutative rings. Springer Lect. Notes in Math. 181, New York, 1970.
[5] Doi Y., Hopf extensions of algebras and Maschke type theorems. Israel J. Math. 72 (1990), 99-108.
[6] Elliger S., Über automorphismen und derivationen von ringen. J. Reine und Angewandte Math. (1973), 155-177.
[7] Feit W., Representation theory of finite groups. North Holland Math. Library, 25, New York, 1982.
[8] Goodman F., De la Harpe P. and Jones V.F.R., Coxeter graphs and towers of algebras. Springer, M.S.R.I. Publ. 14, 1989.
[9] Higman D.G., Representations of finite groups at characteristic p. Duke Math. J. 21 (1954), 377-381.
[10] Hirata K. and Sugano K., On semisimple extensions and separable extensions over non commutative rings. J. Math. Soc. Japan 18 (1964), 360-373.
[11] Hochschild G., Relative homological algebra. Trans. A.M.S. 82 (1956), 246-269.
[12] Jans J.P., Representation type of subalgebras and algebras. Canadian J. Math. 10 (1957), 39-44.
[13] Jones V.F.R., Index for subfactors. Invent. Math., 72 (1983), 1-25.
[14] Jones V.F.R., Braid groups, Hecke algebras, and type I_{1} factors. C.R. Acad. Sci. Paris 298 (1984), 505-508.
[15] Jones V.F.R., Index for subrings of rings. Contemp. Math. 43 (A.M.S.) (1985), 181-190.
[16] Kadison L., Cyclic homology of extension algebras with applications. Aarhus preprint no. 23 (1989/90).
[17] Kadison L., Separability and the Jones polynomial, In Rings, extensions, and cohomology. ed. A.R. Magid, Lect. Notes in Pure and Applied Math. 132 (1994), 123-137.
[18] Kadison L. and Kastler D., Cohomological aspects and relative separability of finite Jones index subfactors. Nachr. Akad. Wiss. Göttingen, 4 (1992), 1-11.
[19] Kasch F., Dualitätseigenschaften von Frobenius-erweiterungen. Math. Zeit. 77 (1961), 219-227.
[20] Mac Lane S., Categories for the Working Mathematician. G.T.M., Springer, New York, 1970.
[21] Morita K., The endomorphism ring theorem for Frobenius extensions. Math. Zeitschr. 102 (1967), 385-404.
[22] Ocneanu A., Quantized groups, string algebras and Galois theory for algebras. Penn. St. Univ. preprint.
[23] Orzech M. and Small C., The Brauer group of commutative rings. Lect. Notes in Math. 11, Dekker, New York, 1975.
[24] Passman D., The algebraic structure of group algebras. Wiley-Interscience, New York, 1977.
[25] Pierce R., Associative algebras. Grad. Text in Math. 88, Springer, 1982.
[26] Pimsner M. and Popa S., Entropy and index of subfactors. Ann. scient. of Éc. Norm. Sup. 19 (1986), 57-106.
[27] Regev A., Existence of identities in $A \otimes B$. Israel J. Math. 11 (1972), 131-152.
[28] Rotman J., An introduction to homological algebra. Academic Press, New York, 1979.
[29] Sugano K., Note on semisimple extensions and separable extensions. Osaka J. Math. 4 (1967), 265-270.
[30] Sugano K., Private correspondence, 1994.
[31] Sugano K., Note on H-separable frobenius extensions. Hokkaido Math. J. 24(1) (1995).
[32] Sweedler M., The predual theorem to the Jacobson-Bourbaki theorem. Trans. A.M.S. 213 (1975), 391-406.
[33] Watatani Y., Index of C^{*}-subalgebras. Memoirs A.M.S. 83 (1990).
Institute of Mathematics and Physics
Roskilde University
DK-4000 Roskilde, Denmark
E-mail: kadison@fatou.ruc.dk

