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1. Introduction

The construction and classification of contact manifolds is a basic
problem in differential topology. It was shown by Meckert in [5] that the
connected sum of two contact manifolds carries a contact structure. (See
[8] for applications of Meckert’s theorem.) Since the connected sum of
two contact manifolds is obtained from their disjoint union (which obvi-
ously carries a contact structure) by a simple form of elementary surgery,
it is natural to try to extend Meckert’s results to more general surgeries.
The present paper provides such an extension, while simplifying Meckert’s
construction as well.

Let X be an orientable contact manifold with contact distribution \mathscr{D}\subset

TX. \mathscr{D} may be defined by a 1-form \alpha for which \mathscr{D}=ker\alpha and d\alpha is non-
degenerate on \mathscr{D} . Such an \alpha is called a contact form for the contact
structure. The symplectic structure on \mathscr{D} defined by d\alpha is multiplied by a
function when \alpha is, and so the vector bundle \mathscr{D} has a natural conformal
symplectic structure; in particular, there is a well defined “symplectic
orthogonal ” operation\perp^{p} on subbundles of \mathscr{D} .

A submanifold Y of X is called isotropic if all its tangent spaces are
contained in \mathscr{D} . Since any contact form \alpha vanishes on Y, so does da, so
that TY is contained in ( TY)^{\perp}’ . The quotient ( TY)^{\perp^{r}}/TY carries a con-\downarrow

formal symplectic structure and is called the (conformal) symplectic nor-
mal bundle of Y We denote it by CSN(X, Y) . The ordinary normal
bundle N(X, Y)=T_{Y}X/TY of Y in X is isomorphic to the direct sum of
CSN(X, Y) , the trivial line bundle T_{Y}X/\mathscr{D}_{Y} , and the quotient \mathscr{D}_{Y}/(TY)^{\perp}

’

The last bundle is naturally isomorphic to T^{*} Y. so if we have a trivial-
–,
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ization of CSN(X, Y) as a conformally symplectic vector bundle and a
trivialization of T_{Y}X/\mathscr{D}_{Y}\oplus T^{*}Y- we get (up to homotopy) a trivialization
of N(X, Y) , also called a framing of Y in X. In particular, if Y is
diffeomorphic (in a given way) to a standard sphere, then T_{Y}X/\mathscr{D}_{Y}\oplus T^{*}Y

has a natural trivialization, and so we get a framing induced by each
trivialization of CSN(X, Y) . Using this framing, we may obtain a new
manifold from X by elementary surgery along Y (see [7]).

The main result in this paper is that, if Y is any isotropic sphere in a
contact manifold X, with a trivialization of CSN(X, Y) , then the mani-
fold X’ obtained from X by elementary surgery along Y using the induced
framing carries a contact structure. In fact, we will prove more than this.
The elementary surgery construction produces a manifold P whose bound-
ary is the disjoint union of X and X’ ; we will show that this s0-called
elementary cobordism P carries a symplectic structure \omega together with a
conformally symplectic vector field \xi which is transverse to the boundary.

It is this vector field which actually produces the contact structure on X’
(and gives back the original contact structure on X).

The basic idea of our construction is the following. An elementary

cobordism between manifolds X and X’ can be written as the union of a
product X\cross I (I is an interval), and a standard handle which is embedded
in R^{2n} When X is a contact manifold, X\cross I has a symplectic structure
as part of the symplectification of X (See Section 2), while R^{2n} has the
standard symplectic structure. Using a normal form for neighborhoods of
isotropic submanifolds in contact manifolds (Section 4) we show that
these two symplectic structures can be glued together on a neighborhood
of the sphere where surgery takes place. In addition, we show that the
boundary of the standard handle can be chosen transversal to a conformal-
ly symplectic vector field, so that X’ inherits a contact structure from the
symplectic structure on the cobordism.

This paper owes its existence to remarks by D. McDuffff and Y. Eliash-
berg during the year on Symplectic Geometry and Mechanics at MSRI. It
was McDuffff who noticed that the “explosion” construction in [12]

produced a cobordism between the disjoint union of two copies of a mani-
fold M and their connected sum. Eliashberg showed me the importance of
contact manifolds in understanding the structure of noncompact symplectic
manifolds (See the discussion at the end of Section 5). I would like to
thank both of them for their encouragement. I would also like to thank
H. Geiges for pointing out an error in the original manuscript.
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2. Liouville vector fields and symplectification

Contact manifolds arise as submanifolds of symplectic manifolds in
the following way.

DEFINITION 2. 1. A Liouville vector field on a symplectic manifold
(P, \omega) is a vector fifietd \xi on P for which the Lie derivative \mathscr{L}_{\xi}\omega is equal
to -\omega .

\xi is a Liouville vector field if and only if d\alpha=-\omega , where \alpha=\xi\lrcorner\omega .
It follows (see [10]) that the pullback of \alpha defines a contact structure on
any hypersurface transverse to \xi . As the following lemma shows, this
contact structure is essentially determined by the Liouville vector field (it

lives naturally on the space of trajectories) rather than by the hypersur-
face.

LEMMA 2. 2. Let \xi be a Liouville vector fifietd on the symplectic mani-
fold (P, \omega) , and let X_{0} and X_{1} be hypersurfaces which are transverse to \xi.
Then the local diffeomorphisms from Y_{0} to Y_{1} defifined by following the inte-
gral curves of \xi are compatible with the contact structures induced by the
form \alpha=\xi\lrcorner\omega .

PROOF. The integral curves of \xi leaving X_{0} do not all arrive at X_{1}

at the same time, but we can arrange this to be so (locally), by replacing
\xi by g\xi , where g is a positive real valued function. This new vector field
satisfies

\mathscr{L}_{g\xi}\alpha=g\xi\lrcorner d\alpha+d(g\xi\lrcorner\alpha)=-g\alpha (1)

since \xi\lrcorner\alpha=\omega(\xi, \xi)=0 . It follows that the flow of g\xi preserves \alpha up to a
conformal factor, and so it is compatible with the contact structures
defined by \alpha on hypersurfaces transverse to \xi . \square

Any orientable contact manifold can be realized as a hypersurface
transverse to a Liouville vector field in its symplectifification CY We recall
that CY is defined (see for example [1]) to be the submanifold of T^{*}Y

consisting of the values of all contact forms consistent with the orienta-
tion. The symplectic structure and standard Liouville field on T^{*}Y

restrict to a symplectic structure and Liouville field \xi on CY The flow
of -\xi defines a free R-action on CY which makes it a principal bundle
over Y with structure group the real numbers under addition.

Any contact form \alpha for Y is a section of CY whose image is trans-
verse to \xi . The contact structure on Y induced by this section is just the
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one with which we started, \alpha also determines a trivialization of the bun-
dle CY and hence a diffeomorphism of CY with Y\cross R . If we denote by
t the coordinate on R, the image of the symplectic structure and Liouville

vector field on Y\cross R become d(e^{t}\alpha)=e^{t}(d\alpha+dt\wedge\alpha) and - \frac{d}{dt} . The sec-
tion corresponding to \alpha is now defined by the equation t=0.

3. The standard handle

In this section, we will construct the “connector” which will eventu-
ally be glued to a product X\cross I to produce an elementary cobordism.

In the standard symplectic space R^{2n} with canonical symplectic form
\omega=\Sigma_{i=1}^{2n}dq_{i}\wedge dp_{i} , we define for each k\in\{0, . . . n\} the Liouville vector
field

\xi_{k}=\sum_{i=1}^{n-k}(-\frac{1}{2}q_{i}\frac{\partial}{\partial q_{i}}-\frac{1}{2}p_{i}\frac{\partial}{\partial p_{i}})+\sum_{i=n-k+1}^{n}(-2q_{i}\frac{\partial}{\partial q_{i}}+p_{l}\frac{\partial}{\partial p_{i}}) (2)

which is the negative gradient with respect to the standard euclidean met-
ric of the Morse function

f_{k}= \sum_{i=1}^{n-k}(\frac{1}{4}q_{i}^{2}+\frac{1}{4}p_{i}^{2})+\sum_{i=n-k+1}^{n}(q_{i}^{2}-\frac{1}{2}p_{i}^{2)} (3)

To see that this is indeed a Liouville vector field, we observe that the
contraction

\alpha_{k}=\xi_{k}\lrcorner\omega=\sum_{i=1}^{n-k}(-\frac{1}{2}q_{i}dp_{i}+\frac{1}{2}p_{i}dq_{i})+\sum_{i=n-k+1}^{n}(-2q_{i}dp_{i}-p_{i}dq_{i}) (4)

satisfies d\alpha_{k}=-\omega .
In what follows, we will systematically use equations contained in

braces to denote the set of solutions to those equations. For example, the
unstable manifold E_{-}^{k} is \{q_{1}=\cdots=q_{n}=p_{1}=\cdots=p_{n-k}=0\} . Since the form \alpha_{k}

pulls back to zero on E_{-}^{k} , the descending sphere S^{k-1}=E_{-}^{k}\cap\{f_{k}=-1\} is an
isotropic submanifold in the contact manifold X_{-1}=\{f_{k}=-1\} . Similarly,
in the stable manifold E_{+}^{2n-k}=\{p_{n-k+1}=\cdots=p_{n}=0\} , the ascending sphere
S_{+}^{2n-k-1}=E_{+}^{2n-k}\cap\{f_{k}=1\} is a submanifold in the contact manifold X_{+}=\{f_{k}=

1\} .
A standard handle in R^{2n} is a region bounded by a neighborhood of

the descending sphere in X_{-} together with a connecting manifold \Sigma

diffeomorphic to S^{2n-k-1}\cross D^{k} As is suggested in Figure 1 and may be
verified using Lemma 3. 1. below, this handle can be chosen so that it is
transverse to the Liouville vector field \xi_{k} and so that its intersection with
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FIGURE 1. The boundary of the standard handle (shaded) is transverse to the Liouville
vector field.

X_{-} is contained in an arbitrarily small neighborhood of the descending
sphere. As a result, the union of this handle with f_{k}\leq-1 is a symplectic
manifold whose boundary is everywhere transverse to \xi_{k} and hence a con-
tact manifold obtained from X_{-} by surgery in an arbitrarily small neigh-
borhood of the descending sphere.

Lemma 3. 1. On R^{2n} . denote the coordinates (q_{1}, q_{n} , p_{1} ,
p_{n-k}) by (x_{1}, . x_{2n-k}) and (p_{n-k+1}, . p_{n}) by (y_{1}, _{-} y_{k}) . Let the
hypersurface \Sigma in R^{2n} be defifined by an equation of the form F( \sum A_{i}x_{i}^{2} ,
\sum B_{j\mathcal{Y}j}^{2})=0 , where the coefficients A_{i} and B_{j} are positive. Suppose further
that, whenever F(x, y)=0, the partial derivatives of F do not have the

same sign, that \frac{\partial F}{\partial x} is not zero when y=0, that \frac{\partial F}{\partial y} is not zero when x

=0, and fifinally that F(0,0)\neq 0 . Then \Sigma is transverse to the Liouville
vector fifield \xi_{k} .
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PROOF. \xi_{k} has the form - \Sigma a_{i}x_{i}\frac{\partial}{\partial_{x_{i}}}+\Sigma b_{j}y_{j}\frac{\partial}{\partial_{\mathcal{Y}j}} with positive

coefficients a_{i} and b_{j} . The derivative \xi_{k}\cdot F(\sum A_{i}x_{i}^{2}, \sum B_{j}y_{j}^{2}) equals twice
(- \frac{\partial F}{\partial x}\Sigma a_{i}A_{i}x_{i}^{2}+\frac{\partial F}{\partial y}\Sigma b_{j}B_{j\mathcal{Y}j}^{2}) . The assumptions on F insure that this

expression is never 0 on \Sigma . \square

4. Neighborhoods of isotropic submanifolds

In order to glue the standard handle onto a given contact manifold,
we find in this section a normal form for a neighborhood of Y in a quintu-
ple (P, \omega, \xi, X, Y) , where (P, \omega) is a symplectic manifold, \xi is a Liouville
vector field, X is a hypersurface transverse to \xi (hence a contact mani-
fold), and Y is an isotropic submanifold of X. For convenience, we shall
call such a quintuple an isotropic setup.

Given an isotropic setup, \alpha=\xi\lrcorner\omega is a contact form on X, and so the
symplectic normal bundle CSN(X, Y) defined in Section 1 has a (not just
conformally) symplectic structure. We call this symplectic vector bundle
the symplectic subnormal bundle of the isotropic setup.

REMARK 4. 1. Y is also an isotropic submanifold of the symplectic
manifold P. As such, it has an ordinary symplectic normal bundle
SN(P, Y)=TY^{\perp}/TY . which is isomorphic to the direct sum of the
symplectic subnormal bundle and the trivial 2-dimensional symplectic
vector bundle with canonical basis (\xi, \eta) , where \eta is the Reeb vector fifield
on X defined by the conditions \eta\lrcorner d\alpha=0 and \eta\lrcorner\alpha=1 .

Any isomorphism between two isotropic setups (P_{0}, \omega_{0}, \xi_{0}, X_{0}, Y_{0}) and
(P_{1}, \omega_{1}, \xi_{1}, X_{1}, Y_{1}) obviously induces a diffeomorphism from Y_{0} to Y_{1} which
is covered by an isomorphism of their symplectic subnormal bundles. The
(partial) converse to this fact is given by the following proposition, which
is close to but not contained in Theorem 1. 3. B in Chapter 4 of [2].

PROPOSITION 4. 2. Let (P_{0}, \omega_{0}, \xi_{0}, X_{0}, Y_{0}) and (P_{1}, \omega_{1}, \xi_{1}, X_{1}, Y_{1}) be
isotropic setups. Given a diffeomorphism from Y_{0} to Y_{1} covered by an
isomorphism between their symplectic subnormal bundles, there exist neigh-
borhoods U_{j} of Y_{j} in P_{j} and an isomorphism of isotropic setups

\phi.- ( U_{0}, \omega_{0}, \xi_{0}, X_{0}\cap U_{0}, Y_{0})arrow(U_{1}, \omega_{1}, \xi_{1}, Y_{1}\cap U_{1}, Y_{1})

which restricts to the given mappings on Y_{0} .

PROOF. For i=0,1 , we choose a neighborhood V_{i} of Y_{i} in X_{i} and a
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hypersurface Z_{i} in V_{i} such that Z_{i} contains Y_{i} and is tangent to the con-
tact distribution along Y_{i} . By taking V_{i} small enough, we can arrange
that Z_{i} is symplectic as a submanifold of P_{i} and that Z_{i} intersects each
integral curve of the Reeb vector field \eta_{i} exactly once.

If we consider Y_{i} as an isotropic submanifold of Z_{i} , its symplectic
normal bundle SN(Z_{i}, Y_{i}) is naturally isomorphic to the symplectic sub-
normal bundle SN(P_{i}, X_{i}, Y_{i}) , so by the semilocal equivalence theorem for
isotropic submanifolds in symplectic manifolds [9], we can find (shrinking
Z_{i} and V_{i} , if necessary) a symplectic diffeomorphism \psi from Z_{0} to Z_{1}

which induces the given diffeomorphism and bundle mapping on Y_{0} . We
then extend \psi to a diffeomorphism (again called \psi ) from V_{0} to V_{1} by re-
quiring that it map integral curves of \eta_{0} to those of \eta_{1} .

Let \beta_{0} be the contact form on V_{0} which is the pullback of \alpha_{0}=\xi_{0^{\lrcorner}}\omega_{0} ,

and let \beta_{1}=\psi^{*}\alpha_{1} be the pullback of the contact form on V_{1} . By the con-
function of \psi , we have d\beta_{0}=d\beta_{1} on V_{0} , and \beta_{0}=\beta_{1} on Y_{0} . We will next

find a diffeomorphism \chi between neighborhoods of Y_{0} in V_{0} , tangent to the
identity along Y_{0} , such that \chi^{*}\beta_{1}=\beta_{0} .

Define \beta_{t} to be \beta_{0}+t(\beta_{1}-\beta_{0}) for t\in[0,1] . Shrinking V_{0} if necessary,
we can assume that each \beta_{t} is a contact form. To use the deformation
method as in [9], it will suffice to find for each t a vector field v_{t} vanishes
ing to second order along Y_{0} such that d(v_{t}\lrcorner\beta_{t})+v_{t}\lrcorner d\beta_{t}=\beta_{0}-\beta_{1} . By

our conditions on \beta_{0} and \beta_{1} , we can write \beta_{0}-\beta_{1} as df, where f is a func-
tion which vanishes to second order along Y_{0} . Now choose v_{t} to be f
times the Reeb vector field of \beta_{t} , and integrate the time dependent vector
field v_{t} to obtain \chi .

Composing \chi with \psi and shrinking neighborhoods again, we get a
diffeomorphism \phi from V_{0} to V_{1} which pulls back the contact form \alpha_{1} to
\alpha_{0} . Finally, we extend \phi to a diffeomorphism between neighborhoods U_{i}

of Y_{i} in P_{i} by requiring it to map integral curves of the Liouville vector
field \xi_{0} to those of \xi_{1} . It is now easy to check for this extended \phi , \phi^{*}\alpha_{1}

agrees with \alpha_{0} along X_{0} . Since both of the 1-forms \alpha_{0} and \phi^{*}\alpha_{1} satisfy the
Lie derivative equation \mathscr{L}_{\xi_{0}}\alpha=-\alpha , they must be equal, so \phi is the
required symplectomorphism.

For completeness, although we will not use this result, we give a
“canonical model” for an isotropic setup with given symplectic subnormal
bundle.

PROPOSITION 4. 3. There is a functorial construction which associates
to each manifold Y and symplectic vector bundle E over Y an isotropic
setup whose symplectic subnormal bundle is naturally isomorphic to E.
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PROOF. We recall the construction in [11] which associates to each
symplectic vector bundle E over a manifold Y a symplectic manifold \mathscr{L}E

with an isotropic embedding of Y and an isomorphism of E with its
symplectic normal bundle. Let B be the principal Sp(2m) bundle of
which E is an associated R^{2m} bundle, with the usual right action of
Sp(2m) on B converted into a left action by inversion in the group. The
symplectic manifold T^{*}B\cross R^{2m} then has a left action of Sp(2m) .
Symplectic reduction at 0\in \mathfrak{s}\mathfrak{p}(2m)^{*} produces the symplectic manifold \mathscr{L}E .
Y is identified with the image of the zero section in T^{*}B times the zero
element of R^{2m} .

We observe now that T^{*}B\cross R^{2n} carries an Sp(2m) invariant
Liouville vector field \xi’ generating the flow which, for each t>0 , multi-
plies covectors in T^{*}B by e^{-t} and elements of R^{2m} by e^{-\Gamma t} The momen-
tum mapping for the Sp(2m) action on T^{*}B\cross R^{2n} is linear on fibres of
T^{*}B and quadratic on R^{2m} . so its zero level set is invariant under \xi’ . and
hence \xi’ projects to a Liouville vector field on \mathscr{L}E .

Finally, we obtain the isotropic setup (P, \omega, \xi, X, Y) by letting (P, \omega)

be \mathscr{L}E\cross R^{2} with its product symplectic structure, \xi the product of \xi’ with
the radial Liouville vector field on R^{2} . X the product of \mathscr{L}E with the unit
circle in R^{2n} , and Y the product of the copy of Y in \mathscr{L}E with the point
(1, 0) in R^{2}- \square

5. Elementary cobordisms

We are ready to prove our main theorem.

THEOREM 5. 1. Let Y be an isotropic sphere in the contact manifold
X with a trivialization of CSN(X, Y) . Lel X’ be the manifold obtained
from X by elementary surgery along Y. Then the elementary cobordism P
from X to X’ obtained by attaching a standard handle to X\cross I along a
neighborhood of Y carries a symplectic structure and a Liouville vector
fifield which is transverse to X and X’ The contact structure induced on
X is the given one, while that on X’ differs from that on X only on the
spheres where the surgery takes place.

PROOF. We will use Proposition 4.2 to glue a standard handle to the
product X\cross I , where I is the interval [-1, 0]. For the first isotropic setup
up to which the theorem will be applied, we let P_{0} be X\cross R with the
symplectic structure \omega_{0}=d(e^{t}\alpha) obtained from the symplectification of X,

using a particular contact form \alpha . The Liouville vector field \xi_{0} is just
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- \frac{d}{dt} , X_{0} is X\cross\{0\} , and Y_{0} is Y\cross\{0\} . The symplectic subnormal bundle

of this isotropic setup is trivialized by the assumption in the theorem.
Let the dimension of the sphere Y be k-1 . For the second isotropic

setup, we use the data associated with the standard handle as defined in
Section 3. P_{1} is R^{2n} , \omega_{1} is the standard symplectic structure. \xi_{1} the
Liouville vector field defined in Equation 2 and denoted there by \xi_{k} . The
transverse hypersurface X_{1} is the level manifold X_{-} , and the isotropic sub-
manifold Y_{1} is the descending sphere S_{-}^{k-1} . Its symplectic subnormal bun-

dle is trivialized by the vector fields \frac{\partial}{\partial q_{i}} and \frac{\partial}{\partial p_{i}} for i=1 , . n-k.

Applying Proposition 4.2 now gives us an isomorphism (see Figure 2)
of isotropic setups between a neighborhood U_{0} of Y_{0} in P_{0} and a neighbor-
hood U_{1} of Y_{1} in P_{1} . Using this isomorphism, as shown in Figure 3, we
can make a smooth manifold P of the union of X\cross I and the standard
handle in R^{2n} P inherits from its pieces a symplectic structure \omega and a
Liouville vector field \xi which is transverse to each of the boundary comp0-

nents X\cross\{-1\} and X’ The first of these components is contact-
diffeomorphic to X. The second is diffeomorphic to the result of elemen-
tary surgery on X and inherits a contact structure from \omega and \xi . A con-
tact diffeomorphism from most of X to most of X’ (with just the descend-
ing and ascending spheres omitted) is given by flowing along \xi , thanks to
Lemma 2. 2. \square

\dot{\Phi}

P_{0}=X\cross R

FIGURE 2. Isomorphic neighborhoods of isotropic spheres in X\cross I and R^{2n} .
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FIGURE 3. The elementary cobordism obtained by gluing the standard handle to X\cross[-1 ,
0].

We conclude this paper with a discussion of its relation to recent
work of Y. Eliashberg. It is convenient to make the following definition.

DEFINITION 5. 2. A Liouville pair on a symplectic manifold consists
of a Liouville vector fifield \xi and a function f for which the critical point
set of f coincides with the zero set of \xi, with \xi\cdot f<0 except on this set.
The Liouville pair is nondegenerate if \xi is hyperbolic at each of its zeros
and f is a Morse function.

When (\xi, f) is a nondegenerate Liouville pair on P, the expanding
subspace for \xi at each of its zeros is isotropic, so the index of each criti-
cal point of f can be at most \frac{1}{2}\dim P . Following Eliashberg and Gromov
[4], we define a Stein symplectic manifold to be a symplectic manifold ad-
mitting a nondegenerate Liouville pair in which the vector field is com-
plete and the function is proper and bounded from below. It follows from
basic Morse theory [6] that a Stein symplectic manifold P satisfies the
same topological restriction as the Stein manifolds of complex analysis: it
has the homotopy type of a simplicial complex of dimension at most \frac{1}{2}

\dim P .
Conversely, one can attempt to build up Stein symplectic manifolds by

gluing together elementary cobordisms carrying Liouville pairs as con-
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structed in Theorem 5. 1. In fact, Eliashberg and Gromov [3][4] have
shown that the homotopy condition above, together with the existence of
an almost complex structure, is sufficient for the existence of either kind
of Stein structure on a manifold P when when \dim P>4 . Our work in this
paper shmplifies part of Eliashberg’s construction in the symplectic case.
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