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Lifting modules, extending modules and their
applications to generalized

uniserial rings

By Kiyoichi OSHIRO
(Received June 21, 1983; Revised April 19, 1984)

Artinian serial principal ideal rings and artinian serial rings are tradi-
tionally called uniserial rings and generalized uniserial rings, respectively.
These rings are important classical artinian rings as well as quasi-Frobenius
rings. The reader is referred to Faith’s Book [4] for these rings. As is
well known, a ring R is a quasi-Frobenius ring iff every injective R-module
is projective, and if every projective R module is injective; while R is a
uniserial ring iff every quasi-injective R-module is quasi-projective, and iff
every quasi-projective R-module is quasi-injective ([2], [3], [5]).

The purpose of this paper is to give similar characterizations of a gen-
eralized uniserial ring R in terms of extending and lifting modules. More
specifically, consider the following implications:

injective

quasi-injective

extending

As just noted above, R is quasi- Frobenius\Leftrightarrow a) \Leftrightarrow a^{*}); while R is uniserial0&)
\Leftrightarrow b^{*}) . The conditions d) and d^{*}) are recently studied by Harada ([6]\sim[8])

and Oshiro ([15]). In this paper, we study c), c^{*}), e) and e^{*}) and show the
following result: R is generalized uniserial\Leftrightarrow e) \Leftrightarrow e^{*}) \Leftrightarrow c) \Leftrightarrow R is a right perfect
ring with c^{*}).

NOTATION. Throughout this paper, we assume that R is an associative
ring with identity and all R-modules are unitary right R modules. Let M
be an R-module. We use E(M) , J(M) Soc(M) to denote the injective
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hull, Jacobson radical and socle of M, respectively. Further, by \{J_{i}(M)\}_{I}

and \{S_{i}(M)\}_{I} , we denote the descending Loewy chain and ascending Loewy

chain of M, respectively;

J_{0}(M)=M S_{0}(M)=0

J_{1}(M)=J(M) S_{1}(M)=Soc(M)

J_{b+1}(M)=J(J_{b}(M)_{)}^{\backslash } S_{b+1}(M)/S_{b}(M)=Soc(M/S_{b}(M))\backslash

J_{a}(M)= \bigcap_{b<a}J_{b}(M) S_{a}(M)= \bigcup_{b<a}S_{b}(M)

(a : limit ordinal)

For a submodule N of M, we use N\underline{\subset}_{e}M to mean that M is an essential

extension of N. If M has the finite composition length, we denote the length

by c(M) . We say that M satisfies (M-I) if every monomorphism of M to

M is an isomorphism.

DEFINITION. Let M be an R-module. A submodule A of M is said

to be essentially extendible if there exists a direct summand A^{*}\langle\oplus M such

that A\subseteq_{e}A^{*} . Dually, A is said to be small liftable if there exists a direct

summand A^{*}\langle\oplus M such that A^{*}\subseteq A and A/A^{*} is a small submodule of
M/A^{*} . We say that M satisfies the extending property of uniform modules

if every uniform submodule of M is essentially extendible, and that M sat-

isfies the lifting property of hollow modules if every submodule A of M
with M/A hollow is small liftable. Further, we say that M is an extending

module if every submodule of M is essentially extendible, and that M is a

lifting module if every submodule of M is small liftable. M is said to be

aquasi-semiperfect module if M is a lifting module and satisfies the follow-

ing condition: For any two direct summands A_{1} and A_{2} of M with M=
A_{1}+A_{2} , if A_{1}\cap A_{2} is small in M then M=A_{1}\oplus A_{2} . We note that quasi-

semiperfect R-modules are closed under taking direct summands. We know

from [13] and [14] that injective\Rightarrow quasi - injective\Rightarrow extending ; while projective
\Rightarrow quasi- projective\Rightarrow(when R is a right perfect ring) lifting. M is said to be

uniserial if its submodules are linearly ordered by inclusion. R is said to

be a right serial ring if it is expressed as a direct sum of uniserial right

ideals. When R is both right and left serial, R is said to be a serial ring.

Artinian serial rings and artinian serial principal ideal rings are traditionally

called generalized uniserial rings and uniserial rings, respectively ([1],

[11], [12] ) .
Let \{A_{\alpha}\}_{J} be an independent set of submodules of an R module M.
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\sum_{I}\oplus A_{\alpha} is said to be a locally direct summand of M if, for any finite subset

F of I, \sum_{I},
\oplus A_{\beta} is a direct summand of M. We use the following condition:

(K) For any independent set \{A_{a}\}_{I} of submodules of M, if \sum_{I}\oplus A_{\alpha} is

a locally direct summand of M then \sum_{I}\oplus A_{\alpha} is just a direct summan_{ld} .
A set \{M_{\alpha}\}_{I} which consists of completely indecomposable R modules is

said to be a locally semi-T-nilpotent set if, for any family of countable
non-isomorphisms \{f_{n} : M_{\alpha n}arrow M_{\alpha n+1}\}with\alpha_{n}\neq\alpha_{m} for n\neq m and any x in
M_{\alpha_{1}} , there exists k (depending on x) such that f_{k}f_{k-1}\cdots f_{1}(x)=0 . It is well
known ([9]) that \{M_{\alpha}\}_{I} is locally semi-T-nilpotent iff M= \sum_{I}\oplus M_{\alpha} satisfies the
above condition (K).

We first show the following theorem.

THEOREM 1. Let M be a quasi-semiperfect R-module. Then M sat-

isfifies the following condition : For any exact sequence: Parrow Marrow 0\phi such
that ker\phi is small in P, every decomposition P= \sum_{I}\oplus P_{\alpha} implies the decom-
position M= \sum_{I}\oplus\phi(P_{\alpha}) .

PROOF. Let Parrow Marrow 0\phi be an exact sequence with ker\phi small in P.
To prove the statement, we may show the following: Let P=P_{1}\oplus P_{2} . Then
M=\phi(P_{1})\oplus\phi(P_{2}) . Putting A_{i}=\phi(P_{i}) , we first show A_{i}\langle\oplus M, i=1,2. Since
M is quasi-semiperfect, we can take direct summands A_{1}^{A}

‘ and A_{2}^{*} of M such
that M=A_{1}^{*}+A_{2}^{*} and A_{1}^{*}\underline{\subset}A_{1} and A_{r}^{*}.’\underline{\subset}A_{2} . Then P—((\phi^{-1}(A_{1}^{*})\cap P_{1})\oplus(\phi^{-1}

(A_{2}^{*})\cap P_{2}))+ker\phi and hence P=\phi^{-1}(A_{1}^{*})\cap P_{1}\oplus\phi^{-1}(A_{2}^{*})\cap P_{2} . Therefore we
see that A_{i}=A_{i}^{*}

.
\langle \oplus M for i=1,2 . Next, putting X=A_{1}\cap A_{2} we show that

X is small in M. Since M is quasi-semiperfect, we get a decomposition
M=X^{*}\oplus X^{A*}. such that X^{*}\subseteq X and X\cap X^{**} is small in M. Then P=
((\phi^{-1}(X^{**})\cap P_{1})\oplus P_{2})+ker\phi ; whence P=(\phi^{-1}(X^{**})\cap P_{1})\oplus P_{2} and it follows
P_{1}=\phi^{-1}(X^{**})\cap P_{1} . This implies \phi(P_{1})=A_{1}\subseteq X^{**} . Hence X=X\cap X^{**} and
X is small in M. Thus we have situations: M=\phi(P_{1})+\phi(P_{2}) , \phi(P_{i})\langle\oplus M

for i=1,2 and \phi(P_{1})\cap\phi(P_{2}) is small in M. Since M is quasi-semiperfect,
this shows that M=\phi(P_{1})\oplus\phi(P_{2}) .

Theorem 1 and [14, Theorem 2. 1] we have

COROLLARY 1. Assume that R is a right perfect ring whose projective
R-module are expressed as a direct sums of uniserial modules with fifinite
{composition) length. Then every quasi-projective R-modnle is also expressed
as a direct sum of uniserial modules with fifinite length.
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PROPOSITION 1. If M is a quasi-injective R-module then so is J_{a}(M)

for all ordinal a . Dually, if M is a quasi-projective R-module then so is
M/S_{a}(M) for all ordinal a .

PROOF. Straightforward.

PROPOSITION 2. Every indecomposable extending R-module is a uni-

form module. Dually, when R is a right perfect ring, every inde-
composable lifting R-module is a cyclic hollow module.

PROOF. The proof of the first statement is obvious. Assume that R

is a right perfect ring and let M(\neq 0) be an indecomposable lifting R-
module. Then, since R is right perfect, we have a proper maximal sub-
module A in M. Since M is an indecomposable lifting module, every proper
submodule of M is small in M. As a result, M has a unique maximal
submodule A and hence M is a cyclic hollow module.

Lemma 1. Consider situations of R-modules:

M=M_{1}\oplus M_{2}\oplus M_{3} ,
M_{1}\oplus M_{2}\supseteq A_{1}\oplus A_{2} ,
M_{1e}\supseteq A_{1}

Then, if M_{2} is a uniform module, A_{1}\oplus A_{2}\subseteq_{e}M_{1}\oplus M_{2} .

PROOF. Let \pi be the projection : M=M_{1}\oplus M_{2}\oplus M_{3}arrow M_{2} . Then, A_{1}\oplus

A_{2}\subseteq_{e}M_{1}\oplus A_{2}=M_{1}\oplus\pi(A_{2})\underline{\subset}_{e}M_{1}\oplus M_{2} and hence A_{1}\oplus A_{2}\underline{\subset}_{e}M_{1}\oplus M_{2} .

Lemma 2. Let M be an R-module which has the extending property

of uniform submodules and satisfifies the condition (K). Then, every sub-
module A of M which is expressed as a direct sum of uniform modules is
essentially extendible to a direct summand of M.

PROOF. This is easily shown by Lemma 1 and Zorn’s lemma.

PROPOSITION 3. Let \{M_{\alpha}\}_{I} be a family of uniserial R-modules with

fifinite length. If \{c(M_{a})\} is an upper bound, then M= \sum_{I}\oplus M_{\alpha} satisfifies the

condition (K).

PROOF. This is clear by [9, Lemma 12].

PROPOSITION 4. Let R be a generalized uniserial ring and let M be an
R-module. If M has the lifting property of hollow modules then M has the
extending property of uniform modules.

PROOF. In view of [10, Theorem 10] (cf. [12]), we may show the
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following : Let M be an R-module expressed as M=M_{1}\oplus M_{2} with each
M_{i} indecomposable and let A_{i} be a submodule of M_{i} , i=1,2. Then,
every homomorphism \phi from A_{1} to A_{2} with ker \phi\neq 0 is extendible to a
homomorphism from M_{1} to M_{2} .

Actually, let \phi be a homomorphism: A_{1}arrow A_{2} with ker \phi\neq 0 . We extend
\phi to a homomorphism \psi:E(M_{1})arrow E(M_{2}) . Assume that \psi(M_{1})\neg-M_{2} . Then,
we see from [12] that \psi(M_{1})\supseteq M_{2}.\cdot If we put T=\{x\in E(M_{1})|\psi(x)\in M_{2}\} ,
we see that A\underline{\subset}T\subset M_{1}\approx . If we put X=\{x+\psi(x)|x\in 7^{\tau}\} , then M_{1}/(X\cap M_{1})

-\sim M/X ; whence M/X is hollow. S_{\dot{1}}nceX is uniform and is not small in
M, we see from the lifting property for M that X is a direct summand of
M. Hence M=X\oplus M_{1} or M=X\oplus M_{2} by the exchange property of X (cf.
[16] ) . S_{\dot{1}}nceX\cap M_{1}\neq 0 , we get M=X\oplus M_{2} which shows T=M_{1} , a contradic-
tion. Thus we must have \psi(M_{1})\subseteq M_{2} and hence \psi|M_{1} is a desired extension
of \phi .

We are now in a position to show our main result.

THEOREM 2. The following conditions are equivalent for a given ring
R :

1) Every extending R-module is a lifting module.
2) Every quasi-injective R-module is a lifting module.
3) R is a right perfect ring and every lifting R-module is an extending

module.
4) Every quasi-projective R-module is an extending module.
5) R is a generalized uniserial ring.

PROOF. 1) \Rightarrow 2) is clear and 3) \Rightarrow 4) follows from [14, Theorem 2. 1].
2)\Rightarrow 5) . We see from [15, Theorem 2. 11] that R is a right artinian

ring. Therefore, in view of [4, 25. 4. 2], we may show that every finitely
generated R-module is expressed as a direct sum of uniserial modules. Note
that every finitely generated R-module has the finite (Goldie) dimension. By
Proposition 2, it is easy to see that every uniform R-module is indeed uniserial.
We show our assertion by induction on the dimension. So, assume that
every finitely generated R-module with dimension <n is expressed as a direct
sum of uniserial modules and let M be an R-module with the dimension n .
Then, E(M) is expressed as a d_{\dot{1}}rect sum of just n indecomposable injective
modules; say E(M)=E_{1}\oplus\cdots\oplus E_{n} . Then each E_{i} is uniserial as noted above.
We can take a number k such that

M\subseteq J_{k}(E(M))=J_{k}(E_{1})\oplus\cdots\oplus J_{k}(E_{n})

but
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M_{\nabla}^{\prime^{-\neq}}-=J_{k+1}(E(M))=J_{k+1}(E_{1})\oplus\cdots\oplus J_{k+1}(E_{n}) .

By Proposition 1, J_{k}(E(M)) is quasi-injective and hence, by the assumption,
it is a lifting module. Since M\not\equiv J(J_{k}(E(M)))=J_{k+1}(E(M)) , M is not small
in J_{k}(E(M)) . Hence, we have a decomposition J_{k}(E(M))=A\oplus B such that
M=A\oplus(B\cap M) and B\cap M is small in J_{k}(E(M)) . If B\cap M=0 then M=
J_{k}(E(M)) and hence M is a direct sum of uniserial modules J_{k}(E_{1}) , \cdots ,
J_{k}(E_{n}) . If B\cap M\neq 0 then both dimensions of A and B\cap M are smaller
than n ; whence, by induction hypothesis, A and B\cap M are expressed as
direct sums of uniserial modules. Thus, in any case, M is expressed as
a direct sum of uniserial modules.

4)\Rightarrow 5) . By [15, Theorem 3. 18], R is a left and right perfect ring.
Let e be a primitive idempotent of R. Since eR/S_{1} (eR) is quasi-projective
(cf. Proposition 1), it is an extending module by the assumption. So, S_{2} (eR)/
S_{1} (eR) is simple. By similar inductive argument, we can conclude that all
S_{b+1}(eR)/S_{b}(_{\backslash }eR) and S_{a}(eR)/ \bigcup_{c<a}S_{c} (eR) (a : limit ordinal) are simple module.

This implies that eR is uniserial. Since R is a left perfect ring, it follows
that R is right artinian and right serial. Now, as in the proof of 2) \Rightarrow 5),

it is enough to show that every finitely generated R-module is expressed as
a direct sum of uniserial modules. Let M be a finitely generated R-module
and consider a projective cover:

PM-0\underline{\phi} .

Put K=ker\phi . Inasmuch as P is expressed as a direct sum of uniserial
modules and \dot{1}S an extending module, we can assume that K\underline{\subset}{}_{e}P. Then,
S_{1}(P)\subseteq K. Hence \phi induces an epimorphism :

P/S_{1}(P)M-0\underline{\phi_{1}} .

Here, using Proposition 1 and Corollary 1, we see that P/S_{1}(P) is a quasi-
projective module which is expressed as a direct sum of uniserial modules.
Since P/S_{1}(P) is also extending, we can also assume that ker\phi_{1}\underline{\subset}{}_{e}P/S_{1}(P) ;
whence S_{2}(P)/S_{1}(P)\subseteq ker\phi_{1} . As a result, \phi_{1} induces an epimorphism:

P/S_{2}(P)M\underline{\phi_{2}}-0

This procedure must terminate; so we see that M is expressed as a direct
sum of uniserial modules.

5)\Rightarrow 3) . Let M be a lifting R-module and A a submodule of M. Then,
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A is expressed as a direct sum of uniserial modules ([12]); say A= \sum_{I}\oplus A_{\alpha} .

Consider the family \mathscr{S} of all pairs (J, \sum_{J}\oplus M_{\beta}) such that J is a subset of

I and \{M_{\alpha}\}_{J} is an independent family of direct summands of M such that
\sum_{J}\oplus M_{\alpha} is a locally direct summand of M with

\sum_{J}\oplus A_{\beta}\underline{\subset}_{e}\sum_{J}\oplus M_{\beta} .

Then \mathscr{S}\neq\phi by Proposition 4. Using Zorn’s lemma, we can take a maximal
pair (J_{0}, \sum_{J_{0}}\oplus M_{\beta}) in the sense that if J_{0}\underline{\subset}J and \{M_{\beta}\}_{J_{0}}\underline{\subset}\{M_{\gamma}\}_{J} then J_{0}=J.
Using Proposition 3, M= \sum_{J_{0}}\oplus M_{\beta}\oplus M’ for some submodule M’- Note that

M’ is also a lifting module. Now, let \pi be the projection : M= \sum_{J_{0}}\oplus M_{\beta}\oplus

M’arrow M’r Assume that J_{0}\neq I and take \alpha\in J_{0} . Since \pi(A_{a})--A_{\alpha} , we see
that \pi(A_{\alpha}) is a uniform module. Hence, using proposition 4, we have a
direct summand M_{\alpha} of M such that \pi(A_{\alpha})\subseteq_{e}M. By Lemma 1, we see that

\sum_{J_{0}}\oplus A_{\beta}\oplus A_{\alpha}\underline{\subset}_{e}\sum_{J_{0}}\oplus M_{\beta}\oplus M_{\alpha}\langle\oplus M

This contradicts the maximality of (J_{0}, \sum_{J_{0}}\oplus M_{\beta}) . Thus I=J_{0} and hence 3)

holds.
5)\Rightarrow 1) . Let M be an extending R-module and A a submodule of M.

As above, A is expressed as a direct sum of uniform modules ; say A=
\sum_{I}\oplus A_{\alpha} . By Zorn’s lemma, we can take a maximal subset J_{0} of I such that

\sum_{J_{0}}\oplus A_{\beta} is a locally direct summand of M. (Of course, ‘maximal’ means that

if J_{0}\underline{\subset}J\subseteq I and \sum_{J}\oplus A_{\gamma} is a locally direct summand of M then J_{0}=J.) Then,

by Proposition 3,

M= \sum_{J_{0}}\oplus A_{\beta}\oplus M’

for some submodule M It follows that

A= \sum_{J_{0}}\oplus A_{\beta}\oplus(M’\cap A)(

Let \pi be the projection : A= \sum_{J_{0}}\oplus A_{\beta}\oplus(M’\cap A)arrow M’\cap A . Now, we may

show that \sum_{I-J}\bigoplus_{0}A_{\alpha} is small in M. If J_{0}=I, there is nothing to prove. So,

assume that I-J_{0}\neq\phi . Let \alpha\in I-J_{0} . Then, we see that A_{\alpha}-\sim\pi(A_{\alpha}) and
hence \pi(A_{\alpha}) is a uniform module. Using [13, Proposition 1. 4], we can
take a direct summand M_{\alpha} of M’ such that \pi(A_{\alpha})\underline{\subset}_{e}M_{\alpha} . If \pi(A_{\alpha})=M_{\alpha}

then \sum_{J_{0}}\oplus A_{\beta}\oplus A_{\alpha}\langle\oplus M. This contradicts the choice of J_{0} . As a result,
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\pi(A_{\alpha/}^{\backslash }\subseteqq M_{\alpha} and hence \pi(A_{\alpha}) is small in M. For each \beta\in J_{0} , let \pi_{\beta} be the
projection : M= \sum_{J_{0}}\oplus A_{\beta}\oplus M’arrow A_{\beta} . Then, \pi_{\beta}(A_{\alpha}) is a homomorphic image

of \pi(A_{a}) and hence \pi_{\beta}(A_{\alpha}) is small in M. Therefore, A_{\alpha} is small in M
and hence so is \sum_{I-J_{0}}\oplus A_{\alpha} as desired. The proof is now completed.
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