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Lifting modules, extending modules and their
applications to generalized

uniserial rings

By Kiyoichi OsHirO
(Received June 21, 1983 ; Revised April 19, 1984)

Artinian serial principal ideal rings and artinian serial rings are tradi-
tionally called uniserial rings and generalized uniserial rings, respectively.
These rings are important classical artinian rings as well as quasi-Frobenius
rings. The reader is referred to Faith’s Book for these rings. As is
well known, a ring R is a quasi-Frobenius ring iff every injective R-module
is projective, and if every projective R-module is injective; while R is a
uniserial ring iff every quasi-injective R-module is quasi-projective, and iff
every quasi-projective R-module is quasi-injective ([2], [3], [5)).

The purpose of this paper is to give similar characterizations of a gen-
eralized uniserial ring R in terms of extending and lifting modules. More
specifically, consider the following implications :

a)
injective module, —————> projective module
a*)
d) b) d*)

quasi-injective module X quasi-projective module

extending module 7 lifting module

As just noted above, R is quasi-Frobenius¢>a)<>a*); while R is uniserialb)
&b*). The conditions d) and d*) are recently studied by Harada ([6] ~[8])
and Oshiro ([15]). In this paper, we study c), c*), e) and e*) and show the
following result: R is generalized uniserial<e)&e*)Sc)SR is a right perfect
ring with ¢*).

Norarion. Throughout this paper, we assume that R is an associative
ring with identity and all R-modules are unitary right R-modules. Let M
be an R-module. We use E(M), J(M) Soc(M) to denote the injective
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hull, Jacobson radical and socle of M, respectively. Further, by {J;(M)};
and {S;(M)}, we denote the descending Loewy chain and ascending Loewy
chain of M, respectively ;

Jo(M)=M Se(M)=0

J(M)=J(M) Sy(M) = Soc (M)
JonlM) =T (Jo(M)) Sy (M)Sy(M) = Soc(M]S,(M))

Jo(M)= 1 J(M) SoM) = U S,(M)

(a : limit ordinal)

For a submodule N of M, we use NC,M to mean that M is an essential
extension of N. If M has the finite composition length, we denote the length
by c(M). We say that M satisfies (M—1I) if every monomorphism of M to
M is an isomorphism.

DeFINITION. Let M be an R-module. A submodule A of M is said
to be essentially extendible if there exists a direct summand A*(@M such
that AC,A*. Dually, A is said to be small liftable if there exists a direct
summand A*(@PM such that A*CA and A/A* is a small submodule of
MJA*. We say that M satisfies the extending property of uniform modules
if every uniform submodule of M is essentially extendible, and that M sat-
isfies the lifting property of hollow modules if every submodule A of M
with M/A hollow is small liftable. Further, we say that M is an extending
module if every submodule of M is essentially extendible, and that M is a
lifting module if every submodule of M is small liftable. M is said to be
a quasi-semiperfect module if M is a lifting module and satisfies the follow-
ing condition: For any two direct summands A, and A, of M with M=
A+ A, if AiNA; is small in M then M=A@®A;,. We note that quasi-
semiperfect R-modules are closed under taking direct summands. We know
from [13] and [14] that injective>quasi-injective=>extending ; while projective
—>quasi-projective—>(when R is a right perfect ring) lifting. M is said to be
uniserial if its submodules are linearly ordered by inclusion. R is said to
be a right serial ring if it is expressed as a direct sum of uniserial right
ideals. When R is both right and left serial, R is said to be a serial ring.
Artinian serial rings and artinian serial principal ideal rings are traditionally
called generalized wuniserial rings and wuniserial rings, respectively ([1],

[11], [12].

Let {A.), be an independent set of submodules of an R-module M.
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2LPA, is said to be a locally direct summand of M if, for any finite subset

lé‘ of I, )JMDA, is a direct summand of M. We use the following condition :
(K) ﬁFor any independent set {A,}; of submodules of M, if ZC—BA

a locally direct summand of M then Z@A is just a direct summand

A set {M,}; which consists of completely indecomposable R- modules is
said to be a locally semi-T-nilpotent set if, for any family of countable
non-isomorphisms { f,, : M, —M,, }with a,#a, for n#m and any z in
M, , there exists k£ (depending on z) such that f; fx_;---fi(x)=0. It is well
known ([9]) that {M,}; is locally semi-T-nilpotent iff M :;@Ma satisfies the

above condition (K).

We first show the following theorem.
THEOREM 1. Let M be a quasi-semiperfect R-module. Then M sat-

isfies the following condition: For any exact sequence : PgM—»O such
that ker ¢ is small in P, every decomposition P= ) PP, implies the decom-
I

position M= Y Ps(P,).

Proor. Let PgMHO be an exact sequence with ker ¢ small in P.
To prove the statement, we may show the following: Let P=P,@PF,. Then
M=¢(P)D¢(F;). Putting A;=¢(P;), we first show ALPM, i=1, 2. Since
M is quasi-semiperfect, we can take direct summands A and A of M such
that M=Af+Af and AfCA, and AFC A, Then P=((¢"'(AF)NP)P($*
(AF)NPy))+ker ¢ and hence P=¢ {(AF)NP, Do (AF)NP;.. Therefore we
see that A;=Af{@PM for i=1,2. Next, putting X=A, N A, we show that
X is small in M. Since M is quasi-semiperfect, we get a decomposition
=X*PX*¥* such that X*CX and XN X** is small in M. Then P=
(71U X**) N P)PDP,) +ker ¢; whence P=(¢"1(X**)NP)PP, and it follows
Pi=¢{(X**)NP,. This implies ¢(P)=A,C X**. Hence X=X X** and
X is small in M. Thus we have situations: M=¢(P)+¢(P), ¢(P){PM
for 1=1,2 and ¢(P)N¢(F) is small in M. Since M is quasi-semiperfect,
this shows that M=¢(P,)Pe(Ps).

[Theorem 1l and [14, Theorem 2.1] we have

CoroOLLARY 1. Assume that R is a right perfect ring whose projective
R-module are expressed as a direct sums of uniserial modules with finite
(composition) length. Then every quasi-projective R-module is also expressed
as a direct sum of uniserial modules with finite length.
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ProrosiTioN 1. If M is a quasi-injective R-module then so is J.(M)
for all ordinal a. Dually, if M is a quasi-projective R-module then so is

M|S, (M) for all ordinal a.
Proor. Straightforward.

PROPOSITION 2. Every indecomposable extending R-module is a uni-
form module. Dually, when R is a right perfect ring, every inde-
composable lifting R-module is a cyclic hollow module.

Proor. The proof of the first statement is obvious. Assume that R
is a right perfect ring and let M (#0) be an indecomposable lifting R-
module. Then, since R is right perfect, we have a proper maximal sub-
module A in M. Since M is an indecomposable lifting module, every proper
submodule of M is small in M. As a result, M has a unique maximal
submodule A and hence M is a cyclic hollow module.

LemMA 1. Consider situations of R-modules :
M= MDMDM;,
M@®M, 2 ADA,,
M62 Al .
Then, if M, is a uniform module, APAC, MPM,.
ProoF. Let & be the projection: M=M,PMEPM;—M,. Then, AD
A,C M@ A,=M®Dr(A)S. M(®M, and hence APDA;S. MDM..

LemMMA 2. Let M be an R-module which has the extending property
of uniform submodules and satisfies the condition (K). Then, every sub-
module A of M which is expressed as a direct sum of uniform modules is
essentially extendible to a direct summand of M. '

Proor. This is easily shown by Lemma 1 and Zorn’s lemma.

ProPOSITION 3. Let {M,)}; be a family of uniserial R-modules with
finite length. If {c(M.,)} is an upper bound, then M= .M, satisfies the
I

condition (K).
Proor. This is clear by [9, Lemma 12].

PrROPOSITION 4. Let R be a generalized uniserial ring and let M be an
R-module. If M has the lifting property of hollow modules then M has the
extending property of uniform modules.

ProoF. In view of [10, Theorem 10] (cf. [12]), we may show the
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following: Let M be an R-module expressed as M= M,(PM, with each
M; indecomposable and let A; be a submodule of M, i=1,2. Then,
every homomorphism ¢ from A, to A, with ker ¢#0 is extendible to a
homomorphism from M, to M.

Actually, let ¢ be a homomorphism : A,— A, with ker ¢7#0. We extend
¢ to a homomorphism ¢ : E(M)—>E(M,). Assume that ¢(M)ZM,. Then,
we see from that ¢(M)2M,. If we put T={xeE(M)|¢(x)c M},
we see that ACTC M, If we put X={z+¢(x)|x= T}, then M,/(XN M)
~M)X; whence M/X is hollow. Since X is uniform and is not small in
M, we see from the lifting property for M that X is a direct summand of
M. Hence M=XPM, or M=XPM, by the exchange property of X (cf.
16]). Since XN M,+#0, we get M= X(P M, which shows T'=M,, a contradic-
tion. Thus we must have ¢(M;)C M, and hence ¢| M, is a desired extension

of ¢.

We are now in a position to show our main result.

THEOREM 2. The following conditions are equivalent for a given ring

1) Every extending R-module is a lifting module.

2) Every quasi-injective R-module is a lifting module.

3) R is a right perfect ring and every lifting R-module is an extending
module.

4) Every quasi-projective R-module is an extending module.

5) R is a generalized uniserial ring.

Proor. 1)=2) is clear and 3)=4) follows from [14, Theorem 2. 1].

2)=5). We see from [15, Theorem 2.11] that R is a right artinian
ring. Therefore, in view of [4, 25.4.2], we may show that every finitely
generated R-module is expressed as a direct sum of uniserial modules. Note
that every finitely generated R-module has the finite (Goldie) dimension. By
[Proposition 2, it is easy to see that every uniform R-module is indeed uniserial.
We show our assertion by induction on the dimension. So, assume that
every finitely generated R-module with dimension <7 is expressed as a direct
sum of uniserial modules and let M be an R-module with the dimension =.
Then, E(M) is expressed as a direct sum of just #» indecomposable injective
modules ; say E(M)=E®---@E,. Then each E; is uniserial as noted above.
We can take a number £ such that

ME Jk(E(M)) - Jk(El)® @Jk(En)

but
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M%Z Jk+1 (E(M)) = Jk+1(EI)@"' @Jk+1<En> .

By [Proposition 1|, J,(E(M)) is quasi-injective and hence, by the assumption,
it is a lifting module. Since MZJ(J(E(M)))=d: (E(M)), M is not small
in J,(E(M)). Hence, we have a decomposition J,(E(M))=A@B such that
M=A@BNM) and BN M is small in J,(E(M)). If BNM=0 then M=
Ji(E(M)) and hence M is a direct sum of uniserial modules Ji(E,), «--,
Jo(E). If BNM=#0 then both dimensions of A and BN M are smaller

than n; whence, by induction hypothesis, A and BN M are expressed as
direct sums of uniserial modules. Thus, in any case, M is expressed as

a direct sum of uniserial modules.

4)=5). By [15, Theorem 3.18], R is a left and right perfect ring.
Let ¢ be a primitive idempotent of R. Since eR/S;(eR) is quasi-projective
(cf. [Proposition 1)), it is an extending module by the assumption. So, S;(eR)/

S,(eR) is simple. By similar inductive argument, we can conclude that all

S,.1(eR)/S,(eR) and S,(eR)/ U S.(eR) (a: limit ordinal) are simple module.
c<a

This implies that eR is uniserial. Since R is a left perfect ring, it follows
that R is right artinian and right serial. Now, as in the proof of 2)=5),
it is enough to show that every finitely generated R-module is expressed as
a direct sum of uniserial modules. Let M be a finitely generated R-module
and consider a projective cover :

¢

P M 0.

Put K=ker ¢. Inasmuch as P is expressed as a direct sum of uniserial
modules and is an extending module, we can assume that KC,P. Then,
S;(P)C K. Hence ¢ induces an epimorphism : '

¢

P/S, (P) M 0.

Here, using [Proposition 1] and [Corollary 1, we see that P/S;(P) is a quasi-
projective module which is expressed as a direct sum of uniserial modules.
Since P/S;(P) is also extending, we can also assume that ker ¢,&,P/S;(P);
whence S;(P)/S;(P)Cker ¢;. As a result, ¢; induces an epimorphism :

P/S,(P) % u 0.

This procedure must terminate; so we see that M is expressed as a direct
sum of uniserial modules.

5)=3). Let M be a lifting R-module and A a submodule of M. Then,
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A is expressed as a direct sum of uniserial modules ([12]); say A= PA..
I
Consider the family &% of all pairs (J, Y, M,) such that J is a subset of
J

I and {M,}; is an independent family of direct summands of M such that
2 PM, is a locally direct summand of M with
J

SO4,C. ZOM,.

Then & #¢ by [Proposition 4. Using Zorn’s lemma, we can take a maximal

pair (J,, Z@M} in the sense that if J,CJ and {My}; S{M,}, then Jy=J.

Using [Proposmon 3 M= ZG—)M @M for some submodule M’. Note that

M’ is also a lifting module Now, let = be the projection: M=} PM,P
J

M —M. Assume that Jy,#I and take ac&J,. Since 7r(A,,>:A,,,owe see
that z#(A,) is a uniform module. Hence, using proposition 4, we have a
direct summand M, of M such that #(A)C,M. By Lemma 1, we see that

SOADAC. COMBMBM.

This contradicts the maximality of (J,, > @PM,). Thus I=J, and hence 3)
JO

holds.

5)=>1). Let M be an extending R-module and A a submodule of M.
As above, A is expressed as a direct sum of uniform modules; say A=
Z@A By Zorn’s lemma, we can take a maximal subset J, of I such that

Z(—BA is a locally direct summand of M. (Of course, ‘maximal’ means that
1f JoCJCI and Z(—DA is a locally direct summand of M then Jy=J.) Then,
by [Proposition 3|

M=TOADM
for some submodule M. It follows that
A= ;@Aﬂ@(M' NA).

Let 7 be the projection: A= Z(—BAﬁ@(M'ﬂA)HM’ﬂA Now, we may
show that ) @PA, is small in M If Jy=1, there is nothing to prove. So.

-7,

assume that I—J,#¢. Let acI—J,, Then, we see that A,~x(A,) and
hence #(A,) is a uniform module. Using [13, Proposition 1.4], we can
take a direct summand M, of M’ such that n=(A)C. M, If n(A)=M,
then ;(—BA&%AK@M This contradicts the choice of J,. As a result,
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(A, & M, and hence n(A,) is small in M. For each g&J,, let n;, be the
projection: M= PAPM’—A, Then, n,(A, is a homomorphic image
J

of n(A,) and hencoe_x,g(Aa) is small in M. Therefore, A, is small in M

and hence so is Y);PA, as desired. The proof is now completed.
-7,
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