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Professor Zenjiro Kuramochi was born on January 15, 1920 in Iwa-
mizawa, Hokkaido. After graduating from Hokkaido Imperial University
(now Hokkaido University) in September 1949, he was appointed Assistant
of the Department of Mathematics at Osaka University, where he received
the degree of Doctor of Science in March 1955. In April 1955, he was
promoted to Lecturer at the same University and, in October 1956, he
returned to Hokkaido University as Assistant Professor. In March 1967,
he was appointed Professor in the Department of Mathematics at Hokkaido
University, and he has held this position until now.

His research has been on function theory on open Riemann surfaces,
as the bibliography attached to this issue shows. He introduced a notion
of ideal boundary of Riemann surfaces, which is now called the Kuramochi
boundary, and constructed the Evans-Selberg function for parabolic Riemann
surfaces. In his theory of ideal boundaries, the study of positive bounded
minimal harmonic functions constitutes an important part and has had a
strong influence on the classification theory of Riemann surfaces (as well
as Y. Toki’s work). His theory was systematically developed in a book by
C. Constantinescu and A. Cornea.

We hope Professor Kuramochi will continue to inspire us through his
research and teaching in the Department of Mathematics at Hokkaido
University.

Editors of
Hokkaido Mathematical Journal
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