Monday Analysis Seminar: Martin boundary for $p$-harmonic functions in a cylinder and a cone

Date
2014-1-20 14:45 - 2014-1-20 16:15
Place
Faculty of Science Buliding #3 Room 210
Speaker/Organizer
Tsubasa Itoh (Hokkaido University)
 
Let $1<p<\infty$.  A $p$-harmonic kernel function is a $p$-harmonic analogue of Martin kernel functions for harmonic functions.  We study $p$-harmonic kernel functions in a cylinder and a cone in $\mathbb R^n$.  In case $n=2$ explicit representations of $p$-harmonic kernel functions are given.