※このページは北大数学COEで作成しています

第16回諸分野のための数学研究会 (北大数学COE協賛)

Seminar on Mathematics for various disciplines

Contents

Program

日  時:
2007年12月 4日(火)
15:00-16:00
Pavel Krejci (Weierstrass Institute for Applied Analysis and Stochastics)
16:15-17:15
Victor Isakov (Wichita State University)
場  所:
東京大学大学院 数理科学研究科122号室
※会場へのアクセスは下記にてご確認下さい。
駒場アクセスマップ
http://www.u-tokyo.ac.jp/campusmap/map02_02_j.html
駒場キャンパス数理科学研究科棟
http://www.u-tokyo.ac.jp/campusmap/cam02_01_27_j.html
組織委員:
山本昌宏(東大)
石村直之 (一橋大学)
儀我美一 (東京大学/北海道大学)
プログラム:
Speaker:Pavel Krejci (Weierstrass Institute for Applied Analysis and Stochastics)
Title:Quasilinear hyperbolic equations with hysteresis
ABSTRACT:
We consider a wave propagation problem in a rate independent elastoplastic material described by a counterclockwise convex hysteresis operator. Unlike in viscoelasticity, the speed of propagation is bounded above by the speed of the corresponding elastic waves. The smoothening dissipative effect is due to the convexity of the hysteresis branches. We present some recent results on the long time behavior of solutions under various boundary conditions, including the stability of time periodic solutions under periodic forcing.
Speaker: Victor Isakov (Wichita State University)
Title: Carleman estimates for second order operators with two large parameters
ABSTRACT:
We obtain new Carleman type estimates for general second order linear partial differential operators. These estimates hold for the weight functions under pseudoconvexity conditions relating the operator and weight function. We discuss these conditions. We give applications to uniqueness and stability of the continuation and inverse problems for elasticity system with residual stress without smallness assumptions on residual stress. This is a joint work with Nanhee Kim.