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1 Introduction

For Fuchsian differential equations of the form

d

dx
Y (x) =

r∑
i=1

Ai

(x− ci)
Y (x), (1.1)

where Ai are n×n complex matrices, W. Crawley-Boevey ([1]) find a corre-
spondence of the systems and representations of quivers. In this correspon-
dence, the Middle convolution (Euler transform) corresponds to reflection
functors of representations of quivers. And he solved the existence problem
of systems of differential equations, so-called Deligne-Simpson problem by
using the theory of representations of quivers.

In this note, we deal with differential equations of scalar type. The the-
ory of middle convolution (Euler transform) is rearranged by Oshima [2].
By using this theory, we generalize the correspondence between differential
equations and Kac-Moody root systems to non-Fuchsian differential equa-
tions.

2 Fourier-Laplace transform and characteristic in-
dices

2.1 Characteristic indices

Let K be an algebraic closed field of characteristic zero．The polynomial
ring with coefficients in K is denoted by K[x]. Also K(x) stands for the
field of rational functions with coefficients in K．For any a ∈ K, K(x)a is
the field of Laurent series of (x− a)，i.e., K(x)a = {

∑∞
i=m ai(x− a)i | ai ∈

K, m ∈ Z}．Moreover, K(x)a is the field of Puiseux series of (x − a), i.e.,

K(x)a =
∪

p∈Z>0
K(x

1
p )a．
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Then the differentiation ∂ = d
dx with respect to x is naturally defined on

them. Let W [x],W (x),W (x)a and W (x)a be rings of differential operators
with coefficients in K[x],K(x),K(x)a, and K(x)a respectively.

For an element h in K(x) and a ∈ K, if there exist f, g ∈ K[x] and
g(a) 6= 0 such that h = f

g = fg−1, then one says h is regular at x = a. If h
is not regular at x = a, one says h is singular at x = a and x = a is called
singular point of h.

Recalling that we can write P ∈W (x) as

P =
n∑

i=0

ai(x)∂
i,

ai(x) ∈ K[x] uniquely，let us define singular points of P as singular points

of ai(x)
an(x)

． Also if

P∞ =

n∑
i=0

ai(x
−1)(x2∂)i

has a singular point at x = 0, then we say P has a singular point at x = ∞.
We define characteristic indices of elements of W [x] at their singular

points. Let us take P ∈ W [x]. We can assume x = 0 is a singular point of
P．For the other singular points, we can define characteristic indices in the
same way. Let us define a subspace of W (x)0 by W k

0 = {
∑n

i=0 cix
k+i∂i |

ci ∈ K,n ∈ Z≤0}(k ∈ Z)．Then we define a map from W k
0 to the ring of

polynomials K[λ] as follows,

Ξk
0 : W k

0 −→ K[λ]∑n
i=0 cix

k+i∂i 7−→ c0 +
∑n

i=1 ciλ(λ− 1) · · · (λ− i+ 1).

Then an arbitrary element P of W (x)0 is written by

P =
∞∑

k=m

Pk, (Pk ∈W k
0 , Pm 6= 0). (2.1)

Then
Ch0(P ) = Ξm

0 (Pm) ∈ K[λ]

is characteristic polynomial of P at x = 0. Moreover,

Chi0(P ) = Ξm+i
0 (Pm+i) ∈ K[λ]

is i-th characteristic polynomial (i = 1, 2, . . .).
Let us consider power series solutions of the differential equation Pu = 0．

The multiplicative group {xλ | λ ∈ K} is defined by the multiplication
xλ1 ·xλ2 = xλ1+λ2．The group ring K[xλ] is generated by this group over K．
The differentiation ∂ = d

dx on K[xλ] is naturally defined by ∂xλ = λxλ−1．
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Then the differentiation on K[[xλ]] = K[xλ]⊗K[x]K(x)0 is naturally defined

as well. For f =
∑∞

i=0 cix
µ+i ∈ K[[xλ]]，if c0 6= 0， one says f has the

characteristic index µ．
Then we have the following.

Proposition 2.1. Let us take P ∈ W [x] which have a singular point at
x = 0. Suppose that degCh0(P ) = n > 0. Also assume that there are
λ1, . . . , λl ∈ K, m1, . . . ,ml ∈ Z>0 such that λi − λj /∈ Z (i 6= j) and∑l

i=1mi = n. Then the followings are equivalent.

1. For i = 1, . . . , l, j = 0, 1, . . . ,mi − 1, there exist fλi+j ∈ K[[xλ]] with
characteristic indices λi + j such that Pfλi+j = 0.

2. We have the following equations,

Chk0(P )(λi + j) = 0

for i = 1, . . . , l, k = 0, . . . ,mi − 1 and j = 0, . . . ,mi − (k + 1).

Then we define characteristic indices of P at the singular point x = 0 as
follows.

Definition 2.2. Let us take P ∈ W [x] which satisfies conditions in Propo-
sition 2.1. Then we say P has characteristic indices

{[λ1]m1 , . . . , [λl]ml
}

at x = 0.

To discuss formal power series solutions at irregular singular points, we
should introduce twisted characteristic indices.

Definition 2.3. Let us take f(x) ∈ K[x−1]. We say P ∈ W [x] has ef(x)-
twisted characteristic indices

{[λ1]m1 , . . . , [λl]ml
},

at x = 0, if P (x, ∂ − d
dxf(x)) has characteristic indices

{[λ1]m1 , . . . , [λl]ml
}

at x = 0.

When we consider the “ramified” case, we need to consider the formal
solutions in K0. Let us define the algebra endomorphism

ρp : W (x)0 −→ W (x)0
x 7−→ xp

∂ 7−→ 1
px

1−p∂

for p ∈ Z>0.
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Definition 2.4. Let us take f(x) ∈ K[x−1]. We say P ∈ W [x] has ef(x)-
twisted characteristic indices of ramification index p

{[λ1]m1 , . . . , [λl]ml
}

if ρp(P (x, ∂)) ∈W (x) has ef(x)-twisted characteristic indices

{[λ1]m1 , . . . , [λl]ml
}.

2.2 Fourier-Laplace transform

Let us consider the Fourier-Laplace transform

L : W [x] −→ W [x]
x 7−→ −∂
∂ 7−→ x

.

Then we have the followings.

Theorem 2.5. Let us take P ∈ W [x] which has a singular point at x = a
and f(x) = αn−1x

−(n−1) + · · · + α1x
−1 ∈ K[x−1] where n > 1. Then there

exist di ∈ K and polynomials gi(x) = a
nx

n + gn−1x
n−1 + · · · + g1x ∈ K[x]

for i = 1, . . . , n and the followings are equivalent.

1. At x = a, P has ef(x−a)-twisted characteristic indices

{[λ1]m1 , · · · , [λl]ml
}.

2. At x = ∞, LP has egi(x)-twisted characteristic indices of ramified
index n

{[λ1 + di]m1 , · · · , [λl + di]ml
}

for i = 1, . . . , n.

Theorem 2.6. Let us take P ∈ W [x] which has a singular point at x = ∞
and f(x) = αn+1x

n+1 + · · · + α1x ∈ K[x] where n ≥ 0. Then there exist
di ∈ K and gi(x) = gn+1x

n+1 + · · ·+ g1x for i = 1, . . . , n and the followings
are equivalent.

1. At x = ∞, P has ef(x)-twisted characteristic indices

{[λ1]m1 , . . . , [λl]ml
}.

2. At x = ∞, P has egi(x)-twisted characteristic indices of ramified index
n

{[λ1 + di]m1 , . . . , [λl + di]ml
}

for i = 1, . . . , n.
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If we write P =
∑n

i=0 ai(x)∂
i ∈W [x], then the degree of P is defined by

degP = max{deg ai(x) | i = 0, . . . , n}.

Definition 2.7 (Reduced representative). Let us take P ∈ W [x]. The
reduced representative RP ∈ W [x] is the element in W [x] ∩ K(x)P which
has the minimal degree.

Theorem 2.8. Let P be an element in W [x]. We assume that P has a sin-
gular point at x = a and degChaP > 0. Then the followings are equivalent.

1. P has characteristic indices

{[0]m0 , [λ1]m1 , . . . , [λl]ml
}

at x = a.

2. L(RP ) has e−ax-twisted characteristic indices

{[λ1 − 1]m1 , . . . , [λl − 1]ml
}

at x = ∞.

3 Local datum

For a fixed k ∈ Z>0, let us consider a family of finite sets I = I1, I2, . . . , Ik
and surjective maps φi from Ii−1 to Ii for i = 2, . . . , k and suppose that
cardinalities of these sets satisfy that #I1 ≥ #I2 ≥ · · · ≥ #Ik. The compo-
sitions ψi = φi◦φi−1◦· · ·◦φ1 are surjective maps from I to Ii for i = 2, . . . , k.
We put ψ1 = idI .

For i = 1, . . . , k− 1, we introduce relations on I as follows. For s, s′ ∈ I
and i = 1, . . . , k − 1, we have

s1
i∼ s2

if ψk(s1) = ψk(s2), ψk−1(s1) = ψk−1(s2), . . . , ψi+1(s1) = ψi+1(s2) and

ψi(s1) 6= ψi(s2). Also we write s1
0∼ s2 if s1 = s2.

For each Ii (i = 1, . . . , k), we fix an injective map αi into K. By these
αi, we define a injective map expx from I into K[x−1] as follows,

expx : I −→ K[x−1]
s 7−→ αk(ψk(s))x

−k + . . .+ α1(s)x
−1 .

Let us fix a map l : I → Z>0 and consider a Z-lattice

L(I) =
∏
s∈I

Zl(s).
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Fix an element m ∈ L(I) written by

m =
∏
s∈I

ms =
∏
s∈I

(m(s)1, . . . ,m(s)l(s)) ∈
∏
s∈I

Zl(s).

For this m, the order is defined by

ordm =
∑
s∈I

l(s)∑
i=0

m(s)i.

We also fix an element of
∏

s∈I Cl(s),

Λ =
∏
s∈I

Λs =
∏
s∈I

(λ(s)1, . . . , λ(s)l(s)) ∈
∏
s∈I

Cl(s).

Then we call the tuple (I, expa,m,Λ) local datum at x = a of rank k. Also
we define the order of the local datum by ordm.

4 Twisted Euler transform

All the remaining of this note, we consider elements in W [x] which satisfy
followings. Let us take P ∈ W [x] of the order n, i.e., P =

∑n
i=0 ai(x)∂

i.
Singular points of P are c1, . . . , cp ∈ K and c0 = ∞. For each ci, there exists
a local datum (Ii, expci ,mi,Λi) of order n and rank ki and Λi satisfies that
λ(s)i − λj(s) /∈ Z (i 6= j) where Λi =

∏
s∈Ii(λ(s)1, . . . , λ(s)l(s)). Then for

each s ∈ Ii, P has eexpci (s)-twisted characteristic indices

{[λ(s)1]m(s)1 , . . . [λ(s)l(s)]m(s)l(s)}

at x = ci. Then we say P has local datum (Ii, expci ,mi,Λi) for i = 0, . . . , p.
Let us introduce some operations on W [x] and W (x).

Definition 4.1 (Gauge transform, Addition). For f ∈ K(x), we consider
the following algebra isomorphism

Ad(ef(x)) : W (x) −→ W (x)
x 7−→ x

∂ 7−→ ∂ − d
dxf(x)

.

For λ
x−c ∈ K(x), λ, c ∈ K , we define

Ad((x− c)λ) : W (x) −→ W (x)
x 7−→ x

∂ 7−→ ∂ − λ
x−c

and call this addition at x = c.
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Definition 4.2 (Euler transform). Euler transform is an operation on W [x]
defined by

E(λ) = L ◦ RAd(xλ) ◦ L−1R

for λ ∈ K.

Let us define T (P ) =
∏p

i=0 Ii. For t ∈ T (P ), t = (s0(t), . . . , sp(t)), we
write

Ade(t) =

p∏
i=0

Ad(eexpci (si(t))),

Ade(t)−1 =

p∏
i=0

Ad(e− expci (si(t))),

Ad(t) =

p∏
i=0

Ad((x− ci)
λ(si(t))1),

Ad(t)−1 =

p∏
i=0

Ad((x− ci)
−λ(si(t))1).

Definition 4.3 (Twisted Euler transform). For t ∈ T (P ), we define the
twisted Euler transform by

E(t) = RAde(t)−1Ad(t)−1E(λ(s0(t))1 − 1)Ad(t)Ade(t).

Theorem 4.4. Let us take t ∈ T (P ) and assume some generic condition
on Λi. Then E(t)P ∈W [x] satisfies followings.

Singular points of E(t)P are same as them of P . On each singular points
ci, there exists a local datum

(Ĩi, ˜expci , m̃i, Λ̃i).

And E(t)P has local datum (Ĩi, ˜expci , m̃i, Λ̃i) for i = 0, . . . , p.
Then

Ĩi = Ii,
˜expci = expci

and m̃i =
∏

s∈Ii
˜m(s) =

∏
s∈I(

˜m(s)1, . . . ,
˜m(s)l(s)) satisfy that

˜m(s)i = m(s)i + d if i = 1 and s = si(t)

˜m(s)i = m(s)i otherwise.

where

d = degRAde(t)P −
l(s0(t))∑
i=1

m(s0(t))i −m(s0(t))1.
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Remark 4.5. The degree of P can be written by the Z-linear combination
of m(s)i.

Let us define a Z-lattice

LP = {
p∏

i=0

mi ∈
p∏

i=0

L(Ii) | ordm1 = · · · = ordmp}.

Then by this theorem, LE(t)P = LP and E(t) sends
∏p

i=0mi ∈ LP to∏p
i=0 m̃ ∈ LE(t)P = LP linearly. Hence we can extend this to the Z-linear

map
σ(t) : LP −→ LP .

We also define following Z-linear maps. For s ∈ Ii, we define Z-linear
endomorphism of L(Ii),

σ(i, s, j) : L(Ii) −→ L(Ii)
m(s)j 7−→ m(s)j+1

m(s)j+1 7−→ m(s)j
m(s)k 7−→ m(s)k for k 6= j

.

We can extend this to Z-linear endomorphism of LP which is trivial on
L(Il) (i 6= l).

5 Weyl group action and twisted Euler transform

For P ∈ W [x] which satisfies conditions defined in the previous section, we
define a Dynkin diagram of Kac-Moody Lie algebra as follows. The set of
vertices is

C = {ct | t ∈ T (P )} ∪ {d(i, s, j) | s ∈ Ii (i = 0, . . . , p), j = 1, . . . , l(s)− 1}

We connect these vertices according to the following rule. For t, t′ ∈ T (P ),
t = (s(t)0, . . . , s(t)p), t

′ = (s(t′)0, . . . , s(t
′)p), if

s(t)i
fi(t,t

′)<++>∼ s(t′)i

for i = 0, . . . , p, then vertices ct and ct′ are connected by

p∑
i=1

(fi(t, t
′) + 1) + f0(t, t

′)− 1−#{i | fi(t, t′) = 0}

edges. We connect ct and d(i, s, j) as follows. If s = s(t)i and j = 1, then
we connect them by a line. If otherwise, they are not connected.

Finally, we connect d(i, s, j) and d(i′, s′, j′) as follows. If i = i′, s = s′

and |j − j′| = 1, they are connected by a line. If otherwise, they are not
connected.
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The Dynkin diagram defined above is denoted by D(P ). The corre-
sponding root lattice is denoted by Q(P ). We identify the basis of Q(P )
and the vertices of D(P ) and use same notations for them. The natural
bilinear form on Q(P ) is denoted by 〈, 〉.

For α ∈ Q(P ), the reflection is σα(β) = β − 2 〈α,β〉
〈α,α〉α for β ∈ Q(P ).

Theorem 5.1. Let us consider the Z-linear morphism

Φ: Q(P ) −→ LP

defined as follows. For

α =
∑

t∈T (P )

αtct +

p∑
i=0

∑
s∈Ii

l(s)−1∑
j=1

α(i, s, j)d(i, s, j),

if we put Φ(α) =
∏p

i=0

∏
s∈Ii m(s), then for s ∈ Ii

m(s)1 =
∑

{t∈T (P )|si(t)=s}

αt − α(i, s, 1),

m(s)j = α(i, s, j − 1)− α(i, s, j) for 2 ≤ j ≤ l(s).

Then we have the followings.

1. The Z-linear map Φ is surjective.

2. Then for any m ∈ L(P ), we have

〈α, α〉 = 〈α′, α′〉

for all α, α′ ∈ Φ−1(m).

3. We have

Φ(σctα) = σ(t)Φ(α),

Φ(σd(i,s,j)α) = σ(i, s, j)Φ(α).

References

[1] Crawley-Boevey, W.: On matrices in prescribed conjugacy classes with
no common invariant subspace and sum zero. Duke Math. J. 118 (2003),
no. 2, 339–352.

[2] Oshima, T.: Fractional calculus of Weyl algebra and Fuchsian differential
equations. preprint.

9


