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1 Introduction

For Fuchsian differential equations of the form

d%Y(x):Z As Y(z), (1.1)

= (@—a)

where A; are n x n complex matrices, W. Crawley-Boevey ([1]) find a corre-
spondence of the systems and representations of quivers. In this correspon-
dence, the Middle convolution (Euler transform) corresponds to reflection
functors of representations of quivers. And he solved the existence problem
of systems of differential equations, so-called Deligne-Simpson problem by
using the theory of representations of quivers.

In this note, we deal with differential equations of scalar type. The the-
ory of middle convolution (Euler transform) is rearranged by Oshima [2].
By using this theory, we generalize the correspondence between differential
equations and Kac-Moody root systems to non-Fuchsian differential equa-
tions.

2 Fourier-Laplace transform and characteristic in-
dices

2.1 Characteristic indices

Let K be an algebraic closed field of characteristic zerold The polynomial
ring with coefficients in K is denoted by Klz|. Also K(z) stands for the
field of rational functions with coefficients in KO For any a € K, K(x), is
the field of Laurent series of (z — a)0i.e., K(z), = {50, ai(z —a)' | a; €
K, m € Z}0 Moreover, K(x), is the field of Puiseux series of (z — a), i.e.,

K(@)a = Uyes, K(@?)a0
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Then the differentiation 0 = % with respect to x is naturally defined on

them. Let W{z], W (x), W(z), and W(x), be rings of differential operators
with coefficients in K[x], K(z), K(z),, and K(x), respectively.

For an element h in K(x) and a € K, if there exist f,¢g € K|x] and
g(a) # 0 such that h = 5 = fg~!, then one says h is regular at x = a. If h
is not regular at = a, one says h is singular at x = a and x = a is called
singular point of h.

Recalling that we can write P € W(x) as

a;(z) € Klz| uniquelyd let us define singular points of P as singular points
of “@ 7 Algo if

an(x)

P> =Y "a;(z"")(2°0)’
=0

has a singular point at z = 0, then we say P has a singular point at x = co.

We define characteristic indices of elements of Wx] at their singular
points. Let us take P € W{z]. We can assume z = 0 is a singular point of
PO For the other singular points, we can define characteristic indices in the
same way. Let us define a subspace of W(z)o by W = {31 c;a® o |
ci € K,n € Z<o}(k € Z)O Then we define a map from W} to the ring of
polynomials K[\ as follows,

=k wy o — K[\
Y parhtiol — o+ 30 aAA 1) (A —i+1).

Then an arbitrary element P of W (x)g is written by

P= Z Py, (P, € WF, Py, #0). (2.1)

k=m

Then
Cho(P) = Z5(Pn) € K[

is characteristic polynomial of P at « = 0. Moreover,
Chiy(P) = Z5 (Pmi) € K[N]

is ¢-th characteristic polynomial (i =1,2,...).

Let us consider power series solutions of the differential equation Pu = 00
The multiplicative group {z* | A\ € K} is defined by the multiplication
oM .72 = g2 The group ring K[z is generated by this group over K0

The differentiation 0 = % on K[z*] is naturally defined by dz* = A\z*~'0



Then the differentiation on K[[z]] = K[z]|® K[«] K ()0 is naturally defined
as well. For f = Y 2% c;z#tt € K[[z*]]0if cp # 00 one says f has the
characteristic index p0

Then we have the following.

Proposition 2.1. Let us take P € Wx] which have a singular point at
x = 0. Suppose that deg Cho(P) = n > 0. Also assume that there are
AM,..o, N € K, my,...,my € Zsg such that \; — X\; ¢ Z(i # j) and
22:1 m; = n. Then the followings are equivalent.

1. Fori=1,...,1, 5 =0,1,...,m; — 1, there exist f\,1; € K[[2]] with
characteristic indices \; + j such that Pfy,4; = 0.

2. We have the following equations,
Ch§(P)(Ai +7) =0
fori=1,...,l,k=0,....m;—1and j=0,...,m; — (k+1).

Then we define characteristic indices of P at the singular point = 0 as
follows.

Definition 2.2. Let us take P € W x| which satisfies conditions in Propo-
sition 2.1. Then we say P has characteristic indices

{[/\l]mu SRR [Al]ml}
at x = 0.

To discuss formal power series solutions at irregular singular points, we
should introduce twisted characteristic indices.

Definition 2.3. Let us take f(z) € K[z~']. We say P € W{x] has e/(®)-
twisted characteristic indices

{[Al]mw R [)‘l]mz}’

at v =0, if P(z,0 — L f(z)) has characteristic indices

{[/\l]mu SERE) [/\l]ml}

at x = 0.

¢

When we consider the “ramified” case, we need to consider the formal
solutions in K. Let us define the algebra endomorphism

pp: W(x)og — W(x)o
x — xP
0 — %ml_pﬁ

for p € Z~y.



Definition 2.4. Let us take f(z) € K[z~']. We say P € W|x] has ef(®)-
twisted characteristic indices of ramification index p

{[/\1]77117 SRR P‘l]ml}

if pp(P(x,0)) € W(z) has ef @) -twisted characteristic indices

{[Al]mu R [)‘l]mz}'

2.2 Fourier-Laplace transform

Let us consider the Fourier-Laplace transform

L: W] — W]a]
x — =0
0 — T

Then we have the followings.

Theorem 2.5. Let us take P € Wx] which has a singular point at x = a
and f(x) = ap_q1z~ ™D 4. p gzt e K[x™1] where n > 1. Then there
exist d; € K and polynomials gi(z) = %a™ + gn_12™ ' + - + g1z € K|a]
fori=1,...,n and the followings are equivalent.

1. At x = a, P has /@9 _twisted characteristic indices

{P‘l]ml? T [)‘l]mz}'

2. At x = 00, LP has e%®) -twisted characteristic indices of ramified
index n
{[)\1 + di]mp Ty [)\l + dz]ml}
fori=1,...,n.

Theorem 2.6. Let us take P € W x| which has a singular point at © = oo
and f(r) = app12™ + -+ gz € K[z] where n > 0. Then there exist
d; € K and gi(x) = gny12™t + -+ g1x fori=1,...,n and the followings
are equivalent.

1. At x = oo, P has e/®) -twisted characteristic indices
{[Al]ml? R [)‘l]mz}'

2. At x = o0, P has e%®) -twisted characteristic indices of ramified index
n
{1+ dilmys -5 [N+ dilmg

fori=1,...,n.



If we write P =Y 1", a;(2)0° € W|z], then the degree of P is defined by
deg P = max{dega;(z) |i=0,...,n}.

Definition 2.7 (Reduced representative). Let us take P € W]x]. The
reduced representative RP € Wx] is the element in W(z] N K(z)P which
has the minimal degree.

Theorem 2.8. Let P be an element in Wz]. We assume that P has a sin-
gular point at x = a and deg Ch,P > 0. Then the followings are equivalent.

1. P has characteristic indices

{[O]mm [/\1]77117 R [)‘l]mz}

at x = a.

2. L(RP) has e~ -twisted characteristic indices

{[)‘1 - 1]77117 SRR) [/\l - l]mz}

at x = o0.

3 Local datum

For a fixed k € Z~, let us consider a family of finite sets Z = I1, 5, ..., I}

and surjective maps ¢; from I;_1 to I; for ¢ = 2,...,k and suppose that
cardinalities of these sets satisfy that #1; > #1Iy > -+ > #1I;. The compo-
sitions ¥; = ¢;0¢;_10---0o¢; are surjective maps from Z to I; for: = 2,..., k.
We put ¢ = idz.
Fori=1,...,k— 1, we introduce relations on Z as follows. For s,s' € T
and i =1,...,k — 1, we have
S1 fi# S92

if Yr(s1) = Yr(s2), Yr-1(51) = Yr-1(s2),...,Yiy1(51) = Yit1(s2) and
Yi(s1) # ¥i(s2). Also we write s1 2 s9 if 51 = s9.

For each I; (i = 1,...,k), we fix an injective map «; into K. By these
a;, we define a injective map exp, from Z into K[z ~!] as follows,

exp,: LI — Kz
s — ap(r(s))z™F+ .. Fa(s)a™t

Let us fix a map [: T — Z~¢ and consider a Z-lattice

L) =[] 2.

seT



Fix an element m € L(Z) written by
m= Hms = H(m(s)lv s 7m(8)l(s)) € H Zl(S)'
s€l seT sel

For this m, the order is defined by

I(s)
ordm = Z Z m(s);.

se€Z i=0
We also fix an element of [,y C/®),
A= H A = H()\(S)l, ey )\(S)I(s)) S H (Cl(s).
seT sel sel

Then we call the tuple (Z, exp,, m, A) local datum at = = a of rank k. Also
we define the order of the local datum by ord m.

4 Twisted Euler transform

All the remaining of this note, we consider elements in Wz] which satisfy
followings. Let us take P € W{z| of the order n, i.e., P = > I a;(z)d"
Singular points of P are c1, ..., ¢, € K and ¢p = 0o. For each ¢;, there exists
a local datum (Z;, expy, , M, A;) of order n and rank k; and A; satisfies that
A(8)i — Aj(s) ¢ Z (i # j) where A; = [[ 7. (A(8)1,- -+, A(8)i(s))- Then for

each s € Z;, P has ¢™P«®)_twisted characteristic indices

{IAS)1lim(s)rs - - M) lm(sy o }

at x = ¢;. Then we say P has local datum (Z;, exp,,, m;, A;) for i = 0,...,p.
Let us introduce some operations on Wx] and W (z).

Definition 4.1 (Gauge transform, Addition). For f € K(x), we consider
the following algebra isomorphism

Ad(ef@)y): W(z) — W (z)
x — x
0 — 0—Lf()
For ﬁ € K(z),\,c € K , we define
Ad((z —e)N): W(z) —  W(x)
x — x
0 — 00—

and call this addition at © = c.



Definition 4.2 (Euler transform). Euler transform is an operation on Wz]
defined by
E(\) = LoRAd(z)) o L7IR

for xe K.
Let us define T(P) = [[?_,Z;. For t € T(P), t = (so(t),...,sp(t)), we

write
P

Ade H expC (si(t)) )7
p
Ade(t H e &xPe, ( t)))7
(2 — ) MO,

(2 — ci) MOy,

ﬁ
fl

Definition 4.3 (Twisted Euler transform). For ¢t € T(P), we define the
twisted Euler transform by

E(t) = RAde(t) "' Ad(t) " E(A\(so(t))1 — 1)Ad(t)Ade(t).

Theorem 4.4. Let us take t € T(P) and assume some generic condition
on N;. Then E(t)P € W x| satisfies followings.

Singular points of E(t)P are same as them of P. On each singular points
¢;, there exists a local datum

(j,'i, GXI)C.,ﬁlZ', /il)

And E(t)P has local datum (L,expc Jig, Ay) fori=0,.
Then
I, =1,
exp,, = expy,

and m; = [[ ez, m(s) = [Licz(m(s)q,- - 7mE3)z(s)) satisfy that

(s)i+d ifi=1 and s = s;(t)
(8); otherwise.

where

I(s0())
d = degRAde(t)P — Y m(so(t))i — m(so(t))1.
=1



Remark 4.5. The degree of P can be written by the Z-linear combination
of m(s);.

Let us define a Z-lattice
p P
Lp={[[mi € [[L(Z) | ordmy = --- = ordm, }.
i=0 i=0

Then by this theorem, Lpyp = Lp and E(t) sends [I%_ym; € Lp to
fzoﬁl € Lg@p = Lp linearly. Hence we can extend this to the Z-linear
map
U(t) : Lp — Lp.

We also define following Z-linear maps. For s € Z;, we define Z-linear
endomorphism of L(Z;),

o(i,s,7): Lz, — L(Z;)
m(s); +—— m(s);j+1
m(s)j+1 — m(s);

m(s)y +—— m(s)g for k #j

We can extend this to Z-linear endomorphism of Lp which is trivial on

L(T) (i #1).

5 Weyl group action and twisted Euler transform

For P € W{z| which satisfies conditions defined in the previous section, we
define a Dynkin diagram of Kac-Moody Lie algebra as follows. The set of
vertices is

C={a|teT(P)}U{d(i,s,j)|s€Zi(i=0,...,p),j=1,...,1(s) — 1}

We connect these vertices according to the following rule. For ¢,t' € T(P),
t=(st)o,...,s(t)p), t' = (s(t)o,...,s(t)p), if

fitt)<++>

s(t); ~ s(t);

for : =0,...,p, then vertices ¢; and ¢y are connected by
p
D (it t) +1) + folt,t)) — L= #{i | filt,¥) = 0}
i=1

edges. We connect ¢; and d(i,s,j) as follows. If s = s(¢); and j = 1, then
we connect them by a line. If otherwise, they are not connected.

Finally, we connect d(i,s,7) and d(i’,s’,j') as follows. If i =i/, s = &
and |j — j'| = 1, they are connected by a line. If otherwise, they are not
connected.



The Dynkin diagram defined above is denoted by D(P). The corre-
sponding root lattice is denoted by Q(P). We identify the basis of Q(P)
and the vertices of D(P) and use same notations for them. The natural
bilinear form on Q(P) is denoted by (,).

For a € Q(P), the reflection is 0,(8) = 5 — Q%a for 5 € Q(P).

Theorem 5.1. Let us consider the Z-linear morphism
o: Q(P) — Lp

defined as follows. For

I(s)—1
Z OétCt'i‘ZZ Z a(t, s, j)d(i, s, j),
teT(P) 1=0 s€Z; j=1

if we put ®(a) = [[i_o [ Lz, m(s), then for s € I;

m(5)1 = Z Oét—Oé(’L',S,l),

{teT(P)|si(t)=s}
m(s); = a(i,s,j — 1) —a(i,s,j) for 2 <5 <I(s).

Then we have the followings.
1. The Z-linear map ® is surjective.
2. Then for any m € L(P), we have
(o, a) = (d, o)
for all a, o/ € ®~1(m).
3. We have

P(oc,a) = a(t)®(a),
(I)(Ud(i7s,j)a) - J(iv Sﬁj)(b(a)'
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