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§0. Introduction
In this talk I shall explain some topics for unitary representations of solvable Lie

groups, their present state and problems for futur development. At the beginning of
1970’s Auslander-Kostant succeeded in the framework of the orbit method to construct
the unitary dual for a connected and simply connected type I solvable Lie group, and
then their results were extended to non type I solvable Lie groups by Pukanzsky. These
works are landmarks in the representation theory of solvable Lie groups. If, however, we
try to study the holomorphically induced representation and its application in detail, it
remains until now to be difficult.

Concerning induced representations or restricted representations, we would like to
decompose them, construct intertwining operators or study some related algebra of in-
variant differential operators. Then, we know little even for exponential Lie groups. We
have more tools in hand only for nilpotent Lie groups. The theory of representations
is developed in a rather different fashion between semi-simple and solvable Lie groups.
The algebraic structure of semi-simple Lie groups is so rich that it offers us many ingre-
dients. As for solvable Lie groups, the poor structure obliges us to use the main method
of induction. In any way it’s incontestable that the orbit method is very fruitful in the
unitary representation theory of solvable Lie groups. The innovatory idea of Kirillov to
associate a coadjoint orbit to an irreducible unitary representation seems to be proud of
its worthy results. It’s a nice application of Mackey’s theory to solvable Lie groups. Once
this frame is opted for, we can study many objects in analysis by means of algebraic and
geometric properties of coadjoint orbits.

The aim of this talk is to invite young people into the research of this domain, where
many problems are waiting them.

§1. Orbite method
1.1. Induced representations

Let’s start by defining the induced representation and mention its some properties.
Let G be a Lie group with Lie algebra g and H a closed subgroup of G with Lie algebra
h. we note ∆G (resp. ∆H) the modular function of G (resp. H) and put

χ(h) = ∆H,G(h) =
∆H(h)

∆G(h)

for h ∈ H. As
∆G(g) = | det Ad(g)|−1 (g ∈ G),
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we have
χ(exp X) = etrg/hadX(X ∈ h).

Let’s designate by K(G,H) the space of continuous functions ϕ on G with values in
C, satisfying the covariance relations

ϕ(gh) = χ(h)ϕ(g) (g ∈ G, h ∈ H),

and having compact support modulo H. Then G acts in K(G,H) by left translation,
and there exists up to scalar multiple a G-invariant positive linear form on K(G,H). It’s
denoted by µG,H and we write, for ϕ ∈ K(G,H),

µG,H(ϕ) =

∮
G/H

ϕ(g)dµG,H(g).

In fact, let K(G) be the space of continuous functions with compact support on G. The
map F 7→ F χ of K(G) into K(G,H) defined by

F χ(g) =

∫
H

F (gh)χ(h)−1dµH(h),

µH being a left Haar measure on H, turns out to be surjective. Moreover, if F ∈ K(G)
satisfies F χ = 0, then µG(F ) = 0. Therefore the left Haar measure µG gives µG,H by
passing to the quotient. So,∫

G

F (g)dµG(g) =

∮
G/H

dµG,H(g)

∫
H

F (gh)χ−1(h)dµH(h)

for any F ∈ K(G).
Let’s be given now a unitary representation σ of H in a Hilbert space Hσ. We designate

by K(G, σ) the space of continuous functions F on G with values in Hσ, satisfying the
covariance relations

F (gh) = χ(h)1/2σ(h)−1 (F (g)) (g ∈ G, h ∈ H),

and having compact support modulo H. Since

∥F (gh)∥2
Hσ

= χ(h)∥F (g)∥2
Hσ

,

the function
∥F∥2

Hσ
: g 7→ ∥F (g)∥2

Hσ

belongs to the space K(G,H). We equip K(G, σ) with the norm

∥F∥ =
(
µG,H(∥F∥H2

σ
)
)1/2

,

and consider its completion for this norm to get a Hilbert space H. It’s well known that
H ̸= {0}, and G acts in H by left translation. This is our realization of the induced
representation π = indG

Hσ, i.e.

(π(g)F ) (x) = F (g−1x) (g, x ∈ G,F ∈ H).

This procedure is frequently utilized to construct unitary representations starting from
those of subgroups. In particular, a unitary representation of G induced up by a unitary
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character of a closed subgroup is said to be monomial. We say G is monomial if every
irreducible unitary representation is equivalent to monomial one. It’s known ([7], [46])
that exponential Lie groups we’ll introduce later are monomial, but it’s no longer true
in general for solvable Lie groups.

We’ll constantly need a property of induced representations known as "induction by
stages". The equivalence relation is denoted by the symbol ≃.

Theorem 1.1.1. ([8]) Let G be a locally compact topological group, H1, H2 two closed
subgroups of G such that H1 ⊂ H2, and U a unitary representation of H1. Then,

indG
H1

U ≃ indG
H2

(
indH2

H1
U

)
.

The theorem of imprimitivity of Mackey [41] is very important for the theory of unitary
representations of solvable Lie groups. We always assume that G is separable and uniquely
consider unitary representations in separable Hilbert spaces. Let A be a closed invariant
abelian subgroup of G. G acts in Â, the set of unitary characters of A : pour g ∈ G,χ ∈ Â,
put (g · χ)(a) = χ(g−1ag) (a ∈ A).

Theorem 1.1.2. (1) Let G(χ) be the stabilizer of χ ∈ Â in G.

(i) Let ρ be an irreducible unitary representation of G(χ) such that ρ|A is a multiple
of χ, i.e. ρ|A = mχ with a certain m ∈ N ∪ {∞}. Then indG

G(χ) ρ is irreducible.

(ii) Let ρ1, ρ2 be two irreducible unitary representations of G(χ) such that ρ1|A, ρ2|A
are multiples of χ. Then ρ1 ≃ ρ2 if and only if indG

G(χ) ρ1 ≃ indG
G(χ) ρ2.

(2) Suppose that for every χ ∈ Â the orbit G · χ is locally closed in Â. Then for any
irreducible unitary representation π of G, we see π ≃ indG

G(χ) ρ with a certain irreducible
unitary representation ρ of G(χ) such that ρ|A is a multiple of χ.

We finish this section by a transitivity property of the form µG,H (cf. [7], Chap. V).
We consider a closed subgroup K of H, equipped with a left Haar measure µK . Put
η = ∆K,G. For any ψ ∈ Kη(G) and any g ∈ G, the function h 7→ ψ(gh)∆H,G(h)−1

belongs to K∆K,H (H). We can hence define the function

g 7→
∮

H/K

ψ(gh)∆−1
H,G(h)dµH,K(h).

This is an element of Kχ(G). Returning to the definition of the linear forms µG,H , µG,K

and µH,K , we prove the following formula :∮
G/K

ψdµG,K =

∮
G/H

dµG,H(g)

∮
H/K

ψ(gh)χ(h)−1dµH,K(h)

for every ψ ∈ Kη(G).
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1.2. Theory of Auslander-Kostant
Generalizing the orbit method, Auslander-Kostant [2] developed their theory for sol-

vable Lie groups of type I. Let’s first define ingredients of the theory. g∗ denotes the dual
vector space of g. G acts in g by means of the adjoint action and in g∗ by means of its
contra-gradient action :

(g·f)(X) = (Ad∗(g)·f) (X) = f(Ad(g−1)X) (g ∈ G, f ∈ g∗, X ∈ g).

The representation of G defined in this manner is called coadjoint representation of G.
Let G(f) the stabilizer of f ∈ g∗ in G. Thus the Lie algebra of G(f) is

g(f) = {X ∈ g; f([X,Y ]) = 0,∀ Y ∈ g}.
We define the alternating bilinear form Bf on g × g by Bf (X,Y ) = f([X,Y ]). For a

vector subspace a of g, we note f |a the restriction of f to a and set

a⊥, g∗ = {f ∈ g∗, f |a = 0},
af = {X ∈ g; Bf (X,Y ) = 0,∀ Y ∈ a}.

If it doesn’t give a confusion, we simply write a⊥ instead of a⊥, g∗ . If a ⊂ af , a is
said to be isotropic (for the form Bf ). It follows : a is a maximal isotropic subspace
⇔ a = af ⇔ a ⊂ af and dim a = 1

2
(dim g + dim g(f)). We’ll note S(f, g) (resp. M(f, g))

the set of subalgebras h of g such that h ⊂ hf (resp. h = hf ).
Let gC the complexification of g. We extend by linearity f,Bf on gC.

Definition 1.2.1. Let p a complex subalgebra of gC. We say p is a polarization of G at
f ∈ g∗, if p verifies the following conditions :

1) p is maximal isotropic subspace for the form Bf ;
2) p + p is a subalgebra of gC ;
3) p is stable under AdG(f).

When we say p is a polarization of g, it means that p is a polarization of the connec-
ted and simply connected Lie group corresponding to g. We note P (f,G) the set of
polarizations of G at f ∈ g∗.

Definition 1.2.2. p ∈ P (f,G) being given, we consider the real subalgebras d, e of g
defined by

d = p ∩ g, e = (p + p̄) ∩ g.

We easily see dC = p ∩ p̄, eC = p + p̄ and d = ef . It follows that Bf induces the
non-degenerate bilinear form B̂f on the quotient vector space e/d. Moreover,

(e/d)C ≃ eC/dC = (p + p̄) /p ∩ p̄ = p/dC ⊕ p̄/dC.

Definition 1.2.3. We define the linear operator J on (e/d)C as follows : J(X) = −iX, i =√
−1, if X ∈ p/dC and J(X) = iX if X ∈ p̄/dC.

Then J defines a real endomorphism such that J2 = −1, namely a canonical complex
structure on e/d. For u ∈ e/d,

u + iJu ∈ p/dC, u − iJu ∈ p̄/dC.

－ 146 －



Definition 1.2.4. We define the bilinear form Sf on e/d by

Sf (u, v) = B̂f (u, Jv), u, v ∈ e/d.

Proposition 1.2.5. Sf is a non-degenerate symmetric bilinear form on e/d, and J keeps
B̂f , Sf invariant, i.e.

B̂f (Ju, Jv) = B̂f (u, v), Sf (Ju, Jv) = Sf (u, v).

Proof. It’s evident that p/dC is isotropic for the form B̂f , and we have for u, v ∈ e/d

0 = B̂f (u + iJu, v + iJv) = B̂f (u, v) − B̂f (Ju, Jv) + i
(
B̂f (Ju, v) + B̂f (u, Jv)

)
.

The imaginary part of this equation gives us

B̂f (u, Jv) = −B̂f (Ju, v) = B̂f (v, Ju). (1.2.1)

Hence Sf (u, v) = Sf (v, u), namely that Sf is symmetric. Since B̂f , J are non-degenerate,
Sf is also non-degenerate. Using (1.2.1) and J2 = −1,

B̂f (Ju, Jv) = −B̂f (u, J(Jv)) = B̂f (u, v),

Sf (Ju, Jv) = B̂f (Ju, J(Jv)) = −B̂f (Ju, v)

= B̂f (v, Ju) = Sf (v, u) = Sf (u, v).

c.q.f.d.
Definition 1.2.6. We say that p ∈ P (f,G) is positive if the symmetric form Sf is positive
definite or if e/d = {0}. In particular, p is said to be real if p = p̄.
We designate by P+(f,G) the set of positive polarizations of G at f . We take p ∈ P (f,G)
and define the subalgebras d, e as before. Let D0 (resp. E0) be connected Lie subgroup
of G corresponding to d (resp. e). Because p is stable by AdG(f),

D = G(f)D0, E = G(f)E0

are two subgroups of G.
Proposition 1.2.7. D, D0 are closed in G. Moreover, D0 is the connected component of
the unit element of D and d is the Lie algebra of D.
Proof. d and e being mutually the orthogonal complement of each other with respect to
Bf , we have for X ∈ g :

X ∈ d ⇔ X·f(Y ) = Bf (Y,X) = 0 (∀ Y ∈ e).

Taking the image of the exponential mapping, we have for a ∈ D0 :
(a·f − f)(Y ) = 0 (∀ Y ∈ e). (1.2.2)

This means that the equation (1.2.2) remains valid for all a ∈ D0. But this fact implies
in turn that every element X of the Lie algebra of D0 verifies

X·f(Y ) = 0 (∀ Y ∈ e).
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Thus, X ∈ d, namely that D0 = D0.
Let’s repeat the same argument to prove the rest of the proposition. Let D1 be the

connected component of the unit element of D = G(f)D0. If a ∈ D1,

(a·f − f)(Y ) = 0 (∀ Y ∈ e).

This implies that the Lie algebra d1 of D1 is contained in d. On the other hand, D0 ⊂ D
carries d ⊂ d1. Consequently, d = d1 and D0 = D1. Further, D0 ⊂ D ⊂ D. In this
manner D is a closed subgroup and D0 is the connected component of the unit element
of D. c.q.f.d.

Now we consider D-orbit D·f dans g∗.

Proposition 1.2.8. D·f is open in the affine plane f + e⊥. Evidently, D·f = D0·f .

Proof. Let’s begin by seeing that f + e⊥ is stable under the action of D. As e is D-stable,
the same for e⊥. Taking D = D0G(f) into account, we notice that D·f = D0G(f)·f =
D0·f . Hence, for d ∈ D and ℓ ∈ e⊥ there exists a ∈ D0 verifying

d·(f + ℓ) − f = a·f − f + d·ℓ.
This means by the relation (1.2.2) that d·(f + ℓ) − f ∈ e⊥. So, f + e⊥ is D-stable and
d·f ⊂ e⊥. On the other hand, d·f ∼= d/g(f) and e = df give

dim d + dim e = dim g + dim g(f).

We have thus

dim d·f = dim (d/g(f)) = dim d − dim g(f) = dim g − dim e = dim e⊥.

In conclusion, d·f = e⊥. As d·f is the tangent space at f to D0·f ⊂ f +e⊥, the implicit
function theorem assures us that D·f is open in f + e⊥. c.q.f.d.

Next we’ll examine E-orbit E·f = E0·f in g∗.

Definition 1.2.9. We say that p ∈ P (f,G) satisfies the strong Pukanszky condition if E·f
is closed in g∗.

Remark. When p is real, it comes from the proposition 1.2.8 that

p satisfies the strong Pukanszky condition ⇔ D·f = f + e⊥

since D = E.

Lemma 1.2.10. If p ∈ P (f,G) satisfies the strong Pukanszky condition, E0, E are closed
in G and E0 is the connected component of the unit element of E.

Proof. Let ψ : G → g∗ be the mapping defined by ψ(g) = g·f . It’s clear that E =
ψ−1(E·f) = ψ−1(E0·f), from which E is closed in G. Let E1 be the connected component
of the unit element of E. Trivially, E0 ⊂ E1. On the other hand, ψ(E0) = ψ(E1) and
G(f)0 ⊂ E0, G(f)0 denoting the connected component of the unit element of G(f).
Comparing the dimension, we conclude that E0 = E1. c.q.f.d.

Proposition 1.2.11. If p ∈ P (f,G) satisfies the strong Pukanszky condition, then D·f =
f + e⊥.
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Proof. Let’s put K = {a ∈ E0; a·f ∈ f + e⊥}. It’s clear that K is closed in E0, and hence
in G because of the lemma 1.2.10. Furthermore, e⊥ being stable by E0, K is a subgroup
of E0 and f +e⊥ is K-stable. It’s immediate that D0 ⊂ K. It follows from the proposition
1.2.8 that D0·f is an open set of f + e⊥. Dividing K into the classes by D0, we see that
K·f is an open set of f + e⊥. On the other hand, the strong Pukanszky condition implies
that K·f = (E0)·f ∩ (f + e⊥) is closed in f + e⊥. Hence K·f = f + e⊥.

Let now k be the Lie algebra of K. It follows from what has been seen that Bf (k, e) =
{0}, hence k ⊂ d. The inclusion d ⊂ k being trivial, we have k = d and D0 is nothing but
the connected component of the unit element of K. In particular, D0 is invariant in K.
For ℓ ∈ e⊥, let’s write f + ℓ = k·f with k ∈ K. Then,

D0·(f + ℓ) = D0·(k·f) = k·(D0·f).

According to the proposition 1.2.8 D0·f being an open set of f +e⊥, each orbit D0·(f +ℓ)
turns out to be open in f + e⊥. Thus, D0·f = f + e⊥, and finally D·f = f + e⊥ because
D = D0G(f). c.q.f.d.

Lemma 1.2.12. Suppose that p ∈ P (f,G) satisfies the strong Pukanszky condition. Let’s
designate by G(f)0 the connected component of the unit element of G(f). Then D0 ∩
G(f) = G(f)0. Let D1 be the simply connected covering group of D0 and τ : D1 → D0

the canonical projection. Then, τ−1 (G(f)0) = G(f)1 is connected.

Proof. Taking D·f = D0·f into account, we have D·f ≃ D0/(D0∩G(f)). Because
G(f)0 ⊂ D0, G(f)0 is the connected component of the unit element of D0 ∩ G(f). D0·f
being simply connected by the proposition 1.2.11, D0 ∩G(f) turns out to be connected.
Hence, D0 ∩ G(f) = G(f)0 and

D1/G(f)1 ≃ D0/G(f)0 = D0/D0∩G(f) = D·f = D0·f.

From the fact that D0·f is simply connected, G(f)1 = τ−1 (G(f)0) is connected. c.q.f.d.

The definition of g(f) implies that the restriction f |g(f) of f to g(f) supplies a homo-
morphism of Lie algebras g(f) → R.

Definition 1.2.13. We say that f ∈ g∗ is integral if there exists a homomorphism ηf :
G(f) → T such that dηf = if |g(f).

We assume hereafter that f ∈ g∗ is integral and note ηf the associated character of
G(f). It follows from the relation f([d, e]) = {0} that f |d supplies a homomorphism
d → R.

Proposition 1.2.14. When p ∈ P (f,G) satisfies the strong Pukanszky condition, ηf uni-
quely extends into a character χf : D → T such that dχf = if |d.
Proof. Let’s borrow the notations from the lemma 1.2.12. Since f([d, d]) = {0}, there
exists the unique character χ1

f : D1 → T such that dχ1
f = if |d. When p ∈ P (f,G) satisfies

the strong Pukanszky condition, the lemma 1.2.12 signifies that G(f)1 is connected and
that we have

χ1
f |G(f)1 =

(
ηf |G(f)0

)
◦ τ.
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The kernel K of the homomorphism τ : D1 → D0 is contained in G(f)1 = τ−1 (G(f)0)
and χ1

f |K is trivial. The result is that there exists the unique homomorphism χ0
f : D0 → T

such that χ1
f = χ0

f ◦ τ . Evidently, dχ0
f = if |d. Keeping D0 invariant, G(f) acts on the

group of the unitary characters. Now, the unitary character of a connected Lie group is
determined by its differential. Taking G(f)·f = f into account, it follows that

χ0
f (udu−1) = χ0

f (d) (u ∈ G(f), d ∈ D0).

Let now A be the semi-direct product of D0 by G(f), and let’s define the mapping
µf : A → T by

µf (d, u) = χ0
f (d)ηf (u) (d ∈ D0, u ∈ G(f)).

Then, µf is a unitary character of A. Next we consider the homomorphism σ of A onto
D defined by σ(d, u) = du. It follows from the lemma 1.2.12 that

ker σ = {(u, u−1); u ∈ G(f) ∩ D0 = G(f)0}.
As χ0

f coincides on G(f)0 with ηf , the homomorphism µf is trivial on ker σ and induces
a unitary character χf of D. It’s clear that χf possesses the required properties. The
uniqueness of χf follows from D = D0G(f), because it coincides on G(f) with ηf and
it’s determined on D0 by its differential. c.q.f.d.

We now intend to construct a unitary representation of G starting from p ∈ P (f,G)
satisfying the strong Pukanszky condition. Since E = E0D, X = E/D is connected.
Moreover, the alternating bilinear form B̂f on e/d being non-degenerate and D-invariant,
it induces on X a measure µX , invariant under the action of E. Let M(E,χf ) denote
the space of measurable numeric functions ϕ verifying the conditions of covariance

ϕ(ab) = χf (b)
−1ϕ(a) (a ∈ E, b ∈ D).

We consider the space of functions ϕ ∈ M(E,χf ) such that∫
X

|ϕ|2dµX < ∞

and its completion H(E,χf ), which is a Hilbert space. In fact, H(E,χf ) is the Hilbert
space of the induced representation indE

Dχf .
Let C∞(E) be the space of numeric C∞ functions on E. For z = x + iy (x, y ∈ e) and

ψ ∈ C∞(E), put ψ·z = ψ·x + iψ·y, where

(ψ·x)(a) =
d

dt
ψ(a exp(tX))|t=0 (a ∈ E).

We further set

C∞(E, f, p) = {ψ ∈ C∞(E); ψ·z = −if(z)ψ, z ∈ p},

L = C∞(E, f, p) ∩ M(E,χf ),H(f, ηf , p, E) = L ∩H(E,χf ).

Proposition 1.2.15. ([2]) The space H(f, ηf , p, E) is a closed subspace of the Hilbert space
H(E,χf ).
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Since H(f, ηf , p, E) is stable under the action of indE
Dχf , it supplies us a sub-representation,

written indE
D(ηf , p), of indE

Dχf . We finally put

ρ(f, ηf , p, G) = indG
E

(
indE

D(ηf , p)
)
,

which is a sub-representation of indG
Dχf , and call it holomorphically induced represen-

tation. We’ll note H(f, p, G) the Hilbert space of indG
Dχf , and H(f, ηf , p, G) its closed

subspace corresponding to ρ(f, ηf , p, G).
Let’s consider an exact sequence of Lie groups :

1 → N → G
p→ G̃ → 1.

Let n (resp. g, g̃) be the Lie algebra of N (resp. G, G̃) and dp : g → g̃ the differential of
p. We designate by the same notation the linear extension of dp on gC.

Proposition 1.2.16. We assume f̃ ∈ g̃∗ integral and note ηf̃ the associated unitary cha-
racter of G̃(f̃). Let’s suppose that p̃ ∈ P (f̃ , G̃) satisfies the strong Pukanszky condition,
and set f = f̃◦dp ∈ g∗, p = p−1(p̃). Then f is integral, G(f) = p−1

(
G̃(f̃)

)
, and the

character ηf of G(f) defined by ηf = ηf̃◦p is the one which corresponds to f . Moreover,
p is a polarization of G at f satisfying the strong Pukanszky condition and

ρ(f, ηf , p, G) ≃ ρ(f̃ , ηf̃ , p̃, G̃)◦p.

Proof. It suffices to check various definitions remarking the following facts. First, g̃∗

is identified to n⊥ ⊂ g∗ and p satisfies the strong Pukanszky condition. Next, D =
p−1(D̃), χf = χf̃◦p, E = p−1(Ẽ), and p induces an isomorphism between E/D (resp.
G/D,G/E) and Ẽ/D̃ (resp. G̃/D̃, G̃/Ẽ). Finally, we have

H(f̃ , ηf̃ , p̃, G̃)◦p = H(f, ηf , p, G).

c.q.f.d.

We mention some importants results obtained in Auslander-Kostant [2]. Let G be a
connected and simply connected solvable Lie group with Lie algebra g. Let n be an
nilpotent ideal of g which contains [g, g], and N the connected Lie subgroup of G corres-
ponding to n. Let f ∈ g∗ and f0 = f |n. As n is stable by Ad(G), G acts in n∗. We note
G(f0) the stabilizer of f0 in G.

Definition 1.2.17. Let p ∈ P (f,G). We say that p is n-admissible if p ∩ nC ∈ P (f0, N). If
further p ∩ nC is stable by Ad (G(f0)), we say that p is strongly n-admissible.

Remark. If p∩ nC is a maximal isotropic subspace for Bf0 , then p becomes n-admissible.

We obtain in these circumstances the following two theorems.

Theorem 1.2.18. For all f ∈ g∗ there exists p ∈ P+(f,G) which is strongly n-admissible.
Moreover, if p ∈ P (f,G) is n-admissible, p satisfies the strong Pukanszky condition.
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Theorem 1.2.19. Suppose that f ∈ g∗ is integral and that p ∈ P+(f,G) is strongly
n-admissible. Then,

H(f, ηf , p, G) ̸= {0}
and ρ(f, ηf , p, G) gives an irreducible unitary representation of G whose equivalence class
does not depend on p nor on n.

1.3. Exponential group
In this section we’ll give the definition of exponential groups and explain the orbit

method for them in its general lines. When we simply say a Lie algebra, it means a real
Lie algebra of finite dimension. Let g be a solvable Lie algebra which acts on a real vector
space V of dimension n. As gC-module, VC possesses a Jordan-Hölder sequence :

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = VC, dimC Vj = j (0 ≤ j ≤ n).

The action of gC on Vj/Vj−1 (1 ≤ j ≤ n) yields a linear form λj on gC, and except their
order these linear forms don’t depend on the choice of the Jordan-Hölder sequence.

Definition 1.3.1 The restriction of λj (1 ≤ j ≤ n) on g is called weight of g in V , and the
weight of adjoint representation is called root of g.

Definition 1.3.2. Let G be a connected and simply connected Lie group with Lie algebra
g. When the exponential map exp : g → G is surjective, we call G exponential group.

Theorem 1.3.3. ([15]) Let G be a connected and simply connected Lie group with Lie
algebra g. The following assertions are equivalent :

(1) G is an exponential group ;
(2) the exponential map is injective ;
(3) the exponential map is a diffeomorphism ;
(4) each root of g is written as X → λ(X)(1 + iα) where λ ∈ g∗ and α ∈ R ;
(5) g doesn’t possess any root which admits a non zero purely imaginary value.

Definition 1.3.4. When a Lie algebra g satisfies (5) of the theorem 1.3.3, g is called
exponential Lie algebra.

Example 1.3.5.
(i) A connected and simply connected nilpotent Lie group is an exponential group.
(ii) Let g be a Lie algebra such that dim g = n. When there exists a sequence of

ideals

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn−1 ⊂ gn = g, dim gj = j (0 ≤ j ≤ n),

we say that g is completely solvable. A completely solvable Lie algebra is expo-
nential.

(iii) Let g3 = ⟨X,P,Q⟩R; [X,P ] = −Q, [X,Q] = P . g3 is not exponential.
(iv) Let g4 = ⟨X,P,Q,E⟩R; [X,P ] = −Q, [X,Q] = P, [P,Q] = E. g4 is not exponen-

tial.
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An exponential group G = exp g enjoys the following property : let h be a Lie subal-
gebra of g. There exists a basis {X1, . . . , Xp} of a supplementary vector subspace to h in
g such that, if we put gj(t) = exp(tXj) (t ∈ R), the mapping

(t1, . . . , tp, X) → g1(t1)· · ·gp(tp) exp X

is a diffeomorphism from Rp × h onto G. Such a basis will be said to be coexponential to
h in g, and constructed as follows. We first remark that if k is a subalgebra containing h,
the reunion of a coexponential basis to k in g and a coexponential basis to h in k make
together a coexponential basis to h in g. It suffices hence to examine the following cases :

(1) h is an ideal of codimension 1 in g ;
(2) h isn’t an ideal, and g/h is an irreducible h-module.
In the case (1), any element of g not belonging to h forms a coexponential basis. It

follows that if g is nilpotent, we construct a coexponential basis to any subalgebra by
iteration of the case (1), because every subalgebra of codimension 1 is an ideal.

We proceed to the case (2). Let n be the maximal nilpotent ideal of g. As n ̸⊂ h,
n/(h ∩ n) is identified to a non trivial sub-h-module of g/h, hence to g/h. A subspace
containing n is an ideal of g hence we construct a coexponential basis to n in g by
iterating (1). We can suppose that it is formed by elements of h. Applying the case (1),
we construct a coexponential basis {X} ou {X1, X2}, in accordance with the dimension,
to h ∩ n in n. It is then clear that this is also a coexponential basis to h in g.

Definition 1.3.6. Let G be a Lie group with Lie algebra g and V a G-module or g-module.
We say that V is of exponential type if every weight of g in V is written as

X 7→ λ(X)(1 + iα)

with α ∈ R, λ ∈ g∗.

Theorem 1.3.7. Let G = exp g be an exponential group (with Lie algebra g) and V a
G-module of exponential type. Then the stabilizer in G of any point in V is connected.

Proof. Let’s designate by ρ the action of G in V . Let X ∈ g, v ∈ V such that ρ(exp X)v =
v. The set of t ∈ R verifying ρ(exp(tX))v = v is a closed subgroup of R. If it is discrete,
let t0 be its smallest positive element. We have :

ρ

(
exp(

t0
2

X)

)(
ρ

(
exp(

t0
2

X)

)
v − v

)
= −

(
ρ

(
exp(

t0
2

X)

)
v − v

)
̸= 0,

from which dρ( t0
2
X) has an eigen value inπ with a non zero integer n. c.q.f.d.

We can parametrize the orbits in this situation to find the following lemma.

Lemma 1.3.8. Let G be an exponential group and V a G-module of exponential type. We
note G(v) le stabilizer in G of v ∈ V and equip the orbit G·v with the induced topology
from that of V . Then G·v is homeomorphic to the homogeneous space G/G(v). They are
homeomorphic to Rd for a certain non negative integer d.

Hereafter in this section we designate by G = exp g an exponential group with Lie
algebra g. Let f ∈ g∗. We note as before S(f, g) (resp. M(f, g)) the set of subalgebras
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of g which are isotropic (resp. maximal isotropic) subspaces for Bf . Now being given
h ∈ S(f, g), we define a unitary character χf of H = exp h by

χf (exp X) = eif(X) (∀ X ∈ h).

Next, put
ρ̂(f, h, G) = indG

Hχf

and note Ĥ(f, h, G) the Hilbert space of ρ̂(f, h, G). We finally designate by I(f,G) the
set of h ∈ S(f, g) such that the induced representation ρ̂(f, h, G) is irreducible.

Remark.

(i) G(f) being connected by the theorem 1.3.7, it is simply connected. Every f ∈ g∗

is integral and the unitary character ηf is uniquely determined.

(ii) For p ∈ P (f,G) satisfying the strong Pukanszky condition, ρ(f, ηf , p, G) (resp.
H(f, ηf , p, G)) defined in the section 1.2 is simply written ρ(f, p, G) (resp. H(f, p, G)).

(iii) If h ∈ M(f,G), it’s trivial that h contains g(f) and that hC is stable by
Ad (G(f)). Namely that hC is a real polarization of G at f .

(iv) Let h ∈ M(f, g). When hC ∈ P+(f,G) satisfies the strong Pukanszky condition,
ρ(f, pC, G) coincides with ρ̂(f, h, G).

Theorem 1.3.9. ([7], Chap. VI) Let G = exp g be an exponential group with Lie algebra
g and f ∈ g∗. Then :

(1) I(f, g) ̸= ∅ ;
(2) I(f, g) ⊂ M(f, g) ;
(3) for h1, h2 ∈ I(f, g), we have ρ̂(f, h1, G) ≃ ρ̂(f, h2, G).

The assertion (3) of the theorem 1.3.9 permits that the notation ρ̂(f, h, G) is simplified
to ρ̂(f) ; we often confuse a unitary representation with its equivalence class. Thus,
the mapping f 7→ ρ̂(f) gives a mapping from g∗ into the unitary dual Ĝ of G, the
set of equivalence classes of irreducible unitary representations of G. Furthermore, for
h ∈ S(f, g), g ∈ G, we see g·h ∈ S(g·f, g) and ρ̂(g·f, g·h, G) ≃ ρ̂(f, h, G). It follows that
the mapping described above induces the mapping, noted also ρ̂ = ρ̂G from the space of
coadjoint orbits g∗/G of G into Ĝ.

Theorem 1.3.10. ([7]) The map ρ̂ is a bijection of g∗/G onto Ĝ.

Let’s make this result more precise. We equip Ĝ with the Fell topology ([18], [19]). Let
π ∈ Ĝ, whose Hilbert space is noted Hπ. We define in Ĝ a neighborhood of π as follows.
We consider finite vectors v1, . . . , vk in Hπ, a compact subset C of G and a positive
number ϵ > 0. The neighborhood U(v1, . . . , vk; C; ϵ) of π is constituted by ρ ∈ Ĝ such
that there exists w1, . . . , wk in its Hilbert space Hρ verifying

|(π(g)vi, vj) − (ρ(g)wi, wj)| < ϵ, g ∈ C, 1 ≤ i, j ≤ k.
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Theorem 1.3.11. ([37]) We equip the space of coadjoint orbits g∗/G with the quotient
topology and the unitary dual Ĝ with the Fell topology. The Kirillov-Bernat map ρ̂ is
then homeomorphism.

We simply note dg a left Haar measure on G and introduce the space L1(G) with
respect to dg. We define for φ ∈ L1(G) the operator π(φ) in Hπ by

π(φ) =

∫
G

φ(g)π(g)dg.

When G = exp g is nilpotent, the bijection ρ̂ is obtained via the character formula
of Kirillov [36]. dX denoting the Lebesgue measure on g and D(G) the space of C∞

functions with compact support on G, we set, for φ ∈ D(G),

φ̂(ℓ) =

∫
g

φ(exp X)eiℓ(X)dX (ℓ ∈ g∗).

Theorem 1.3.12. Suppose that G = exp g is nilpotent. Let π ∈ Ĝ and Ω(π) its associated
orbit in g∗. If φ ∈ D(G), the operator π(φ) is of trace class. We can normalize the
G-invariant measure on Ω(π) so that we have the formula

Tr(π(φ)) =

∫
Ω(π)

φ̂(ℓ)dv(ℓ)

for all φ ∈ D(G).

Contrary to the nilpotent cas, it happens in the exponential case that I(f, g) ̸=
M(f, g). The set I(f, g) is characterized by the following theorem.

Theorem 1.3.13. ([7]) Let G = exp g, f ∈ g∗, h ∈ S(f, g) and H = exp h. The following
assertions are equivalent :

(1) H·f = f + h⊥ ;
(2) f + h⊥ ⊂ G·f et h ∈ M(f, g) ;
(3) h ∈ M(f + λ, g) for every λ ∈ h⊥ ;
(4) h ∈ I(f, g).

Definition 1.3.14. When h ∈ S(f, g) satisfies the assertion (1) of the theorem 1.3.13, we
say that h verifies the Pukanszky condition.

Remark. h verifies the Pukanszky condition if and only if hC ∈ P+(f,G) satisfies the
strong Pukanszky condition.

It happens that M(f, g) = ∅ if g is not exponential, what shows the necessity to
introduce (complex) polarizations.

Example 1.3.15. Let g = g4 = ⟨X,P,Q,E⟩R; [X,P ] = −Q, [X,Q] = P, [P,Q] = E. Take
f = E∗ ∈ g∗. Then g(f) = RX + RE. Since there doesn’t exist any subalgebra of g
having the dimension 3 and containing g(f), we conclude that M(f, g) = ∅.
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We know well a standard process owing to M. Vergne to construct an element of I(f, g).
Let’s consider a good sequence of subalgebras of g, namely a sequence of subalgebras :

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn−1 ⊂ gn = g, dim(gj/gj−1) = 1 (1 ≤ j ≤ n)

such that, if gj is not an ideal of g, gj−1 and gj+1 are both ideals of g and the action of
g on gj+1/gj−1 is irreducible. Let fj = f |gj

for 1 ≤ j ≤ n.

Theorem 1.3.16. ([7], Chap. IV) h =
∑n

j=1 gj(fj) belongs to I(f, g).

We call polarizations of Vergne those elements of I(f, g) constructed by this process.
Concerning the result (3) of the theorem 1.3.9, the explicit construction of an intertwi-

ning operator between two monomial representations ρ̂(f, h1, G) and ρ̂(f, h2, G), where
h1, h2 ∈ I(f, g), appears as a natural question. For every X ∈ h1 ∩ h2, we find :

Tr adh1/(h1∩h2) X + Tr adh2/(h1∩h2) X = 0,

what leads to :

∆H1,G(h) = ∆H2,G(h)∆2
H1∩H2,H2

(h) (h ∈ H1 ∩ H2).

Then, for ϕ ∈ H(f, h1, G) et g ∈ G, the function Φg on H2 defined by

Φg(h) = ϕ(gh)χf (h)∆
−1/2
H2,G(h)

verifies la relation

Φg(hx) = ∆H1∩H2,H2(x)Φg(h) (h ∈ H2, x ∈ H1 ∩ H2).

We are thus able to consider the integral :

(Th2h1ϕ)(g) =

∮
H2/H1∩H2

ϕ(gh)χf (h)∆
−1/2
H2,G(h)dν(h) (g ∈ G). (1.3.1),

where ν = µH2,H1∩H2 .
At least on formal level, it’s clear that the function Th2h1ϕ verifies the covariance

condition to belong to H(f, h2, G) and that the operator Th2h1 commutes with the action
of G by left translation. Moreover, we have recently proved :

Theorem 1.3.17. Let G be an exponential group, f ∈ g∗, hj ∈ I(f, g) and Hj = exp hj (j =
1, 2). Then the product set H2H1 is closed in G.

Thus the integrale (1.3.1) is convergent for all continuous functions ϕ with compact
support modulo H1. We are working to show that Th2h1 supplies a true intertwining
operator between ρ̂(f, h1, G) and ρ̂(f, h2, G).

Before getting the theorem 1.3.17, we already got the following. If h1 or h2 is a po-
larization of Vergne, we verify by taking a convenient coexponential basis to h1 in g
that H2H1 is closed in G, and using the transitivity of forms µ·,· that the operator Th2h1

supplies a true intertwining operator.
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Let always f ∈ g∗. We consider three lagrangian subspaces Wj(1 ≤ j ≤ 3) of g for the
bilinear form Bf and define, as Kashiwara, a quadratic form Q on W1 ⊕W2 ⊕W3 by the
formula :

Q(X1, X2, X3) = f([X1, X2]) + f([X2, X3]) + f([X3, X1]).

The index of the quadratic form Q is called Maslov index of the spaces Wj and is noted
τ(W1,W2,W3). Here are the principal properties of this index.

Lemma 1.3.18. ([38], [39]) Let’s write τijk instead of τ(Wi,Wj, Wk).
(a) τ123 = −τ213 = −τ132.
(b) τ234 − τ134 + τ124 − τ123 = 0.
(c) If p is an isotropic subspace for Bf of g containing g(f) and if W is a lagrangian

subspace of g, then W p = (W ∩ pf ) + p is lagrangian. Moreover, if p is contained in
W1 ∩ W2 + W2 ∩ W3 + W3 ∩ W1, we have τ123 = τ(W p

1 ,W p
2 ,W p

3 ).

Making intervene a polarization of Vergne h0 at f ∈ g∗, we set

T ′
h2h1

= e
iπ
4

τ(h1,h0,h2)Th2h0◦Th0h1 .

Theorem 1.3.19. ([1]) The intertwining operator T ′
h2h1

doesn’t depend on the choice of h0

and verifies the composition formula :

T ′
h1h3

◦T ′
h3h2

◦T ′
h2h1

= e
iπ
4

τ(h3,h2,h1).

Moreover, T ′
h2h1

coincides with Th2h1 if at least h1 or h2 is of Vergne.

Now the theorem 1.3.17 in hand, hopefully we don’t need to make intervene the third
polarization which is of Vergne.

§2. Disintegration
Let always G = exp g be an exponential group with Lie algebra g. It’s well known that

there exists a strong duality between the induction and the restriction of representations.
In this chapter we’ll study their disintegration into irreducibles in order to establish the
Frobenius reciprocity.

2.1. Monomial representations
Let’s start by a simple lemma.

Lemma 2.1.1. ([45]) Let V be a real vector space of finite dimension, where G acts by a
representation of exponential type. Let v be a non zero vector of V such that we have
g·v = v for any g ∈ G. We consider, for arbitrarily fixed x ∈ V , the line Lx = x + Rv.
Then, there happens two possibilities :

either Lx ∩ G·x = {x} or Lx ∩ G·x = Lx.

In other words, the line passing x and having the direction of the invariant vector v
encounters the orbit G·x at only one point, unless completely contained in the orbit.
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Proof. Note V0 the subspace of V generated by v, V̄ the quotient space V/V0 and p : V →
V̄ the projection. The representation of G on V̄ , obtained by passing to the quotient, is
evidently exponential type. Then, in order that we have g·x ∈ Lx (g ∈ G), it’s necessary
and sufficient that g belongs to G(p(x)). On the other hand, writing g·x = x + λ(g)v,
we immediately see that λ define a homomorphism of G(p(x)) into R. Since G(p(x)) is
connected by the theorem 1.3.7, we have either λ ≡ 0 or that the image of λ coincides
with whole R. From this it suffices to observe that the common part of Lx and G·x is
nothing but the set {g·x; g ∈ G(p(x))}. c.q.f.d.

Definition 2.1.2. In the situation of the above lemma, the orbit G·x is said to be saturated
in the direction of v if Lx ⊂ G·x, in the other case G·x is said to be non-saturated.

When there exists an ideal g0 of g such that dim g/g0 = 1, a linear form ℓ ∈ g∗ verifying
ℓ|g0 = 0 is an invariant vector for the coadjoint representation of G. Let g = RX + g0,
p the projection of g∗ onto g∗

0 and G0 = exp g0. The following lemma is easily seen from
the definition of the radical of an alternating bilinear form.

Lemma 2.1.3. Let ℓ ∈ g∗ and ℓ0 = p(ℓ). If g(ℓ) ⊂ g0, then g(ℓ) ⊂ g0(ℓ0) and dim g0(ℓ0) =
dim g(ℓ) + 1. If g(ℓ) ̸⊂ g0, then g0(ℓ0) ⊂ g(ℓ) and dim g(ℓ) = dim g0(ℓ0) + 1.

Lemma 2.1.4. Let ℓ ∈ g∗, ℓ0 = p(ℓ) and Ω = G·ℓ.
(1) If the orbit Ω is saturated in the direction g⊥

0 , there exists a family {ωs}s∈R of G0-
orbits in g∗

0 such that p(Ω) = ∪s∈Rωs, and exp(tX) · ωs = ωs+t. Moreover, G(ℓ0) ⊂ G0.
(2) If the orbit Ω is non-saturated in the direction g⊥

0 , p(Ω) = G0·ℓ0.

Proof. (1) We have G = exp(RX)·G0 = G0· exp(RX). Put ω0 = G0·ℓ0. Then ω0 ⊂ p(Ω)
and we immediately see that, for every t ∈ R, exp(tX)·ω0 is a G0-orbit which is contained
in p(Ω). Put ωt = exp(tX)·ω0. Because p(Ω) = p(G·ℓ) = G·ℓ0 = exp(RX)·ω0, the reunion
of {ωt}t∈R is equal to p(Ω). By definition of ωs we have exp(tX)·ωs = ωs+t. Further ωs =
ωt if and only if s = t. In fact, if exp(sX)·ℓ0 ∈ ωt we have exp(sX)·ℓ0 = exp(tX)·g0·ℓ0

where g0 ∈ G0. Hence we have (exp(t − s)X) ·g0 ∈ G(ℓ0). If we show that G(ℓ0) ⊂ G0,
we would have exp((t − s)X) ∈ G0 hence s = t. Let’s verify hence that G(ℓ0) ⊂ G0.
It suffices for this to show that g(ℓ0) ⊂ g0. The lemma 2.1.3 assures that there exists
X1 ∈ g0(ℓ0)\g(ℓ), from which λ = X1·ℓ ̸= 0 belongs to g⊥

0 . Let Y be an arbitrary
element of g(ℓ0). Then Y ·ℓ ∈ g⊥

0 hence Y ·ℓ = (tX1)·ℓ for a certain t ∈ R. It follows that
Y − tX1 ∈ g(ℓ) ⊂ g0 hence Y ∈ g0 since X1 ∈ g0.

(2) As g(ℓ) ̸⊂ g0, we have G = G0·G(ℓ). The orbit G·ℓ is hence equal to G0·ℓ. From
this we immediately deduce that p(G·ℓ) = p(G0·ℓ) = G0·ℓ0. c.q.f.d.

Let’s write simply ρ̂0 instead of ρ̂G0 .

Proposition 2.1.5. Let π0 ∈ Ĝ0. We suppose that π0 ≃ ρ̂0(ℓ0) where ℓ0 ∈ g∗
0. Let ℓ be an

extension of ℓ0 to g and Ω = G·ℓ.
(1) If Ω is saturated in the direction g⊥

0 , then indG
G0

π0 ≃ ρ̂(ℓ).
(2) If Ω is non-saturated in the direction g⊥

0 , then indG
G0

π0 ≃
∫ ⊕

R ρ̂(ℓν)dν, where ℓν ∈ g∗
is defined by ℓν |g0 = ℓ0 et gν(X) = −2πν where X is a fixed element of g(ℓ)\ (g(ℓ) ∩ g0).
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We now suppose that h ∈ S(f, g) is given, and propose to study the monomial re-
presentation τ = ρ̂(f, h, G) = indG

H χf . The affine subspace Γτ = f + h⊥ of g∗ plays
a principal role to study τ . Here we are interested in its canonical central decomposi-
tion. Note z the center of g and a a non-central minimal ideal of g, i.e. minimal among
non-central ideals. Evidently, dim a/(a ∩ z) ≤ 2.

As everybody notices, when it’s a matter of exponential groups, the main tool of
proofs would be the induction. We make use of the induction on dim g, dim h, dim g/h
and dim g + dim g/h. It’s often without problem to pass from h to h + z, what brings
us to the case where h contains z. If f ∈ g∗ vanishes on an non zero ideal of g, we are
able to go down to the quotient by this ideal. After these observations we stand in the
case where dim z ≤ 1, dim a ≤ 3. If g ̸= h + [g, g], there exists an ideal g0 of g containing
h such that dim g/g0 = 1. We are now ready to combine the proposition 2.1.5 with
the induction hypothesis applied to G0 = exp g0. If g = h + [g, g], let k = h + a and
K = exp k. Considering the theorem of induction by stages, our first affair is to analyze
the monomial representation indK

H χf .

Exemple 2.1.6. (1) Let G = exp g2 with g2 = ⟨X,Y ⟩R = RX + RY : [X,Y ] = Y . Let
f ∈ g∗

2, h = RX et H = exp h. Then indG
H χf ≃ indG

H′ χY ∗ ⊕ indG
H′ χ−Y ∗ with H ′ =

exp h′, h′ = RY .
(2) Let G = exp (g3(α)) with g3(α) = ⟨T, Y1, Y2⟩R : [T, Y1] = Y1 − αY2, [T, Y2] =

Y2 + αY1 (0 ̸= α ∈ R). Let f ∈ g3(α)∗, h = RT and H = exp h. Then

indG
H χf ≃

∫ ⊕

[0,2π]

indG
H′ χθ̂dθ

with H ′ = exp(RY1 + RY2), θ̂ = (cos θ)Y ∗
1 + (sin θ)Y ∗

2 ∈ g3(α)∗.
(3) Let G = exp g4 with g4 = ⟨T,X, Y, Z⟩R : [T,X] = −X, [T, Y ] = Y, [X,Y ] = Z. Let

f = αT ∗ + βZ∗ ∈ g∗
4 (β ̸= 0), h = ⟨T,X,Z⟩R and H = exp h. Then indG

H χf ≃ indG
H′ χf

with H ′ = exp h′, h′ = ⟨T, Y, Z⟩R.
(4) Let G = exp g6 with g6 = ⟨T,X1, X2, Y1, Y2, Z⟩R : [T,X1] = −X1 − αX2, [T,X2] =

−X2 + αX1, [T, Y1] = Y1 − αY2, [T, Y2] = Y2 + αY1, [Xi, Yj] = δijZ (0 ̸= α ∈ R). Let
f = βT ∗ + γZ∗ (γ ̸= 0), h = ⟨T,X1, X2, Z⟩R and H = exp h. Then indG

H χf ≃ indG
H′ χf

with H ′ = exp h′, h′ = ⟨T, Y1, Y2, Z⟩R.

This way of reasoning brings us to the following result. We take on Γτ a finite measure
µ̃ equivalent to the Lebesgue measure and regard it as a measure on g∗. Put µ = ρ̂∗(µ̃),
the image of µ̃ by the Kirillov-Bernat map ρ̂ : g∗ → Ĝ. For π ∈ Ĝ, Ω(π) = ΩG(π) denotes
the coadjoint orbit of G associated to π and m(π) the number of H-orbits contained in
Γτ ∩ Ω(π).

Theorem 2.1.7. ([11], [23])

τ ≃
∫ ⊕

Ĝ

m(π)πdµ(π). (2.1.1)
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Let’s generalize a little this result. We consider a subgroup K = exp k and σ ∈ K̂
to study the induced representation indG

K σ. We designate by ω(σ) the coadjoint orbit
ρ̂−1

K (σ) ⊂ k∗ of K associated to σ, and by p : g∗ → k∗ the restriction map. A K-
invariant measure on ω(σ) and the Lebesgue measure on k⊥ determine a measure µ̂ on
the subvariety p−1(ω(σ)) of g∗. We take a finite measure µ̃ on g∗ equivalent to µ̂ and
put µ = (ρ̂G)∗(µ̃). Next, for π ∈ Ĝ we note nπ(σ) the number of K-orbits contained in
Ω(π) ∩ p−1(ω(σ)). Since σ is monomial, the theorem 2.1.7 is generalized :

Theorem 2.1.8. ([11], [25])

indG
K σ ≃

∫ ⊕

Ĝ

nπ(σ)πdµ(π).

2.2. Restriction of unitary representations
We stand in the situation described at the beginning of the preceding section. Keep

the notations used in the proposition 2.1.5. Let π ∈ Ĝ, and we study the restriction π|G0

de π à G0.

Proposition 2.2.1. ([33]) Let π = ρ̂(ℓ) with ℓ ∈ g∗.
(1) Suppose that the orbit G·ℓ is saturated in the direction g⊥

0 . Let X ∈ g\g0. We have

π|G0 ≃
∫ ⊕

R
ρ̂0(ℓs)ds,

où ℓs = exp(sX)·ℓ0.
(2) Suppose that the orbit G·ℓ is non-saturated in the direction g⊥

0 . Then π|G0 ≃ ρ̂0(ℓ0).

Proof. (1) We make use of the theorem of subgroups of Mackey ([40]). Let h be a pola-
rization of Vergne of g at ℓ constructed from a good sequence of subalgebras which pass
through g0, and H = exp h. Then h ∈ I(ℓ, g) and h ⊂ g0. Let’s verify that H and G0 are
regularly related. Since H ⊂ G0, the double classes HgG0 = HG0g = G0g are simply
the classes modulo G0. Hence, the space of double classes is the group G/G0. It’s thus
countably separated and the subgroups K and G0 are regularly related. The group G/G0

being identified to R by the map s 7→ exp(sX)G0, we can choose as admissible measure
([40]) the Haar measure on G/G0, namely the Lebesgue measure on R, and we have

π|G0 ≃
∫ ⊕

R
Vtdt,

where Vt is the representation of G0 induced by the representation

σt : g0 7→ χℓ(exp(tX)g0 exp(−tX))

of a subgroup Ht = G0 ∩ (exp(−tX)H exp(tX)) = exp(−tX)H exp(tX) of G0. Here σt

is nothing but exp(−tX)·χℓ = χexp(−tX)·ℓ. Hence,

Vt ≃ indG0
Ht

χexp(−tX)·ℓ ≃ exp(−tX) ·
(
indG0

H χℓ

)
≃ exp(−tX) · ρ̂0(ℓ0).
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So, Vt is irreducible and the Lie algebra of Ht belongs to I(exp(−tX) · ℓ0, g0). From this,
Vt ≃ ρ̂0(exp(−tX) · ℓ0). If we set ℓs = exp(sX) · ℓ0, we obtain the desired disintegration :

π|G0 ≃
∫ ⊕

R
ρ̂0(ℓ−s)ds ≃

∫ ⊕

R
ρ̂0(ℓs)ds.

(2) If we construct a polarization of Vergne h ∈ I(ℓ, g) as above, it follows that
h0 = h ∩ g0 ∈ I(ℓ0, g0) and h = h0 + g(ℓ). h0 being an ideal of h, H = H0 exp(RX) with
H0 = exp h0. Let’s apply again the theorem of subgroups of Mackey to the pair (H,G0).
We remark that there exists only one double class because HG0 = H0(exp(RX)G0) = G,
what proves that H and G0 are regularly related. We have hence

π|G0 ≃ indG0
G0∩H χℓ0 .

But G0∩H = H0 and as h0 ∈ I(ℓ0, g0), we have indG0
G0∩H χℓ0 ≃ ρ̂0(ℓ0). Thus, π|G0 ≃ ρ̂0(ℓ0),

what proves the assertion. c.q.f.d.

Now let K = exp k be a subgroup of G and p : g∗ → k∗ the restriction map. Let π ∈ Ĝ.
We take a finite measure ν̃ = ν̃π on g∗ equivalent to the G-invariant measure on the orbit
Ω(π) and put ν = (ρ̂K◦p)∗(ν̃). Utilizing the measure ν on K̂ obtained in this fashion
and the same multiplicity nπ(σ) as in the theorem 2.1.8, we have the canonical central
decomposition of the restriction π|K of π à K.

Theorem 2.2.2. ([12], [25])

π|K ≃
∫ ⊕

K̂

nπ(σ)σdν(σ).

Corollary 2.2.3. The Frobenius reciprocity establishes in these circumstances.

Let πj (j = 1, 2) be two irreducible unitary representations of G. The direct product
of π1 and π2, noted π1 × π2, corresponds to the orbit ΩG×G(π1 × π2) = (Ω(π1), Ω(π2)) ⊂
g∗ ⊕ g∗. We identify G to the subgroup de G × G constituted by the diagonal elements.

Corollary 2.2.4. ([25]) Let p : g∗ ⊕ g∗ → g∗ the restriction map. Then

π1 ⊗ π2 ≃
∫ ⊕

Ĝ

m(π)πdν(π),

where ν = (ρ̂G◦p)∗(ν̃π1×π2) and where the multiplicity m(π) is obtained by the number
of G-orbits included in (Ω(π1), Ω(π2)) ∩ p−1 (ΩG(π)).

§3. e−central elements
In order to proceed into more detailed analysis of monomial representations, we assume

in this chapter that G = exp g is a connected and simply connected nilpotent Lie group
with Lie algebra g. Let’s introduce e-central elements owing to Corwin-Greenleaf [14].
Let

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn−1 ⊂ gn = g, dim gk = k (0 ≤ k ≤ n) (3.1)

－ 161 －



be a flag of ideals of g, {Xj}1≤j≤n a Malcev basis associated to this flag, i.e. Xj ∈
gj\gj−1 (1 ≤ j ≤ n) and {X∗

j }1≤j≤n the dual basis of g∗. We note (ℓ1, . . . , ℓn), ℓj = ℓ(Xj),
the coordinates of ℓ ∈ g∗. We have g⊥

j = ⟨X∗
j+1, . . . , X

∗
n⟩R ⊂ g∗, g∗

j
∼= g∗/g⊥

j and the
projection pj : g∗ → g∗

j intertwines the actions of G on g∗ and g∗
j . For ℓ ∈ g∗ we

define ej(ℓ) = dim (G·pj(ℓ)) , e(ℓ) = (e1(ℓ), . . . , en(ℓ)) and put E = {e(ℓ); ℓ ∈ g∗}. Let
e ∈ E . We define G-invariant layer Ue = {ℓ ∈ g∗; e(ℓ) = e} and, putting e0 = 0, the
set of jump indices S(e) = {1 ≤ j ≤ n; ej = ej−1 + 1} and that of non-jump indices
T (e) = {1 ≤ j ≤ n; ej = ej−1}. Now, let U(g) be the enveloping algebra of gC and we say
that A ∈ U(g) is e-central if πℓ(A), où πℓ = ρ̂G(ℓ), is a scalar operator for any ℓ ∈ Ue.

Let’s describe the fundamental results of Corwin-Greenleaf. There exists a Zariski open
set Z of g∗ such that Z ∩ Ue is non empty and G-invariant, and Aj ∈ U(gj) for each
j ∈ T (e) with following properties.

1. Each Aj is e-central on Z ∩Ue, i.e. πℓ(Aj) is a scalar operator for ℓ ∈ Z ∩Ue, having
the form Aj = PjXj + Qj, where

(i) Pj is a polynomial of Ak (k ∈ T (e), k < j), in particular Pj ∈ U(gj−1) ;
(ii) Pj is e-central on Z ∩ Ue ;
(iii) Qj ∈ U(gj−1), in particular P1, Q1 ∈ C1.

2. πℓ(Pj) ̸= 0 for ∀ℓ ∈ Z ∩ Ue.
3. πℓ(Aj) = φj(ℓ)Id, où φj(ℓ) = p̃j(ℓ

′)ℓj + q̃j(ℓ
′) with two rational functions p̃j, q̃j on

Z ∩ Ue which depend only on ℓ′ = (ℓ1, . . . , ℓj−1).
4. p̃j(ℓ

′) is G-invariant and p̃j(ℓ
′) ̸= 0 for ∀ℓ ∈ Z ∩ Ue.

Remark 3.1. The construction of these elements Aj can be repeated on Ue\(Z ∩ Ue).

Returning to the monomial representation τ = indG
H χf , where H = exp h with h ∈

S(f, g), we consider the algebra Dτ (G/H) of G-invariant differential operators on the
line bundle over G/H associated to the data (H,χf ). We take a basis {Ys}1≤s≤d of h and
define a vector subspace

aτ =
d∑

s=1

C (Ys + if(Ys))

in U(g). Let U(g)aτ be the left ideal of U(g) generated by aτ , and

U(g, τ) = {A ∈ U(g); [A, Y ] ∈ U(g)aτ , ∀Y ∈ h}.
The elements of U(g) acting as left G-invariant differential operators : for X ∈ g and

ψ ∈ C∞(G),

(R(X)ψ) (g) =
d

dt
ψ(g exp (tX))|t=0 (∀ g ∈ G),

it turns out that the algebra Dτ (G/H) is the image of the map R : U(g, τ) ∋ A 7→ R(A),
whose kernel is U(g)aτ . Thus, it’s isomorphic to

U(g, τ)/U(g)aτ
∼= (U(g)/U(g)aτ )

H ,

where the last expression represents the set of H-invariant elements.
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Corwin and Greenleaf [14] presented two conjectures concerning the algebra Dτ (G/H).

Commutativity conjecture. The algebra Dτ (G/H) is commutative if and only if τ is
of finite multiplicity, namely that in the theorem 2.1.7 m(π) < ∞ almost everywhere for
µ.

Polynomial conjecture. When τ is of finite multiplicity, Dτ (G/H) is isomorphic to the
algebra C[Γτ ]

H of H-invariant polynomial functions on Γτ .

Remark 3.2. The commutativity conjecture had previously been presented by M. Duflo
[17] in a much more general frame.

There exists one and only one e ∈ E such that Γτ ∩ Ue is a Zariski open set of Γτ .

Theorem 3.3. ([30]) Let j ∈ T (e), and take the e-central element Aj. Then πℓ(Aj) =
φj(ℓ)Id for ℓ ∈ Γτ and φj(ℓ) ia a polynomial function on Γτ .

Recall the flag of ideals (3.1) of g. Let

I = {i1 < i2 < · · · < id} = {1 ≤ i ≤ n; h ∩ gi ̸= h ∩ gi−1}
and J = {j1 < j2 < · · · < jq} = {1, 2, . . . , n}\I, where d = dim h and q = dim g/h. On
the one hand, putting k0 = h, kr = h+gjr (1 ≤ r ≤ q), we have a sequence of subalgebras

h = k0 ⊂ k1 ⊂ · · · ⊂ kq−1 ⊂ kq = g, dim kr = d + r, (3.2)

and on the other hand, putting h0 = {0}, hs = h∩ gis (1 ≤ s ≤ d), we obtain a sequence
of ideals of h :

{0} = h0 ⊂ h1 ⊂ · · · ⊂ hd−1 ⊂ hd = h, dim hs = s. (3.3)

Let’s choose the basis {Ys}1≤s≤d of h in such a way that Ys ∈ hs \ hs−1 (1 ≤ s ≤ d).
Next, for 1 ≤ s ≤ d, we set

as =
s∑

j=1

C(Yj + if(Yj)).

We designate by T (eH) the set of indices is ∈ I such that hs ⊂ hs−1 + g(ℓ) for µ̃-almost
all ℓ ∈ Γτ . As T (eH) ⊂ T (e), let U(e) = T (e)\T (eH). We note ♢ the principal anti-
automorphism of U(g). Let is ∈ T (eH) and T (e) ∩ {1, 2, . . . , is} = {m1 < m2 < · · · <
mk = is}. The e-central elements Amj

(1 ≤ j ≤ k) of Corwin-Greenleaf are denoted by
σj for simplicity. The following lemma will be very useful for us.

Lemma 3.4. Modulo U(gis)as, ♢(σk) is algebraic on {♢(σ1), . . . , ♢(σk−1)}.
Let F be the algebra of functions ζ on G·Γτ such that there exists W ∈ U(g) verifying

πℓ(W ) = ζ(ℓ)Id for all ℓ ∈ Γτ . Making use of the lemma 3.4, we find :

Theorem 3.5. ([30]) {φj; j ∈ U(e)} is a transcendental basis of F .

§4. Frobenius reciprocity
Let G be a Lie group, which we suppose a reunion of countable compact sets, with

Lie algebra g. We uniquely consider unitary representations π whose Hilbert space Hπ
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is separable. Let v ∈ Hπ. When the function G ∋ g 7→ π(g)v ∈ Hπ is C∞, we call v a
C∞-vector. We note H∞

π the space of C∞-vectors of π. H∞
π is a dense subspace of Hπ,

on which g acts by the differential dπ of π :

dπ(X)v =
d

dt
π(exp(tX))v|t=0 (X ∈ g, v ∈ H∞

π ).

The differential representation dπ uniquely extends as a representation of the enveloping
algebra U(g). {X1, . . . , Xn} being a basis of g, H∞

π becomes a Fréchet space for the
semi-norms

ρd(v) =
∑

1≤ik≤n

∥dπ(Xi1 · · ·Xid)v∥ (d ∈ N).

We designate by H−∞
π the anti-dual of H∞

π , i.e. the vector space of continuous anti-
linear forms of H∞

π into C. The elements of H−∞
π are called generalized vectors of π. We

provide H−∞
π with the strong dual topology of H∞

π . The anti-dual of H−∞
π is identified

with H∞
π . For a ∈ H±∞

π and b ∈ H∓∞
π , we note ⟨a, b⟩ the image of b by a and hence

⟨a, b⟩ = ⟨b, a⟩. The actions of G and of g continuously extend on H−∞
π by duality. Remark

that
π(φ)

(
H−∞

π

)
⊂ H∞

π

if φ ∈ D(G). Being given a closed subgroup K and its character χ : K → C∗, set(
H−∞

π

)K,χ
= {a ∈ H−∞

π ; π(k)a = χ(k)a, ∀k ∈ K}.

Theorem 4.1. ([22], [35]) Let G = exp g be an exponential group, f ∈ g∗, h ∈ I(f, g).
We define as before the character χf of H = exp h by χf (exp X) = eif(X) (X ∈ h) and
τ = indG

H χf ∈ Ĝ. Then, for π ∈ Ĝ,

dim
(
H−∞

π

)H,χf∆
1/2
H,G =

{
1, π ≃ τ,

0, π ̸≃ τ.

We noticed in the corollary 2.2.3 that the Frobenius reciprocity established. Further,
the theorem 4.1 also announces a kind of Frobenius reciprocity in a very special case.
We ask if the reciprocity of this type remains valid in the general situation :

Question 4.2. In the formula (2.1.1) of the disintegration of a monomial representation,
is it true that :

m(π) = dim
(
H−∞

π

)H,χf∆
1/2
H,G

for µ-almost all π ∈ Ĝ ?

We are going to examine in detail this question for nilpotent case. Suppose in the
sequel of this chapiter that G = exp g is a connected and simply connected nilpotent Lie
group with Lie algebra g. Because R. Penney [43] showed the inequality

m(π) ≤ dim
(
H−∞

π

)H,χf∆
1/2
H,G

for µ-almost all π ∈ Ĝ, we are interested in the inverse inequality.

－ 164 －



Let ℓ ∈ g∗, b ∈ M(ℓ, g) = I(ℓ, g) and B = exp b. By means of coexponential basis to b

in g, the irreducible unitary representation π = indG
B χℓ = ρ̂(ℓ) is realized in L2(Rm) (m =

dim g/b). In this situation the following theorem will be very useful for us.

Theorem 4.3. The Fréchet space H∞
π coincides with the Schwartz space S(Rm).

Here are some comments on the formula (2.1.1) :
(1) We are in the following two alternatives : either there exists a uniform bound for

multiplicities m(π) for µ-almost all π, or m(π) = ∞ for µ-almost all π. According to
these two eventualities, we say that τ is of finite multiplicity or infinite multiplicity.

(2) τ is of finite multiplicity if and only if h+g(ℓ) is µ̃-almost everywhere a lagrangian
subspace, i.e. maximal isotropic, with respect to the bilinear form Bℓ.

(3) When τ is of finite multiplicities, for µ-almost all π ∈ Ĝ, each connected component
of ρ̂−1(π)∩ Γτ is a H-orbit of dimension equal to 1

2
dim ρ̂−1(π). The multiplicity m(π) is

hence computed by the number of connected components of ρ̂−1(π) ∩ Γτ .

Suppose now that τ = indG
H χf is of finite multiplicity. For π ∈ Ĝ, we write Ω(π) in

stead of ρ̂−1(π). Up to a µ̃-negligible subset of Γτ , let Ck (1 ≤ k ≤ m(π)) the connected
components of Ω(π) ∩ Γτ . Each of them is a H-orbit. We fix ℓ ∈ Ω(π) and b ∈ M(ℓ, g),
in other words a realization of π = indG

B χℓ with B = exp b. For 1 ≤ k ≤ m(π), take
gk ∈ G such that gk · ℓ ∈ Ck and an invariant measure dḣ on the homogeneous space
H/(H∩gkBg−1

k ).

Proposition 4.4. ([21]) We can produce linearly independent elements ak
π (1 ≤ k ≤ m(π))

in (H−∞
π )

H,χf by the following formula : for ϕ ∈ H∞
π ,

⟨ak
π, ϕ⟩ =

∫
H/(H∩gkBg−1

k )

ϕ(hgk)χf (h)dḣ. (4.1)

Proof. Let’s see first the integral in the right hand is well defined. In fact, h′ ∈ H∩gkBg−1
k

being arbitrary,

ϕ(hh′gk)χf (hh′) = ϕ(hgkg
−1
k h′gk)χf (h)χf (h

′)

= χℓ(g
−1
k h′−1

gk)ϕ(hgk)χf (h)χf (h
′)

= χgk·ℓ(h
′−1

)χf (h
′)ϕ(hgk)χf (h) = ϕ(hgk)χf (h).

Next, there exists a coexponential basis to h ∩ gk · b in h which makes a part of
coexponential basis to gk · b in g. In view of the theorem 4.3, the translated space of
H∞

π by gk from right is identified by using this basis to the Schwartz space S(Rm), m =

dim(G/B), and dḣ to a Lebesgue measure on Rp ⊂ Rm, p = dim(H/(H∩gkBg−1
k )),

from where the continuity of ak
π. In reality this right translation by gk is nothing but

an intertwining operator between two realizations of π at points ℓ and gk · ℓ. A direct
calculation assures the necessary semi-invariance of ak

π.
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Finally, we choose a Haar measure db on B and define, for ψ ∈ D(G), a function ψ̃ on
G by

ψ̃(g) =

∫
B

ψ(gb)χℓ(b)db.

It’s clear that ψ̃ ∈ H∞
π and that the generalized vector ak

π gives a distribution ãk
π on

G by the formula ãk
π(ψ) = ⟨ψ̃, ak

π⟩. Then the support of ãk
π coincides with the closed

double class HgkB. This being observed, in order to see that {ak
π}1≤k≤m(π) are linearly

independent, it suffices to verify that HgjB ̸= HgkB if j ̸= k. Otherwise, the connected
set gj·(ℓ + b⊥) ∩ Γτ de Ω(π) ∩ Γτ crosses at the same time Cj and Ck, what is absurd.
c.q.f.d.

Remark 4.5. The generalized vector ak
π does not depend on the choice of gk ∈ G up to a

scalar multiplication, same for the choice of b ∈ M(ℓ, g).

We are able to reply affirmatively to the question 4.2 when G is nilpotent.

Theoreme 4.6. Let G = exp g be a nilpotent Lie group, f ∈ g∗, h ∈ S(f, g) and τ =
indG

H χf . Let

τ ≃
∫ ⊕

Ĝ

m(π)πdµ(π)

be the canonical central decomposition of τ as in the theorem 2.1.7. Then we have a kind
of Frobenius reciprocity :

m(π) = dim
(
H−∞

π

)H,χf

for µ-almost all π ∈ Ĝ. In particular, if τ is of finite multiplicity,

(
H−∞

π

)H,χf =

m(π)∑
k=1

Cak
π

for µ-almost all π ∈ Ĝ.

Proof. Here we merely mention some guide lines of a proof. We employ the induction
on dim g + dim(g/h). We can assume that h contains the center z of g and that f does
not vanish on any non-zero ideal. This leads us to the case where dim z = 1, f |z ̸= 0.
Take as usual a Heisenberg triple {X,Y, Z} such that z = RZ, f(Z) = 1, [X,Y ] = Z, g =
g0 + RX where g0 denotes the centralizer of Y in g. Let ℓ ∈ Ω(π), and we realize π
using a polarization b at ℓ of g contained in g0. In accordance with the decomposition
G = exp(RX)G0, G0 = exp g0, the space H∞

π turns into S(Rm) ∼= S(R)⊕̂S(Rm−1),
where S(Rm−1) represents the space H∞

π0
with π0 = indG0

B χℓ ∈ Ĝ0. Every g ∈ G is
uniquely written as g = exp(xX)g0 with x ∈ R, g0 ∈ G0. We would like to descend on
the subgroup G0 deleting the first coordinate x.
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Let a ∈ (H−∞
π )

H,χf . If h ̸⊂ g0, we take X in h∩ker f . The semi-invariance of a requires
that with a certain a0 ∈

(
H−∞

π0

)H,χf ,

⟨a, ϕ(x)ψ(g0)⟩ =

(∫
R

ϕ(x)dx

)
⟨a0, ψ(g0)⟩,

where ϕ ∈ S(R), x ∈ R, ψ ∈ H∞
π0

, g0 ∈ G0. We descend in this way on G0.
Suppose now that h ⊂ g0. It suffices for us to treat the case where τ is of finite

multiplicity. Then, we deduce from the lemma 3.4 that there exists e-central elements of
Corwin-Greenleaf {σ1, . . . , σκ} such that we have a polynomial relation :

P
(
(♢(σ1)), . . . , (♢(σκ)), Y

)
≡ 0

modulo U(g)aτ , where P designates a polynomial of κ+1 variables and where Y appears
effectively. If we apply this relation to our generalized vector a, we find that there exists
a non constant polynomial F (x) such that F (x)a = 0. Let {αj}1≤j≤r the real roots of
the equation F (x) = 0. We see that the support of the distribution ã is contained in the
disjoint reunion of sub-varieties Mj = exp(αjX)G0 (1 ≤ j ≤ r) of G. Consequently, a is
written in a neighborhood of Mj as

a =
u∑

k=0

∂k

∂xk
Dk

with certains distributions Dk (1 ≤ k ≤ u) on G0. It only remains for us to show that
u = 0, what can be done by a suitable choice of the polynomial P used above and by
the hypothesis that τ is of finite multiplicity. c.q.f.d.

Remark 4.7. When G = exp g is exponential and the monomial representation τ is of
finite multiplicity, is it possible to produce elements of (H−∞

π )
H,χf∆

1/2
H,G by the similar

formula : for ϕ ∈ H∞
π ,

⟨ak
π, ϕ⟩ =

∮
H/H∩gkBg−1

k

ϕ(hgk)χf (h)∆
−1/2
H,G (h)dν(h) (g ∈ G), (4.2)

where ν = µH,H∩gkBg−1
k

. Even on the formation de this value we already encounter two
questions : possibility to consider this integral and its convergence just as in our study
of intertwining operators. Finally, the elements ak

π (1 ≤ k ≤ m(π)) do they supply
generalized vectors of π ? It’s difficult to determine the space H∞

π in the exponential
case, but maybe there would be some chance to exploit by taking a polarization of
Vergne b.

§5. Plancherel formula
Let as before G = exp g be an exponential group with Lie algebra g, f ∈ g∗, h ∈ S(f, g)

and τ = ρ̂(f, h, G) = indG
H χf with H = exp h, χf (exp X) = eif(X) (X ∈ h). We are

interested in this chapiter in the abstract Plancherel formula, due to Penney [43] and
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Bonnet [9], applied to the cyclic representation (τ, δτ ), where δτ ∈ (H−∞
τ )

H,χf∆
1/2
H,G is given

as follows : any ϕ ∈ H∞
τ being a C∞-function on G ([44]), put δτ (ϕ) = ⟨δτ , ϕ⟩ = ϕ(e)

with the unit element e of G.
When h ∈ I(f, g), τ turns out to be irreducible and the theorem 4.1 says that the space

(H−∞
π )

H,χf∆
1/2
H,G , π ∈ Ĝ, is equal to Cδπ if π ≃ τ and trivial if π ̸≃ τ . When h ̸∈ I(f, g),

we decompose (τ, δτ ) in irreducibles :

τ ≃
∫ ⊕

Ĝ

m(π)πdµ(π), δτ ≃
∫ ⊕

Ĝ

aπdµ(π).

The aπ being µ-almost everywhere in (m(π)H−∞
π )

H,χf∆
1/2
H,G , we have by the uniqueness of

disintegration [43] that aπ = (ak
π)1≤k≤m(π) with ak

π ∈ (H−∞
π )

H,χf∆
1/2
H,G and, for ϕ ∈ D(G),

⟨τ(ϕ)δτ , δτ ⟩ =

∫
Ĝ

∑m(π)

k=1
⟨π(ϕ)ak

π, ak
π⟩dµ(π).

For ϕ ∈ D(G), we produce, making the choice of a left Haar measure dh on H, an
element ϕf

H of H∞
τ by

ϕf
H(g) =

∫
H

ϕ(gh)χf (h)∆
−1/2
H,G (h)dh (g ∈ G).

We compute : for ψ ∈ H∞
τ ,

⟨τ(ϕ)δτ , ψ⟩ = ⟨
∫

G

ϕ(g)τ(g)δτdg, ψ⟩ = ⟨δτ ,

∫
G

ϕ(g)τ(g−1)ψdg⟩

=

∫
G

ϕ(g)ψ(g)dg =

∮
G/H

dµG,H(g)

∫
H

ϕ(gh)∆
−1/2
H,G (h)ψ(gh)dh

=

∮
G/H

ψ(g)dµG,H(g)

∫
H

ϕ(gh)χf (h)∆
−1/2
H,G (h)dh = ⟨ϕf

H , ψ⟩.

We have in this manner τ(ϕ)δτ = ϕf
H ∈ H∞

τ and therefore

⟨τ(ϕ)δτ , δτ ⟩ =

∫
H

ϕ(h)χf (h)∆
−1/2
H,G (h)dh = ϕf

H(e)

for any ϕ ∈ D(G).
We rewrite in this way the abstract Plancherel formula for the monomial cyclic repre-

sentation (τ, δτ ).

Theorem 5.1. ([21], [43]) The canonical central decomposition of τ = ρ̂(f, h, G) being

τ ≃
∫ ⊕

Ĝ

m(π)πdµ(π),

－ 168 －



there exists in (H−∞
π )

H,χf∆
1/2
G,H , for µ-almost all π ∈ Ĝ, elements ak

π, 1 ≤ k ≤ m(π), with
which the formula

ϕf
H(e) =

∫
Ĝ

m(π)∑
k=1

⟨π(ϕ)ak
π, ak

π⟩dµ(π) (5.1)

holds for every ϕ ∈ D(G).

As in the symmetric case of Benoist [6], we’ll carry out in certains cases explicit
calculations of (ak

π)π∈Ĝ,1≤k≤m(π) to obtain a concrete Plancherel formula.

Theorem 5.2. ([21]) When G = exp g is nilpotent and τ is of finite multiplicity, the
generalized vectors constructed by the formula (4.1) satisfy the Plancherel formula (5.1)
under suitable normalisation of the measures dḣ used in their constructions.

Beyond the nilpotent case we know little. We mention here a special case. Let G = exp g
an exponential group, f ∈ g∗ et h ∈ M(f, g). The disintegration of τ = indG

H χf was
obtained by M. Vergne [47], which offered us a starting point toward the theorem 2.1.7.
Note U(f, h) the set of orbits Ω ∈ g∗/G which encounter Γτ in a non empty open set of
Γτ .

Theorem 5.3. Let h ∈ M(f, g), then :
1) U(f, h) is a finite set ;
2) if Ω ∈ U(f, h), the number c(Ω) of connected components of Ω ∩ Γτ is finite ;
3) τ ≃

∑
Ω∈U(f,h)c(Ω)ρ̂(Ω).

To study the concrete Plancherel formula for τ , we begin by showing the :

Lemma 5.4. Let always h ∈ M(f, g). There exists b ∈ I(f, g) having the following
properties. Let’s put B = exp b, π = indG

B χf and note (H∞
π )0 the subspace of H∞

π

constituted by the functions with compact support modulo B. Then we have :
1) ∆H∩B,H(h)∆H∩B,B(h) = 1 for any h ∈ H ∩ B ;
2) HB is closed in G ;
3) Because of 1) and 2), we are able to produce an anti-linear form

a : (H∞
π )0 ∋ ϕ 7→

∮
H/(H∩B)

ϕ(h)χf (h)∆
−1/2
H,G (h)dµH,H∩B(h) ∈ C

which extends to an element of (H−∞
π )

H,χf∆
1/2
H,G .

Considering always the same situation as before, we verify the :

Theorem 5.5. When Ω runs U(f, h), we take ℓk
Ω (1 ≤ k ≤ c(Ω)) arbitrarily in each

connected component Ck
Ω of Ω ∩ Γτ . At these points ℓk

Ω ∈ g∗ (Ω ∈ U(f, h), 1 ≤ k ≤
c(Ω)) we can choose bk

Ω ∈ I(ℓk
Ω, g) of the lemma 5.4, which permits us to produce ak

Ω ∈(
H−∞

ρ̂(Ω)

)H,χf∆
1/2
H,G

, so that a concrete Plancherel formula for τ is written in terms of the
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matrix coefficients for these ak
Ω suitably normalized : for any ϕ ∈ D(G),

ϕf
H(e) =

∑
Ω∈U(f,h)

c(Ω)∑
k=1

⟨ρ̂(Ω)ak
Ω, ak

Ω⟩.

As far as here we have studied the abstract Plancherel formula due to Penney for
τ = indG

H χf having finite multiplicity. In nilpotent case, we can study in this manner
the abstract Plancherel formula due to Bonnet [9]. Please see [24] for the detail.

§6. Commutativity conjecture : induction case
Let G be a connected and simply connected nilpotent Lie group with Lie algebra g

and H = exp h an analytic subgroup of G with Lie algebra h. Being given a unitary
character χ of H, we construct the monomial representation τ = indG

H χ and propose
to study the algebra Dτ (G/H) of G-invariant differential operators on the line bundle
G×H C associated to χ. Our aim is the commutativity conjecture due to Duflo [17] and
Corwin-Greenleaf [14]. The latter proved one implication : if τ is of finite multiplicity,
then Dτ (G/H) is commutative. We are hence interested in the inverse direction.

Let’s take f ∈ g∗ verifying dχ = if |h, i =
√
−1, and put as before Γτ = f + h⊥.

Theorem 6.1. ([29]) Suppose that τ is of infinite multiplicity. Let g0 be a subalgebra
of codimension 1 containing h such that τ0 = indG0

H χ, where G0 = exp g0, is of finite
multiplicity. Suppose that there exists W ∈ U(g, τ) such that W ̸∈ U(g0)+U(g)aτ . Then
there exists T ∈ U(g0, τ0) such that [W,T ] ̸∈ U(g)aτ .

Proof. We proceed by induction on dim g + dim(g/h). Remark first that we can assume
h contains the center z of g. In fact, if z ̸⊂ h, take 0 ̸= Z ∈ z in the outside of h. We write
the representative elements in U(g0, τ0) using an basis {Z,X1, X2, . . . , Xp} adapted to h
in g0, where {Xj}p

j=1 is that to h′ = h + RZ in g0. For generic ℓ ∈ Γτ we note α = ℓ(Z).
Then τα = indG0

H χℓ, where χℓ denotes the usual character of H ′ = exp h′ defined by
dχℓ = iℓ|h′ , is of finite multiplicity. By means of {Xj}p

j=1, we see that there exists for
generic α a system of rational generators whose every element in U(g0, τ

α) \ U(g0)aτα is
represented by

T (α) =
∑
k,J

ck,J(−iα)kXj1
1 Xj2

2 · · ·Xjp
p

with a certain element
T =

∑
k,J

ck,JZkXj1
1 Xj2

2 · · ·Xjp
p

of U(g0, τ0). Here, we used the notation J = (j1, j2, . . . , jp) for p-set of non-negative
integers.

Let g = g0 + RX and we write with the help of the basis {Z,X1, . . . , Xp, X} a re-
presentative element of W and construct W (α) ∈ U(g, τα), τα = indG

G0
τα. From what
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precedes, if [W,T ] ∈ U(g)aτ for any T ∈ U(g0, τ0), then

[W,T (α)] = [W (α) + W̃ (Z + iα), T (α)] ∈ U(g)aτα

with a certain W̃ ∈ U(g). α being chosen in such a fashion as we have W (α) ̸∈ U(g0) +
U(g)aτα , this contradicts the induction hypothesis applied to the pair (h′, χℓ).

Suppose hereafter that z ⊂ h. If z∩ker f ̸= {0}, everything can pass to the quotient to
give us the desired result. It only remains for us to examine the case where dim z = 1 and
where f |z ̸= 0. Take as usual a Heisenberg triple (X̃, Y, Z) such that z = RZ, [X̃, Y ] =

Z, Y ∈ g0 and that g = RX̃ + k, where k denotes the centralizer of Y in g.
Let h ⊂ k. If Y ∈ h, then τ ′ = indK

H χ (K = exp k) must be of infinite multiplicity. g0

being given, τ ′
0 = indG0∩K

H χ is of finite multiplicity and it suffices for us to apply to τ ′

the induction hypothesis. If Y ̸∈ h, then T = Y ∈ U(g0, τ0) has the required property
when g0 = k. Suppose therefore that g0 ̸= k. If W ̸∈ U(k)+U(g)aτ , we can always choose
T = Y . Suppose that W ∈ U(k) + U(g)aτ . Since τ0 = indG0

G0∩K

(
indG0∩K

H χ
)

is of finite
multiplicity, τ ′ must be of infinite multiplicity. Otherwise, W ∈ U(k∩ g0)+U(g)aτ , what
is excluded by hypothesis. It suffices for us to apply to k our induction hypothesis.

Let finally h ̸⊂ k. Let’s consider h0 = h ∩ k, H0 = exp h0 and f0 = f |k ∈ k∗. It follows
that τ1 = indK

H0
χf0 is of infinite multiplicity. Put m = g0 ∩ k and M = exp m. Remark

that τ2 = indM
H0

χf0 is of finite multiplicity. W being represented by an element of U(k),
the induction hypothesis applied to k implies that there exists T ∈ U(m, τ2) such that
[W,T ] ̸∈ U(k)aτ1 . Here we can assume that T is one of rational generators of U(m, τ2)
introduced in Corwin-Greenleaf [14]. But the help of a weak Malcev basis adapted to h in
g0, we notice that {Y, γ2, . . . , γq} form such a system of rational generators for U(m, τ2),
{γj}q

j=2 being that for U(g0, τ0). Since [W,Y ] = 0, we can admit the existence of such a
T in U(g0, τ0). c.q.f.d.

We keep certains notations introduced in the beginning of the chapter 3. In what
follows, if g ̸= h, g′ denotes always an ideal of codimension 1 in g which contains h.
Furthermore, we’ll choose the flag (3.1) in such a way that gn−1 = g′. Similarly, if
dim h ≥ 1, h′ denotes always a subalgebra of codimension 1 in h and the flag (3.3) will
be such that hd−1 = h′. Then, when g′, h′ both exist, dim g ≥ 2 and g ) g′ ⊃ h ) h′.
Suppose that h ̸= {0} and put τ ′ = indG

H′ χf with H ′ = exp h′.
We would like to assure the existence of the element W in the theorem 6.1. Our first

significant result in this direction is :

Theorem 6.2. ([3]) We assume that

U(g, h′) ̸⊂ U(g′) + U(g)aτ ′ and U(g, τ ′) ∩ U(g′) ̸⊂ U(g, τ) ∩ U(g′).

Then we have U(g, τ) ̸⊂ U(g′) + U(g)aτ .

The theorems 6.1 and 6.2 offer us good tools to attack the commutativity conjecture
in many situations, but it remains some cases which slip out their range. It’s a matter of
treating the case where U(g, τ ′)∩U(g′) ⊂ U(g, τ)∩U(g′) in terms of the theorem 6.2. To
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settle these rather exceptional cases, the lemma 3.4 plays a key to open the final door to
the following main theorem.

Theorem 6.3. ([31]) Let G be a connected and simply connected nilpotent Lie group with
Lie algebra g such that dim g ≥ 1, H a closed connected proper subgroup of G with Lie
algebra h and f an element of the linear dual g∗ of g verifying f([h, h]) = {0}. Let g′ be
an ideal of codimension 1 of g containing h. Then the following properties are equivalent :

(i) U(g, τ) ⊂ U(g′) + U(g)aτ .
(ii) The H-orbit H · ℓ is saturated in the direction g′⊥ for generic ℓ ∈ Γτ .

We are now ready to prove the commutativity conjecture.

Corollary 6.4. We keep the notations. The algebra Dτ (G/H) is commutative if and only
if τ = indG

H χf is of finite multiplicity.

Proof. Corwin-Greenleaf [14] already showed one direction : if τ is of finite multiplicity,
the algebra Dτ (G/H) is commutative. Therefore, we only need to show the inverse di-
rection. Suppose that τ is of infinite multiplicity, and let’s see by induction on dim g that
Dτ (G/H) is non commutative. Recall first [11] : generically on Γτ ,

τ is of finite multiplicity ⇐⇒ dim H · ℓ =
1

2
dim G · ℓ

⇐⇒ 2(dim h − dim h(ℓ)) = dim g − dim g(ℓ)

Consequently, it suffices to prove that 2(dim h − dim h(ℓ)) < dim g − dim g(ℓ) for
generic ℓ ∈ Γτ means that Dτ (G/H) is non commutative. In this case, evidently h ̸= g.
Let g′ be an ideal of codimension 1 in g containing h, G′ = exp g′ and τ ∗ = indG′

H χf .
If Dτ∗(G′/H) ⊂ Dτ (G/H) is already non commutative, nothing to do. Suppose that
Dτ∗(G′/H) is commutative, what means that 2(dim h − dim h(ℓ′)) = dim g′ − dim g′(ℓ′)
for generic ℓ ∈ Γτ . From what,

2(dim h(ℓ′) − dim h(ℓ)) < 1 + dim g′(ℓ′) − dim g(ℓ) ≤ 2

and hence h(ℓ′) = h(ℓ) for generic ℓ ∈ Γτ . Then, the theorem 6.3 claims that there
exists an element W ∈ U(g, τ) such that W ̸∈ U(g′)+U(g)aτ . Finally, making use of the
theorem 6.1, we obtain an element T ∈ U(g′, τ ∗) such that [W,T ] ̸∈ U(g)aτ . It’s in this
manner that the algebra Dτ (G/H) is non commutative. c.q.f.d.

Remark 6.5. These studies concerning induced representations could be translated in
nilpotent case for the restriction of unitary representations to subgroups (cf. [4], [5]).
However, a plenty of questions remains open for exponential groups. It may be instructive
to treat a completely solvable Lie group whose Lie algebra is a normal j-algebra in the
sense of Pjatetskii-Shapiro because it possesses a remarkable algebraic structure.
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Errata for the proceedings of

Symposium on Representation Theory 2005

• “可解リー群のユニタリ表現に関する幾つかの話題（Some topics for unitary representations of solvable Lie
groups）” … 藤原 英徳 (Hidenori Fujiwara）:

Pages 143–175:

At first, the abbreviation c.q.f.d. at the end of each proof must be replaced by q.e.d..

Page 143, line 8 from the bottom:

§1. Orbite method −→ §1. Orbit method

Page 146, line 18:

Let gC the complexification . . . −→ Let gC be the complexification . . .

Page 146, line 19:

Let p a complex . . . −→ Let p be a complex . . .

Page 148, line 9:

. . . D-orbit Df dans g∗. −→ . . . D-orbit Df in g∗.

Page 153, line 18:

. . . {X} ou {X1, X2}, . . . −→ . . . {X} or {X1, X2}, . . .

Page 154, line 2 from the bottom:

that there exists . . . −→ that there exist . . .

Page 155, line 17 from the bottom:

Contrary to the nilpotent cas, . . . −→ Contrary to the nilpotent case, . . .

Page 155, line 12 from the bottom:

f + h⊥ ⊂ G·f et . . . −→ f + h⊥ ⊂ G·f and . . .

Page 156, line 14:

Then, for ϕ ∈ H(f, h1, G) et g ∈ G, . . . −→ Then, for ϕ ∈ H(f, h1, G) and g ∈ G, . . .

Page 158, the last line:

gν(X) −→ ℓν(X)

Page 160, line 13:

de π à G0. −→ of π to G0.

Page 160, line 17:

où ℓs = exp(sX)·ℓ0. −→ where ℓs = exp(sX)·ℓ0.



Page 161, line 16:

. . . the restriction π|K of π à K. −→ . . . the restriction π|K of π to K.

Page 162, line 9:

. . . if πℓ(A), où πℓ = ρ̂G(ℓ), . . . −→ . . . if πℓ(A), where πℓ = ρ̂G(ℓ), . . .

Page 162, line 19:

πℓ(Aj) = φj(ℓ)Id, où . . . −→ πℓ(Aj) = φj(ℓ)Id, where . . .

Page 165, line 15:

. . . let Ck (1 ≤ k ≤ m(π)) the connected −→ . . . let Ck (1 ≤ k ≤ m(π)) be the connected

Page 166, line 8:

set gj ·(ℓ + b⊥) ∩ Γτ de Ω(π) ∩ Γτ . . . −→ set gj ·(ℓ + b⊥) ∩ Γτ of Ω(π) ∩ Γτ . . .

Page 167, line 10 from the bottom:

where ν = µH,H∩gkBg−1
k

. −→ where ν = µH,H∩gkBg−1
k

?

Page 167, the last line:

. . . in this chapiter . . . −→ . . . in this chapter . . .

Page 169, line 1:

there exists in . . . −→ there exist in . . .

Page 169, line 10:

. . . Let G = exp g −→ . . . Let G = exp g be

Page 173, line 1:
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