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ABSTRACT. Let T be a compact group, and denote by G = S∞(T ) the wreath product of T
with the infinite symmetric group S∞. (1) We study first characters of facter representations of finite
type of G and give a general character formula. (2) Then, for each character f , we give a realization
of a factor representation π corresponding to it with a trace-element v such that f(g) = ⟨π(g)v, v⟩.
(3) Further we study limits of irreducible characters of Gn = Sn(T ) as n → ∞, and show that all the
characters are obtained as such limits.

The following text contains the part (1) and summaris of the parts (2) and (3).

1 Characters of factor representations of finite type

We begin with two theorems in the general theory of representations of topological groups,
which give us important backgrounds for our study.

Let G be a Hausdorff topological group, K(G) the set of continuous positive definite class
functions on G, and K1(G) the set of f ∈ K(G) normalized as f(e) = 1 at the identity element
e ∈ G, and E(G) = Extr

(
K1(G)

)
the set of extremal points in the convex set K1(G).

On the other hand, let π be a continuous unitary representation (= UR) of G, and U =
π(G)′′ the von Neumann algebra generated by {π(g); g ∈ G}. Then π is called factorial if U

is a factor. If the factor is of finite type (type In, n < ∞, or II1), there exists a unique faithful
finite normal trace t on the set U+ of non-negative elements in U, normalized as t(I) = 1 at
the identity operator I. The unique extention of t to a linear form on U is denoted by ϕ, and
the function

f(g) = ϕ(π(g)) (g ∈ G) (1)

is called a character of π. It naturally belongs to K1(G), and determines the quasi-equivalence
class [π] of π.

Theorem 1.1 ([HH3, Theorem 1.6.1]). For a (Hausdorff) topological group G, let URff(G)
be the set of all quasi-equivalence classes of continuous unitary representations of G, factorial
of finite type. Then there exists a canonical bijective correspondence between URff(G) and
E(G) through (1) above. The converse map is given by f → [πf ], where πf denotes the
Gelfand-Raikov representation associated to f [GR].

In [Dix, 17.3], the above canonical bijection is asserted under the condition that G is locally
compact and unimodular. In the work [Voic] on factorial representations of U(∞), this point
is not mentioned.

Let G be a topological group and N its normal subgroup with the relative topology. Denote
by K1(N,G) the set of all f ∈ K1(N) which are G-invariant, that is, f(gξg−1) = f(ξ) (ξ ∈
N, g ∈ G), and by E(N,G) the set of extremal points Extr

(
K1(N,G)

)
. The following result

is necessary to deduce Theorem 6.1 from Theorem 5.1, where E(N,G) = E(N) in particular.
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Theorem 1.2 ([HH6, Theorem 14.1]). Let N be a normal subgroup of G. For any F ∈
E(G), its restriction f = F |N onto N belongs to E(N,G).

2 Wreath products of compact groups with the infinite sym-

metric group

For a set I, we denote by SI the group of all finite permutations on A. A permutation σ

on I is called finite if its support supp(σ) := { i ∈ I ; σ(i) ̸= i } is finite. We call the infinite
symmetric group the permutation group SN on the set of natural numbers N . The index
N is frequently replaced by ∞. The symmetric group Sn is naturally imbedded in S∞ as
the permutation group of the set In := { 1, 2, . . . , n } ⊂ N .

Let T be a compact group. We consider a wreath product group SI(T ) of T with a
permutation group SI as follows:

SI(T ) = DI(T ) o SI , DI(T ) =
∏′

i∈I Ti , Ti = T (i ∈ I), (2)

where the symbol
∏′ means the restricted direct product, and σ ∈ SI acts on DI(T ) as

DI(T ) ∋ d = (ti)i∈I
σ7−→ σ(d) = (t′i)i∈I ∈ DI(T ), t′i = tσ−1(i) (i ∈ I). (3)

Identifying groups DI(T ) and SI with their images in the semidirect product SI(T ), we
have σ dσ−1 = σ(d). The groups DIn(T ) and SIn(T ) are denoted by Dn(T ) and Sn(T )
respectively, then G := S∞(T ) is an inductive limit of Gn := Sn(T ) = Dn(T )oSn. Since T

is compact, Gn is also compact, and the inductive system (Gn)n≥1 is an example of countable
LCG inductive systems in [TSH]. We introduce in G its inductive limit topology τind. Then
G with τind becomes a topological groups (cf. 2.7 in [TSH]). By definition, a subset B ⊂ G

is τind-open if and only if B ∩ Gn is open in Gn for any n ≥ 1. A general theory of unitary
representations of the inductive limit group G of a countable LCG inductive system is carried
out in [TSH, §5] using continuous positive definite functions on the group, and we know that
G with τind has sufficiently many URs.

Lemma 2.1. (i) The topology τind on G = S∞(T ) = D∞(T ) o S∞ is discrete if T is
finite, and is not locally compact if T is continuous.

(ii) In the topology τind on G = S∞(T ), the subgroup D∞(T ) is open. Denote by τD
ind the

inductive limit topology on D∞(T ) of the topologies on Dn(T ), then τind on G is the product
of τD

ind and the discrete topology τS
disc on S∞.

Put ΠI(T ) =
∏

i∈I Ti be the direct product of Ti = T over i ∈ I, and let τprod denote the
product topology on ΠI(T ).

When T is a non-trivial finite group, the topology τprod on ΠN (T ) is not discrete but totally
disconnected, whereas the topology τD

ind on D∞(T ) is discrete. Thus τind in G = S∞(T ) is
discrete, and this case is worked out in [HH2]–[HH3].

When T is infinite, τind is not discrete, and a subset {(d,1) ; d ∈ D∞(T )} ∼= D∞(T ) is an
open neighbourhood of the identity element e of G, where 1 denotes the trivial permutation
on N .
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A natural subgroup of G = S∞(T ) is given as a wreath product of T with the alternating
group A∞ as G′ := A∞(T ) = D∞(T ) o A∞. Furthermore, in the case where T is abelian, we
put

PI(d) =
∏

i∈I ti for d = (ti)i∈I ∈ DI(T ), (4)

and, for a subgroup S of T , we define a subgroup of SI(T ) as

SS
I (T ) = DS

I (T ) o SI with DS
I (T ) := { d = (ti)i∈I ; PI(d) ∈ S }. (5)

The subgroup GS := SS
I (T ) is normal in G and [G : GS ] = [T : S]. If S is trivial or S = {eT }

(and T is finite), we denote GS = SS
I (T ) simply by Ge = Se

I(T ). This kind of groups S∞(T )
and SS

∞(T ) with T abelian contain, as their special cases, the infinite Weyl groups of classical
types, WA∞ = S∞ of type A∞, WB∞ = S∞(Z2) of type B∞/C∞, and WD∞ = S

{eT }
∞ (Z2)

of type D∞, and moreover the inductive limits S∞(Zr) = limn→∞ G(r, 1, n) of complex
reflexion groups G(r, 1, n) = Sn(Zr) (cf. [AK], [Kaw], [Sho]).

3 Structure of wreath product groups S∞(T ) = D∞(T ) o S∞

Fix a compact group T , and take the wreath product group S∞(T ) of T with the symmetric
group S∞:

S∞(T ) = D∞(T ) o S∞, D∞(T ) :=
∏′

i∈N Ti , Ti = T (i ∈ N). (6)

An element g = (d, σ) ∈ G = S∞(T ) is called basic in the following two cases:

Case 1: σ is cyclic and supp(d) ⊂ supp(σ);
Case 2: σ = 1 and for d = (ti)i∈N , tq ̸= eT only for one q ∈ N .

The element (d,1) in Case 2 is denoted by ξq, and put supp(ξq) := supp(d) = { q }.
For a cyclic permutation σ = (i1 i2 · · · iℓ) of ℓ integers, we define its length as ℓ(σ) = ℓ,

and for the identity permutation 1, put ℓ(1) = 1 for convenience. In this connection, ξq is
also denoted by (tq, (q)) with a trivial cyclic permutation (q) of length 1. In Cases 1 and
2, put ℓ(g) = ℓ(σ) for g = (d, σ), and ℓ(ξq) = 1. It is very helpful for us to illustrate these
basic elements by permutation matrices with entries from T or more correctly from the group
algebra of T . For g = (d, σ) with d = (t1, t2, . . . , tℓ), σ = (1 2 3 · · · ℓ), and ξq = (tq, (q)),
their expressions in matrix form are respectively

0 0 · · · 0 0 t1

t2 0 · · · 0 0 0

0 t3
. . . 0 0 0

...
. . . . . . . . .

...
...

0 · · · 0 tℓ−1 0 0

0 · · · 0 0 tℓ 0


,



eT · · · 0 0 0 · · ·
...

. . .
...

...
...

...

0 · · · eT 0 0 · · ·
0 · · · 0 tq 0 · · ·
0 · · · 0 0 eT · · ·
...

. . . . . . . . . . . . . . .


q-th.
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An arbitrary element g = (d, σ) ∈ G, is expressed as a product of basic elements as

g = ξq1ξq2 · · · ξqrg1g2 · · · gm (7)

with gj = (dj , σj) in Case 1, in such a way that the supports of these components, q1, q2, . . . ,

qr, and supp(gj) = supp(σj) (1 ≤ j ≤ m), are mutually disjoint. This expression of g is
unique up to the orders of ξqk

’s and gj ’s , and is called standard decomposition of g. Note
that, for S∞-components, σ = σ1σ2 · · ·σm gives the cycle decomposition of σ.

To write down conjugacy class of g = (d, σ), there appear products of components ti of
d = (ti), where the orders of taking products are crucial when T is not abelian. So we
should fix notations well. We denotes by [t] the conjugacy class of t ∈ T , and by T/∼ the
set of all conjugacy classes of T , and t ∼ t′ denotes that t, t′ ∈ T are mutually conjugate
in T . For a basic component gj = (dj , σj) of g, let σj = (ij,1 ij,2 . . . ij,ℓj

) and put
Kj := supp(σj) = { ij,1, ij,2, . . . , ij,ℓj

} with ℓj = ℓ(σj). For dj = (ti)i∈Kj , we put

Pσj (dj) :=
[
t′ℓj

t′ℓj−1 · · · t′2t′1
]
∈ T/∼ with t′k = tij,k

(1 ≤ k ≤ ℓj). (8)

Note that the product Pσj (dj) is well-defined, because, for t1, t2, . . . , tℓ ∈ T , we have t1t2 · · · tℓ ∼
tktk+1 · · · tℓt1 · · · tk−1 for any k, that is, the conjugacy class does not depend on any cyclic
permutation of (t1, t2, . . . , tℓ).

Lemma 3.1. (i) Let σ ∈ S∞ be a cycle, and put K = supp(σ). Then, an element
g = (d, σ) ∈ SK(T )(=: GK (put)) is conjugate in it to g′ = (d′, σ) ∈ GK with d′ =
(t′i)i∈K , t′i = eT (i ̸= i0), [t′i0 ] = Pσ(d) for some i0 ∈ K.

(ii) Identify τ ∈ S∞ with its image in G = S∞(T ). Then we have, for g = (d, σ),
τ gτ−1 = (τ(d), τστ−1) =: (d′, σ′) (put), and Pσ′(d′) = Pσ(d).

Applying this lemma to each basic components gj = (dj , σj) of g ∈ G in (7), we get

Theorem 3.2. Let T be a compact group. Take an element g ∈ G = S∞(T ) and let
its standard decomposition into basic elements be g = ξq1ξq2 · · · ξqrg1g2 · · · gm in (7), with
ξqk

= (tqk
, (qk) ), and gj = (dj , σj), σj cyclic, supp(dj) ⊂ supp(σj). Then the conjugacy class

of g is determined by

[tqk
] ∈ T/∼ (1 ≤ k ≤ r) and (Pσj (dj), ℓ(σj) ) (1 ≤ j ≤ m), (9)

where Pσj (dj) ∈ T/∼ and ℓ(σj) ≥ 2.

Note that we put ℓ(ξqk
) = 1, ℓ(gj) = ℓ(σj) ≥ 2.

Lemma 3.3. A finite-dimensional continuous irreducible unitary representation (= IUR)
π of S∞(T ) is a one-dimensional character, and is given in the form π = πζ,ε with

πζ,ε(g) = ζ(P (d)) (sgnS)ε (σ) for g = (d, σ) ∈ S∞(T ) = D∞(T ) o S∞,

where ζ is a one-dimensional character of T , P (d) is a product of components ti of d = (ti),
and sgnS(σ) denotes the usual sign of σ and ε = 0, 1. (Since ζ(P (d)) =

∏
i∈N ζ(ti), the

order of taking product for P (d) has no meaning even if T is not abelian.)

In the case where T is abelian and S a closed subgroup of T , we have a closed subgroup
GS = SS

∞(T ) of G = S∞(T ). Then a similar assertion as Lemma 3.3 hold for GS too.
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4 Factorizable positive definite class functions

Let T be a compact group, and f a continuous positive definite class function on G =
S∞(T ) or f ∈ K(G). An f ∈ K(G) is called factorizable if it has the following properties
which are mutually equivelent:

(FTP) For any g = (d, σ) ∈ G, let g = ξq1ξq2 · · · ξqrg1g2 · · · gm, ξq =
(
tq, (q)

)
, gj = (dj , σj),

be its standard decomposition. Then,

f(g) =
∏

1≤k≤r f(ξqk
) ×

∏
1≤j≤m f(gj). (10)

(FTP′) For any two elements g, g′ with disjoint supports in S∞, f(gg′) = f(g)f(g′).

Let F (G) be the sets of all factorizable f in K1(G).

Theorem 4.1 ([HH6, Theorem 4.2]). Let G = S∞(T ) with a compact group T . An
f ∈ K1(G) is extremal if and only if it is factorizable, that is, E(G) = F (G).

5 Characters of S∞(T ) with T any compact group

Let T̂ be the dual of T consisting of all equivalence classes of IURs. We identify every
equivalence class with one of its representative. Thus ζ ∈ T̂ is an IUR and denote by χζ its
character: χζ(t) = tr(ζ(t)) (t ∈ T ), then dim ζ = χζ(eT ). Put G = S∞(T ). For a g ∈ G,
let its standard decomposition into basic components be g = ξq1ξq2 · · · ξqrg1g2 · · · gm, as in
(7), where ξqk

= (tqk
, (qk)), tqk

̸= eT , with ℓ(ξqk
) = 1 for 1 ≤ k ≤ r, and σj is a cycle of

length ℓ(σj) ≥ 2 and supp(dj) ⊂ Kj = supp(σj) . For dj = (ti)i∈Kj ∈ DKj (T ) ↪→ D∞(T ),
put Pσj (dj) as in (8).

For one-dimensional characters of S∞, we introduce simple notation as

χε(σ) := sgnS(σ)ε (σ ∈ S∞ ; ε = 0, 1). (11)

As a parameter for characters of G = S∞(T ), we prepare a set

αζ,ε (ζ ∈ T̂ , ε ∈ { 0, 1 }) and µ = (µζ)ζ∈bT
, (12)

of decreasing sequences of non-negative real numbers

αζ,ε = (αζ,ε,i)i∈N , αζ,ε,1 ≥ αζ,ε,2 ≥ αζ,ε,3 ≥ · · · ≥ 0 ;

and a set of non-negative µζ ≥ 0 (ζ ∈ T̂ ), which altogether satisfy the condition∑
ζ∈ bT

∑
ε∈{ 0,1 }

∥αζ,ε∥ + ∥µ∥ = 1 , (13)

with ∥αζ,ε∥ =
∑

i∈N αζ,ε,i , ∥µ∥ =
∑

ζ∈ bT
µζ .

Note that, under the condition (14), there exists a countable subset T̂0 ⊂ T̂ such that
αζ,ε = 0 and µζ = 0 for ζ ̸∈ T̂0.
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Theorem 5.1 ([HH6, Theorem 5.1]). Let G = S∞(T ) be a wreath product group of a
compact group T with S∞. For a parameter A :=

(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
in (12)–(13), the

following formula gives an element in E(G) = F (G): for a g ∈ G, let (7) be its standard
decomposition, then put

fA(g) =
∏

1≤k≤r

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

αζ,ε,i

dim ζ
+

µζ

dim ζ

χζ(tqk
)


×

∏
1≤j≤m

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

(
αζ,ε,i

dim ζ

)ℓ(σj)

χε(σj)

χζ

(
Pσj (dj)

) , (14)

where χε(σj) = sgnS(σj)ε = (−1)ε(ℓ(σj)−1).
Conversely any element in E(G) or any character of G is given in the form of fA.

The case of the infinite symmetric group S∞ itself is considered as an extreme case of the
wreath product groups S∞(T ) with a trivial group T = { eT }. For S∞, we have only the
so-called Thoma parameters α = (αp)p∈N , β = (βp)p∈N in [Tho] satisfying the inequality
condition ∥α∥ + ∥β∥ ≤ 1.

Then, for the parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
of the character fA, we put

α0,1T = α, α1,1T = β, (15)

with the trivial representation 1T of T , and introduce a fake parameter µ = (µ1T ) for the
trivial representation 1T of T = {eT } by putting µ1T := 1 − (∥α0,1T ∥ + ∥α1,1T ∥). Then the
equality condition (13) is established.

6 Characters of the subgroup SS
∞(T ) ⊂ S∞(T ), S ⊂ T abelian

compact

Let T be abelian and S its subgroup. Then, the natural subgroup GS = SS
∞(T ) =

DS
∞(T ) o S∞ is defined by (4)–(5). We can deduce a general character formula for this

normal subgroup N = GS from the one for G = S∞(T ), especially when S is open in T .
Take a g ∈ N and let its standard decomposition in G ⊃ N be g = ξq1ξq2 · · · ξqr g1g2 · · · gm

with ξqk
= (tqk

, (qk)) and gj = (dj , σj), dj = (ti)i∈Kj ,Kj = supp(σj). Note that each compo-
nent ξqk

does not necessarily belong to N , and that the component gj = (dj , σj) belongs to
N if and only if P (dj) =

∏
i∈Kj

ti ∈ S. However, we know that E(N,G) = E(G) in this case,
and discussing relations between N and G, and using Theorem 1.2, we obtain the following
result for N = GS from the result for G.

Theorem 6.1 ([HH6, Theorem 7.1]). Let T be abelian and S a subgroup of T , and let
N = GS = SS

∞(T ) be the subgroup of G = S∞(T ) given by (4)–(5).
(i) For any character f ∈ E(G) of a factor representaion of finite type of G, the restriction

fS = f |N on N is again such a character of N or fS ∈ E(N).
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(ii) For fA ∈ E(G) with a parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
in (12)–(13), its re-

striction fS
A := fA|N is in E(N), and is given as follows: for a g ∈ N , let its standard

decomposition in G be as above, then

fS
A(g) =

∏
1≤k≤r

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

αζ,ε,i + µζ

 ζ(tqk
)


×

∏
1≤j≤m

∑
ζ∈ bT

 ∑
ε∈{ 0,1 }

∑
i∈N

(αζ,ε,i)
ℓ(σj) · χε(σj)

 ζ(dj)

 , (16)

where χε(σj) = sgnS(σj)ε = (−1)ε(ℓ(σj)−1), and ζ(dj) = ζ(P (dj)).
(iii) Assume S is open in T . Then any character of N = GS is given in the form of fS

A,
that is, E(N) = {fS

A ; A in (12)–(13)}.

Similar results are obtained for other subgroups as G′ = A∞(T ) and G′S = G′ ∩ GS .
To describe the correspondence of parameters, we introduce a translation R(ζ0) on A

by an element ζ0 ∈ T̂ as follows: R(ζ0)A :=
(
(α′

ζ,ε)(ζ,ε)∈ bT×{ 0,1 } ; R(ζ0)µ
)

with α′
ζ,ε =

αζζ −1
0 ,ε

(
(ζ, ε) ∈ T̂ × {0, 1}

)
, R(ζ0)µ = (µ′

ζ)ζ∈ bT
, µ′

ζ = µζζ −1
0

.

Proposition 6.2. Assume that two parameters of characters of G

A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
and A′ =

(
(α′

ζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ′
)

satisfy the normalization condition (13) respectively. Then, they determine the same function
on N = GS, or fS

A = fS
A′, if and only if A′ = R(ζS)A for some ζS ∈ T̂ which is trivial on S.

In this case, as elements in E(G) for the bigger group G, we have

fA′(g) = πζS ,0(g) · fA(g) (g ∈ G).

7 Method of Proof of Theorem 5.1 in [HH6]

Let G = S∞(T ). The first part of our proof is to prepare seemingly sufficiently big family
E′(G) of factorizable continuous positive definite class functions fA on G. The second part
is to prove that E′(G) is actually equal to F (G) = E(G).

7.1. The first part of the proof. The first part has two important ingredients. The
one is a method of taking limits of centralizations of positive definite functions. The other is
inducing up positive definite functions from subgroups.

7.1.1. For a continuous positive definite function F on a topological group G and a
compact subgroup G′ ⊂ G, we define a centralization of F with respect to G′ as

FG′
(g) :=

∫
g′∈G′

F (g′gg′
−1) dµG′(g′), (17)
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where µG′ denotes the normalized Haar measure on G′. Then FG′
is automatically invariant

under G′.
Assume that we have an increasing sequence of compact subgroups GN ↗ G. Then we

can examine if the series of continuous positive definite functions FGN converges pointwise
to a continuous function F∞ = limN→∞ FGN . If it does, then F∞ is necessarily a positive
definite class function.

Choosing starting functions F as simple as possible, we check what we get as the limit
functions F∞ which depend heavily on the choices of the series GN ↗ G. This is a kind of
‘ trial and error ’ method. In the case of G = S∞(T ), this method woprks very well.

However, in the case of G = GL(∞, F ), where F is a finite field, it doesn’t, and we obtain
non until now except the delta function δe on G supported by the identity element e ∈ G.

7.1.2. We choose appropriate subgroups H and their URs π and use their diagonal matrix
elements fπ as positive definite functions on H to be induced up to G as F = IndG

Hfπ (see
Lemma 7.1 below). Then we centralize F along with some increasing sequences GN ↗ G as
FGN and check their limits F∞ = limN→∞ FGN .

We have constructed in [Hir1]-[Hir2] a huge family of IURs of a wreath product group
G = S∞(T ) with any finite group T , by taking the so-called wreath product type subgroups
H in a ‘ saturated fashion ’, and their IURs π of a certain form to get IURs of G as induced
representations ρ = IndG

Hπ. For our present purpose of getting a big set E′(G)(⊂ F (G))
of fA’s on G, actually it is sufficient to choose simpler subgroups H of degenerate wreath
product type and their IURs π. Then the induced representations ρ = IndG

Hπ are very far
from to be irreducible, but sufficient for our purpose to obtain positive definite class functions
on G.

In a general setting, we have the following fact.

Lemma 7.1. Let G be a group and H its subgroup. Take a positive definite function
f on H, and extend it trivially onto G by putting zero outside of H, which is denoted by
F = IndG

Hf . Then F is positive definite on G.

As an example of positive definite functions f on H, we can take a matrix element of a
UR π of H on a Hilbert space V (π) as

fπ(h) = ⟨π(h)v, v⟩ (h ∈ H) with v ∈ V (π), ∥v∥ = 1.

In the case where H is open in G, or in particular G is discrete, the trivial inducing up
F = IndG

Hfπ is a matrix element for the induced representation ρ = IndG
Hπ. Let G′ be a

compact subgroup of G and take a centralization FG′
of F . Since F is zero outside of H,

the value of centralization FG′
(g) is ̸= 0 only for elements g which are conjugate under G′

to some h ∈ H, and moreover, for h ∈ H,

FG′
(h) =

∫
G′

f(g′hg′
−1) dµG′(g′), (18)

where we put f(g′hg′ −1) = 0 if g′hg′ −1 ̸∈ H, by definition, whence the integrand ̸= 0 only
if g′hg′−1 ∈ H.
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A pointwise limit F∞ of FGN as N → ∞ for an increasing sequence GN ↗ G of compact
subgroups of G is certainly positive definite and invariant, and may be continuous or may be
not with respect to τind. The condition g′hg′−1 ∈ H for g′ ∈ GN , is translated into certain
combinatorial conditions, and to get the limit F∞ of FGN , we have to calculate asymtotic
behavior of several ratios of combinatorial numbers. In the discrete case or the case of a finite
group T , the above integral turns out to be a sum which is calculated by some combinatorics
[HH3].

7.2. The second part of the proof. The second part is to guarantee that actually all
characters have been already obtained in the first part. For that, we prove first the equality
F (G) = E(G), and then E′(G) = F (G), or the completeness of E′(G).

7.2.1. To prove E(G) = F (G), in the case of finite groups T , the point is that K≤1(G) is
weakly compact. Then, we can use the theorem of Choquet-Bishop-K. de Leeuw (cf. [BK])
of integral representation theorem for a compact convex set.

In the case where T is continuous, the assertion that K≤1(G) is compact in a certain
natural topology has not yet been established, and so we take, for a fixed f ∈ K≤1(G), a
smaller part K≤1(G; f) of K≤1(G) consisting of f ′ majorized by f . It is proved that the
convex set K≤1(G; f) is compact and then we can appeal to the above mentiond theorem.

7.2.2. To prove E′(G) = F (G), we proceed as follows. Take an f ∈ F (G). We can take
a kind of partial Fourier transform of f on G = D∞(T ) o S∞ with respect to subgroups
Dn(T ) ⊂ D∞(T ), and get a series of positive definite class functions Fζ,ε,n(f) on Sn, n ≥ 1,

for any ζ ∈ T̂ , ε = 0, 1. For a fixed (ζ, ε), we appeal to Korollar 1 to Satz 2 in [Tho] for the
series of positive definite class functions Fζ,ε,n(f) on Sn, n ≥ 1.

8 Realizations of factor representations of finite type with

emphasis on their characters for wreath products of com-

pact groups with the infinite symmetric group [HHH1]

(Rewrite of Introduction of [HHH1])
Let A be a datum which determines a character fA of the wreath product group S∞(T )

of compact group T with the infinite symmetric group S∞. We mean by a character an
extremal continuous positive definite class function on the group. The aim of this paper is
to construct a nice realization of a factor representation of finite type of S∞(T ) for any A

which yields fA as its matrix element.
The character formula for S∞ was established by Thoma in [Tho]. Later in [VK2], Vershik-

Kerov characterized the Thoma parameters as asymptotic frequencies of growing Young
diagrams and showed that the characters of S∞ are expressed as pointwise limits of the
normalized irreducible characters of Sn, the symmetric group of degree n. In [Hir4] the
Thoma characters are captured anew by using a different kind of approximation procedure.
This method has an advantage that it is applicable to general wreath product groups including
the infinite Weyl groups of other types. In a series of works [HH1]–[HH6], we obtained a
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complete and unified character formula for the wreath product S∞(T ) of any compact group
T with the infinite symmetric group S∞.

On the other hand, Vershik-Kerov constructed in [VK1] a factor representation of finite
type of S∞ which realizes the Thoma character as its matrix element. It is useful to give
such a nice realization of the factor representation. Among its applications, let us mention
here two cases. In [BG], Bożejko-Guţă obtained a class of generalized Brownian motions
associated with the Thoma characters. A positive definite function on P2(∞), the set of the
pair partitions, is needed to introduce a Gaussian state of the algebra generated by the field
operators on a certain Fock space. They used the realization in [VK1] to extend the Thoma
character on S∞ to P2(∞). Another example is due to Biane in [Bia] concerning asymptotic
concentration which is observed in irreducible decomposition of some representations of Sn

as n → ∞. For example, in irreducible decomposition of the regular representation of Sn, we
see that a typical irreducible component occupies a dominant size (the so-called limit shape
of Young diagrams) under appropriate scaling limit. Biane showed in [Bia] that such a con-
centration phenomenon is observed in a sequence of the Vershik-Kerov factor representations
and that the typical irreducible component is characterized by using free probability theory.
See also [Hor] for a survey on this concentration phenomenon and free probability.

Motivated by the above facts, we are led to construct those realizations analogous as that
in [VK1] for the explicitly given characters of S∞(T ).

Apart from expected similar applications to the case of S∞, we note that our realization
gives an alternative simpler proof of the positive-definiteness for fA in [HH6], which is given
at first by a formula in the right hand side of (14) as a class function on the group. We
should prove to be positive definite and extremal, and then to cover all characters of factor
representations of finite type of the group.

9 Limits of irreducible characters of wreath products Sn(T )

of compact group T with the symmetric groups, I, – from

the point of view of group representation theory – [HHH2]

Let T be a compact subgroup and G = S∞(T ) and Gn = Sn(T ) be as before. Then
Gn ↗ G. In this paper we give the following results.

(I-1) For any IUR ρn of Gn, we give a realization of it as an induced representation of an
IUR πn of a certain subgroup Hn, or ρn

∼= IndGn
Hn

πn.

(I-2) Using this realization, we calculate explicitly the trace character
χρn(gn) = tr

(
ρn(gn)

)
(gn ∈ Gn).

(I-3) For an “increasing” series of IURs ρn of Gn (n → ∞), we find a necessary and
sufficient codition for that there exists the limit of normalized characters

χ̃ρn := χρn/ dim ρn .

(I-4) We calculate explicitly the limit limn→∞ χ̃ρn , and obtain the following.
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Theorem A. For any character fA ∈ E(G) of G = limn→∞ Gn, there exists an increasing
sequence of IURs ρn of Gn such that fA = limn→∞ χ̃ρn .

Conversely any limit limn→∞ χ̃ρn, if it exists, is equal to some of fA.

10 Limits of irreducible characters of wreath products Sn(T )

of compact group T with the symmetric groups, II,

– remark on a generalized Young gragh – [HHH2]

Under this provisional subtitle, we give at least the following results.

(II-1) In (I-1), the datum (πn,Hn) is determined by a set of Young diagrams

λζ,ε;n for (ζ, ε) ∈ T̂ × {0, 1},

where the total sum of the sizes of λζ,ε;n over (ζ, ε) ∈ T̂ × {0, 1} is equal to n. Then, using
the so-called ergodic method as in [VK2], where the inverse martingale convergence theorem
plays a dicisive role, we obtain the following.

Theorem B. For any character f of G, there exists an increasing sequence of (λζ,ε;n)n≥1

for each (ζ, ε) ∈ T̂ × {0, 1}, such that χ̃ρn converges to f on G uniformly on every compact
subsets. Here ρn = IndGn

Hn
πn, and (πn,Hn) is determinde by the datum (λζ,ε;n)

(ζ,ε)∈bT×{0,1}.

(II-2) We know Theorem 4.1 which asserts that a continuous positive definite class function
in K1(G) is a character (or extremal) if and only if it is factorizable: E(G) = F (G). Then
we can calculate the limit limn→∞ χ̃ρn more easily than in (I-4), applying the above ergodic
method. Thus we get the explicit form of any character f ∈ E(G) in a different way.

Thus, in this second part II of [HHH2], we can give alternative proofs of the resuts in the
part I of [HHH2] which are explained in the preceding section.
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Errata for the proceedings of

Symposium on Representation Theory 2005

• “Factor representations and their characters for the wreath products of compact groups with the infinite
symmetric group” … 平井 武（Takeshi Hirai）:

Page 122, line 5:

. . . permutations on A. . . . −→ . . . permutations on I. . . .


