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Poincaré series of the Weyl groups of the elliptic root
systems Aﬁl’”, A<11’1> and AS’”

Tadayoshi Takebayashi  ( Waseda University )

Adstract. We calculate the Poincaré series of the elliptic Weyl group VV(AS’I))7 which
is the Weyl group of the elliptic root system AS’”. The generators and relations of W(Aél’l))
have been already given by the author and K. Saito.

1 Introduction

We calculate the Poincaré series W(t) of the elliptic Weyl groups W of types Agl’l), Agl’l)*
and Aél’l). In the cases of types Agl’l) and Agl’l)*, they have been already examined by
Wakimoto ([10]). Elliptic Weyl groups are the Weyl groups associated to the elliptic root
systems introduced by K. Saito ( [6], [7] ), which are defined by a semi-positive definite inner
product with 2-dimensional radical. The generators and their relations of elliptic Weyl groups

were described from the view point of a generalization of Coxeter groups by the author and
K.Saito ( [8], [9]). The Poincaré series W (t) is defined by

Wit = 3 1),

wew

where ¢ is an indeterminate and [(w) is the length of a minimal expression of an element
w € W. If W is one of the finite or affine Weyl groups, it is known that
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weWw (1_0"2-:1_[1 - ( W : affine ) ,
where n is the rank and my,---,m, are the exponents of W' ( [1], [2], [3], [4], [5] ). Imn

the cases of Agl’l) and Agm)*, we give a different proof from [10], and in the similar way we
calculate the case of A;l’l).



2  Poincaré series of the Weyl groups of types Agl’l) and

The generators and their relations of the elliptic Weyl group W of type Agl’l) are given as
follows ( [8], [9]):
Generators :  w;, w; (i=0,1).

Relations :  w?=w?=1(i=0,1), wywjw,wi = 1.

2 =
The relation wowguww] =1 is rewritten as follows :
(2.1.1) wiwy = wow; (& wiwy = wiwy).

( It is understood that * moves between wg and wy . ) Weset T := wywy, R := wiw; = wowy,
then we easily see the following.

Lemma 2.1 T, R and wy are the generators of the Weyl group W of type A(ll’l) and their
relations are given by ;

TR = RT7 wlT = T71w17 wlR = R71w17 w? = 1

From this, we have W = {R"T"w;, R™T", m,n € Z}.
The elements T" and w; are the generators of the affine Weyl group of type A; and all elements
of the Weyl group are classified to the following:.

(DT (0=0), )T (n=1), ()T (0=0), (V)T "y (0> 1)},

We multiply the elements R™ (m € Z) to the above elements from the left, and examine their
minimal length in each case by using the following.

Lemma 2.2  Let w be a minimal expression by wy and wy. Then even if we attach x to any
components of w, the length of w does not decrease.

(I) T"™ = (wjwy)® (n >0): From the expression Rwiwy = wjwy and (2.1.1), we
see that

R'T™ = R*(wiwp)” = (wiiw1o)(wa1wao) - -+ (Wniwno), for 0 < k < 2n,
where each w;; = wy, wi and wyy = wp, wg, for all 2. So, we find that
#H{R*T", (n>0, k€ Z) | I(R*T") = 2n} = 2n + 1,

and for m > 1, R*™mT" = R™(R*"T™) = (wiw,)™(wiwg)™ and R™™T™ = (wiwi)™ (wiwg)™
and each length is 2n + 2m, so we get ${RFT", (n >0, k € Z) | I(R*¥T") = 2n + 2m} = 2.

In the case of (II), it is similar to (I).



(IIT)  T"wy = (wywe)™wy (n>0): From Rw; = w; and (2.1.1),
RFT™Mwy = RF(wywp) wy = (wiwig) -+ (Wn1Wno)Wni11 for 0 < k < 2n+ 1
where each w;; = wy, wi and w;p = wy, W, so
#H{R*T™wy, (n>0, k€Z)|I(R'T"w,) =2n+1} = 2n + 2, and
H{RFT™wy, (n >0, k € Z) | (RF¥T™w,) = 2n + 1 4 2m} = t{ R 1Hm T, R™™TMw, } = 2.
(IV) O T7™w; = (wow1)" twy (n >1): From R 'wy = w}) and (2.1.1), we see

that
H{RMT™wy, (n>1, k€ Z) | (RFTw,) = 2n — 1} = 2,

and form > 1, R=Cr=D=mT =y = R (wiwi)" twy = (wiwe)™ (wiwi)" twg, RMT"w, =
(wowy)™(wowy )" Twy, so #{R*T"wy, (n>1, k€ Z) | (RFTw;) = 2n + 2m} = 2.

In the case of Agl’l)* , the generators and their relations are given as follows :
Generators :  wy, wy, wy.

Relations : w2 = w? = wi? = (woww})? = 1.

This Weyl group is obtained from the Weyl group of type Agl"l) by removing one generator
wg, so we examine similarly to the case of Agl’l).

(I) T"=(wjwe)® (n>0): Form Rwy; =w;j and R"T" = (wjwy)",
#H{RFT", (n >0, k€ Z) | (R*T™) = 2n} = n +1,

and for m > 1, R"™T" = R™(wijwp)" = (wjwy)™(wijwe)™ and R™™T" = (wiw})™(wiwg)™,
so #H{RFT", (n >0, k € Z) | I(R*T™) = 2n + 2m} = 2.

The case of (II) is similar to (I).

(IIT)  T"w; = (wywp)"w;  (n>0):  From Rw; = wf, and
R (wywp)"wy = (wiwg)"w} we see that

#H{R*T™wy, (n>0, k€ Z) | I(R"T"w,) =2n+1} =n+2, and
tH{RFT™wy, k € Z | I(RFT™w;) = 2n + 14 2m} = §{R" ™ T™w,, R~™T™w,} = 2.

(IV)  T7"w; = (wowy)" 'wg (n>1): From R 'wow;)=wow; and
R==D (wowy )" twy = (wow})" twy, we see that

HRAT™wy, (n>1, k€ Z) | I(R*T™w,) =2n—1} =n, and



HRET™wy, k€ Z | I(RFT"wy) = 2n — 1 +2m} = ¢{R~"H="T "y, R™T"w, } = 2.
From the above argument, we obtain the following.

APY L 1(w) ! AP i(w) t
(n>1,m>1) (n>1,m>1)

I 0 1 I 0 1
2n 2n+1 2n n+1
2m,2(n+m) |2 2m,2(n+m) |2

IT 2n 2n+1 IT 2n n+1
2(n+m) 2 2(n+m) 2

I11 2n -1 2n I11 2n—1 n+1
2(n+m)—1 |2 2(n+m)—1 |2

v 2n—1 2n v 2n—1 n
2n+m)—1 |2 2(n+m)—1 |2

Further from this we obtain the following.
Proposition 2.3 ( [10] ) (i)  The length and its number of the elements of W(A{"") and
W (ALY are given by ;
W(AMY: HweW [l(w) =0} =1, t{lweW |l(w)=n, (n>1)}=4n,
WA HweW [l(w) =0t =1, tlweW [l(w)=n, (n>1)} = 3n.
(ii)  The Poincaré series of W(AL™YY and W(A!D*) are given by ;
1—t

Z () = (1—1)2’ Z () = (1—t)3

wew (A(MD) wew (A"

3 Poincaré series of the Weyl group of type Agl’l)

The elliptic Weyl group W of A" is described as follows ( [8], [9] ).
Generators :  w;, w; (i=0,1,2).
Relations :  w?=w?=1 (i=0,1,2),
for ¢ #£j
WiW;jw; = Wjww;, W;Wiw; = wiw;iw;,
Wiwjw; = wiwiw; = wwiw; = wiwwy,

and wowjwywiwws = 1.

We set T := wowowowy, Th := wowjwows, Ry :=wjwj, and Ry := wewj, then we
have the following.

Lemma 3.1 (i) W is generated by w, wq, Ty, To, Ry, Ry, and
T, Ty, Ry, Ry generate an abelian normal subgroup of W.



(i)  wy, we, Ty, To, Ry and Ry satisfy the following relations :

wiT; = T; ",
wiRi = R;lw,
wiTy =TTjw; (i # j)

(iii) W = {R'RPTFTL w, (n,m,k,l €Z) | w=id, wi, wy, wiws, wowi, Wiwows}.

We first consider minimal expressions of the elements T7"7T5" generated by T = wowswowy,
and Ty = wow,wows, then by noting the following minimal expressions;

—1 2 2 2
71Ty = wowywowy, TiT, = (wawowy)*, TiTy = (wowyws)?,

we have TPTyt = (0121)"(012)" = (012)%(0121)"~1(012)"!, and from this we obtain
TPyt = (012)%(0121)" " (1<i<mn, n>?2)

TrTy = (0102)°(012)* (i >0, n > 1)

where for brevity , we use 0,1,2,0%,1%,2" for wy,w;, ws, w, w, w3, respectively. Further
by considering minimal expressions of T{'T5"w (w = w1, Wy, Wiws, Wawy, wiwowy ), we classify
T (n,m € Z) as follows.

TrT3t (n>1,i>1) =

TPyt = (012)%(0121)" 7 (1<i<n, n>2) (1« 2)
Ty = (210)%(1210)"° (1<i<n, n>1) (1 2)
TrTy = (0102)°(012)%" (i >0, n>1) (1« 2)
Ty Ty 2 = (210)2*(2010)° (i >1, n>0) (1« 2)
Ty ' Ty = (1020)7(102)** (i >0, n>1) (1« 2)

TP Ty ™ = (201)2(0201)F (i >1, n>0) (1 2)

Ty = (0121)"  (n > 1)

7T, = (1210)"  (n > 0),
where (1 < 2) means that we consider the element obtained by exchanging T} and T5.

(3.1.1) TrTy (n,m € Z) =

Similar to the case of Agl’l), we use the following.

Lemma 3.2  Let w be a minimal expression by wg, w1 and wy. Then even if we attach * to
any components of w, the length of that does not decrease.

In each case we multiply R}R), from the left, and examine their minimal length.
For 1 <i<mn, TPy = (012)%(0121)"%, by noting the expressions ;



012012 = (R, R2) 012012

01*2012 = R, 012012 0121 = (R1Ry) 0121
012012 = (R, R2) 012012 01*21 = R, 0121
0120*12 = Ry 012012 012*1 = (R, Ry) 0121
01201*2 = (R Ry) 012012 0121* = R, 0121,
012012* = Ry 012012

we consider how many Ry, Ry and R; Ry can be contained in (012)%(0121)"* by attaching

* to arbitrary components. From the above, (012)? can contain 3 x RjRy and 3 x Ry, and
0121 can contain 2x Ry Ry, 1x Ry, 1X Ry, so by the relation , (012)*R; = R;(012)? (j = 1,2),
we see that (012)%(0121)"% can contain (n—i) x Ry, (n+2i) x Ry and (2n+1) x Ry Ry.
Lemma 3.3 For 1<i<n

R Ry (R Ry) "I T3

= RFRL(R, Ry)™(012)%(0121)""

= (wiowi1wia) + + + (Wai W2 1Wai 2) (WW WiaWYY ) +++ (W, oWy, 1 W 2Wh i 1)
(7=0,1,2) and w}, =w,, wi,

where w;j, and wi; = wj, wj

forany 0<k<n-—i, 0<I<n+4+2i, 0<m<2n+i.
We count the number
#H{RYRLTY T, (1<i<n, n>2, k1€Z) | (RFRYTY Ty = LT Ty ) = 4n + 2i }.

For the purpose we use the following figure ;

Ry
n—i+1
2n+i+1
n—+2i+1
then the number is equal to the number
of the vertices of the lattices, where
n—t1+1, n+2t+1, and 2n+1¢+ 1 are
n+2i+1 n+i+1 the number of vertices on each edge.
Ry
n—i+1

Then we use the following.



Lemma 3.4

a+1
c+1 b+1
In the left figure, the number
of the vertices of the lattices is
ab+bc+ca+a+b+c+1.
b+1 c+1

a+1

By multiplying Ri', R3', and (RiRy)*™ (R; = wyw}, Ry = wowj, RiRy = wiwg), we
obtain the elements whose length are 4n + 2i 4+ 2, and actually we have only to multiply to
the boundary in the figure, and iterating this procedure we get the following.

Lemma 3.5
HRPRYTTTy Y, (1<i<n, n>2 mleZ) | (RERYTMTYT) = 4n4-2i+2k, (k> 1)} = 8n+4i+6k.

Next we consider the elements T{LTQ””w7 for w = wy, Wy, wWiws, wowy, and wiwowy, then
we have the following: }

TrTy* = (012)%(0121)" "

TPyt = (012)%(0121)" 1012

TrTyt2 = (012)%(0121)" 1021

TrT12 = (012)%(0121)" 101

TrT21 = (012)%(0121)" 7102

TrTyti121 = (012)%(0121)" 0.

In the similar method to the case of TP'Ty*, in this case and for other cases we count how
many Ri', Ri' and (R, R,)*' can be contained in a minimal expression. By the figure of
the number of Ri',RF' and (R1Ry)*', we count the number of a minimal expression
of the elements of the Weyl group and that of increasing length by 2 | which is equal to
f(boundary) + 6. In the sequal, we examine the number of the vertices on each ede of the
figure in a minimal expression, first we have;




2710210 = Ry' 210210
21*0210 = (R, Ry)~" 210210
210*210 = R;' 210210
2102*10 = (RyRy)~" 210210
21021*0 = R;! 210210
210210* = (RyRy)~* 210210

1210 = Ry ' 1210
12°10 = (R Ry)~" 1210
121*0 = Ry * 1210
1210* = (R, Ry)~" 1210

2010 = Ry 2010
20*10 = R, 2010
201*0 = Ry' 2010

17020 = R;' 1020
1020 = Ry 1020
102*0 = Ry' 1020

0102 = (R Ry) 0102
0102 = R, 0102

010*2 = R;!
0102*

0102

= Ry, 0102

1702102 = Ry 102102

10%2102 = Ry 102102
102102 = Ry* 102102
1021*02 = R, 102102

2010* = (R1Ry)™! 2010 1020* = (R1Ry)~! 1020 102102 = Ry* 102102
102102* = R, 102102
From these and (3.1.1), we obtain the following 8 cases.
I) TTH™ = (012)2‘(0121) 1 (1<i<n, n>2) VT — —
TITS = (0121)" (n > 1
OOy (e g [Hmmy| ) T =0 m 2 Y
(012)22(0121)"2 n—i n+ 26 2n + 1 012071012 [ n =1 5
(012)%(0121)" =012 [ n —i — 1 | n+ 26 2n +1i (0121)7 1021 [ n ——T1Ton
(012)%(0121)» 1021 [ n — n+2i—1[2n+i 01201 [n—1n 5 1
(012)%(0121)"101 [n—i—1|[n+2i 2n+1—1 (01217102 T Ton 1
(012)%(0121)" 102 |n—i n+2—1|2n+i—1 0120710 Tn-Tln—1l2n-1
(012)%(0121)""10 |n—i—1|n+2i—1|2n+i—1
(II) T"T,"" =(210)*(1210)* ' (1 <i<n, n>1) (VIII) T;"T," = (1210)" (n > 0)
(210)%(1210)"~* n—i n+ 2i 2+ (1210)" n n 2n
(210)%(1210)"1  |n—i+1|n+2i 2n +1i (1210)"1  |[n+1|n 2n
(210)%(1210)"%2  |n—i n+2i+1[2n+i (1210)"2 | n n+1]2n
(210)%(1210)" 12 |n—i+1|n+2i 2n 414+ 1 (1210)"12 | n+1|n 2n +1
(210)%(1210)" %21 |[n—i n+2i+1|2n+i+1 (1210)"21 | n n+1|2n+1
(210)%(1210)" 121 [n—i+1|n+2i+1|2n+i+1 (1210)"121 [ n+1|n+1|2n+1

(ITT) THT3" = (0102)1(012)%* (i>0, n > 1)
(0102)7(012)%" i 3n+2i 3n+1
(0102)?(012)?"1 i+1][3n+2i 3n+i
(0102)?(012)?7~201201 |4 3n+2i—1|3n+i
(0102)%(012)?7=2012021 | i+ 1| 3n + 2i 3n+i—1
(0102)7(012)?7=20120 |4 3n+2i—1|3n+i—1
(0102)%(012)**=201202 |i+1|3n+2i—1|3n+i—1
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(IV) Ty “T—2“ 1= (210)?"(2010)' (i>1, n > 0)
(210)2"(2010)° i 3n + 2i 3n+i
(210)?"(2010)°~1210 |[i—1|3n+2i 3n+i
(210)2"(2010)°2 i 3n+2i+1|3n+i
(210)?7(2010)"~12102 |i—1|3n+2i 3n+i+1
(210)%7(2010)721 i 3n+2i+1|3n+i+1
(210)?7(2010)° 121021 | i —1 |3n+2i+1 |3n+i+1

(V) T;“—‘Tn = (1020)1(102)?* (i >0, n > 1)
(1020)*(102)%" 3n + 2i 3n 4 i
(1020)7(102)%"1 3n+2i+1|3n+i i
(1020)7(102)?"=210210 | 3n + 2i 3n+i—11q
(1020)%(102)?"12 3n+2i+1|3n+i i+1
(1020)%(102)?"=2102101 | 3n + 2i In+i—1[i+1
(1020)(102)?7721021012 | 3n +2i +1 [ 3n+i—1 |i+1
(VI) TPPT,™ = (201)22(0201)! (i>1, n>0)
(201)%7(0201)° 3n + 2i 3n+i i
(201)?*(0201)*"1202 |3n+2i—1|3n+i i
(201)?7(0201)°2 3n + 2i In+i+1|q
(201)?"(0201)°"120 [ 3n+2i—1|3n+i i—1
(201)?7(0201)*12012 | 3n + 2i 3n+i+1|i—1
(201)?7(0201)°°1201 [3n+2i—1|3n+i+1]i—1

From the above tables, we find the following.

Lemma 3.6 (i)
as ;

IR, IREY ¢
a b

a b+1
a b+1
a+1|b c

a+1|b c+1
a+1|b+1]|c+1

RlRQ)il

ol |0 |~

+1

(i)

and

By the suitable rearrangements of lows and columns, all tables are rewritten

a b c
I n—i—1 |n+20—1|2n+i—1
II n—i n+ 2 2n +14
111 3n+i—1114 3n+2i—1
1A% 3n+1 i—1 3n + 27
vV i n+i1—1|3n+2¢
VI i—1 3n+1i 3n+2i—1
VII |n-—1 n—1 2n — 1
VIII | n n 2n

From this Lemma we obtain the main result.

Theorem 3.7 The Poincaré series of the Weyl group of type Aél’l)

14t + 1767 + 19683 + 178" + 485 +1°

In all 8 cases, the minimal length of each element is equal to ﬁRlﬂ + ﬁR;ﬂ + #(R1Ry)*!

s given by

(14t +%)(1 + 3t + 13t2 + 383 + 1)

weWw

(1—-t)4(1+1)?

— 101 —

(1—-t)4(1+1)?



Cororally 3.8  f{w e W [l(w)=n (n>1)} = En(21 +3(—1)" + 14n?).
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