Poincaré series of the Weyl groups of the elliptic root systems $A_1^{(1,1)}, A_1^{(1,1)*}$ and $A_2^{(1,1)}$

Tadayoshi Takebayashi (Waseda University)

Adstract. We calculate the Poincaré series of the elliptic Weyl group $W(A_2^{(1,1)})$, which is the Weyl group of the elliptic root system $A_2^{(1,1)}$. The generators and relations of $W(A_2^{(1,1)})$ have been already given by the author and K. Saito.

1 Introduction

We calculate the Poincaré series W(t) of the elliptic Weyl groups W of types $A_1^{(1,1)}, A_1^{(1,1)^*}$ and $A_2^{(1,1)}$. In the cases of types $A_1^{(1,1)}$ and $A_1^{(1,1)^*}$, they have been already examined by Wakimoto ([10]). Elliptic Weyl groups are the Weyl groups associated to the elliptic root systems introduced by K. Saito ([6], [7]), which are defined by a semi-positive definite inner product with 2-dimensional radical. The generators and their relations of elliptic Weyl groups were described from the view point of a generalization of Coxeter groups by the author and K.Saito ([8], [9]). The Poincaré series W(t) is defined by

$$W(t) = \sum_{w \in W} t^{l(w)},$$

where t is an indeterminate and l(w) is the length of a minimal expression of an element $w \in W$. If W is one of the finite or affine Weyl groups, it is known that

$$\sum_{w \in W} t^{l(w)} = \begin{cases} \prod_{i=1}^{n} \frac{1 - t^{m_i + 1}}{1 - t} & (W : finite), \\ \frac{1}{(1 - t)^n} \prod_{i=1}^{n} \frac{1 - t^{m_i + 1}}{1 - t^{m_i}} & (W : affine), \end{cases}$$

where n is the rank and m_1, \dots, m_n are the exponents of W ([1], [2], [3], [4], [5]). In the cases of $A_1^{(1,1)}$ and $A_1^{(1,1)*}$, we give a different proof from [10], and in the similar way we calculate the case of $A_2^{(1,1)}$.

2 Poincaré series of the Weyl groups of types $A_1^{(1,1)}$ and $A_1^{(1,1)*}$

The generators and their relations of the elliptic Weyl group W of type $A_1^{(1,1)}$ are given as follows ([8], [9]):

Generators: $w_i, w_i^* \quad (i = 0, 1).$

Relations: $w_i^2 = w_i^{*2} = 1 \ (i = 0, 1), \quad w_0 w_0^* w_1 w_1^* = 1.$

The relation $w_0 w_0^* w_1 w_1^* = 1$ is rewritten as follows:

$$(2.1.1) w_0^* w_1 = w_0 w_1^* \ (\Leftrightarrow w_1^* w_0 = w_1 w_0^*).$$

(It is understood that * moves between w_0 and w_1 .) We set $T:=w_1w_0$, $R:=w_1^*w_1=w_0w_0^*$, then we easily see the following.

Lemma 2.1 T, R and w_1 are the generators of the Weyl group W of type $A_1^{(1,1)}$ and their relations are given by;

$$TR = RT$$
, $w_1T = T^{-1}w_1$, $w_1R = R^{-1}w_1$, $w_1^2 = 1$.

From this, we have $W = \{R^m T^n w_1, R^m T^n, m, n \in \mathbf{Z}\}.$

The elements T and w_1 are the generators of the affine Weyl group of type A_1 and all elements of the Weyl group are classified to the following:.

$$\{(I)\ T^n\ (n\geq 0),\ (II)\ T^{-n}\ (n\geq 1),\ (III)\ T^nw_1\ (n\geq 0),\ (IV)\ T^{-n}w_1\ (n\geq 1)\}.$$

We multiply the elements R^m ($m \in \mathbf{Z}$) to the above elements from the left, and examine their minimal length in each case by using the following.

Lemma 2.2 Let w be a minimal expression by w_0 and w_1 . Then even if we attach * to any components of w, the length of w does not decrease.

(I) $T^n=(w_1w_0)^n$ $(n\geq 0)$: From the expression $Rw_1w_0=w_1^*w_0$ and (2.1.1), we see that

$$R^kT^n = R^k(w_1w_0)^n = (w_{11}w_{10})(w_{21}w_{20})\cdots(w_{n1}w_{n0}), \text{ for } 0 \le k \le 2n,$$

where each $w_{i1} = w_1$, w_1^* and $w_{i0} = w_0$, w_0^* , for all i. So, we find that

$$\sharp \{R^k T^n, (n \ge 0, k \in \mathbf{Z}) \mid l(R^k T^n) = 2n\} = 2n + 1,$$

and for $m \ge 1$, $R^{2n+m}T^n = R^m(R^{2n}T^n) = (w_1^*w_1)^m(w_1^*w_0^*)^n$ and $R^{-m}T^n = (w_1w_1^*)^m(w_1w_0)^n$ and each length is 2n + 2m, so we get $\sharp\{R^kT^n, (n \ge 0, k \in \mathbf{Z}) \mid l(R^kT^n) = 2n + 2m\} = 2$.

In the case of (II), it is similar to (I).

(III)
$$T^n w_1 = (w_1 w_0)^n w_1 \quad (n \ge 0)$$
: From $R w_1 = w_1^*$ and (2.1.1),

$$R^k T^n w_1 = R^k (w_1 w_0)^n w_1 = (w_{11} w_{10}) \cdots (w_{n1} w_{n0}) w_{n+1,1}$$
 for $0 \le k \le 2n+1$

where each $w_{i1} = w_1$, w_1^* and $w_{i0} = w_0$, w_0^* , so

$$\sharp \{R^k T^n w_1, (n \geq 0, k \in \mathbf{Z}) \mid l(R^k T^n w_1) = 2n + 1\} = 2n + 2, \text{ and}$$

$$\sharp\{R^kT^nw_1,(n\geq 0,\ k\in\mathbf{Z})\mid l(R^kT^nw_1)=2n+1+2m\}=\sharp\{R^{2n+1+m}T^nw_1,\ R^{-m}T^nw_1\}=2.$$

(IV) $T^{-n}w_1 = (w_0w_1)^{n-1}w_0 \quad (n \ge 1)$: From $R^{-1}w_0 = w_0^*$ and (2.1.1), we see that

$$\sharp \{R^k T^{-n} w_1, \ (n \ge 1, \ k \in \mathbf{Z}) \mid l(R^k T^{-n} w_1) = 2n - 1\} = 2n,$$

and for
$$m \ge 1$$
, $R^{-(2n-1)-m}T^{-n}w_1 = R^{-m}(w_0^*w_1^*)^{n-1}w_0^* = (w_0^*w_0)^m(w_0^*w_1^*)^{n-1}w_0^*$, $R^mT^{-n}w_1 = (w_0w_0^*)^m(w_0w_1)^{n-1}w_0$, so $\sharp\{R^kT^{-n}w_1, (n \ge 1, k \in \mathbf{Z}) \mid l(R^kT^{-n}w_1) = 2n + 2m\} = 2$.

In the case of $A_1^{(1,1)*}$, the generators and their relations are given as follows :

Generators: w_0, w_1, w_1^* .

Relations:
$$w_0^2 = w_1^2 = w_1^{*2} = (w_0 w_1 w_1^*)^2 = 1.$$

This Weyl group is obtained from the Weyl group of type $A_1^{(1,1)}$ by removing one generator w_0^* , so we examine similarly to the case of $A_1^{(1,1)}$.

(I)
$$T^n = (w_1 w_0)^n$$
 $(n \ge 0)$: Form $Rw_1 = w_1^*$ and $R^n T^n = (w_1^* w_0)^n$,

$$\sharp \{R^k T^n, (n \ge 0, \ k \in \mathbf{Z}) \mid l(R^k T^n) = 2n\} = n + 1,$$

and for $m \ge 1$, $R^{n+m}T^n = R^m(w_1^*w_0)^n = (w_1^*w_1)^m(w_1^*w_0)^n$ and $R^{-m}T^n = (w_1w_1^*)^m(w_1w_0)^n$, so $\{R^kT^n, (n \ge 0, k \in \mathbf{Z}) \mid l(R^kT^n) = 2n + 2m\} = 2$.

The case of (II) is similar to (I).

(III) $T^n w_1 = (w_1 w_0)^n w_1 \quad (n \ge 0)$: From $Rw_1 = w_1^*$, and $R^{n+1} (w_1 w_0)^n w_1 = (w_1^* w_0)^n w_1^*$ we see that

$$\sharp \{R^k T^n w_1, (n \geq 0, k \in \mathbf{Z}) \mid l(R^k T^n w_1) = 2n + 1\} = n + 2, \text{ and}$$

$$\sharp\{R^kT^nw_1,\ k\in\mathbf{Z}\mid l(R^kT^nw_1)=2n+1+2m\}=\sharp\{R^{n+1+m}T^nw_1,\ R^{-m}T^nw_1\}=2.$$

(IV)
$$T^{-n}w_1 = (w_0w_1)^{n-1}w_0$$
 $(n \ge 1)$: From $R^{-1}(w_0w_1) = w_0w_1^*$ and $R^{-(n-1)}(w_0w_1)^{n-1}w_0 = (w_0w_1^*)^{n-1}w_0$, we see that

$$\sharp \{R^k T^{-n} w_1, (n \ge 1, k \in \mathbf{Z}) \mid l(R^k T^{-n} w_1) = 2n - 1\} = n, \text{ and}$$

 $\sharp\{R^kT^{-n}w_1,\ k\in\mathbf{Z}\mid l(R^kT^{-n}w_1)=2n-1+2m\}=\sharp\{R^{-n+1-m}T^{-n}w_1,\ R^mT^{-n}w_1\}=2.$ From the above argument, we obtain the following.

$A_1^{(1,1)}$	l(w)	#
	$(n \ge 1, m \ge 1)$	
I	0	1
	2n	2n + 1
	2m,2(n+m)	2
II	2n	2n + 1
	2(n+m)	2
III	2n-1	2n
	2(n+m)-1	2
IV	2n-1	2n
	2(n+m)-1	2

$A_1^{(1,1)*}$	l(w)	#
	$(n \ge 1, m \ge 1)$	
I	0	1
	2n	n+1
	2m,2(n+m)	2
II	2n	n+1
	2(n+m)	2
III	2n-1	n+1
	2(n+m)-1	2
IV	2n-1	n
	2(n+m)-1	2

Further from this we obtain the following.

The length and its number of the elements of $W(A_1^{(1,1)})$ and **Proposition 2.3** ([10]) (i) $W(A_1^{(1,1)*})$ are given by;

$$W(A_1^{(1,1)}): \quad \sharp \{w \in W \mid l(w) = 0\} = 1, \quad \sharp \{w \in W \mid l(w) = n, \ (n \geq 1)\} = 4n,$$

$$W(A_1^{(1,1)*}): \quad \sharp\{w \in W \mid l(w) = 0\} = 1, \quad \sharp\{w \in W \mid l(w) = n, \ (n \ge 1)\} = 3n.$$

The Poincaré series of $W(A_1^{(1,1)})$ and $W(A_1^{(1,1)*})$ are given by ; (ii)

$$\sum_{w \in W(A_1^{(1,1)})} t^{l(w)} = \frac{(1+t)^2}{(1-t)^2}, \qquad \sum_{w \in W(A_1^{(1,1)*})} t^{l(w)} = \frac{1-t^3}{(1-t)^3}.$$

Poincaré series of the Weyl group of type $A_2^{(1,1)}$ 3

The elliptic Weyl group W of $A_2^{(1,1)}$ is described as follows ([8], [9]).

Generators : w_i , w_i^* (i = 0, 1, 2). Relations : $w_i^2 = w_i^{*2} = 1$ (i = 0, 1, 2),

 $w_i w_j w_i = w_j w_i w_j, \quad w_i^* w_i^* w_i^* = w_i^* w_i^* w_i^*,$

 $w_i^* w_i w_i^* = w_i w_i^* w_i = w_i w_i^* w_i = w_i^* w_i w_i^*,$

and $w_0 w_0^* w_1 w_1^* w_2 w_2^* = 1$.

We set $T_1 := w_0 w_2 w_0 w_1$, $T_2 := w_0 w_1 w_0 w_2$, $R_1 := w_1 w_1^*$, and $R_2 := w_2 w_2^*$, then we have the following.

Lemma 3.1 (i) W is generated by w_1 , w_2 , T_1 , T_2 , R_1 , R_2 , and T_1, T_2, R_1, R_2 generate an abelian normal subgroup of W.

(ii) w_1 , w_2 , T_1 , T_2 , R_1 and R_2 satisfy the following relations:

$$\begin{cases} w_i T_i = T_i^{-1} w_i \\ w_i R_i = R_i^{-1} w_i \\ w_i T_j = T_i T_j w_i \quad (i \neq j) \\ w_i R_j = R_i R_j w_i \quad (i \neq j). \end{cases}$$

(iii)
$$W = \{R_1^n R_2^m T_1^k T_2^l \ w, \quad (n, m, k, l \in \mathbf{Z}) \mid w = \mathrm{id}, \ w_1, \ w_2, \ w_1 w_2, \ w_2 w_1, \ w_1 w_2 w_1\}.$$

We first consider minimal expressions of the elements $T_1^n T_2^m$ generated by $T_1 = w_0 w_2 w_0 w_1$, and $T_2 = w_0 w_1 w_0 w_2$, then by noting the following minimal expressions;

$$T_1T_2 = w_0w_1w_2w_1$$
, $T_1T_2^{-1} = (w_2w_0w_1)^2$, $T_1T_2^2 = (w_0w_1w_2)^2$,

we have $T_1^n T_2^{n+i} = (0121)^n (012)^i = (012)^2 (0121)^{n-1} (012)^{i-1}$, and from this we obtain $T_1^n T_2^{n+i}$ $(n \ge 1, i \ge 1) = \begin{cases} T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i} & (1 \le i < n, \ n \ge 2) \\ T_1^n T_2^{2n+i} = (0102)^i (012)^{2n} & (i \ge 0, \ n \ge 1) \end{cases}$ where for brevity , we use $0, 1, 2, 0^*, 1^*, 2^*$ for $w_0, w_1, w_2, w_0^*, w_1^*, w_2^*$, respectively. Further

where for brevity, we use $0, 1, 2, 0^*, 1^*, 2^*$ for $w_0, w_1, w_2, w_0^*, w_1^*, w_2^*$, respectively. Further by considering minimal expressions of $T_1^n T_2^m w$ ($w = w_1, w_2, w_1 w_2, w_2 w_1, w_1 w_2 w_1$), we classify $T_1^n T_2^m$ ($n, m \in \mathbf{Z}$) as follows.

$$T_1^n T_2^m \ (n, m \in \mathbf{Z}) \text{ as follows.}$$

$$T_1^n T_2^m \ (n, m \in \mathbf{Z}) \text{ as follows.}$$

$$T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i} \quad (1 \le i < n, \ n \ge 2) \quad (1 \leftrightarrow 2)$$

$$T_1^{n} T_2^{n-i} = (210)^{2i} (1210)^{n-i} \quad (1 \le i \le n, \ n \ge 1) \quad (1 \leftrightarrow 2)$$

$$T_1^n T_2^{2n+i} = (0102)^i (012)^{2n} \quad (i \ge 0, \ n \ge 1) \quad (1 \leftrightarrow 2)$$

$$T_1^{n} T_2^{2n+i} = (210)^{2n} (2010)^i \quad (i \ge 1, \ n \ge 0) \quad (1 \leftrightarrow 2)$$

$$T_1^{n-i} T_2^{n} = (1020)^i (102)^{2n} \quad (i \ge 0, \ n \ge 1) \quad (1 \leftrightarrow 2)$$

$$T_1^{n+i} T_2^{-n} = (201)^{2n} (0201)^i \quad (i \ge 1, \ n \ge 0) \quad (1 \leftrightarrow 2)$$

$$T_1^n T_2^n = (0121)^n \quad (n \ge 1)$$

$$T_1^{n-n} T_2^{-n} = (1210)^n \quad (n \ge 0),$$

where $(1 \leftrightarrow 2)$ means that we consider the element obtained by exchanging T_1 and T_2 .

Similar to the case of $A_1^{(1,1)}$, we use the following.

Lemma 3.2 Let w be a minimal expression by w_0, w_1 and w_2 . Then even if we attach * to any components of w, the length of that does not decrease.

In each case we multiply $R_1^k R_2^l$ from the left, and examine their minimal length. For $1 \le i < n$, $T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i}$, by noting the expressions;

$$\begin{cases} 0*12012 = (R_1R_2) \ 012012 \\ 01*2012 = R_2 \ 012012 \\ 012*012 = (R_1R_2) \ 012012 \\ 0120*12 = R_2 \ 012012 \\ 01201*2 = (R_1R_2) \ 012012 \\ 01201*2 = (R_1R_2) \ 012012 \\ 012012* = R_2 \ 012012 \end{cases} \quad \begin{cases} 0*121 = (R_1R_2) \ 0121 \\ 01^*21 = R_2 \ 0121 \\ 012^*1 = (R_1R_2) \ 0121 \\ 0121* = R_1 \ 0121, \end{cases}$$

we consider how many R_1, R_2 and R_1R_2 can be contained in $(012)^{2i}(0121)^{n-i}$ by attaching * to arbitrary components. From the above, $(012)^2$ can contain $3 \times R_1R_2$ and $3 \times R_2$, and 0121 can contain $2 \times R_1R_2$, $1 \times R_1$, $1 \times R_2$, so by the relation, $(012)^2R_j = R_j(012)^2$ (j = 1, 2), we see that $(012)^{2i}(0121)^{n-i}$ can contain $(n-i) \times R_1$, $(n+2i) \times R_2$ and $(2n+i) \times R_1R_2$.

Lemma 3.3 For
$$1 \le i < n$$

$$\begin{split} R_1^k R_2^l (R_1 R_2)^m T_1^n T_2^{n+i} \\ &= R_1^k R_2^l (R_1 R_2)^m (012)^{2i} (0121)^{n-i} \\ &= (w_{10} w_{11} w_{12}) \cdots (w_{2i,0} w_{2i,1} w_{2i,2}) (w_{10}' w_{11}' w_{12}' w_{11}'') \cdots (w_{n-i,0}' w_{n-i,1}' w_{n-i,2}' w_{n-i,1}'') \\ where & w_{ij}, \ and \ w_{ij}' = w_j, \ w_j^* \quad (j=0,1,2) \ \ and \ \ w_{i1}'' = w_1, \ w_1^*, \\ for \ any \quad 0 \leq k \leq n-i, \quad 0 \leq l \leq n+2i, \quad 0 \leq m \leq 2n+i. \end{split}$$

We count the number

$$\sharp \{R_1^k R_2^l T_1^n T_2^{n+i}, \ (1 \leq i < n, \ n \geq 2, \ k, l \in \mathbf{Z}) \mid l(R_1^k R_2^l T_1^n T_2^{n+i}) = l(T_1^n T_2^{n+i}) = 4n + 2i \ \}.$$

For the purpose we use the following figure;

Then we use the following.

then the number is equal to the number of the vertices of the lattices, where n-i+1, n+2i+1, and 2n+i+1 are the number of vertices on each edge.

Lemma 3.4

In the left figure, the number of the vertices of the lattices is ab + bc + ca + a + b + c + 1.

By multiplying $R_1^{\pm 1}$, $R_2^{\pm 1}$, and $(R_1R_2)^{\pm 1}$ $(R_1 = w_1w_1^*, R_2 = w_2w_2^*, R_1R_2 = w_0^*w_0)$, we obtain the elements whose length are 4n + 2i + 2, and actually we have only to multiply to the boundary in the figure, and iterating this procedure we get the following.

Lemma 3.5

$$\sharp \{R_1^m R_2^l T_1^n T_2^{n+i}, \; (1 \leq i < n, \; n \geq 2, \; m, l \in \mathbf{Z}) \; \mid \; l(R_1^k R_2^l T_1^n T_2^{n+i}) = 4n + 2i + 2k, \; (k \geq 1)\} = 8n + 4i + 6k.$$

Next we consider the elements $T_1^n T_2^{n+i} w$, for $w = w_1, w_2, w_1 w_2, w_2 w_1$, and $w_1 w_2 w_1$, then we have the following:

$$\begin{cases} T_1^n T_2^{n+i} = (012)^{2i} (0121)^{n-i} \\ T_1^n T_2^{n+i} 1 = (012)^{2i} (0121)^{n-i-1} 012 \\ T_1^n T_2^{n+i} 2 = (012)^{2i} (0121)^{n-i-1} 021 \\ T_1^n T_2^{n+i} 12 = (012)^{2i} (0121)^{n-i-1} 01 \\ T_1^n T_2^{n+i} 21 = (012)^{2i} (0121)^{n-i-1} 02 \\ T_1^n T_2^{n+i} 121 = (012)^{2i} (0121)^{n-i-1} 0. \end{cases}$$

In the similar method to the case of $T_1^nT_2^{n+i}$, in this case and for other cases we count how many $R_1^{\pm 1}$, $R_2^{\pm 1}$ and $(R_1R_2)^{\pm 1}$ can be contained in a minimal expression. By the figure of the number of $R_1^{\pm 1}$, $R_2^{\pm 1}$ and $(R_1R_2)^{\pm 1}$, we count the number of a minimal expression of the elements of the Weyl group and that of increasing length by 2, which is equal to $\sharp(\text{boundary}) + 6$. In the sequal, we examine the number of the vertices on each ede of the figure in a minimal expression, first we have:

$$\begin{cases} 2^*10210 = R_2^{-1} \ 210210 \\ 21^*0210 = (R_1R_2)^{-1} \ 210210 \\ 210^*210 = R_2^{-1} \ 210210 \\ 2102^*10 = (R_1R_2)^{-1} \ 210210 \\ 2102^*10 = (R_1R_2)^{-1} \ 210210 \\ 21021^*0 = R_2^{-1} \ 210210 \\ 210210^* = (R_1R_2)^{-1} \ 210210 \\ 210210^* = (R_1R_2)^{-1} \ 210210 \end{cases} \begin{cases} 1^*210 = R_1^{-1} \ 1210 \\ 12^*10 = (R_1R_2)^{-1} \ 1210 \\ 1210^* = (R_1R_2)^{-1} \ 1210 \end{cases} \begin{cases} 0^*102 = (R_1R_2) \ 0102 = R_2 \ 0102 \\ 010^*2 = R_2 \ 0102 \\ 0102^* = R_2 \ 0102 \end{cases}$$
$$2^*010 = R_2^{-1} \ 2010 \\ 2^*010 = R_1 \ 2010 \end{cases} \begin{cases} 1^*020 = R_1^{-1} \ 1020 \\ 10^*20 = R_2 \ 1020 \end{cases} \begin{cases} 1^*02102 = R_2 \ 102102 \\ 10^*2102 = R_1^{-1} \ 102102 \\ 102^*102 = R_1^{-1} \ 102102 \end{cases}$$

 $\begin{cases} 2^*010 = R_2^{-1} \ 2010 \\ 20^*10 = R_1 \ 2010 \\ 201^*0 = R_2^{-1} \ 2010 \end{cases} \qquad \begin{cases} 1^*020 = R_1^{-1} \ 1020 \\ 10^*20 = R_2 \ 1020 \\ 102^*0 = R_1^{-1} \ 1020 \\ 1020^* = (R_1R_2)^{-1} \ 1020 \end{cases} \qquad \begin{cases} 10^*2102 = R_2 \ 102102 \\ 102^*102 = R_1^{-1} \ 102102 \\ 1020^* = R_1^{-1} \ 102102 \\ 10210^* = R_2 \ 102102 \end{cases}$

From these and (3.1.1), we obtain the following 8 cases.

(I) $T_1^n T_2^{n+i} = (012)^2$	$(0121)^{n-i}$	$(1 \leq i < n$	$(\mathbf{n}, \mathbf{n} \geq 2)$
$(012)^{2i}(0121)^{n-i}w$	$\sharp R_1^{\pm 1}$	$\sharp R_2^{\pm 1}$	$\sharp (R_1 R_2)^{\pm 1}$
$(012)^{2i}(0121)^{n-i}$	n-i	n+2i	2n+i
$(012)^{2i}(0121)^{n-i-1}012$	n-i-1	n+2i	2n+i
$(012)^{2i}(0121)^{n-i-1}021$	n-i	n+2i-1	2n+i
$(012)^{2i}(0121)^{n-i-1}01$	n-i-1	n+2i	2n + i - 1
$(012)^{2i}(0121)^{n-i-1}02$	n-i	n+2i-1	2n + i - 1
$(012)^{2i}(0121)^{n-i-1}0$	n-i-1	n+2i-1	2n + i - 1

(0) (0)	1.0	_	- -	
$(II) T_1^{-n}T_2^{-n-i} = (210)^{2i}(1210)^{n-i} \ (1 \leq i \leq n, \ n \geq 1)$				
$(210)^{2i}(1210)^{n-i}$	n-i	n+2i	2n+i	
$(210)^{2i}(1210)^{n-i}1$	n-i+1	n+2i	2n+i	
$(210)^{2i}(1210)^{n-i}2$	n-i	n + 2i + 1	2n+i	
$(210)^{2i}(1210)^{n-i}12$	n-i+1	n+2i	2n+i+1	
$(210)^{2i}(1210)^{n-i}21$	n-i	n+2i+1	2n+i+1	
$(210)^{2i}(1210)^{n-i}121$	n-i+1	n+2i+1	2n+i+1	

$ (\mathbf{III}) \mathbf{T_1^nT_2^{2n+i}} = (0102)^{\mathbf{i}} (012)^{\mathbf{2n}} \ (\mathbf{i} \geq 0, \ \mathbf{n} \geq 1) $			
$(0102)^i(012)^{2n}$	i	3n+2i	3n+i
$(0102)^i(012)^{2n}1$	i+1	3n+2i	3n+i
$(0102)^i(012)^{2n-2}01201$	i	3n + 2i - 1	3n+i
$(0102)^i(012)^{2n-2}012021$	i+1	3n+2i	3n + i - 1
(0-0-) (0)	i	3n + 2i - 1	3n+i-1
$(0102)^i(012)^{2n-2}01202$	i+1	3n+2i-1	3n + i - 1

${\bf (VII)} {\bf T_1^nT_2^n} = ({\bf 0121})^n \ (n \geq 1)$			
$(0121)^n$	n	n	2n
$(0121)^{n-1}012$	n-1	n	2n
$(0121)^{n-1}021$	n	n-1	2n
$(0121)^{n-1}01$	n-1	n	2n-1
$(0121)^{n-1}02$	n	n-1	2n-1
$(0121)^{n-1}0$	n-1	n-1	2n - 1

${f (VIII)} {f T_1^{-n} T_2^{-n}} = (1210)^{f n} \ ({f n} \geq {f 0})$				
$(1210)^n$	n	n	2n	
$(1210)^n 1$	n+1	n	2n	
$(1210)^n 2$	n	n+1	2n	
$(1210)^n 12$	n+1	n	2n+1	
$(1210)^n 21$	n	n+1	2n+1	
$(1210)^n 121$	n+1	n+1	2n+1	

${f (IV)} {f T_1^{-n} T_2^{-2n-i} = (210)^{2n} (2010)^i} (i \geq 1, n \geq 0)$			
$(210)^{2n}(2010)^i$	i	3n+2i	3n+i
$(210)^{2n}(2010)^{i-1}210$	i-1	3n+2i	3n+i
$(210)^{2n}(2010)^i 2$	i	3n + 2i + 1	3n+i
$(210)^{2n}(2010)^{i-1}2102$	i-1	3n+2i	3n + i + 1
$(210)^{2n}(2010)^i 21$	i	3n + 2i + 1	3n + i + 1
$(210)^{2n}(2010)^{i-1}21021$	i-1	3n + 2i + 1	3n+i+1

$(V) T_1^{-n-i}T_2^n = (1020)^i(102)^{2n} \ (i \geq 0, \ n \geq 1)$				
$(1020)^i(102)^{2n}$	3n+2i	3n+i	i	
$(1020)^i(102)^{2n}1$	3n + 2i + 1	3n+i	i	
$(1020)^i(102)^{2n-2}10210$	3n+2i	3n + i - 1	i	
$(1020)^i(102)^{2n}12$	3n + 2i + 1	3n+i	i+1	
$(1020)^i(102)^{2n-2}102101$	3n+2i	3n + i - 1	i+1	
$(1020)^i(102)^{2n-2}1021012$	3n + 2i + 1	3n + i - 1	i+1	

${ m (VI)} { m T_1^{n+i}T_2^{-n}} = (201)^{2n}(0201)^{i} (i \geq 1, n \geq 0)$				
$(201)^{2n}(0201)^i$	3n+2i	3n+i	i	
$(201)^{2n}(0201)^{i-1}202$	3n + 2i - 1	3n+i	i	
$(201)^{2n}(0201)^i 2$	3n+2i	3n+i+1	i	
$(201)^{2n}(0201)^{i-1}20$	3n + 2i - 1	3n+i	i-1	
$(201)^{2n}(0201)^{i-1}2012$	3n+2i	3n + i + 1	i-1	
$(201)^{2n}(0201)^{i-1}201$	3n+2i-1	3n+i+1	i-1	

From the above tables, we find the following.

Lemma 3.6 (i) By the suitable rearrangements of lows and columns, all tables are rewritten as;

$\sharp R_2^{\pm 1},$	$\sharp (R_1 R_2)^{\pm 1}$
b	c
b+1	c
b+1	c+1
b	c
b	c+1
b+1	c+1
	b $b+1$ $b+1$ b

ana

	a	b	c
I	n-i-1	n+2i-1	2n + i - 1
II	n-i	n+2i	2n+i
III	3n + i - 1	i	3n + 2i - 1
IV	3n+i	i-1	3n+2i
V	i	3n + i - 1	3n+2i
VI	i-1	3n+i	3n+2i-1
VII	n-1	n-1	2n-1
VIII	n	n	2n

(ii) In all 8 cases, the minimal length of each element is equal to $\sharp R_1^{\pm 1} + \sharp R_2^{\pm 1} + \sharp (R_1 R_2)^{\pm 1}$.

From this Lemma we obtain the main result.

Theorem 3.7 The Poincaré series of the Weyl group of type $A_2^{(1,1)}$ is given by

$$\sum_{w \in W} t^{l(w)} = \frac{1 + 4t + 17t^2 + 19t^3 + 17t^4 + 4t^5 + t^6}{(1 - t)^4 (1 + t)^2} = \frac{(1 + t + t^2)(1 + 3t + 13t^2 + 3t^3 + t^4)}{(1 - t)^4 (1 + t)^2}.$$

Cororally 3.8 $\sharp\{w \in W \mid l(w) = n \ (n \ge 1)\} = \frac{3}{16}n(21 + 3(-1)^n + 14n^2).$

References

- [1] N.Bourbaki Groupes et algebrès de Lie, Ch. 4-6, Hermann, Paris, 1968; Mason, Paris, 1981
- [2] J.E. Humphreys Reflection groups and Coxeter groups, Cambridge Studies in Advanced Math. 29, Cambridge University Press, 1990
- [3] N. Iwahori and H. Matsumoto On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S. 25 (1965), 5-48
- [4] L. Solomon The orders of the finite Chevalley gropus, Journal of Algebra, 3 (1966), 376-393
- [5] I.G. Macdonald The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161-174
- [6] K. Saito Extended affine root systems I, Publ. RIMS, Kyoto Univ., 21 (1985), 75 179
- [7] K. Saito Extended affine root systems II, Publ. RIMS, Kyoto Univ., 26 (1990), 15 78
- [8] K. Saito and T. Takebayashi Extended affine root systems III, Publ.RIMS, Kyoto Univ. 33 (1997), 301-329
- [9] T. Takebayashi Relations of the Weyl groups of extended affine root systems $A_l^{(1,1)}, B_l^{(1,1)}, C_l^{(1,1)}, D_l^{(1,1)}$, Proc. Japan Acad. 71, Ser. A No. 6 (1995), 123-124
- [10] M. Wakimoto Poincaré series of the Weyl group of elliptic Lie algebras $A_1^{(1,1)}$ and $A_1^{(1,1)*}$, preprint, 1997
- [11] T. Takebayashi Poincaé series of the Weyl groups of the elliptic root systems $A_1^{(1,1)}, A_1^{(1,1)*}$ and $A_2^{(1,1)}$, Journal of Algebraic Combinatorics, 17 (2003), 211-223