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Connection relations for a generalization of spherical
functions

Jiro Sekiguchit

1 Introduction

The purpose of this talk is to explain the study on the connection relations for solutions
to a system of differential equations related with the symmetric space. The system in
question has a solution which is a zonal spherical function or its generalization studied
by Heckman and Opdam.

2 Connection relations for Gaussian hypergenomet-
ric functions

LetF(a,b,c;x):iW

radius is 1. We first recall the connection formula for hypergeometric functions:

(e,n) x" be the Gaussian hypergeometric series. Its convergent
nl(c,n

11(6_a)ﬂcgb>F(a,b,a—i-b—c—l—1;1—$) (1)
e i~ Flea.c—bea- bt L1 -a)
F(a,b,c;x)
+%|xrbﬂb,b— ¢+ 1,b—a+1;1/x)

Since the convergent area of the power series F(a,b,c;x) is |x| < 1 and that of the
two power series F(a,b,a +b—c+ 1;1 — ), F(c —a,c —b,c—a —b+ 1;1 — x) is
|1 — 2| < 1, the formula (1) holds in the usual sense in the interval 0 < z < 1. On the
contrary, since the convergent area of the two power series F'(a,a —c+1,a — b+ 1;1/x),
F(b,b—c+1,b—a+1;1/z)is 1 < |z|, the formula (2) does not in the usual sense. But it has
a meaning if we consider F'(a,b,c; x), F(a,a—c+1,a—b+1;1/z), F(b,b—c+1,b—a+1;1/x)
as real analytic functions on the real half line x < 0 by analytic continuation.
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3 Zonal spherical functions on Riemannian symmet-
ric spaces

(The contents of this section are due to Harish-Chandra [1].)

Let G be a connected linear semisimple Lie group of the non-compact type and let G/ K
be the corresponding Riemannian symmetric space, where K is the maximal compact
subgroup of G. A zonal spherical function p(zK) is a real analytic function on G/K with
the conditions: (a) Dy = x(D)y (VD € D(G/K)), (b) p(kxK) = ¢(zK) (Vk € K), (c)
p(eK) = 1. Here D(G/K) is the algebra of invariant differential operators on G/K and
X is a character of D(G/K). Due the the Cartan decomposition G = KAK, the zonal
spherical function ¢(xK) is determined by its restriction to A, a maximal split abelian
subspace of G. If a is the Lie algebra of A, zonal spherical functions are parametrized
by a., the complexifiaction of a. Indeed if p(aK) is a zonal spherical function, there is

A € a. such that p(aK) = / eP=PUHAR) d1(= o\ (aK)). Tf W is the Weyl group of

(G, A), pur = pr(Yw e W). Lé{t ¥ be the root system of (G, A) and let ¥ = {ay,..., .}
be the system of simple roots. Let a, be the positive Weyl chamber. Namely a, =
{Y€a; o;(Y)>0(j =1,2,...,7)}. Put yj(a) = e"2408d (j =1 ... 7). Then clearly
0 <vyjla) <1lif a € A;, where Ay = expay. It is possible to define a linear function
si(A) (j = 1,...,7) on a. by the condition a** = y;(a)*W -y, (a)* N (= y(a)*WV).
It is Harish-Chandra who defined a power series fy(y) convergent in the demain {y =
(y1,--.,yr) €ER"; |y;| <1(j=1,...,7)} of the y-space such that f,(0) =1 and that

pra(ak) =Y c(wh)y(a)™ furly(a) (a € Ay), (3)

weW

where ¢(\) is the c-function. The formula (3) is regarded as an analogue of (1). Actually,
not only fy(y) but also ¢, (aK) are regarded as real analytic functions on the y-space and
solutions of a system of differential equations Du = x(D)u (VD € D(G/K)). Moreover
the former are local solutions near the origin, whereas @, (aK) is a real analytic solution
near the point y = (1,1,...,1).

4 Left K-invariant eigenfunctions on symmetric spaces
of the form G/K.

(The contents of this section are due to Oshima-Sekiguchi [2].)

We first explain the definition of the symmetric space G/K. briefly. Let € be a
signature of roots in X, that is, ¢ is a map of ¥ to {£1} with the conditions (s.a)
e(a) = £1 Va € %), (sb) e(a+ B) = e(a)e(P) if o, B, + 3 € 3, (s.¢) e(—a) =
g(a) (Va € ). Let 6 be the Cartan involution of G with respect to K. Take Y. € a such
that a;(Yz) = 5(1 —e(a)) (j =1,...,7r) and put a. = exp(my/—1Yz). Then Ad(a?) = Idg,
and Ad(a.) leaves g invariant in g., the complexification of g. Moreover Ad(a.) commutes
with 6 and so 6. = Ad(a.)o0 is also an involution of g. Let g = €.+p. be the corresponding
direct sum decomposition of g. Now assume that 6. is lifted to an involution of G (e.g. if G



is the adjoint group of g, this is true). Let K. be the closed Lie subgroup of G' generated by
expt. and M (= Zk(a)). The coset space G/ K. is a symmetric space. The rank of G/ K. is
equal to r which is also the rank of G/K and in particular, the algebra of invariant differ-
ential operators which is denoted by D(G/K.) is isomorphic to D(G/K). The functions
which play a role of zonal spherical functions on G/K, are left K-invariant joint eigen-
functions of all invariant differential operators on G/K.. For \ € a., let S(G/K_; x»)¥
be the space of functions p(zK.) on G/K. such that (a) Du = y\u (VD € D(G/K.))
and (b) ¢(krK.) = ¢(zK.) (Vk € K). Then any ¢ € S(G/K.;x\)¥ is real analytic
and, if X is generic, dim S(G/K.;x\)% = [W : W.], where W. = (Ng(a) N K.)/M.
The number [W : W,] coincides with that of open K.-orbits of the flag manifold G/P
(P = MAN is the minimal parabolic of G). Indeed, for each open K.-orbit O of G/P,
there is a distribution he A (g) on G such that (a) Supp(he.) = O and (b) hex(gman) =
hox(kg)a*=* (Vk € K.,.Ym € M,Va € A,¥n € N). If O; (j = 1,2,...,[W : W.]) are all

the open K.-orbits of G//P, then @) (zK.) = /Khoﬁ)\(glk)dk (j=1,2,...,[W: W,

constitute a basis of S(G/K.;xx)™ (if A is generic). We studied in [2] the formulas for
AA(xK) (j=1,2,...,[W : W,]) analogues to (3).

5 Generalized hypergeometric functions associated
with root systems (due to Heckman and Opdam)

Suppose we have given complex numbers k, for a € ¥ such that k,, = k, for all @ € X
and w € W. If m denotes the number of W-orbits of roots in 3, then k = (k,)aex lies
in a parameter space K ~ C™. Fix a basis Yi,...,Y, for a and consider the differential
operator

= 1 — a2
ac

- 1+a 2
L(= L(k)) = D> 0(Y;)* + Y ka7——-0(Ya) (4)
j=1
Here Y, € a is defined by 5(Y,) = (3, a) for all a, 8 € a*. Introduce also

p:p(/{):% > ke

aext

Remark. If G/K is a Riemannian symmetric space of the non-compact type and A
is as before, the radial part of the Laplace-Beltrami operator on G /K with respect to the
action of K on G/K is a W-invariant differential operator on A of the form (4). In this
case, the parameter k, is the multiplicity of root o, namely, ko, = m,,.

Let D(k) be the algebra of W-invariant differential operators D(k) on A’ (the totality
of regular elements of A) such that D(k) commute with L and that the principal symbols of
D(k) are contained in S(a.)". Then D(k) is commutative. Noting this, for any character
Xx : D(k) — C depending on A € a., we define the system of differential equations

MP  Du=x\(D)u (VD € D(k))



on Al. Then by the same way to the case of Riemannian symmetric spaces, it is possible

to construct a power series solution ys(’\)f,\,(k)(y) to M(Ak) convergent |y;| < 1(j=1,...,r)
and fy ) (0) = 1. Now define

B(Ea ) B + 5. %) 1
calA k) = (pglc:)’cg) Ii 2((;}3)(1) 4k 2k fora € X7, 2% Z X
B(* e 5)BGay + 5 %
and put c(\, k) = H Co(A, k). Then any solution to /\/lg\k) in U N A, which can be
aext, Lagn

extended to a = e coincides with

Fyan() = Y clwh, B)y* ™ fux o (y) (5)

weW

up to a constant factor, where U is a small neighbourhood of a = e in A.. In particular,
Fya(1,...,1) = 1. For this reason, (5) is regarded as a generalization of (3).

In the sequel, we put f,\,(k)(y) = y*N fy () (y) for simplicity.

6 Formulation of the problem

The motivation of this talk is what happens if we reformulate the results of [2] from the
view point of Heckman-Opdam theory. For this purpose, we prepare some notation. For
a signature of roots ¢, we define a domain

R?;:{y: (yl,...,yrﬂf(aj)yj >0(j:17...,7’)}

in R". Then R is identified with A and the function fy )(y) introduced in the previous

section is regarded as a real analytic function on R.. Moreover, the system Mf\k) is defined
on a complement of the union of hypersurfaces (related roots) in R..
For A € a., put

S(RE, M) = {p € A(RL); gis asolution of M},
where A(D) is the space of real analytic functions on a domain D of R".

Problem 1.
(i) Determine dim S(RZ, M&k))
(ii) Construct the basis of S(RL, Mf\k))

It is clear from the definition that dim S(RZ, /\/l()\k)) <|W|.
We give here some examples which are known. 3
(I) As a trivial example, we consider the case ko, = 0 (VYo € 3). Then fy (o)(y) = ly|s M)

is a real analytic solution of M(f) on R!. In particular, if A € a. is generic, fMO) (y) (w €
W) form a basis of S(RL, M&O)).



(IT) Zonal spherical functions on Riemannian symmetric spaces and the generalized
hypergeometric functions due to Heckman and Opdam

If ¢ is trivial, then dim S(Rg,/\/lf\k)) = 1 and F) ) is a generator of the space
S (R’;,Mf\k)). In particular, if k, coincides with the multiplicity of « for any a € ¥,
then S(RL, ./\/l(f)) is spanned by the zonal spherical function ¢,.

(III) Left K-invariant eigenfunctions on G /K.

We treat the case where k, coincides with the multiplicity of a for any a € ». Then
as we explained before, if A\ € a. is generic, then dim S(RQ,ME\’C)) = [W : W] and
S(R;,Mg\k)) is spanned by ¢} (j = 1,2,...,[W : W.]).

7 Some results due to E. Opdam

The speaker went to Amsterdam in this March and August to discuss with E. Opdam
on this problem. In particular, at the occasion of my first visit to Amsterdam, Eric told
that Heckman [4] discussed problems deeply related with that introduced in the previous
section.

The idea of E. Opdam to attack the problem is to consider complex analytic solutions
to M(Ak) in a neighbourhood of the point a. in the space A. or its quotient space A./W.
and translate the problem to those in terms of Heck algebra which is naturally arised via
the monodromy representation of multivalued solutions to /\/lg\k) in the complex domain.
Then he showed that under the condtion (A) 2k, ¢ Z for any a € ¥, the number
[W : W,] is the dimension of local holomorphic solutions to ME\k) near the point a.. As a
consequence, Problem 1, (i) holds under the condition (A). His proof needs the so called
Tits” deformation lemma for Hecke algebra and quite indirect.

To state the result for Problem 1, (ii), we note that for any nontrivial signature of
roots ¢, there is w € W and a unique jo (1 < jo < r) such that e(wa;) = 1 (5 # Jo).
For this reason, we may assume from the first that the signature ¢ is so taken that, there
is a unique jo (1 < jo < r) such that e(wa;) = 1 (j # jo). As a direct consequence,
the group W, contains all the reflections with respect to simple roots o (j # jo). This
implies in particular that rank(W.) = rank(WW) or rank(WW) — 1. Now we assume that
rank(W,) = rank(W) — 1. Then, E. Opdam proved that the function

Z c(w, k)fw,\,(k)(y)

weWe

is a unique holomorphic function up to a constant factor in the linear space spanned by
the restrictions to a neighpurhood of a. of multivalued functions fux(y) (w € W), This
contains an answer to Problem 1, (ii). On the other hand, in the case where rank(W;) =
rank (W), it seems not so easy to solve Problem 1, (ii).

8 Connection relations

This section is the main part of this note.



8.1 Type A; case
We first treat the simplest case, that is type A; case. Then

El+y
L=9—-—=9
vo21—y?

up to a non-zero constant factor, where 9, = y—. The differential equation M turns
Y dy A

out to be
2 — k2

16
for a constant s € C. From the definition, the equation (6) is defined if y # 1.
From now on, we assume that the parameters k and s are generic and consider real
analytic solutions to (6) on the real positive half line and the real negative half line,
separately.

Lu = u (6)

Noting that y P/ F(£E & 24 1. ) is a solution to (6), we put us(y) = F(£E, & 54
L;y) and ox(s) = % for simplicity.

(B.1) Real analytic functions on the half line y > 0 which are solutions on the two
intervals 0 <y <1land 1 <y.
It is known that

s+k k
2

s+2—-k 2—k
2 T2

yEPAR(C——= 2 k1 —y), YR - )RR 2—k;1—vy)

are solutions to (6) near the point y = 1; the former is real analytic whereas the latter is
not. Moreover,

s+k k 1

F(Ta 5 kil—y) = >{ak(—s)us,k(y) +ou(8)yPu_s i (y)} (7)

o k(k
This is a special case of Formula (1). As a consequence, we have the following: Put

For(y) = %(k){ak(_s)y(wk)m

(—s+k)/4

usk(y) +y or(s)u—sk(y)}-

(This is a prototype of (5).) Then Fyj(y) = y*tH/AF(22E £ k1 —y) and if u(y) is a real
analytic function on y > 0 and u(y) is a solution to (6) outside y = 1, u(y) coincides with
F 1 (y) up to a constant factor.

(B.2) Real analytic functions on the half line y < 0 which are solutions to (6).

Since (6) has no singular point on the negative half line, any solution to (6) on y < 0
is automatically real analytic. As a consequence, |y|T%/4u, ,(y) and |y|=+F/ 4, (y)
form a basis of the space of real analytic functions on y < 0 that are solutions to (6). On
the other hand, as a special case of Formula (2), we have on y < 0

. w(s—k)
sm— stk 1 or(s) sin ——= & 1
naly) = =Sl P (5) ¢ AL b (1) ®

sin 2 op(—s) sin%




Put i, 4(y) = o(—s)|y| T/ %u, x(y). Then, as a direct consequence of (8), we have

7wk . w(s+k)

o S A A AN B e

(s i (Y); Uos i (y) = (Usp , ) e ) ) 9)
in 5* sin 57

Remark. (B.1) corresponds to SL(2,R)/SO(2) and (B.2) does to SL(2,R)/SO(1,1).

8.2 Rank two case

Irreducible root systems of rank two are Ay, Ba(= Cy), BCy, Gs.

In this subsection, I focus my attention to the case By(= C3) and study connection
relations among solutions to ./\/lg\k) in order to give an answer to Problem 1, (ii).

I start the argument with giving some notation. Let ¥ be the root system of type
Cy. (I take Cy realization instead of Bs.) The roots of ¥ are +e; & ey, £2e1, +2e5 and
Q] = e] — ey, ap = 2ey form a fundamental system of simple roots for . Then we put
y; = € 2% (j = 1,2). The multiplicity functions are so taken that p = ka,, ¢ = ka, .

As is known, there are eight Weyl chambers and to each Weyl chamber, there associates
a fundamental system of simple roots. They are

(Oél, a2>7 <—Oél7 20{1 + Oég), (al + Ao, —20{1 - 062), (_al — O, Oég),
(—aq, —ag), (a1, =201 — ), (—ay — g, 201 + @2), (ag + ag, —a).

Corresponding to these, the coordinate (yi,y2) are changed to

1 1 1 1 1 1 1 1

2 2
Y1,Y2), \—,Y1Y2), \Y1Y2, 9 yY2), \—> — ), Y1, ) yY19Y2), \Y1Yy2, —)-
( ) (yl 12), y%?h) (yly2 ) (91 y2) ( ?J%yz) (yly2 1), yQ)

It is easy to show that the Laplace-Beltrami operator is given as follows:

1 2 1
L — iy, L=

1+ 1+
Jrq{_l U1 (191 _192) _ ylyzﬁ2

(V1 — 2192)}

— U 1 -1y

where ¥; = y;0,, (j = 1,2). In this case, there is a differential operator D, of order four
which commutes with L and L and D, are algebraically independent. If A = (Ay, \p) is

an element of a., the system ./\/lf\k) is expressed as follows:

Lu = H{N+X-(p+q?-ptu
. 2 1 2
My { Dy = N\ (10)

(I don’t write down Dy here.)



There are eight linearly independent solutions

Y —A1—A2+2p+q)/2

U1 1+p+qy§ )\1 /\2+ a f>\1)\2 (ylva)’
Y — A1+ A2+2p+q)/2

yi 1+p+qy§ 1+X2+2p+q)/ f,\1,7>\2(y1,y2),

A4ptq, (A1—A2+2p+q)/2
1 Ys f—>\17>\2 (yla yQ)’
A+p+q, (A1+Xe+2p+q)/2

y2 f* A1,—

y: A2 (?Jl, yz)a
yl_)\2+p+qy§_/\1 A2+2p+q) /2 o (U1, Y2),
yl—x2+p+qy( —A2+2p+q) /2 o= (U1, Y2),
yizﬂﬁqy( M+A2+2p+q /sz o (U1, 2),
yA2+p+qy(A1+A2+2p+q /2f_ o (U1, 92),

where fy, x,(y1,92) is a power series of y;,y2 convergent in a neighbourhood of (y1,y2) =

(0,0) and f,\h)\Q(O,O) =1.

By direct computation, we have

Y P L = LN+ A= (p+q)? — Pt oy MY,
2 A+ Ay —2p — A — Ao —2p —
_ 9y + 1 2 p—dq Dy + 1 2 P —4q
1—ys 2 2
A+ A — A — Ay —
_y2192+1+2q 9y + 2L 2 ¢
2 2
This implies that
f/\l,)\z(oayQ) = F(_)\Q +p, D, _)\2 + 17y2)
Similarly, we have
y M TR L2 402 (p ) — Yoy MTNTEROR)
2
= 1y, {h+M=—p—qWi+X—p—q¢) —p Wi+ —p) (W1 + X2 —p)}
— Y1

and

Fune1,0) = FXe — M +q,¢, 0 — A\ + 1;y1)

For simplicity, we put

Vs k(T

Then

F(s+k,k,2k;1 —

) =F(s+kk,s+1;2),

Tr(s) =

x) = !

I'(s)

We consider the differential equations for the cases (A) e(aq) =

5(041) = 1,5(0&2) =—1.

The case (A)

I'(s+k)

W{Tk(—s)vsjk(x) + Ti(s)z v_s k() }

—1,e(ag) = 1 and (B)



In this case, we change the coordinate (y;,v2) by (—yi1,92). Then L turns out to be

L+ yiys T+
1 —yiyo L=y

I—wn I — 11y
+q< — P —y) — ——=9
q{ 1+y1( ! 2) 1+ 1y ?

L = 193—2191192+219§+p{

We consider solutions of

Lu = 3{N+X-(p+9?-p*u
Dyu = MM

which are analytic on the domain y; > 0, yo > 0.
There are eight linearly independent solutions

yf/\1+p+qy§_/\l_A2+2p+qw2f 1,/\2( Y1, Y2),
yf/\l+p+qy£7h+/\2+2p+q)/2f/\1,7 (Y1, 92),
PO (),
yA1+p+qy()\1+>\2+2p+q /2f_ Mo (=11, 72),
yi >\2+p+qy( A1— >\2+2p+q)/2 2)\1( Y1, Ys),
yp I TR (1),
y1\2+p+qy§ A1+A2+2p+g /2f7 ron (=1, 12),
y>\2+p+qy(/\1+/\2+2p+q /2f_ ravn (=01, 1),

in a neighbourhood of (y;,y2) = (0,0). By direct computation, we have

U TPTUL - M A~ (p+q)? = PP oy MY,

2 A+ A —2p— A — Ao — 2p —

_ 9y + 1 2 p—q Dy + 1 2 P —q
].—yg 2 2
A1+ A — Al — Ay —

—ys (192+ 1 22 q 9y + 1 22 Q)}

This implies that
f>\17>\2 (07 y2> = U—Azm(yz)

Since

TP()\2)U—/\27P(y2) + Tp(_>‘2)yg\2v>\27;ﬂ(y2) = Tp(p)F<_>\2 + p,p, 2p7 1— y2)7
it follows that

T (p)ys TR RN, 4 pp, 2pi 1 — )

“A1-A —A1+Ao+2 2
= )y TR p 0 (0,1n) (= Aa)ys TR L (0,40)
On the other hand, since

F(a,b,c;x) = (1 —2) P F(c—a,c—b,c;z),



it follows that

(*)\1*)\2+2p+Q)/2F<

W (*)\1+)\2+2p+q)/2F

X+ 0,0, 2p;1 —y2) = ys (A2 +p,p,2p; 1 — o)

Therefore the function of y defined by
Tp()\Q)yé_Al_>\2+2p+Q)/2f>\1,>\2 (07 ?/2) + Tp(_>\2)yé_A1+)\2+2p+q)/2f)\1,—/\2 (07 y2)

extends to a neighbourhood of y, = 1 analytically and invariant by Ay <= —A5. Noting
this, we put

F>\1,>\2 (yl, y2)
- “A1—A “ATA
= U AlerJrq{Tp()\2)?/§ ' 2+2p+q)/2f)\1,>\2<_y17 y2) + Tp(—)\2)y§ o 2+2p+q)/2fA1,—A2(—91, 3/2)}

Then it is easy to show that

2

1
F>\17>\2 (y1y27 y_> = F>\1,)\2 (yby?)
By direct computation, we find that

A1+ —2p— A
yé 14+A2—2p q)/2{L . %{)\% A= (p4q)?—p?H} oy§ 1 2+2p+q)/2|y2:0

2
= 1 O F A =P =@ O+ de—p =)+ 31 (91 + A =) (I + 2o — )}
1

and
Pare@,0) =Fha =M+ ¢, ¢, =AM+ 1;—y1) = vxon, 0(—11)

Now recall the connection formula

i) = T —m D Y s ke )
_ sinmk o, 1 Te(s) sinm(s — k), 1
~ sinTws ] Us’k(x) + Te(—s) sinms =1 U_S’k(x)'

This holds when x < 0. Putting @ (2) = 7(—s)|z|*tH/20, (), we have

inmk 1 1 —k 1
box(z) = _Snm Tok <_) i M@s,k (_)

sin s T sin s T

and this implies that

*)\1+P+Qf')\

U 1,2 (yla O)
—A1+p+q

= Y% Uxno-rr,(—Y1)
B sin 7q otp 1
N sin 7T()\1 — )\2)3/1 Pre—ig < y1>
Sin7r()\2—)\1 —Q) Tq(>\2—)\1) —Ai+p ( 1 )
- : U Uxi—x | =
Sl.n’/T()\l — )\2) Tq()\l — )\2) U1
sin g otp
= —_—— - 0
sin 7T()\1 — )\2>y1 f)\h)\z ( y17
SiHT(()\Q — )\1 — Q) Tq()\g - )\1) —Ai+p 1
- . h f)\2,>\1 ) 0
sinm(A — A2)  To(A1 — A2) Y1




On the other hand,

1 —>\1+P+q 1
(—) (yiye) MO f, (——wfw)
A Y1

1
Y G W P 2
= 2+Py§ 1—X2+2p+q)/ g (_aw%m)

Therefore

— —A1—X2+2 2
m >\1+p+qy§ 1—X2+2p+q)/ f/\l,A2<y17y2)

; —A1+p+q
_ __ swmmg (1 3, \=MZAgt2nta 1,
= Sinﬂ'(Al — A2) (y1> <y1y2> f)\1,)\2 ( y17y1y2

_sinm(Az — A — @) 7y(de = M) <l> . (y@ﬂwﬁ A <—i 921/2)
sin 7T()\1 — )\2) Tq<)\1 — )\2) Y1 ! o 91’ !

As a consequence, we have

F>\1,>\2 (y1, y2)
= Tp(>\2) X

. —A1+p+q
sin mq 1 g\ Aptpie I
{Sinﬂ'(Al —_ )\2) (yl) <y1y2) f)\1,)\2 ( y17y1y2

sinT(M = A +g) g(ho = M) (LTI i 1,
* sinT(A1 — A2)  To(A1 = A2) \m (v1y2) ’ Frox yl,lhyz

‘|‘Tp(—)\2) X

; —A1+p+q
__smmg (1 2, ittt Lo
{sin (A1 4+ A2) (y1> (4192) Fa=2 ( yl,?hyz

sinm(A1 + Ao+ q) T,(—A1 — A 1\ 2Pt “A1 A+ 2p4g 1
4T A0 +9) Ty~ = o) (—) Wiv) 7 [ (——,?ﬁyz>
sinm(A1 +A2) (A 4+ A2) \w (7

Put y; = 1/y1, ¥4 = yiy». Then

Fy oo (Y1, 12)

= 7p(A2)X

ﬂ /—A1+p+q =22t 2pte .

sin(Ay — Ag) ! Y2 Py (=15 92)

sinm(A1 — A2 + @) Tg(A2 = A1) 1 agtpig /wf )
sinT(A — A2) T (A1 — Ag) Y2 X2 MY Y2

+Tp(—)\2)x
_ ST A, R o
s+ Ag) ! Y2 Py (=41, 95)

sinm(Ay + Ay + q) T, -1 — A9 ) A1+ +2ptg
z VA =) s 2 L )
S1n 7T()\1 -+ )\2) Tq()\l + )\2)

For simplicity, we put

CIMZ()‘l? )‘2) - TP<)‘1)TP<>‘2)Tq()‘1 - )\2A)TqA(A% + /\2)

~ —A1—A2+2p+gq

f;/\1,)\2 (_yla y2> = cp#J()‘la )\2)y1—A1+p+qy2 2 f)\l,)\g (_yla yZ)
e y2) = 7p(A2)7(A = A2)7e(A1 + A2) F ), (Y1, 92)



Then . 3 .
F>\1,>\2 (yh y2) = f)\ly)\2<_y17 y2> + f/\1ﬁ>\2(_ylv yQ)

F’)q,)\z (ylayZ) ( )
sin g sinT(A — Xy +q) » o
sinm(A; — A2) f)‘2»)‘1( Y1, Ys)
sinm(A1 + Ao+ q)

_ / /
Sin’]r()\]_—‘—)\Q) f—)\2,>\1< y17y2)

el S ol
SiIl?T(/\l — /\2>f/\1,)\2( ylay2> +

sin g

r I
"’Sin?r()\l_i_)\z)fh,—kz( y17y2)+

Let V; be the linear space spanned by
F)\l,AQ <y17 y2)7 F)\z,)q (3/17 y2)7 Ff)\:l)\g (yla 312)7 F*)\z,)\l (y17 y2)

and let V5 be the linear space spanned by

FM,M (yi7 yé)v F/\2,>\1 (yi? y;)7 F—>x1,>\2 (yiv yé)? F—M,)\l (yi’ yé)

Then it is possible to show that dim V; NV, = 2.
Indeed, we put

G>\1,>\2 (y1, y2) B B
= sinm(Ar — A)sin (A1 + A2 — @) Fh, 0 (41, 42) — 2sinmgsinmAy cos AaFly, 5, (Y1, Y2)

+ sin 71'()\1 + )\2) sin 7T()\1 — )\2 — C])F’_)\QV\1 (yl, yg).
Then it is easy to show that

G>\1,>\2 (y1, y2>

sin g sinm(A; — Ay — q)

= —-— Pl — ;o
— Sinﬂ-()\l — )\2) G}\L)\Z(yl?y ) Sin’ﬂ'(Al — )\2) G)\Q,)q(ylayQ)

By changing A\; <> Ay, we also obtain

G>\2,)\1 (yh yQ)

_sinm(M = A+ g)
Sinﬂ'()\l — )\2)

sin g

G>\1,/\2 (yllv yé) + ) G/\Q,)\l (yia y;)

sin 7T()\1 — )\2

In virtue of these identities, we easily conclude that V; N V5 is spanned by G, . (y1, y2)

and G>\27>\1 (yl, y2)'
By using vector notation, we have

(GM,)Q (y1, y2) GA27>\1 (yh y2))

. sin mq __sinm(A1—A2+q)
_ roa ’oa sin (A1 —A2) sin(A1—A2)
- (GM,)\Q (yh y2) G>\2,/\1 (yh y2)) __sinw(A1—A2—q) sin q
sin (A1 —A2) sinm(A1—A2)

On the other hand,

(Gz\l,)\z (yl’ y2) G>\2,)\1 (yb y2)) = (GM,)\z (Zlv 22) G>\2,>\1 (Zh 22))



where z1 = 1192, 20 = 1/y2. As a consequence, we obtain

(GA17>\2(1/y17 y%y2> G>\27>\1 (1/y17 y%yQ)) - (le)\z(l/zla Z%ZQ) G>\2,>\1(1/zla Z%ZQ))

[ explain the meaning of these identity equations. At first, the functions fy(y1, y2)(w €
W) are defined by power series convergent in the domain |y;| < 1 (j = 1,2). Our
purpose is to define fyx(y1,y2) (w € W) outside the domain |y;|] < 1 (j = 1,2) by
analytic continuation. Some of fu\(y1,92) (w € W) may have singularities in the set
{(y1,92) : y1 > 0,y2 > 0}. The identity equations above guarantee that Gy, x,(y1,y2) is
real analytic near the points

(yl,yQ) = (070)7 (;_lvy%y2) = (07 0)? (y1y27 91%) = (070)7< v 7y2> = <O70>7

Y1Yy2

(y1y27 y%) = (070)7 (ﬁay%yﬂ = (070)7 (yla y‘fi) = (070)’ ( - ) = (070)'

v’ Y2

This means that Gy, ,(y1,y2) is real analytic on each Weyl chanber of A" and moreover
has no singularities at generic points of the singular elemtns of A. This implies that
G0 (Y1, y2) is real analytic on A.

The case (B)
In this case, we cahnge the coordinate (y1,y2) by (y1, —y2). Then L turns out to be

1 — yiys 1—yo
L = 92 —29,9,+ 2092 + {— LI29, + 9 — 20
1 1U2 o TP 1+y%y2 1 1+y2( 1 2)

L+ I =1y
+q4 — Y —¥y) — —229)
q{ 3/1( ! 2) 1+ ?

We consider solutions of

My L = AN -+’ -
MA Dyu = MAdu

analytic on the domain y; > 0, y > 0.
There are eight linearly independent solutions in a neighbourhood of (y1,y2) = (0,0);
one of them is given by

_ —A1—X2+2 2
Yy )\1+p+qy§ et/ f)\l)\z (yla _y2)'

Put } B 3
G (U1, 92) = Frina (Y1, —92) + fron (Y1, —42)-
Then it is possible to show (by the result of E. Opdam) that the four functions

é,\l,AQ (yh ?/2), éxl,—AQ (y1, ?/2), é—,\l,AQ (y1, 92), G—,\l,—AQ (y17 yz)

defined on the domain {(y1,y2); 0 < y; < 1(j = 1,2)} are real analytically extended to
the space {(y1,12); 0 <y, ( =1,2)}.

Remark. In the case (A), W, ~ 55 x Sy and its rank equals that of W. On the oher
hand, in the case (B), W. ~ Sy and its rank does not equal that of W.
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