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On the decomposition of the tensor K-modules
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§ 1. Decomposition of the K-module pg @ V,.

Let C( resp.R ) denote the complex (resp. real)number field. We consider a connected
simply connected complex simple Lie group G¢ and a connected noncompact inner type
simple real form G of Gg. Let K be a maximal compact subgroup of G. We denote the
Lie algebras of G and K respectively by g and & Let 6 be the Cartan involution of g
corresponding to £ Let’s denote the eigensubspace of 6 of g with the eigenvalue —1 by
p. Then we have a Cartan decomposition: g = €@ p. Consequently the Lie algebra g¢
of Gg is also decomposed by gg = £c @ pg, where tc (resp. pg) is the complexification
of £ (resp. p) in go. Canonically K acts on the space pg. Let B be a maximal abelian
subgroup of K. Since K is connected and G is an inner type simple Lie group, B is also a
maximal abelian subgruop of G. Therefore B is a Cartan subgroup of G and K. Let bc
be the complexification of the Lie algebra b of B. Let X be the root system of the pair
(9¢,bc). Then we have & = Xg U X,, where g (resp. X,) is the set of all compact
(resp. noncompact) roots of ¥ . We shall fix a positive root system Px of Xix.

Let (7,,V,) be a simple K-module with the highest weight x. In this article we shall
state our results for the decompositins of the tensor K-modules pc®V, and pc®pc®V,.
These K-modules are closely related with the classification of infinitesimal irreducible
unitary representations of G. For example, by using the Clebsch-Gordan coefficients of the
tensor K-moduls, the complete classification are obtained for the cases: SL(2,R) in [ 1},

De Sitter groupin [2] and [ 9], SO(2n,1)in [5], [ 6 ], SU(n,1) in [ 7 ] and etc.

Let v be a Px-dominant integral form on bg and (=,,V,) a simple K-module corre-
sponding to v. We define a projection operator P, on the K-module ps ® V,, by

P,(Z) = deg_1r,,/ kZtracer,(k)dk for Z in pc ® V,,
K

where dk is the Haar measure on K normalized as fK dk = 1. Let ' be the set of all
Py-dominant integral form on bc. Then we have the following decomposition :

(1.1) Pc ® Vi = @ues, utwelx Putw(Pc ® Va),

where P, 1, (bg ®V,) = {0} or is a simple K-module. We shall give a characterization for
this decomposion by using a rational function.
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Let (1/—1b)* be the dual space of the real vector space v/—1b and R[] the polynomial
ring in 7 € (v/—1b)* over the real number field R. We denote by R(%) the quotient field
of R[n]. Let X be the set of all roots on bc. Then we have

gC = bc & Z ga,
a€EX

where g is a one dimensional eigenspace corresponding to a. The real subalgebra g, =
t® /—1p of gg is said to be a compact real form of go. We choose a Weyl basis X, €
9., € X, satisfying the followings (cf. the proof of Theorem 6.3 in [ 4 ]).

Xo—X_ 0o, V-1(Xa+X_,) € g, and ¢(Xq, X_o) =1,

where ¢ is the Killing form on gg. For the element H, = ad(X,)X_, in /—1b, we have
¢(Hy, H) = a(H) for all H in bg. Let p be a linear form on v/—1b. Then there exists
a unique H, in /—1b such that ¢(H,, H) = p(H) for all H in /—1b. Let (y/—1b)* be
the dual space of v/—1b. We define a positive definite bilinear form (), ) by (A, px) =
¢(H,, H)) for A\, pu € (v/—1b)*. We put for each pair of @ and 8 in ¥, a complex number
<a,B > by

d)(ad(Xa)Xp,X_a_ﬂ) fat+pBeX

0 otherwise.

<a,,6>={

Then < a,B > is a pure imaginary number. Let 7 be the conjugation of go with respect
to the real form g,. By our choice for the Weyl basis of g we have

7(Xo) =—X_4 foraceX.
We define a hermitian structure (X,Y) on pg by
(3.1) (X,Y) =—-¢(X,7(Y)) for X,Y € p¢.

Thereby pg is a unitary K-module. We can prove that P,..,(pc ® V,) # {0} if and
only if P, (X, ® v(p)) # 0, where v(p) is the highest weight vector in V,, normalized as

[o(p)] = 1.

THEOREM I. Let p € Tk and (=,,V,) a simple K-module with the highest weight p.
Consider a noncompact root w in ¥ satisfying p+w € T'x and P, 4, (pc®V,) # {0}. Then
there exists a rational fanction f(n; w) € R(n) such that |P, (X, ®v(p))|? = f(A+w;w),
where A = p + pk, px is one half the sum of all roots in Py.

Outline of the proof. Fiest we shall define a rational function f(7;w). Let p be a
nonnegative integer. We define a set II, by

o ={}, I, = {(e1, 02, -, 0) : & € Px} for p > 1,
and put II = UpZ,IL,.
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Let I = (o, z,.y,0p) and J = (B1,B2,...,84) be two elements in II. We define a
multiplicative operation % in II by

IxJ= (01,02, -'-vapaﬂlalgh °"1IBQ)’

Then II is a semigroup with the identity é. Let U(£c) be the universal enveloping algebra
of £g. For each I in II we define an element Q(I) in U(¥c) by

QU)=1for I =¢ and Q(I) = X o, X—0y--X—a, for I = (a1, az,...,0).

Then Q is a semigroup homomorphism of II to U(%c). Furthermore, Q(I) acts on pg by
Q(NX = ad(Q(I))X for X in pg. We also define the adioint operator Q(I)* of Q(I) by
(Q(I)X,Y) = (Xa Q(I)*Y) for X,Y € pe.

DEFINITION 1.1. For a generic point 7 € (v/—1b)*, w € X, and I € II, we define

R(m: 1), S(n; I), T(n; I), and f(n; I) as follows: R(m;8) = S(m; (¢)) = T(n;4) = au(4) = 1
and for I = (a1, az,...,0) €1I

R(mI) = (In+ <I>*=Ia*)7",

St I) = II R(m; J),
JLEMLI«L=I,T#%

T )= [[ R+ <J > D),
JLell,J»L=1

au(I) = 2"$(Q(I)* Xy X—w—<15)I,
fimw) =Y (-D)au()S(n; ),

Icll

where {I=pand < I >=)"1_, a;.
Then Theorem I can be proved by using three lemmas below.

LEMMA 1.2. Let p € Tk, and assume that p+ v € T for all ¥ € B,,. Then, for w € X,
we have | P, 1o (Xy ® v(p))|? = F(A + w;w).

LEMMA 1.3. Let w € 3,,, and assume P, ,(pc ® V) # {0}. Then we have

F(=2 = w;—w)| Py (X @ 2(w) P = [ A +w,0)(20)7
a€EPx

LEMMA 1.4. Let w be an element in ¥,,. Then we have the following functional equations
in R(n).

(1.2) [ o) fr+wiw)= [ (n+w,&)f(n—w),
a€Px a€Px

(1.3) fn+wiw)f(-n—wi—w) = [[ (n+w,a)ma)"
a€Px
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REMARK. (1.2) is a modefied version of a result due to N. Tatsuuma (cf. [8 ]).

We shall give a product formula for f(7;w). Let w be a noncompact root in £. We
define the subsets A(w), A_(w), Am(w) and A,,(w)* of Pk, where m is an integer, by

A(w)={a € Pk :w+a€ X}
A_(w) ={a € P : (w,a) > 0},
Ap(w) ={a € Pk : 2(w,a)|a|"? =m,w+ a« € T},
Ap(w)'={acA,(v):w—-—acX}).

Then by using the classification of the inner type noncompact real simple Lie groups we
have A(w) = A_(w) UAg(w)* UA;(w)*.

TreoRrEM II. Let w a noncompact root. We define f(n; w) by Definition 1.1. Then f(;w)
has one of the following product formulae.

(1) If Ag(w)*UA_;(w)* UA (w)* = ¢, then
fa+wiw)= [ @+w a)(ne)
a€A_(w)
(2) If Ag(w)* #¢, then A1(w)*UA_1(w)* = ¢ and
fon+wiw)= JI (@0 0) - lal’)2n,a) +|af?)

a€Ag(w)*

< JI (@+w,e)ne)

a€A_;i(w)
(3) If Ay (w)*UA_1(w)* # &, then Ag(w)* = ¢ and

fot+wiw)= [ +w,)ma)™ [ @@a)-la?){(mne)+ o}

acA_(w) atAi(w)*
x I 2{me) - lal’}2n.0) + o).
atA_j(w)*

The formulae in Theorem II is proved mainly by using the identities in Lemma 1.4.

REMARK. Theorem I and Theorem II are reported in ” Clebsch-Gordan coeficients for a

tensor product representation Ad ® = of a maximal compact subgroup of real semisimple
Lie group”, Lect. in Math., Kyoto univ. No. 14 pp.149-175.
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DEFINITION 1.5. Let p € ', and define the following six sets for A = p + px .

w(A)={A+w:weX,}
sw(A) = {£ €w(d): [ (¢a)=0},

a€EPg

rw(d) = {£ ew(A): [] (&) # 0},

a€Pg
rwe(A) = {A + w € rw(A) : f(A+w;w) =0},
rwi(A)={A+w:p+welk, f(A+ w;w) > 0},
rw_(A) = rw(A)\(rwo(A) U rwy(X)).

THEOREM III. Let w be a noncompact root in ¥,, satisfying p+w € 'y and f(A+w;w) >
0. Then we have P,..(pc ®V,) # {0}.

Outlinee of a proof. Choosing a suitable covering group K* of K, we can define the
character {,, of the analytic subgroup B* of K* corresponding to b. By Weyl’s character
formula we have

(Axtrace(Ad ® 7,))(ezpH) = Z Z €(t)et ) H)

Awew(r)teWx
for all ezpH € B*. We shall prove that
(1.4) (Axtrace(Ad ® «,))(exzpH) = Z Z e(t)et(’\+“’)(H),
Adwerw (X)) tEWEK

If A+ w € w(}) is Pg-singular, then

Z e(t)e!P+e)H) = ¢,
tEWx

By using Theorem II we can prove

(1.5) E Z e(t)et ) H) = g,

Adwerwo(A)urw_(X)teWgk
Since w(A) = sw(A) U rwe(A) U rw_(A) U rwy(A),

trace(Ad @ =, ) (k) = Z tracem, (k).
p+w€lg, f(Atwiw)>0

Thus if p + w €Tk and f(A + w;w) > 0 then Pyt (pc ® V) # {0} as claimed.
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§ 2. The multiplicity of V, in P.(pc ® Pc ®V,).

We consider the tensor K-module pc ® pc ® V,. Then each simple submodule in
P.(pc® pc ®V,) is K-isomophic to V.. Therefore

Pu(pc RPc® Vﬂ) & m(p,)V,,,

where m(u) is the multiplicity of V,. One of our purposes of this section is to determine
the number m(u). Let us state our results more precisely after the followings. Let H,
be the element in bg satisfying ¢(H,, H) = p(H) for all H € bc. Then the centralizer
K(p) of H, in K is reductive, and contains B. Let Xg(,) be the root system of the
pair (&(g)c, bc), where £(u) is the Lie algebra of K(u). We put Px(,) = Px N Xk(,).
Then Pg(,) is a positive root system of X (,). A noncompact root w € X, is said to be
Prc(u)-highest if w + o ¢ X for all a in Pg(,).

DEFINITION 2.1. An element p in Tk is admissible if p has the following properties: (1)
For one of the groups S,(n, R)andS0O(2m,2n + 1), 2(p, a)|a|™? > 2 for all short roots a
in Px\Pk(,). (2) For the group Gz, 2(p, a)|a|™2 > 3 for a short root a in Px\ P(,).

REMARK. IfG satisfies that all noncompact roots in ¥ have the same length then we have
no assumptions for the admissibilty of p.

The following Theorem IV and Theorem VI are proved by using three theorems in §1.

THEOREM IV. Let u € ', and assume that p is admissible. Then the multiplicity m(u)
of V, in P,(pc ® pc ® V,) is given by

m(p) = §{w € X, : w is K(p)-highest },

where | A is the number of the elements in a set A.

Let P be a positive root system containing Pg . For a subset © in the simple root system
¥ of P, we denote by P(©) the set of all positive roots in P generated by © over the ring
of integers. Let C be the positive Weyl chamber of /~1b corresponding to P. We define
a subset C(©) contained in the topological closure ¢l(C) of C by

C(®)={H € v/-1b : a(H) =0 for all & € P(O) and a(H) > 0 for all a € P\P(O)}.

Let Hy be an element in C(©). Then the centralizer M(©) of Hp in G is a reductive
subgroup of G with a Cartan subgroup B. M(©) is uniquely determined by C(©). Let p*
be the subspace of pc generated by the set of all root vectors cprresponding to PN X,.
Let 7 be the conjugation of go with respect to the compact real form g,. A simple K(©)-
submodule q of pg is said to be the first (resp. the second) kind if 7(q) = q (resp. q C p*
or 7(q) C p*). A noncompact root w in P is said to be the first (resp. second) kind if w
is a weight of a simple K(©)-submodule of ps of the first (resp. the second) kind.
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DEFINITION 2.2. The triple (Px, P(®), P) is standard if each simple K(©)-submodule q
of pg is the first kind or the second kind.

THEOREM V. Forp € T'x there exists a standard triple (Px, P(©), P) such that p € C(©).

Let (Px, P(©), P) be a standard triple. We consider an element p in T'x N C(©) and a
noncompact root w satisfying u + w € I'x. We now define a projection operator P,i, on
pg ® V., by the same as in (1.1). We put

+
Pt = Y Pure.
WEBNP,u+wel'x

Let us define a K-submodule N(g) of P,(pg ® pc ® V,.) by

N(p) = the K-module generated by the set
{PX®PHY ®v)-Y ®PH(X®v)): X,Y €pg,v €V, }.

TueoreEM VI. Let (Pg, P(®), P) be a standard triple and p € T N C(©). Suppose that
p is sufficiently P\ Px(o)-regular. Then p is admissible. Furthermore, we have

n(p) = f{w € PNZ, : w is Px(o)-highest and the second kind },

where n(y) is the multiplicity of V, in N(u).
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