On the decomposition of the tensor K-modules

HISAICHI MIDORIKAWA

Department of Mathematics Tsuda College Kodaira, Tokyo, Japan

§ 1. Decomposition of the K-module $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$.

Let (π_{μ}, V_{μ}) be a simple K-module with the highest weight μ . In this article we shall state our results for the decompositins of the tensor K-modules $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ and $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$. These K-modules are closely related with the classification of infinitesimal irreducible unitary representations of G. For example, by using the Clebsch-Gordan coefficients of the tensor K-modules, the complete classification are obtained for the cases: $SL(2, \mathbf{R})$ in [1], De Sitter group in [2] and [9], SO(2n,1) in [5], [6], SU(n,1) in [7] and etc.

Let ν be a P_K -dominant integral form on $\mathfrak{b}_{\mathbf{C}}$ and (π_{ν}, V_{ν}) a simple K-module corresponding to ν . We define a projection operator P_{ν} on the K-module $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by

$$P_{
u}(Z) = deg\pi_{
u} \int_{K} k Z \overline{trace\pi_{
u}(k)} dk \ ext{for} \ Z \ ext{in} \ \mathfrak{p}_{f C} \otimes V_{\mu},$$

where dk is the Haar measure on K normalized as $\int_K dk = 1$. Let Γ_K be the set of all P_K -dominant integral form on $\mathfrak{b}_{\mathbf{C}}$. Then we have the following decomposition:

$$\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} = \bigoplus_{\omega \in \Sigma_{n}, \mu + \omega \in \Gamma_{K}} P_{\mu + \omega} (\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}),$$

where $P_{\mu+\omega}(\mathfrak{p}_{\mathbf{C}}\otimes V_{\mu})=\{0\}$ or is a simple K-module. We shall give a characterization for this decomposion by using a rational function.

Typeset by AMS-TEX

Let $(\sqrt{-1}b)^*$ be the dual space of the real vector space $\sqrt{-1}b$ and $\mathbf{R}[\eta]$ the polynomial ring in $\eta \in (\sqrt{-1}b)^*$ over the real number field \mathbf{R} . We denote by $\mathbf{R}(\eta)$ the quotient field of $\mathbf{R}[\eta]$. Let Σ be the set of all roots on $b_{\mathbf{C}}$. Then we have

$$\mathfrak{g}_{\mathbf{C}} = \mathfrak{b}_{\mathbf{C}} \oplus \sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha},$$

where \mathfrak{g}_{α} is a one dimensional eigenspace corresponding to α . The real subalgebra $\mathfrak{g}_{u}=\mathfrak{k}\oplus\sqrt{-1}\mathfrak{p}$ of $\mathfrak{g}_{\mathbf{C}}$ is said to be a compact real form of $\mathfrak{g}_{\mathbf{C}}$. We choose a Weyl basis $X_{\alpha}\in\mathfrak{g}_{\alpha}, \alpha\in\Sigma$, satisfying the followings (cf. the proof of Theorem 6.3 in [4]).

$$X_{\alpha}-X_{-\alpha},\ \sqrt{-1}(X_{\alpha}+X_{-\alpha})\in\mathfrak{g}_{u}\ \mathrm{and}\ \phi(X_{\alpha},X_{-\alpha})=1,$$

where ϕ is the Killing form on $\mathfrak{g}_{\mathbf{C}}$. For the element $H_{\alpha}=ad(X_{\alpha})X_{-\alpha}$ in $\sqrt{-1}\mathfrak{b}$, we have $\phi(H_{\alpha},H)=\alpha(H)$ for all H in $\mathfrak{b}_{\mathbf{C}}$. Let μ be a linear form on $\sqrt{-1}\mathfrak{b}$. Then there exists a unique H_{μ} in $\sqrt{-1}\mathfrak{b}$ such that $\phi(H_{\mu},H)=\mu(H)$ for all H in $\sqrt{-1}\mathfrak{b}$. Let $(\sqrt{-1}\mathfrak{b})^*$ be the dual space of $\sqrt{-1}\mathfrak{b}$. We define a positive definite bilinear form (λ,μ) by $(\lambda,\mu)=\phi(H_{\mu},H_{\lambda})$ for $\lambda,\mu\in(\sqrt{-1}\mathfrak{b})^*$. We put for each pair of α and β in Σ , a complex number $<\alpha,\beta>$ by

$$=\left\{egin{array}{ll} \phi(ad(X_lpha)X_eta,X_{-lpha-eta}) & ext{if } lpha+eta\in\Sigma \ 0 & ext{otherwise}. \end{array}
ight.$$

Then $<\alpha,\beta>$ is a pure imaginary number. Let τ be the conjugation of $\mathfrak{g}_{\mathbf{C}}$ with respect to the real form $\mathfrak{g}_{\mathbf{u}}$. By our choice for the Weyl basis of $\mathfrak{g}_{\mathbf{C}}$ we have

$$\tau(X_{\alpha}) = -X_{-\alpha}$$
 for $\alpha \in \Sigma$.

We define a hermitian structure (X, Y) on $\mathfrak{p}_{\mathbf{C}}$ by

(3.1)
$$(X,Y) = -\phi(X,\tau(Y)) \text{ for } X,Y \in \mathfrak{p}_{\mathbf{C}}.$$

Thereby $\mathfrak{p}_{\mathbf{C}}$ is a unitary K-module. We can prove that $P_{\mu+\omega}(\mathfrak{p}_{\mathbf{C}}\otimes V_{\mu})\neq\{0\}$ if and only if $P_{\mu+\omega}(X_{\omega}\otimes v(\mu))\neq 0$, where $v(\mu)$ is the highest weight vector in V_{μ} normalized as $|v(\mu)|=1$.

THEOREM I. Let $\mu \in \Gamma_K$ and (π_{μ}, V_{μ}) a simple K-module with the highest weight μ . Consider a noncompact root ω in Σ satisfying $\mu + \omega \in \Gamma_K$ and $P_{\mu + \omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}) \neq \{0\}$. Then there exists a rational function $f(\eta; \omega) \in \mathbf{R}(\eta)$ such that $|P_{\mu + \omega}(X_{\omega} \otimes v(\mu))|^2 = f(\lambda + \omega; \omega)$, where $\lambda = \mu + \rho_K$, ρ_K is one half the sum of all roots in P_K .

Outline of the proof. Fiest we shall define a rational function $f(\eta; \omega)$. Let p be a nonnegative integer. We define a set Π_p by

$$\Pi_0 = \{\tilde{\phi}\}, \ \Pi_p = \{(\alpha_1, \alpha_2, ..., \alpha_p) : \alpha_i \in P_K\} \ \text{for } p > 1,$$
 and put $\Pi = \cup_{p=0}^{\infty} \Pi_p.$

Let $I=(\alpha_1,\alpha_2,...,\alpha_p)$ and $J=(\beta_1,\beta_2,...,\beta_q)$ be two elements in Π . We define a multiplicative operation \star in Π by

$$I \star J = (\alpha_1, \alpha_2, ..., \alpha_p, \beta_1, \beta_2, ..., \beta_q).$$

Then Π is a semigroup with the identity $\tilde{\phi}$. Let $U(\mathfrak{k}_{\mathbf{C}})$ be the universal enveloping algebra of $\mathfrak{k}_{\mathbf{C}}$. For each I in Π we define an element Q(I) in $U(\mathfrak{k}_{\mathbf{C}})$ by

$$Q(I) = 1 \text{ for } I = \tilde{\phi} \text{ and } Q(I) = X_{-\alpha_1} X_{-\alpha_2} ... X_{-\alpha_p} \text{ for } I = (\alpha_1, \alpha_2, ..., \alpha_p).$$

Then Q is a semigroup homomorphism of Π to $U(\mathfrak{k}_{\mathbf{C}})$. Furthermore, Q(I) acts on $\mathfrak{p}_{\mathbf{C}}$ by Q(I)X = ad(Q(I))X for X in $\mathfrak{p}_{\mathbf{C}}$. We also define the adioint operator $Q(I)^*$ of Q(I) by $(Q(I)X,Y) = (X,Q(I)^*Y)$ for $X,Y \in \mathfrak{p}_{\mathbf{C}}$.

DEFINITION 1.1. For a generic point $\eta \in (\sqrt{-1}\mathfrak{b})^*$, $\omega \in \Sigma_n$ and $I \in \Pi$, we define $R(\eta; I), S(\eta; I), T(\eta; I)$, and $f(\eta; I)$ as follows: $R(\eta; \widehat{\phi}) = S(\eta; \widehat{\phi}) = T(\eta; \widehat{\phi}) = a_{\omega}(\widehat{\phi}) = 1$ and for $I = (\alpha_1, \alpha_2, ..., \alpha_p) \in \Pi$

$$egin{aligned} R(\eta;I) &= (|\eta + < I > |^2 - |\eta|^2)^{-1}, \ S(\eta;I) &= \prod_{J,L \in \Pi,J\star L = I,J
eq \widehat{\phi}} R(\eta;J), \ T(\eta;I) &= \prod_{J,L \in \Pi,J\star L = I} R(\eta + < J >;L), \ a_{\omega}(I) &= 2^{\sharp I} |\phi(Q(I)^* X_{\omega}, X_{-\omega - < I >})|^2, \ f(\eta;\omega) &= \sum_{I \in \Pi} (-1)^{\sharp I} a_{\omega}(I) S(\eta;I), \end{aligned}$$

where $\sharp I = p$ and $\langle I \rangle = \sum_{i=1}^{p} \alpha_i$.

Then Theorem I can be proved by using three lemmas below.

LEMMA 1.2. Let $\mu \in \Gamma_K$, and assume that $\mu + \gamma \in \Gamma_K$ for all $\gamma \in \Sigma_n$. Then, for $\omega \in \Sigma_n$, we have $|P_{\mu+\omega}(X_\omega \otimes v(\mu))|^2 = f(\lambda + \omega; \omega)$.

LEMMA 1.3. Let $\omega \in \Sigma_n$, and assume $P_{\mu+\omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}) \neq \{0\}$. Then we have

$$f(-\lambda-\omega;-\omega)|P_{\mu+\omega}(X_\omega\otimes v(\mu))|^2=\prod_{lpha\in P_K}(\lambda+\omega,lpha)(\lambda,lpha)^{-1}.$$

LEMMA 1.4. Let ω be an element in Σ_n . Then we have the following functional equations in $\mathbf{R}(\eta)$.

(1.2)
$$\prod_{\alpha \in P_K} (\eta, \alpha) f(\eta + \omega; \omega) = \prod_{\alpha \in P_K} (\eta + \omega, \alpha) f(\eta; -\omega),$$

$$(1.3) f(\eta+\omega;\omega)f(-\eta-\omega;-\omega) = \prod_{\alpha\in P_K} (\eta+\omega,\alpha)(\eta,\alpha)^{-1}.$$

REMARK. (1.2) is a modefied version of a result due to N. Tatsuuma (cf. [8]).

We shall give a product formula for $f(\eta; \omega)$. Let ω be a noncompact root in Σ . We define the subsets $\Delta(\omega), \Delta_{-}(\omega), \Delta_{m}(\omega)$ and $\Delta_{m}(\omega)^{*}$ of P_{K} , where m is an integer, by

$$egin{aligned} \Delta(\omega) &= \{ lpha \in P_K : \omega + lpha \in \Sigma \}, \ \Delta_-(\omega) &= \{ lpha \in P_K : (\omega, lpha) > 0 \}, \ \Delta_m(\omega) &= \{ lpha \in P_K : 2(\omega, lpha) |lpha|^{-2} = m, \omega + lpha \in \Sigma \}, \ \Delta_m(\omega)^* &= \{ lpha \in \Delta_m(\omega) : \omega - lpha \in \Sigma \}. \end{aligned}$$

Then by using the classification of the inner type noncompact real simple Lie groups we have $\Delta(\omega) = \Delta_{-}(\omega) \cup \Delta_{0}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}$.

THEOREM II. Let ω a noncompact root. We define $f(\eta; \omega)$ by Definition 1.1. Then $f(\eta; \omega)$ has one of the following product formulae.

$$(1) \text{ If } \Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*} = \phi, \text{ then }$$

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{-}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1}.$$

$$(2) \text{ If } \Delta_{0}(\omega)^{*} \neq \phi, \text{ then } \Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} = \phi \text{ and }$$

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{0}(\omega)^{*}} (2(\eta, \alpha) - |\alpha|^{2})(2(\eta, \alpha) + |\alpha|^{2})^{-1}$$

$$\times \prod_{\alpha \in \Delta_{-1}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1}.$$

$$(3) \text{ If } \Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \neq \phi, \text{ then } \Delta_{0}(\omega)^{*} = \phi \text{ and }$$

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{-1}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1} \prod_{\alpha \in \Delta_{1}(\omega)^{*}} (2(\eta, \alpha) - |\alpha|^{2})(2\{(\eta, \alpha) + |\alpha|^{2}\})^{-1}$$

$$\times \prod_{\alpha \in \Delta_{-1}(\omega)^{*}} 2\{(\eta, \alpha) - |\alpha|^{2}\}(2(\eta, \alpha) + |\alpha|^{2})^{-1}.$$

The formulae in Theorem II is proved mainly by using the identities in Lemma 1.4.

REMARK. Theorem I and Theorem II are reported in "Clebsch-Gordan coefficients for a tensor product representation $Ad \otimes \pi$ of a maximal compact subgroup of real semisimple Lie group", Lect. in Math., Kyoto univ. No. 14 pp.149-175.

DEFINITION 1.5. Let $\mu \in \Gamma_K$, and define the following six sets for $\lambda = \mu + \rho_K$.

$$egin{aligned} w(\lambda) &= \{\lambda + \omega : \omega \in \Sigma_n\}, \ sw(\lambda) &= \{\xi \in w(\lambda) : \prod_{lpha \in P_K} (\xi, lpha) = 0\}, \ rw(\lambda) &= \{\xi \in w(\lambda) : \prod_{lpha \in P_K} (\xi, lpha)
eq 0\}, \ rw_0(\lambda) &= \{\lambda + \omega \in rw(\lambda) : f(\lambda + \omega; \omega) = 0\}, \ rw_+(\lambda) &= \{\lambda + \omega : \mu + \omega \in \Gamma_K, f(\lambda + \omega; \omega) > 0\}, \ rw_-(\lambda) &= rw(\lambda) \setminus (rw_0(\lambda) \cup rw_+(\lambda)). \end{aligned}$$

THEOREM III. Let ω be a noncompact root in Σ_n satisfying $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$. Then we have $P_{\mu+\omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}) \neq \{0\}$.

Outlinee of a proof. Choosing a suitable covering group K^* of K, we can define the character ξ_{ρ_K} of the analytic subgroup B^* of K^* corresponding to \mathfrak{b} . By Weyl's character formula we have

$$(\Delta_K trace(Ad \otimes \pi_{\mu}))(expH) = \sum_{\lambda + \omega \in w(\lambda)} \sum_{t \in W_K} \epsilon(t) e^{t(\lambda + \omega)(H)}$$

for all $expH \in B^*$. We shall prove that

$$(1.4) \qquad (\Delta_K trace(Ad \otimes \pi_{\mu}))(expH) = \sum_{\lambda + \omega \in rw_{+}(\lambda)} \sum_{t \in W_K} \epsilon(t)e^{t(\lambda + \omega)(H)}.$$

If $\lambda + \omega \in w(\lambda)$ is P_K -singular, then

$$\sum_{t\in W_K} \epsilon(t)e^{t(\lambda+\omega)(H)} = 0.$$

By using Theorem II we can prove

(1.5)
$$\sum_{\lambda+\omega\in\tau w_0(\lambda)\cup\tau w_-(\lambda)}\sum_{t\in W_K}\epsilon(t)e^{t(\lambda+\omega)(H)}=0.$$

Since $w(\lambda) = sw(\lambda) \cup rw_0(\lambda) \cup rw_-(\lambda) \cup rw_+(\lambda)$,

$$trace(Ad \otimes \pi_{\mu})(k) = \sum_{\mu + \omega \in \Gamma_K, f(\lambda + \omega; \omega) > 0} trace \pi_{\mu + \omega}(k).$$

Thus if $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$ then $P_{\mu + \omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}) \neq \{0\}$ as claimed.

§ 2. The multiplicity of V_{μ} in $P_{\mu}(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu})$.

We consider the tensor K-module $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$. Then each simple submodule in $P_{\mu}(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu})$ is K-isomophic to V_{μ} . Therefore

$$P_{\mu}(\mathfrak{p}_{\mathbf{C}}\otimes\mathfrak{p}_{\mathbf{C}}\otimes V_{\mu})\cong m(\mu)V_{\mu},$$

where $m(\mu)$ is the multiplicity of V_{μ} . One of our purposes of this section is to determine the number $m(\mu)$. Let us state our results more precisely after the followings. Let H_{μ} be the element in $\mathfrak{b}_{\mathbf{C}}$ satisfying $\phi(H_{\mu}, H) = \mu(H)$ for all $H \in \mathfrak{b}_{\mathbf{C}}$. Then the centralizer $K(\mu)$ of H_{μ} in K is reductive, and contains B. Let $\Sigma_{K(\mu)}$ be the root system of the pair $(\mathfrak{k}(\mu)_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$, where $\mathfrak{k}(\mu)$ is the Lie algebra of $K(\mu)$. We put $P_{K(\mu)} = P_K \cap \Sigma_{K(\mu)}$. Then $P_{K(\mu)}$ is a positive root system of $\Sigma_{K(\mu)}$. A noncompact root $\omega \in \Sigma_n$ is said to be $P_{K(\mu)}$ -highest if $\omega + \alpha \notin \Sigma$ for all α in $P_{K(\mu)}$.

DEFINITION 2.1. An element μ in Γ_K is admissible if μ has the following properties: (1) For one of the groups $S_p(n, \mathbf{R})$ and SO(2m, 2n + 1), $2(\mu, \alpha)|\alpha|^{-2} \geq 2$ for all short roots α in $P_K \setminus P_{K(\mu)}$. (2) For the group G_2 , $2(\mu, \alpha)|\alpha|^{-2} \geq 3$ for a short root α in $P_K \setminus P_{K(\mu)}$.

REMARK. If G satisfies that all noncompact roots in Σ have the same length then we have no assumptions for the admissibilty of μ .

The following Theorem IV and Theorem VI are proved by using three theorems in §1.

THEOREM IV. Let $\mu \in \Gamma_K$, and assume that μ is admissible. Then the multiplicity $m(\mu)$ of V_{μ} in $P_{\mu}(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu})$ is given by

$$m(\mu) = \sharp \{ \omega \in \Sigma_n : \omega \text{ is } K(\mu)\text{-highest } \},$$

where $\sharp A$ is the number of the elements in a set A.

Let P be a positive root system containing P_K . For a subset Θ in the simple root system Ψ of P, we denote by $P(\Theta)$ the set of all positive roots in P generated by Θ over the ring of integers. Let C be the positive Weyl chamber of $\sqrt{-1}\mathfrak{b}$ corresponding to P. We define a subset $C(\Theta)$ contained in the topological closure cl(C) of C by

$$C(\Theta) = \{H \in \sqrt{-1}\mathfrak{b} : \alpha(H) = 0 \text{ for all } \alpha \in P(\Theta) \text{ and } \alpha(H) > 0 \text{ for all } \alpha \in P \setminus P(\Theta)\}.$$

Let H_0 be an element in $C(\Theta)$. Then the centralizer $M(\Theta)$ of H_0 in G is a reductive subgroup of G with a Cartan subgroup B. $M(\Theta)$ is uniquely determined by $C(\Theta)$. Let \mathfrak{p}^+ be the subspace of $\mathfrak{p}_{\mathbf{C}}$ generated by the set of all root vectors corresponding to $P \cap \Sigma_n$. Let τ be the conjugation of $\mathfrak{g}_{\mathbf{C}}$ with respect to the compact real form \mathfrak{g}_u . A simple $K(\Theta)$ -submodule \mathfrak{q} of $\mathfrak{p}_{\mathbf{C}}$ is said to be the first (resp. the second) kind if $\tau(\mathfrak{q}) = \mathfrak{q}$ (resp. $\mathfrak{q} \subset \mathfrak{p}^+$ or $\tau(\mathfrak{q}) \subset \mathfrak{p}^+$). A noncompact root ω in P is said to be the first (resp. second) kind if ω is a weight of a simple $K(\Theta)$ -submodule of $\mathfrak{p}_{\mathbf{C}}$ of the first (resp. the second) kind.

DEFINITION 2.2. The triple $(P_K, P(\Theta), P)$ is standard if each simple $K(\Theta)$ -submodule \mathfrak{q} of \mathfrak{p}_C is the first kind or the second kind.

THEOREM V. For $\mu \in \Gamma_K$ there exists a standard triple $(P_K, P(\Theta), P)$ such that $\mu \in C(\Theta)$.

Let $(P_K, P(\Theta), P)$ be a standard triple. We consider an element μ in $\Gamma_K \cap C(\Theta)$ and a noncompact root ω satisfying $\mu + \omega \in \Gamma_K$. We now define a projection operator $P_{\mu+\omega}$ on $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by the same as in (1.1). We put

$$P_{\mu}^{+} = \sum_{\omega \in \Sigma_{n} \cap P, \mu + \omega \in \Gamma_{K}} P_{\mu + \omega}.$$

Let us define a K-submodule $N(\mu)$ of $P_{\mu}(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu})$ by

$$N(\mu)= ext{ the K-module generated by the set} \ \{P_{\mu}(X\otimes P_{\mu}^+(Y\otimes v)-Y\otimes P_{\mu}^+(X\otimes v)): X,Y\in \mathfrak{p}_{\mathbf{C}},v\in V_{\mu}\}.$$

THEOREM VI. Let $(P_K, P(\Theta), P)$ be a standard triple and $\mu \in \Gamma_K \cap C(\Theta)$. Suppose that μ is sufficiently $P_K \setminus P_{K(\Theta)}$ -regular. Then μ is admissible. Furthermore, we have

$$n(\mu) = \sharp \{\omega \in P \cap \Sigma_n : \omega \text{ is } P_{K(\Theta)}\text{-highest and the second kind } \},$$

where $n(\mu)$ is the multiplicity of V_{μ} in $N(\mu)$.

REFERENCES

- 1. V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. 48 (1947), 568-640.
- 2. J. Deximier, Representation integrables du groupe De Sitter, Bull. Soc. Math. 89 (1961), 9-41.
- 3. I. M. Gelfand, L. M. Cejtlin, Finite dimensional representations of orthogonal matrices, Doklady Aca. Nauk. SSSR 71, 1017- 1020.
- 4. S. Helgason, Differential Geometry and Symmetric Spaces, Acad. Press New York (1962).
- 5. T. Hirai, On infinitesimal operators of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 83-87.
- 6. T. Hirai, On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 258-262.
- 7. A. U. Klimyk, V. A. Shirokov, Representation of Lie groups SU(n,1), IU(n) and their algebra I, preprint (1974).
- 8. N. Tatsuuma, Formal degree and Clebsch-Gordan coefficients, J. Math. Kyoto Univ. 18, No 1 (1978).
- 9. L. H. Thomas, On unitary representations of the group of De Sitter space, Ann. Math. 42 (1940), 113-126.