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ABSTRACT. Characters of wreath products $G=\mathfrak{S}_{\infty}(T)$ of compact groups $T$ with the infinite symmetric
group $\mathfrak{S}_{\infty}$ are studied, and all the extremal continuous positive definite class functions on $G$ are explicitly
given (joint work with E. Hirai).

The case of the infinite symmetric group $\mathfrak{S}_{\infty}$ has been worked out early in $60’ s$ by E. Thoma in [Th2],
and it is reexamined in [VK], [KO], [Bi] etc. from the point of view of approximation from $\mathfrak{S}_{n}(narrow\infty))$

and recently in $[Hi3]-[Hi4]$ from the standpoint of taking limits of centalizations of positive definite functions
obtained as matrix elements of simple unitary representations.

The case where $T$ is a finite abelian group, contains the cases of infinite Weyl groups and the limits
$\mathfrak{S}_{\infty}(Z_{f})=\lim_{narrow\infty}G(r, 1, n)$ of complex reflexion groups. For this abelian case a general explicit formula
for characters is given, and so all the factor representations of finite type are classified in [HH1]. The case of
$\mathfrak{S}_{\infty}(T)$ with $T$ any finite group was treated in [HH2].

1 Wreath products of compact groups with the infinite sym-
metric group

For a set $I$ , we denote by $\mathfrak{S}_{I}$ the group of all finite permutations on $A$ . A permutation a on $I$ is
called finite if its support $supp(\sigma):=\{i\in I ; a(i)\neq i\}$ is finite. We call the infinite symmet$7YC$ group

the permutation group $\mathfrak{S}_{N}$ on the set of natural numbers $N$ . The index $N$ is frequently replaced

by $\infty$ . The symmetric group $6_{n}$ is naturally imbedded in $\mathfrak{S}_{\infty}$ as the permutation group of the set
$I_{n}:=\{1,2, \ldots, n\}\subset N$ .

Let $T$ be a compact group. We consider a wreath product group $\mathfrak{S}_{I}(T)$ of $T$ with a permutation

group $\mathfrak{S}_{I}$ as follows:

$\mathfrak{S}_{I}(T)=D_{I}(T)x\mathfrak{S}_{I},$ $D_{I}(T)= \prod_{i\in I}’T_{i},$ $T_{i}=T(i\in I)$ , (1)

where the symbol $\prod’$ means the restricted direct product, and $\sigma\in \mathfrak{S}_{I}$ acts on $D_{I}(T)$ as

$D_{I}(T)\ni d=(t_{i})_{i\in I}-^{\sigma}\sigma(d)=(t_{i}’)_{i\in I}\in D_{I}(T)$ , $t_{i}’=t_{\sigma^{-1}(i)}(i\in I)$ . (2)

Identifying groups $D_{I}(T)$ and $\mathfrak{S}_{I}$ with their images in semidirect product $\mathfrak{S}_{I}(T)$ , we have $\sigma d\sigma^{-1}=$

$\sigma(d)$ . The group $\mathfrak{S}_{I_{n}}(T)$ is denoted as $G_{n}(T)$ , then $G:=\mathfrak{S}_{\infty}(T)$ is an inductive limit of $G_{n}:=\mathfrak{S}_{n}(T)$ .

Since $T$ is compact, $G_{n}$ is also compact, and we introduce in $G$ its inductive limit topology $\tau_{ind}$ . Then
$G$ with $\tau_{ind}$ becomes a topological groups (cf. Theorem 2.7 in [TSH]). Recall that a subset $B\subset G$ is
$\tau_{ind}$-open if and only if $B\cap G_{n}$ is open in $G_{n}$ for any $n\geq 1$ . When $T$ is a finite group, the topology
$\tau_{ind}$ in $G$ is again discrete.

A natural subgroup of $G:=\mathfrak{S}_{\infty}(T)$ is given as a wreath product of $T$ with the alternating group
$\mathfrak{U}_{\infty}$ as $G’:=\mathfrak{U}_{\infty}(T)=D_{\infty}(T)\rangle\triangleleft \mathfrak{U}_{\infty}$ .

In the case where $T$ is abelian, we put

$P_{I}(d)= \prod_{i\in I}t_{i}$ for $d=(t_{i})_{i\in I}\in D_{I}(T)$ , (3)
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and define a subgroup of $\mathfrak{S}_{I}(T)$ as

$\mathfrak{S}_{I}^{e}(T)=D_{I}^{e}(T)\rangle\triangleleft \mathfrak{S}_{I}$ with $D_{I}^{e}(T):=\{d=(t_{i})_{i\in I} ; P_{I}(d)=e_{T}\}$ , (4)

where $e_{T}$ denotes the identity element of $T$ .

This kind of groups $\mathfrak{S}_{\infty}(T)$ and $\mathfrak{S}_{\infty}^{e}(T)$ with $T$ abelian, contain the infinite Weyl groups of classical
types, $W_{A_{\infty}}=\mathfrak{S}_{\infty}$ of type $A_{\infty},$ $W_{B_{\infty}}=\mathfrak{S}_{\infty}(Z_{2})$ of type $B_{\infty}/C_{\infty}$ , and $W_{D_{\infty}}=\mathfrak{S}_{\infty}^{e}(Z_{2})$ of type
$D_{\infty}$ , and moreover the inductive limits $\mathfrak{S}_{\infty}(Z_{f})=\lim_{narrow\infty}G(r, 1, n)$ of complex reflexion groups
$G(r, 1, n)=\mathfrak{S}_{n}(Z_{f})$ (cf. [Ka], [Sh]).

In general, for a topological group $G$ , let $E(G)$ be the set of all indecomposable (or extremal)
continuous positive definite class functions on $G$ . Then every $f\in E(G)$ gives canonically a character
of a quasi-equivalent class of factor represetations of $G$ of finite type, type $I_{n},$ $n<\infty$ , or $II_{1}$ , and
is called itself a character of such representations (see \S 2 below). When $G$ is locally compact and
in particul $ar$ discrete, $E(G)$ covers all the characters of factor representations of finite type. This is
the case of $G=\mathfrak{S}_{-}(T1$ with $T$ finite. When $T$ is not finite. this $\not\subset\Gamma OUDG$ with the $toDolo\not\subset v\tau:rd$ is

$\downarrow VlanyoI$ (llscusslons In our prevlous papers In (llscreIie case can De $\iota ransIerrecl$ to rne $caseoI$ a general

compact group $T$ .

2 Preliminaries for characters of locally compact groups
Here we give some preliminaries on characters of factor representations of topological groups and
especially of inductive limits of locally compact groups. We refer [GR], [Di, \S 6, \S 13, \S 17] and [Thl].

2.1. Continuous positive definite functions. Firstly let $G$ be a topological group. Denote by
$\mathfrak{F}(G)a*$ -algebra of all functions on $G$ zero outside a finite number of points, with operations

$\varphi*\psi(g)=\sum_{h\in G}\varphi(gh^{-1})\psi(h)$
, $\varphi^{*}(g)=\overline{\varphi(g^{-1})}$ $(\varphi,\psi\in \mathfrak{F}(G),g\in G)$ .

A function $f$ on $G$ is called positive definite if the hermitian inner product

$\langle\varphi,\psi\rangle_{f}$ $:=$
$f( \varphi*\psi^{*})=\sum_{g\in G}f(g)(\varphi*\psi^{*})(g)$

$\sum_{g,h\in G}f(h^{-1}g)\varphi(g)\overline{\psi(h)}$
for $\varphi,$ $\psi\in S(G)$ (5)

is positive definite. Let $P(G)$ be the set of all continuous positive definite functions $f$ on $G$ , and
$\mathcal{P}_{1}(G)$ be the set of all such $f’ s$ that $f(e)=1$ , where $e$ denotes the identity element of $G$ . Let $f$ and
$f’$ be positive definite functions on $G$ , then $f’$ is majorized by $f$ if, for some $\lambda>0,$ $\lambda f-f’$ is again
positive definite. Let $f’$ be positive definite and majorized by some $f\in \mathcal{P}(G)$ , then $f’$ is $necessar\dot{\tau}ly$

continuous, that is, $f’\in \mathcal{P}(G)[GR, p.3]$ . An element $f\in \mathcal{P}(G)$ is called elementary if any $f’\in P(G)$

majorized by $f$ is a scalar multiple of $f$ . The set $E(G)$ of all extremal points in the convex set $P_{1}(G)$

is equal to the set of all normalized elementary elements (cf. [GR]).
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Let $\pi$ be $a$ unitary representation of $G$ on a Hilbert space $V(\pi)$ for which the strong continuity

of $G\ni grightarrow\pi(g)$ is assumed by definition. Assume $\pi$ be cyclic and take a normalized cyclic vector
$v_{0}\in V(\pi),$ $||v_{0}||=1$ . Then,

$f(g)=\langle\pi(g)v_{0}, v_{0}\rangle$ $(g\in G)$ (6)

is in $P_{1}(G)$ . Here $f$ (resp. $\pi$ ) is said to be associated to $\pi$ (resp. $f$).

Conversely, take an $f\in P_{1}(G)$ . Then, by GNS construction, we have a cyclic unitary representation
$(\pi_{f}, \mathcal{F}.)f)$ associated to $f$ through (6). Let us recall it. Introduce in $S(G)$ a hermitian positive definite

inner product by (5). Then it is invariant under $G$ through the left translation $(L(g_{0})\varphi)(g):=$

$\varphi(g_{0^{-1}}g)$ $(g_{0}, g\in G)$ . Let $J_{j}$ be the kernel of $\langle\cdot, \cdot\rangle_{f}$ , that is, $J_{f}=\{\varphi\in \mathfrak{F}(G)$ ; $\langle\varphi, \psi\rangle_{f}=0(\psi\in$

$\mathfrak{F}(G))\}$ . Then we get a strictly positive definite inner product on $\mathfrak{F}(G)/J_{f}$ , denoted again by the same
symbol. A Hilbert space $\mathfrak{H}_{f}$ is obtained as a completion of $S(G)/J_{f}$ , and on it a unitary representation
$\pi_{f}$ is induced from $L(g),$ $g\in G$ . For $\varphi\in \mathfrak{F}(G)$ , its natural image in $\mathfrak{F}(G)/J_{f}\subset \mathfrak{H}_{f}$ is denote by $\varphi^{j}$ . Let
$v_{0}=\delta_{e}^{f}$ be the image of the delta function $\delta_{e}\in \mathfrak{F}(G)$ supported by the one point set $\{e\}$ , then it is a

unit cyclic vector for $\pi_{f}$ , and $f$ is recovered by the formula (6). Furthermore the representation $\pi_{j}$ is

actually strongly continuous because $G\ni g\vdash\Rightarrow\langle\pi_{j}(g)v_{0}, v_{0}\rangle=f(g)$ is continuous. The von Neumann

algebra generated by $\pi_{f}(G)=\{\pi_{f}(g) ; g\in G\}$ is $l\downarrow f:=\pi_{f}(G)’’=\pi_{f}(\mathfrak{F}(G))’’$ (bicommutant).

We know in [GR] that a cyclic representation $\pi$ , associated to an $f\in P_{1}(G)$ , is irreducible if and

only if $f$ is extremal.

2.2. Positive definite class functions. Now assume that an $f\in P(G)$ is invariant under $G$ or
$f(g0gg_{0^{-1}})=f(g)(g, g_{0}\in G)$ . We call $f$ also $a$ class function. Note that $f\in P(G)$ is a class function

if and only if the inner product satisfies the condition

$\langle\varphi, \psi\rangle_{j}=\langle\psi^{*},\varphi^{*}\rangle_{f}$ $(\varphi, \psi\in S(G))$ .

In this case, the kernal $J_{f}$ is a two-sided $*$-ideal of $\mathfrak{F}(G)$ , and the quotient $\mathfrak{F}(G)/J_{f}$ has naturally a

structure $of*$-algebra. By right multiplication, we have a representation $\rho_{j}$ of $\theta(G)$ and also that of

the group $G$ denoted by the same symbol:

$\rho f(\psi)\varphi^{j}=(\varphi*\psi^{\vee})^{f}$ , $\rho_{j}(g_{0})\varphi^{f}=(R(go)\varphi)^{f}$ $(\varphi, \psi\in \mathfrak{F}(G),$ $g_{0}\in G)$ ,

where $\psi^{\vee}(g):=\psi(g^{-1}),$ $(R(g_{0})\varphi)(g):=\varphi(ggo)(g\in G)$ . Then, $\rho_{f}(\mathfrak{F}(G))$ and $\rho_{j}(G)$ are contained in

the commutant $\pi_{f}(G)’=(\mu_{f})’$ . They generate a von Neumann algebra $\mathfrak{B}_{f}=\rho_{f}(\mathfrak{F}(G))’’=\rho_{f}(G)’’$

and
$\mathfrak{B}_{f}\subset(\mathfrak{U}_{j})’$ , $u_{f}\subset(\mathfrak{B}_{f})’$ .

Let us describe the common center $3_{f}=l\downarrow f\cap \mathfrak{B}_{f}$ . Let $L^{+}(G)$ be the set of all invariant $f\in P(G)$ .

For an $f\in L^{+}(G)$ , let $M^{+}(f)$ be the set of all $f’\in L^{+}(G)$ majorized by $f$ . After [Thl, Lemma 2], we

give a bijective map from the set $M^{+}(f)$ onto the set $3_{f}^{+}$ of all positive hermitian operators in $3_{f}$ as

follows. Take an $f’\in M^{+}(f)$ , then Af–f’ $\in L^{+}(G)$ for some $\lambda>0$ , and so $0\leq\langle\varphi, \varphi\rangle_{j’}\leq\lambda\langle\varphi.\varphi\rangle_{j}$ .

Therefore there exists a unique positive hermitian operator $0\leq A\leq\lambda I$ on $5_{j}$ , with the identity

operator $I$ on S5 $f$ , such that $\langle\varphi, \psi\rangle_{j’}=\langle A\varphi, \psi\rangle_{f}(\varphi, \psi\in \mathfrak{F}(G))$ . Then we $c$ an prove that $A\in 3_{j}^{+}$ .

Conversely $take$ an $A\in 3_{f}^{+}$ . Put

$f’(g)=\langle A\pi_{f}(g)v_{0}, c\prime 0\rangle_{f}=\langle\pi_{f}(g)\sqrt{A}v_{0}, \sqrt{A}u_{0}\rangle_{f}$ with $v_{0}=\delta_{e}^{f}$ $(g\in G)$ .
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Then $f’$ is continuous and positive definite. Moreover, $||A||f-f’$ is positive definite because, $(||A||f-$

$f’)(g)=\langle\pi_{j}(g)Bv_{0}, Bv_{0}\rangle_{f}$ with $B=\sqrt{||A||I-A}$ . Hence $f’$ is majorized by $f$ and so $f’\in M^{+}(f)$ .

Thus, the common center $3_{f}$ is reduced to $CI$ if and only if any $f’\in L^{+}(G)$ , majorized by $f$ , is
a scalar multiple of $f$ . This gives us $a$ criterion for that the representation $\pi_{j}$ is a factor or that the
von Neumann algebra $l\downarrow f$ is a factor.

We refer [Di, \S 6, \S 17] for the theory of characters and quote some essential parts in the next

subsection 2.3. Then we can say that, with the normalization $f(e)=1$ , the map $\mathfrak{F}(G)\in\varphirightarrow f(\varphi)=$

$\sum_{g\in G}f(g)\varphi(g)$ gives a character $t$ : $\mu_{f}\ni\pi_{j}(\varphi)rightarrow f(\varphi)\in C$ of the factor representation $\pi_{f}$ of
$S(G)$ or of $G$ , normalized as $t(I)=1$ . In this case the factor is of finite type, $I_{n}$ with $n<\infty$ or $II_{1}$

depending on whether $\dim\pi_{j}<\infty$ or $=\infty$ .
Denote by $K(G)$ the set of all $f\in L^{+}(G)$ normalized as $f(e)=1$ , and by $E(G)$ the set of all

extremal points in the convex set $K(G)$ .

Proposition 2.1. Let $G$ be a topological group and $E(G)$ the set of all continuous extremal positive

definite class functions on $G$ , normalized as $f(e)=1$ . Then, each $f\in E(G)$ is a character of a factor
representation of $G$ of finite type.

Question 2002-7: For what kind of $G$ , does $E(G)$ cover all the characters offactor representations

of finite type ?

2.3. Characters of $C^{*}$ -algebras and characters of representations.
We refer [Di, \S 6] for the theory of traces and characters for representations of $C^{*}$ -algebras. For

a $C^{*}$ -algebra $A$ , a chara cter $t$ of $A$ is, by definition, a trace on $A^{+}:=\{x\geq 0 ; x\in A\}$ which is
semifinite, lower semicontinuous, and such that any such trace majorized by $t$ is proportional to $t$ . In
turn, a trace on $A^{+}$ is a function $t$ : $A^{+}arrow[0, +\infty]$ satisfying

(i) $t(x+y)$ $=$ $t(x)+t(y)(x, y\in A^{+})$ ; (ii) $t(\lambda x)=\lambda t(x)(A\geq 0, x\in A^{+})$ ;

(iii) $t(zz^{*})$ $=$ $t(z^{*}z)(z\in A)$ .

A trace is called finite if $t(x)<+\infty$ for any $x\in A^{+}$ . A finite trace $t$ can be uniquely extended
to a positive and central linear form $f$ on $A$ , and vice versa. A linear form $f$ is called positive if
$f(x)\geq 0(x\in A^{+})$ , and $f$ is called central if $f(xy)=f(yx)(x, y\in A)$ . A positive linear form on
a $C^{*}$ -algebra $A$ is automatically continuous [Di, 2.1.8], and so a finite trace on $A^{+}$ is automatically

continuous too.
A representation with trace of a $C^{*}$ -algebra $A$ is a couple $(\pi,t)$ with the following properties:
(i) $\pi$ is a non-degenerated representation of $A$ on a Hilbert space,
(ii) $t$ is a normal faithful trace on $l\downarrow+for$ the von Neumann algebra E.t $=\pi(A)’’$

(iii) $\pi(A)\cap \mathfrak{n}_{t}$ generates $U$ , where $\mathfrak{n}_{t}=\{U\in U;t(UU^{*})<\infty\}$ .

In this case, $t$ is semifinite and $\pi$ is a sum of representations of type I and of type II. Put $t=(t\circ\pi)|_{A+}$ ,

then it is a trace on $A^{+}$ , semifinite and lower semicontinuous. A representation $\pi$ of $A$ is said to be

traceable if there exists a trace $t$ on $l\downarrow+which$ , together with $\pi$ , satisfies the above conditions $(i)-(iii)$ .

Theorem 6.7.3 in [Di] says that for a representation with trace $(\pi, t),$ $\pi$ is non-zero factonal if and

only if $t=(to\pi)|_{A+}$ is a character.

(2.3.1) There exists a canonical bijective correspondence [Di, 6.7.4] between
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$a$ . the set of qu $asi$-equivalence classes of traceable non-zero factorial representations of $A$ ;
$b$ . the set of characters of $A$ modulo multiplicative factors $>0$ .

A von Neumann algebra $l\downarrow$ is called finite if for any non-zero $U\in\mu+$ there exists a normal finite

trace $t$ on $l1^{+}$ such that $t(U)>0$ . A factorial representation $\pi$ is called of finite type if its factor

$U=\pi(A)’’$ is finite.
(2.3.2) There exists a canonical bijective correspondence [Di, 6.8.6] between
$a’$ . the set of quasi-equivalence classes of traceable non-zero factorial representations of finite type

$ofA$ ;
$b’$ . the set of characters of $A$ with norm 1.

2.4. The case of locally compact groups. Now suppose $G$ be locally compact and unimodular.

Let $\mathfrak{U}(G)=C_{c}(G)$ be the $*$-algebra of all compactly supported complex-valued continuous functions

on $G$ with operations

$\varphi*\psi(g)=\int_{G}\varphi(gh^{-1})$ th $(h)dh$ , $\varphi^{*}(g)=\overline{\varphi(g^{-1})}$ $(\varphi, \psi\in \mathfrak{U}, g\in G)$ ,

where $dh$ denotes a Haar measure on $G$ . This structure $of*$-algebra can be extended to $a*- B$anach

algebra $L^{1}(G)$ of $L^{1}$ -functions with respect to the Haar measure. The completion of $L^{1}(G)$ with

respect to a so-called $C^{*}$ -norm is the $C^{*}$ -algebra $C^{*}(G)$ of $G$ .

A unitary representation $\pi$ of $G$ corresponds bijectively to a non-degenerate representation of $L^{1}(G)$

and that of $C^{*}(G)$ through $\pi(\psi):=\int_{G}\pi(g)\psi(g)dg(\psi\in L^{1}(G))$ .

A continuous linear form on $L^{1}(G)$ is canonically given by an element in $L^{\infty}(G)$ , and an $f\in L^{\infty}(G)$

is called integrally positive definite if

$f( \varphi*\varphi^{*})=\int_{G}\int_{G}f(h^{-1}g)\varphi(g)\overline{\varphi(h)}dgdh\geq 0$ ( $\varphi\in L^{1}(G)$ or $\mathfrak{U}(G)$ ).

We know in [$GR$ , Theorem 4 and p.10] that such an $f$ equals to a continuous one almost everywhere.

From the general theory in 2.3, positive central linear forms on $C^{*}$ -algebra $A=C^{*}(G)$ are auto-

matically continuous and correspond bijectively to finite traces on $A^{+}$ . Since $L^{1}(G)$ and $\mathfrak{U}(G)$ are

both dense in $A$ , a finite trace $t$ on $A^{+}$ is determined by its restriction on $L^{1}(G)$ or on $\mathfrak{U}(G)$ . As

mentioned above for $L^{1}(G)$ , the restriction of $t$ is written with a continuous positive definite function
$f$ as

$t$ : $\mathfrak{U}(G)\ni\psirightarrow f(\psi):=\int_{G}f(g)\psi(g)\in C.$ (7)

Since $t$ is central, that is, $t(\psi_{1}*\psi_{2})=t(\psi_{2}*\psi_{1})(\psi_{1}, \psi_{2}\in \mathfrak{U}(G)),$ $f$ is invariant or a class function.

A trace $t$ , associated to $f$ , is a character if and only if $f$ is indecomposable or extremal. Thus we have

an affirmative answer to Question 2002-7 in this case.

(2.4.1) In the case of a locally compact group $G$ , the set $E(G)$ of extremal continuous positive

definite class functions covers all the characters of factorial representations of $G$ of finite type.

(2.4.2) For a locally compact group $G$ , GNS construction of a cyclic representation associated to

an $f\in \mathcal{P}_{1}(G)$ , is usually given by using integration with respect to a Haar measure. We remark here

that this construction is equivalent to the one in 2.1 not using any integration.

$-115-$



Fix an $f\in P_{1}(G)$ . Introduce in $\mathfrak{U}(G)$ a positive semidefinite inner product as

$( \varphi, \psi)_{j}:=\int\int_{G\cross G}f(h^{-1}g)\varphi(g)\overline{\psi(h)}dgdh$ $(\varphi, \psi\in \mathfrak{U}(G))$ .

Let $J_{f}’$ be the kernel of $($ . , $\cdot)_{j}$ , and take a quotient $\mathfrak{U}(G)/J_{f}’$ . Completing it with respect to the

positive definite inner product, we get a Hilbert space $fl_{j}’$ . The left multiplication of $\mathfrak{U}(G)$ generates

representation $\pi_{j}’$ of $\mathfrak{U}(G)$ and also of $G$ .

We define a liniear map $\Phi$ of $\mathfrak{U}(G)$ into $\mathfrak{H}_{j}$ as follows. As an operator-valued function on $G$ ,

$G\ni grightarrow\pi_{j}(g)$ is strongly continuous and the value $\pi_{f}(g)$ is unitary. So, for every $\varphi\in \mathfrak{U}(G)$ the

operat,or-valued integration $\pi_{j}(\varphi)=\int_{G}\pi_{j}(g)\varphi(g)dg$ is strongly convergent and $||\pi_{j}(\varphi)||\leq||\varphi||_{L^{1}}$ . It

defines a representation $of*$-algebra $\mathfrak{U}(G)$ and also of $L^{1}(G)$ on the space $\hslash_{j}$ . For $t\prime 0=\delta_{e}^{f}\in \mathfrak{H}_{f}$ , put

$\Phi(\varphi):=\pi_{j}(\varphi)v_{0}$ . Then, for $\varphi,$
$\psi\in \mathfrak{U}(G)$ ,

$\langle\Phi(\varphi), \Phi(\psi)\rangle_{f}$ $=$ $\int_{G}\int_{G}\varphi(g)\overline{\psi(h)}\langle\pi_{f}(g)v_{0}, \pi_{f}(h)v_{0}\rangle_{f}dgdh$

$=$ $\int_{G}\int_{G}\varphi(g)\overline{\psi(h)}f(h^{-1}g)dgdh=(\varphi, \psi)_{f}$ .

This means that $\Phi$ induces a linear map $\Phi’$ from $\mathfrak{U}(G)/J_{f}’$ into $ff)_{f}$ which conserves the inner product.

The map $\Phi’$ extends to an isomorphism of two Hilbert spaces $fl_{f}’$ and $B_{f}$ .

Proposition 2.2. The extended linear map $\Phi’$ : $\mathfrak{H}_{f}’arrow \mathfrak{H}_{j}$ intertwines two unitary representat2 $ons$

of $G$ as $\Phi’\pi_{j}’(g)=\pi_{f}(g)\Phi’(g\in G)$ .

(2.4.3) We give a remark about $B_{f}$ and $fl_{f}’$ . Let {V} be the set of all relatively compact neigh-

bourhoods of $e\in G$ with the order of inclusion. Take functions $\varphi_{V}\in \mathfrak{U}(G)$ such that

$\varphi_{V}\geq 0$ , $supp(\varphi_{V})\subset V$, $\int_{G}\varphi_{V}(g)dg=1$ .

Then, as is easily proved, $||\pi_{j}(\varphi_{V})v_{0}-1_{0}^{)}||arrow 0$ as $Varrow\{e\}$ , for $v_{0}=\delta_{e}^{f}$ . Corresponding to this

strong convergence in $fi_{j}$ , through the isomorphism $\Phi’$ , the image of $\varphi_{V}$ in $\mathfrak{U}(G)/J_{f}’$ should converge

strongly to an element $\xi_{0}=\Phi‘-1(v_{0})\in \mathfrak{H}_{f}’$ . To prove this directly, inside $\mathfrak{H}_{f}’$ , is not so simple as is

seen in the proof of [GR, Theorem 4].

2.5. Case of inductive limits of locally compact groups.
Now let $G$ be an inductive limit of a sequence of locally compact groups $G_{n}$ . We assume that all

$G_{n}$ are unimodular and that for each $n$ a continuous isomomorphism $\iota_{n}$ : $G_{n}rightarrow G_{n+1}$ is given.

The limit group $G= \lim_{narrow\infty}G_{n}$ is equiped with the inductive limit $\tau_{ind}$ of topologies $\tau_{G_{n}}$ on $G_{n}$ ,

which is proved to be a group topology (cf. [TSH, Theorem 2.7]). A complex valued function on $G$ is

$\tau_{ind}$ -continuous if its restriction on each $G_{n}$ is $\tau_{G_{\mathfrak{n}}}$ -continuous.
Let $\mathfrak{U}(G_{n})=C_{c}(G_{n})$ be the $*$-algebra of compactly supported continuous functions on $G_{n}$ . Fix

a Haar measure $d_{n}g$ on $G_{n}$ , and identify $\psi’\in \mathfrak{U}(G_{n})$ with a measure $\psi(g)d_{n}g(g\in G_{n})$ . For a

continuous function $F$ on $G$ , we define its integr $a1$ against this measure as $\int_{G_{n}}F(g)\psi(g)d_{n}g$ . The

convolution of $d\mu_{n}(g)=\emptyset)n(g)d_{n}g$ on $G_{n}$ and $d\mu_{m}(h)=\psi_{m}’(h)d_{m}h$ on $G_{m}$ with $n\geq m$ is defined by

$\int_{G_{n}}F(g)d(\mu_{\gamma\iota}*\mu_{m})(g):=\int_{G_{n}}\int_{G_{m}}F(gh)\psi_{n}(g)\psi_{m}(h)d_{n}gd_{m}h$ .
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Hence we have $d(\mu_{n}*\mu_{m})(g)=\psi(g)d_{n}g$ with $\psi(g)=\int_{G_{m}}\psi_{n}(gh^{-1})\psi_{m}(h)d_{m}h\in \mathfrak{U}(G_{n})$ . Define $\mu_{n}^{*}$

by $d\mu_{n}^{*}(g)=d\mu_{n}(g^{-1})$ , and let the norm $||\mu_{n}||$ be as usual, for example, if $\psi_{n}$ is re $a1$ valued, then
$|| \mu_{n}||=\int_{G_{n}}|\psi_{n}(g)|d_{n}g$ . We have $||\mu_{n}^{*}||=||\mu_{n}||$ .

With these operations and norm, the union $\mathfrak{U}(G):=$ $U_{n\geq 1}\mathfrak{U}(G_{n})$ generates a $*-B$anach algebra,

denoted by $\mathfrak{M}(G)$ , which depends on the series $(G_{n}, d_{n}g)_{n\geq 1}$ .
Now take a continuous positive definite function $f$ , i.e., $f\in P(G)$ , then the cyclic representa-

tion $\pi_{f}$ of $G$ in 2.1, associated to $f$ , gives $a$ representation of the algebra $\mathfrak{M}(G)$ through $\pi_{f}(\psi)=$

$\int_{G_{n}}\pi_{f}(g)\psi(g)d_{n}g$ for $\psi\in \mathfrak{U}(G_{n})$ . It generates the same von Neumann algebra as that in 2.1, that

is, $\pi_{j}(\mathfrak{M}(G))’’=\pi_{j}(S(G))’’=\pi_{f}(G)’’=JJ_{f}$ . Here the dependence on $(G_{n}, d_{n}g)_{n\geq 1}$ has disappeared.

If $f$ is taken from $E(G)$ , i.e., $f$ is invariant, extremal and $f(e)=1$ , then, by 2.2, $\pi_{j}$ gives a factor

representation of finite type, and also by 2.3, its character is given by $f$ as $l\downarrow f\ni\pi_{f}(\psi)rightarrow f(\psi)=$

$\int_{G_{n}}f(g)\psi(g)d_{n}g(\psi\in \mathfrak{U}(G_{n}))$ .
Conversely take a factor representation $\pi$ of $G$ of finite type and let $t$ be its normalized character

on $U_{\pi}=\pi(\mathfrak{M}(G))’’=\pi(G)’’$ . We should ask if $(\pi, t)$ can be realized from an $f\in E(G)$ as above.

Consider $f=(to\pi)$ on $\mathfrak{M}(G)$ . Then, its restriction on each $\mathfrak{U}(G_{n})$ is positive and central. Since $G_{n}$

is locally compact, it is given, as in the $case$ of 2.4, by a continuous positive definite class function $f_{n}$

on $G_{n}$ as $\psi_{n}(g)d_{n}garrow+f_{n}(\psi_{n})=\int_{G_{n}}f_{n}(g)\psi_{n}(g)d_{n}g$ . According to the inclusion $G_{n}c_{arrow}G_{n+1}$ , if the

the consistency condition

$f_{n+1}|_{G_{n}}=f_{n}$ $(n\geq 1)$ (8)

holds, we get a function $f$ on $G= \lim_{narrow\infty}G_{n}$ . Clearly $f$ is positive definite, invariant and continuous
in $\tau_{ind}$ because $f|c_{n}=f_{n}$ is continuous on $G_{n}$ for each $n$ . From the general theory, we see that

$f\in E(G)$ . Thus our question here is the following.

Question 2002-8: Let $G$ be an inductive limit of a sequence of locally compact groups $G_{n}rightarrow$

$G_{n+1}(n\geq 1)$ with continuous isomorphisms. For a factor representations $\pi$ of $G$ of finite $type_{f}$ let a

series of positive definite class functions $f_{n}$ on $G_{n}$ be as above. Then, does the consistency condition

(8) hold ?

The problem of determining explicitly all the characters of factorial representations of $G$ of finite

type is, for good categories of $G$ , equivalent to determining all elements in $E(G)$ . For discrete groups,
this is the case and the problem has been studied in $[Thl]-[Th2]$ , [Sk], $[Hi3]-[Hi4]$ and $[HH1]-[HH2]$ .

3 Structure of wreath product groups $\mathfrak{S}_{\infty}(T)=D_{\infty}(T)x\mathfrak{S}_{\infty}$

Fix $a$ compact group $T$ , and take the wre $ath$ product group $6_{\infty}(T)$ of $T$ with the symmetric group
$6_{\infty}$ :

$\mathfrak{S}_{\infty}(T)=D_{\infty}(T)\lambda \mathfrak{S}_{\infty}$ , $D_{\infty}(T):= \prod_{i\in N}’T_{i}$ , $T_{i}=T$ $(i\in N)$ . (9)

Here $a\in \mathfrak{S}_{\infty}$ acts on $d=(t_{i})_{i\in N}\in D_{\infty}(T)$ as $\sigma(d)=(t_{\sigma^{-1}(i)})_{i\in N}$ . We identify frequently $d$ and $a$

with their images in $\mathfrak{S}_{\infty}(T)$ respectively, then $\sigma d\sigma^{-1}=a(d)$ and

$(d, \sigma)(d‘, \sigma’)=(d(ad’a^{-1}), \sigma a’)$ $(d, d’\in D_{\infty}(T),$ $a,$
$\sigma’\in \mathfrak{S}_{\infty})$ .
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3.1. Standard decomposition of elements and conjugacy classes.

An element $g=(d, \sigma)\in G=\mathfrak{S}_{\infty}(T)$ is called basic in the following two cases:

CASE 1: $\sigma$ is cyclic and $supp(d)\subset supp(\sigma)$ ;

CASE 2: $a=1$ and for $d=(t_{i})_{i\in N},$ $t_{q}\neq e_{T}$ only for one $q\in N$ .

Here $1\in \mathfrak{S}_{\infty}$ denotes the trivial permutation, and the element $(d, 1)$ in Case 2 is denoted by $\xi_{q}$ , and

put $supp(\xi_{q}):=supp(d)=\{q\}$ .

For a cyclic permutation $\sigma=(i_{1}, i_{2}, \ldots, i_{t})$ of $\ell$ integers, we define its length as $l(a)=\ell$ , and

for the identity permutation 1, put $\ell(1)=1$ for convenience. In this connection, $\xi_{q}$ is also denoted

by $(t_{q}, (q))$ with a trivial cyclic permutation $(q)$ of length 1. In Cases 1 and 2, put $\ell(g)=\ell(\sigma)$ for
$g=(d, \sigma)$ , and $\ell(\xi_{q})=1$ .

An arbitrary element $g=(d, \sigma)\in G$ , is expressed as a product of basic elements as

$g=\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}g_{1}g_{2}\cdots g_{m}$ (10)

with $g_{j}=(d_{j}, \sigma_{j})$ in Case 1, in such a way that the supports of these components, $q_{1},$ $q_{2},$
$\ldots,$

$q_{r}$ , and
$supp(g_{j})=supp(a_{j})(1\leq j\leq m)$ , are mutually disjoint. This expression of $g$ is unique up to the

orders of $\xi_{q_{k}}’ s$ and $g_{j}’ s$ , and is called standard decomposition of $g$ . Note that $\ell(\xi_{q_{k}})=1$ for $1\leq k\leq r$

and $\ell(g_{j})=\ell(a_{j})\geq 2$ for $1\leq j\leq m$ , and that, for $\mathfrak{S}_{\infty}$ -components, $\sigma=a_{1}\sigma_{2}\cdots\sigma_{m}$ gives the cycle

decomposition of $\sigma$ .

To write down conjugacy class of $g=(d, \sigma)$ , there appear products of components $t_{i}$ of $d=(t_{i}))$

where the orders of taking products are crucial when $T$ is not abelian. So we should fix notations

well.
We denotes by $[t]$ the conjugacy class of $t\in T$ , and by $T/\sim$ the set of all conjugacy classes of $T$ ,

and $t\sim t’$ denotes that $t,$ $t’\in T$ are mutually conjugate in $T$ . For a basic component $g_{j}=(d_{j}, \sigma_{j})$ of

$g$ , let $a_{j}=$ $(i_{j,1}i_{j,2}$ .. . $i_{j,\ell_{J}})$ and put $Ii_{j}^{r}:=supp(\sigma_{j})=\{i_{j,1}, i_{j,2}, \ldots, i_{j,\ell_{J}}\}$ with $\ell_{j}=\ell(a_{j})$ . For
$d_{j}=(t_{i})_{i\in K_{J}}$ , we put

$P_{\sigma_{J}}(d_{j}):=[t_{\ell_{J}}’t_{t_{j}-1}’\cdots t_{2}’t_{1}’]\in T/\sim$ with $t_{k}’=t_{i_{g,k}}(1\leq k\leq\ell_{j})$ . (11)

Note that the product $P_{\sigma_{J}}(d_{j})$ is well-defined, because, for $t_{1},$ $t_{2},$
$\ldots,$

$t_{\ell}\in T$ , we have $t_{1}t_{2}\cdots t_{l}\sim$

$t_{k}t_{k+1}\cdots t_{\ell}t_{1}\cdots t_{k-1}$ for any $k$ , that is, the conjugacy cl $ass$ does not depend on any cyclic permutation
of $(t_{1}, t_{2}, \ldots, t_{\ell})$ .

Lemma 3.1. (i) Let $\sigma\in \mathfrak{S}_{\infty}$ be a cycle, and put $Ii’=supp(\sigma)$ . Then, an element $g=(d, a)\in$

$\mathfrak{S}_{K}(T)$ ( $=:G_{K}$ (put)) is conjugate in it to $g’=(d’, \sigma)\in G_{K}$ with $d’=(t_{i}’)_{i\in K},t_{i}’=e_{T}(i\neq i_{0}),$ $[t_{i_{0}}’]=$

$P_{\sigma}(d)$ for some $i_{0}\in I\dot{\iota}’$ .
(ii) Identify $\tau\in \mathfrak{S}_{\infty}$ with its image in $G=\mathfrak{S}_{\infty}(T)$ . Then we have, for $g=(d, a)$ ,

$\tau g\tau^{-1}=(\tau(d), \tau\sigma\tau^{-1})(=:(d’, \sigma’)$ (put) $)$ ,

and $P_{\sigma’}(d’)=P_{\sigma}(d)$ .

Theorem 1. Let $T$ be a compact group. Take an element $g\in G=\mathfrak{S}_{\infty}(T)$ and let its standard

decomposition into baszc elements be $g=\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}g_{1}g_{2}\cdots g_{m}$ in (10) , with $\xi_{q_{k}}=(t_{q_{k}}, (q_{k}))$ , and
$g_{j}=(d_{j}, \sigma_{j}),$

$\sigma_{j}$ cyclic, $supp(d_{j})\subset supp(\sigma_{j})$ . Then the conjugacy class of $g$ is determined by

$[t_{q_{k}}]\in T/\sim$ $(1 \leq k\leq r)$ and $(P_{\sigma_{J}}(d_{j}),\ell(\sigma_{j}))$ $(1 \leq j\leq m)$ , (12)
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where $P_{\sigma_{3}}(d_{j})\in T/\sim$ and $\ell(a_{j})\geq 2$ . (Note that we put $l(\xi_{q_{k}})=1,$ $l(g_{j})=\ell(a_{j})\geq 2.$ )

3.2. The case where $T$ is abelian.
In the case where $T$ is abelian, the set $T/\sim of$ conjugacy classes is equal to $T$ itself. Take $g\in G$ ,

and take its stand $ard$ decompositon (10). For $g_{j}=(d_{j}, \sigma_{j})$ , put $g_{j}’:=(d_{j}’, a_{j})$ , where $d_{j}’=(t_{i}’)_{i\in N}$

with $t_{i_{O}}’=P(d_{j})= \prod_{i\in K_{J}}t_{i}$ for some $i_{0}\in K_{j}:=supp(a_{j})$ , and $t_{i}’=e_{T}$ elsewhere.

Lemma 3.2. Let $T$ be abelian. For a $g=(d, a)\in \mathfrak{S}_{\infty}(T)$ , let its standard decomposition be $g=$

$\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}g_{1}g_{2}\cdots g_{m}$ in (10). Define $g_{j}’(1\leq j\leq m)$ as above and put $g’=\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}g_{1}’g_{2}’\cdots g_{m}’$ .

Then, $g$ and $g’$ are mutually conjugate in $\mathfrak{S}_{\infty}(T)$ .

Corollary. A complete set of parameters of the conjugacy classes of non-trivial elements $g\in$

$\mathfrak{S}_{\infty}(T)$ is given by

$\{t_{1}’, t_{2}’, \ldots, t_{r}’\}$ and $\{(u_{j}, \ell_{j}) ; 1\leq j\leq m\}$ , (13)

where $t_{k}’=t_{q_{k}}\in T^{*}:=T\backslash \{e_{T}\},$ $u_{j}=P(d_{j})\in T,$ $p_{j}\geq 2$ , and $r+m>0$ .

3.3. Finite-dimensional irreducible representations.
Let us study finite-dimensional continuous irreducible representations $(=IRs)$ of $G=\mathfrak{S}_{\omega}(T)$ .

Similarly as in the case a finite group $T$ in [HH1], we can prove the following facts.

Lemma 3.3. $A$ finite-dimensional continuous irreducible representation $\pi$ of $\mathfrak{S}_{\infty}(T)$ is $a$ one-

dimensional character, and is given in the form $\pi=\pi_{\zeta,\epsilon}$ with

$\pi_{\zeta,\epsilon}(g)=\zeta(P(d))$ (sgn $\Theta^{\sim)^{\mathcal{E}}}(a)$ for $g=(d, a)\in \mathfrak{S}_{\infty}(T)=D_{\infty}(T)x\mathfrak{S}_{\infty}$ ,

where (is $a$ one-dimensional character of $T,$ $P(’ d)$ is a product of components $t_{i}$ of $d=(t_{i})$ , and
$sgn_{\mathfrak{S}}(\sigma)$ denotes the usual sign of $a$ and $\epsilon=0,1$ . (Since $\zeta(P(d))=\prod_{i\in N}\zeta(t_{i})$ , the order of taking

product for $P(d)$ has no meaning even if $T$ is not abelian.)

Lemma 3.4. Assume that $T$ is abelian. Then, a finite-dimensional continuous irreducible repre-

sentation $\pi$ of $\mathfrak{S}_{\infty}^{e}(T)$ is $a$ one-dimensional character, and is given in the form

$\pi(g)=$ (sgn $\Theta^{\sim)^{\epsilon}}(a)$ for $g=(d, \sigma)\in \mathfrak{S}_{\infty}^{e}(T)=D_{\infty}^{e}(T)\rangle\triangleleft \mathfrak{S}_{\infty}$ .

4 Characters of $\mathfrak{S}_{\infty}(T)$ with $T$ any compact group
4.1. Character formula for factor representations of $G$ of finite type.

Let $\hat{T}$ be the dual of $T$ consisting of all equivalence classes of continuous irreducible unitary repre-

sentations. We identify every equivalence class with one of its representative. Thus $\zeta\in\hat{T}$ is an IR

and denote by $\chi_{(}$ its character: $\chi_{\zeta}(t)=tr(\zeta(t))(t\in T)$ , then $\dim\zeta=\chi_{\zeta}(e\tau)$ .

For a $g\in G=\mathfrak{S}_{\infty}(T)$ , let its standard decomposition into basic components be

$g=\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}g_{1}g_{2}\cdots g_{m}$ , (14)

where the supports of components, $q_{1},$ $q_{2},$
$\ldots,$

$q_{r}$ , and $supp(g_{j}):=supp(\sigma_{j})(1\leq j\leq m)$ , are
mutually disjoint. Furthermore, $\xi_{q_{k}}=(t_{q_{k}}, (q_{k})),$ $t_{q_{k}}\neq e_{T}$ , with $\ell(\xi_{q_{k}})=1$ for $1\leq k\leq r$ , and $\sigma_{j}$ is a

$-119-$



cycle of length $\ell(\sigma_{j})\geq 2$ and $supp(d_{j})\subset K_{j}=supp(\sigma_{j})$ . For $\mathfrak{S}_{\infty}$ -components, $a=a_{1}\sigma_{2}\cdots\sigma_{m}$ gives
the cycle decomposition of $\sigma$ . For $d_{j}=(t_{i})_{i\in K_{j}}\in D_{K_{J}}(T)rightarrow D_{\infty}(T)$ , put $P_{\sigma_{j}}(d_{j})$ as in (11).

For one-dimensional charcters of $\mathfrak{S}_{\infty}$ , we introduce simple notation as

$\chi_{\epsilon}(\sigma):=sgn_{\Theta^{\sim}}(\sigma)^{\epsilon}$ $(\sigma\in \mathfrak{S}_{\infty} ; \epsilon=0,1)$ . (15)

As a parameter for characters of $G=\mathfrak{S}_{\infty}(T)$ , we prepare a set

$\alpha_{\zeta,\epsilon}(\zeta\in\hat{T}, \epsilon\in\{0,1\})$ and $\mu=(\mu_{\zeta})_{\zeta\in\hat{T}}$ , (16)

of decreasing sequences of non-negative numbers

$\alpha_{\zeta,\epsilon}=(\alpha_{\zeta,\epsilon,i})_{i\in N},$ $\alpha_{\zeta,\epsilon,1}\geq\alpha_{(,\epsilon,2}\geq\alpha_{\zeta,\epsilon,3}\geq$ . . . $\geq 0$ ;

and a set of non-negative $\mu_{(}\geq 0(\zeta\in\hat{T})$ , which altogether satisfies the condition

$\sum_{(\in\hat{T}}\sum_{\epsilon\in\{0,1\}}||\alpha_{\zeta,\epsilon}||+||\mu||\leq 1$

, (17)

with $|| \alpha_{\zeta,\epsilon}||=\sum_{i\in N}\alpha_{\zeta,\epsilon,i}$ , $|| \mu||=\sum_{\zeta\in\hat{T}}\mu_{\zeta}$ .

Theorem 2. Let $G=\mathfrak{S}_{\infty}(T)$ be a wreath product group of a compact group $T$ with $\mathfrak{S}_{\infty}$ . Then,

for a parameter

$A:=((\alpha_{\zeta,\epsilon})_{(\zeta,\epsilon)\in\hat{T}x\{0,1\}}$ ; $\mu)$ , (18)

in (16) $-(17)$ , the following formula determines a character $f_{A}$ of $G$ : for an element $g\in G$ , let (14)

be its standard decomposition, then

$f_{A}(g)$ $=$ $\prod_{1\leq k\leq r}\{\sum_{\zeta\in\hat{T}}(\sum_{\epsilon\in\{0,1\}}\sum_{i\in N}\frac{\alpha_{\zeta,\epsilon,i}}{\dim\zeta}+\frac{\mu_{\zeta}}{\dim\zeta})\chi_{\zeta}(t_{q_{k}})\}$

(19)$\prod_{1\leq j\leq m}\{\sum_{\zeta\in\hat{T}}(\sum_{\epsilon\in\{0,1\}}\sum_{i\in N}(\frac{\alpha_{\zeta,\epsilon,i}}{\dim\zeta})^{\ell(\sigma_{J})}\chi_{\epsilon}(\sigma_{j}))\chi_{\zeta}(P_{\sigma_{j}}(d_{j}))\}$ ,

where $\chi_{\epsilon}(\sigma_{j})=sgn_{\mathfrak{S}}(\sigma_{j})^{\epsilon}=(-1)^{\epsilon(l(\sigma_{j})-1)}$ .

Conversely any character of $G$ is given in the form of $f_{A}$ .

in
$E_{Xamp1e4.1}Aarezero,\cdot hff^{Tw_{m}}(ence\alpha_{\zeta,\epsilon}=(1,0,0,..),$$correspondstoone- dimensiona1character\pi_{\zeta\epsilon}ofGineC^{\backslash }aae\Psi h\grave{p}_{\alpha_{\zeta,\epsilon,1}.=1forafixed(\zeta,\epsilon)\in\hat{T}\cross\{0,1\}anda11otherp,arameters}a$

Lemma 3.3. Except these cases of one-dimensional representations of $G$ , a character $f_{A}$ given above

corresponds to a factor representation of $G$ of type $II_{1}$ .

The case “
$\alpha_{(,\epsilon}=(\alpha_{\zeta,\epsilon,i})_{i\in N}=0$ for all $(\zeta, \epsilon)\in\hat{T}\cross\{0,1\}$ and $\mu=(\mu_{\zeta})_{\zeta\in\hat{T}}=0$

” corresponds to

the regular representation $\lambda_{G}$ of $G$ .

Consider the case where $||\alpha_{\zeta,0}||+||\alpha_{\zeta,1}||+\mu_{\zeta}=1$ for a fixed $(\zeta, \epsilon)\in\hat{T}\cross\{0,1\}$ and all other

parameters in $A$ are zero. Put or $=\alpha_{(,0},$ $\beta=\alpha_{(,1}$ , and let $f_{\alpha,\beta}$ be Thoma’s character for $\mathfrak{S}_{\infty}$ . Denote

by V the natur $a1$ homomorphism from $G$ onto $\mathfrak{S}_{\infty}\cong G/D$ with normal subgroup $D=D_{\infty}(T)$ ,

and put $f_{\alpha,\beta}^{\#}:=f_{\alpha,\beta}o$ W. Then the character $f_{A}(g)$ in this case is equal to $f_{\alpha,\beta}^{\#}(g)\cdot\pi_{(,0}(g)$ with
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a one-dimensional character $\pi_{\zeta,0}$ of $G$ with $\epsilon=0$ . In particular, the case where $\mu_{(}=1$ for a fixed
$\zeta\in\hat{T}$ , corresponds to the induced representation $Ind_{D}^{G}(D$ , where $\zeta_{D}(d):=\zeta(P(d)),$ $d\in D$ , is a one-
dimensional character of $D=D_{\infty}(T)$ . The character $f_{A}$ is equal to $\zeta_{D}$ on $Drightarrow G$ , and zero outside

of $D$ . In the case $\zeta=1_{T}$ , this induced representation is nothing but the regular representation of
$G/D\cong \mathfrak{S}_{\infty}$ .

4.2. Remarks on the case where $T$ is a finite group.
Denote by $1_{T}$ the identity representation of $T$ , and put $\hat{T}^{*}:=\hat{T}\backslash \{1_{T}\}$ . Then,

$|T| \delta_{e_{T}}=\sum_{\zeta\in\hat{T}}(\dim\zeta)\chi_{(}$

, as functions on $T$ , (20)

$0$ $=$
$\sum_{(\in\hat{T}}(\dim\zeta)\chi_{\zeta}$

,
$1= \chi_{1_{T}}=-\sum_{(\in\hat{T}}.(\dim\zeta)\chi_{\zeta}$

, on $T^{*}$ (21)

The parameter $A$ of character is not necessarily unique because of the line $ar$ dependence (21) on
$T^{*}$ of functions $\chi_{(},$

$\zeta\in\hat{T}$ . To establish uniqueness of parameter, we transfer from the parameter $A$ ,

to another parameter $B=\emptyset(A)$ given by

$B=\phi(A):=((\alpha_{\zeta,\epsilon})_{((,\epsilon)\in\hat{T}\cross\{0,1\}}$ ; $\kappa)$ , (22)

with $\kappa=(\kappa_{\zeta})_{(\in\hat{T}}$ . $,$

$\kappa_{\zeta}=\mu_{(}-(\dim\zeta)^{2}\mu_{1_{T}}(\zeta\in\hat{T}^{*})$ .

Then, the uniqueness of parameter is established. However the inequality (17) for the range of param-
eter $A$ containing $\mu$ cannot be translated in $a$ compact form in another parameter $\phi(A)$ containing $\kappa$

in place of $\mu$ .
We can propose another normalization of the parameter $\mu=(\mu_{\zeta})_{(\in\hat{T}},$ $\mu(\geq 0$ , in the $case$ where $T$

is non-trivial. It is the following maximal condition on $A$ , whose merit is that the character formula
(19) is valid even for $t_{q_{k}}=e_{T}$ (not necessarily $t_{q_{k}}\in T^{*}$ ):

(MAX)
$\sum_{\zeta\in\hat{T}}\sum_{\epsilon\in\{0,1\}}||\alpha_{\zeta,\epsilon}||+||\mu||=1$

. (23)

5 Characters of wreath product group $\mathfrak{S}_{\infty}(T)$ with $T$ abelian

When $T$ is abelian, the general character formula (19) for $\mathfrak{S}_{\infty}(T)=D_{\infty}(T)\rangle\triangleleft \mathfrak{S}_{\infty}$ with a compact

group $T$ has a simplified form.
In this abelian case, $\hat{T}$ is nothing but the dual group consisting of all one-dimensional characters of

$T$ , and for each $\zeta\in\hat{T}$ , its character $\chi_{\zeta}$ is identified with $\zeta$ itself.

For a $g\in G=\mathfrak{S}_{\infty}(T)$ , let its standard decomposition be as in (14)
$)$

$g=\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}g_{1}g_{2}\cdots g_{m}$ ,

with $\xi_{q_{k}}=(t_{q_{k}}, (q_{k})),t_{q_{k}}\neq e_{T}$ , for $1\leq k\leq r$ , and $g_{j}=(d_{j}, \sigma_{j})$ for $1\leq j\leq m$ . Put $Ii_{j}’=supp(\sigma_{j})$ ,

and for $d_{j}=(t_{i})_{i\in K_{J}}\in D_{K_{J}}(T)c\Rightarrow D_{\infty}(T)$ , put

$P_{K_{j}}(d_{j})= \prod_{i\in K_{j}}t_{i}$ , ( $(d_{j}):=((P_{K_{J}}(d_{j}))= \prod_{i\in K_{j}}((t_{i})$ . (24)

As a parameter for characters of $G=\mathfrak{S}_{\infty}(T)$ , we prepare a set

$\alpha_{\zeta,\epsilon}((\in\hat{T}, \epsilon\in\{0,1\})$ , and $\mu=(\mu_{(})_{(\in\hat{T}}$ , (25)
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of decreasing sequences of non-negative numbers $\alpha_{\zeta,\epsilon}=(\alpha_{\zeta,\epsilon,i})_{i\in N}$ , and $a$ set of non-negative
$\mu_{\zeta}\geq 0(\zeta\in\hat{T})$ , which satisfies the condition

$\sum_{\zeta\in\hat{T}}\sum_{\epsilon\in\{0,1\}}||\alpha_{\zeta,\epsilon}||+||\mu||\leq 1$

. (26)

Theorem 3. Let $G=\mathfrak{S}_{\infty}(T)$ be a wreath product group of a compact abelzan group $T$ with $\mathfrak{S}_{\infty}$ .

Then, for a parameter $A:=((\alpha_{\zeta,\epsilon})_{(\zeta,\epsilon)\in\hat{T}x\{0,1\}}$ ; $\mu$), in (25) $-(26)$ , the following formula determines

a character $f_{A}$ of $G$ : for an element $g\in G$ , let its standard decomposition be as above, then

$f_{A}(g)$ $=$ $\prod_{1\leq k\leq f}\{\sum_{\zeta\in\hat{T}}(\sum_{\epsilon\in\{0,1\}}\sum_{i\in N}\alpha_{(,\epsilon,i}+\mu_{\zeta})\zeta(t_{q_{k}})\}$

(27)$\prod_{1\leq j\leq m}\{\sum_{\zeta\in\hat{T}}(\sum_{\epsilon\in\{0,1\}}\sum_{i\in N}(\alpha_{\zeta,\epsilon,i})^{\ell(\sigma_{J})}\cdot\chi_{\epsilon}(\sigma_{j}))\zeta(d_{j})\}$ ,

where $\chi_{\epsilon}(\sigma_{j})=sgn_{6^{\vee}}(a_{j})^{\epsilon}=(-1)^{\epsilon(\ell(\sigma_{J})-1)}$ , and $\zeta(d_{j})$ as in (24).
Conversely any character of $G$ is given in the form of $f_{A}$ .

6 Characters of the subgroup $\mathfrak{S}_{\infty}^{e}(T)\subset \mathfrak{S}_{\infty}(T),$ $T$ abelian
For the natural subgroup $G^{e}:=\mathfrak{S}_{\infty}^{e}(T)=D_{\infty}^{e}(T)\rangle\triangleleft \mathfrak{S}_{\infty}$ with

$D_{\infty}^{e}(T):=\{d=(t_{i}):\in N ; P(d)=e_{T}\}$ , $P(d):= \prod_{i\in N}t_{i}$ , (28)

we deduce a general character formula from the one for $G:=\mathfrak{S}_{\infty}(T)$ .

Take an element $g\in G^{e}=\mathfrak{S}_{\infty}^{e}(T)$ and let its standard decomposition be $g=\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}$

$g_{1}g_{2}\cdots g_{m}$ with $\xi_{q_{k}}=(t_{q_{k}}, (q_{k}))$ and $g_{j}=(d_{j}, \sigma_{j}),$ $d_{j}=(t_{i})_{i\in K_{J}},$ $If_{j}=supp(\sigma_{j})$ . Note that each
component $\xi_{q_{k}}$ does not belong to $G^{e}$ , and that the component $g_{j}=(d_{j}, a_{j})$ belongs to $G^{e}$ if and only

if $P(d_{j})= \prod_{i\in K_{j}}t_{i}=e_{T}$ . However, after careful discussions on the relation between $G^{e}$ and $G$ , we

obtain the following result for the subgroup $G^{e}$ from the result for $G$ .

Theorem 4. (i) Let $G^{e}=\mathfrak{S}_{\infty}^{e}(T)$ be the subgroup of $G=\mathfrak{S}_{\infty}(T)$ given by (28). For a parameter

$A:=((\alpha_{\zeta,\epsilon})_{(\zeta,\epsilon)\in\hat{T}\cross\{0,1\}}$ ; $\mu)$ , (29)

$m(25)-(26)$ , the following formula determines a character $f_{A}^{e}$ of $G^{e}$ : for an element $g\in G^{e}$ , let its
standard decomposition be as above, then

$f_{A}^{e}(g)$ $=$ $\prod_{1\leq k\leq r}\{\sum_{(\in\hat{T}}(\sum_{\epsilon\in\{0,1\}}\sum_{i\in N}\alpha_{\zeta,\epsilon},:+\mu_{\zeta})\zeta(t_{q_{k}})\}$

(30)$x$ $\prod_{1\leq j\leq m}\{\sum_{\zeta\in\hat{T}}(\sum_{\epsilon\in\{0,1\}}\sum_{i\in N}(\alpha_{\zeta,\epsilon,i})^{l(\sigma_{J})}\cdot\chi_{\epsilon}(\sigma_{j}))\zeta(d_{j})\}$ ,

where $\chi_{e}(\sigma_{j})=sgn_{\mathfrak{S}}(\sigma_{j})^{\epsilon}=(-1)^{\epsilon(\ell(\sigma_{J})-1)}$, and ( $(d_{j})$ as in (24).
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Conversely any character of $G^{e}$ is given in the form of $f_{A}^{e}$ .

(ii) Assume that two parameters for characters

$A=((\alpha_{\zeta\epsilon}))_{(\zeta,\epsilon)\in\hat{T}\cross\{0,1\}}$ ; $\mu)$ and $A’=((\alpha_{(,\epsilon}’)_{(\zeta,\epsilon)\in\hat{T}\cross\{0,1\}}$ ; $\mu’)$

satisfy the normalization condition (MAX) for $\mu$ and $\mu’$ respectively. Then, they determine the same

character, that is, $f_{A}^{e}=f_{A}^{e},$ , if and only if $A’=R((0)A$ for some ($0\in\hat{T}$ , where

$R((_{0})A:=((\alpha_{\zeta,\epsilon}’)_{((,\epsilon)\in\hat{T}\cross\{0,1\}}$ ; $R((0)\mu)$ (31)

with $\alpha_{\zeta,\epsilon}’=\alpha_{\zeta\zeta_{0}^{-1},\epsilon}(((, \epsilon)\in\hat{T}\cross\{0,1\});$ $R(\zeta_{0})\mu=(\mu_{(}’)_{(\in\hat{T}},$ $\mu_{(}’=\mu_{((_{0^{-1}}}$

In this case, as characters on $G\supset G^{e_{2}}$ we have $f_{A’}(g)=\pi_{(0,0}(g)\cdot f_{A}(g)(g\in G)$ .

7 Method of proving Theorem 2 : The first part

Our proof of Theorem 2 $c$ an be carried out just as in the case of $\mathfrak{S}_{\infty}(T)$ with finite groups $T$

in [HH2]. It consists of two parts. The first part is to prepare seemingly sufficiently big family of

factorizable (hence extremal by the criterion in Theorem 6 below) continuous positive definite class

functions on $G=\mathfrak{S}_{\infty}(T)$ . The second part is to guarantee that actually all extremal continuous

positive definite class functions or characters have been already obtained in the first part.

Here in this section we explain the first part of the proof. It has two important ingredients.

7.1. Limits of centralizations of positive definite functions.
The first ingredient is a method of taking limits of centralizations of positive definite functions. For

a continuous positive definite function $f$ on a topological group $G$ and a compact subgroup $G’\subset G$ ,

we define a centralization of $f$ with respect to $G’$ as

$f^{G’}(g):= \int_{g’\in G’}f(g’gg’)-1d\mu_{G’}(g’)$ , (32)

where $d\mu_{G’}$ denotes the normalized Haar measure on $G$‘.

Assume that we have an increasing sequence of compact subgroups $G_{N}\nearrow G$ . Consider $a$ series $f^{G_{N}}$

of centralizations of $f$ with respect to $G_{N}$ and study its pointwise convergence limit, $\lim_{Narrow\infty}f^{G_{N}}$ ,

which depends heavily on the choice of the series $G_{N}\nearrow G$ . We study the case where the limit function

is again continuous.
In the case of discrete groups, we have studied in $[Hi3]-[Hi4]$ limits of centralizations of positive

definite functions on the infinite symmetric group $G=\mathfrak{S}_{\infty}$ , and in particular recovered all the

characters of $G$ given in [Th2]. We have also calculated in [HH1] for $G=\mathfrak{S}_{\infty}(T)$ with $T$ any

finite abelian group $T$ , and in [HH2] for $G=\mathfrak{S}_{\infty}(T)$ with $T$ any finite group $T$ , various limits of

centaralizations of positive definite matrix elements of irreducible or non-irreducible representations

induced from subgroups of wreath product type.

Observation. For a certain choice of a subgroup $H$ and one of its unitary representation $\pi$ , the

family of limits of centralizations of matrix elements of the induced representation $\rho=Ind_{H}^{G}\pi$ covers

all the characters of the group $G=\mathfrak{S}_{\infty}(T)$ with $T$ any finite group.
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7.2. Inducing up of positive definite functions and their centralizations.
The second ingredient is inducing up positive definite functions from subgroups. After choosing

appropriate subgroups $H$ and their representations $\pi$ , we use their matrix elements $f_{\pi}$ as positive

definite functions on $H$ to be induced up to $G$ , and then to be centralized. We have constructed

in [Hil] a huge family of irreducible unitary representations ( $=$ IURs) of a wreath product group
$G=\mathfrak{S}_{\infty}(T)=D_{\infty}(T)\chi \mathfrak{S}_{\infty}$ with any finite group $T$ , by taking so-called wreath product type

subgroups $H$ in a ‘ saturated fashion ‘, and their IURs $\pi$ of a certain form to get IURs of $G$ as induced

representations $\rho=Ind_{H}^{G}\pi$ .

For our present purpose of getting (seemingly) all possible extremal continuous positive definite

class functions on $G$ , we choose simpler subgroups of degenerate wreath product type and their IURs.

In this case, we get unitary representations $\rho=Ind_{H}^{G}\pi$ which are very far from to be irreducible, but

sufficient for our purpose. This method can be applied to the case with $T$ any compact group.

7.2.1. Inducing up of positive definite functions. In a general setting, let $G$ be a group and
$H$ its subgroup. For a positive definite function $f$ on $H$ , extend it onto $G$ by putting $0$ outside $H$ and

denote it by $Ind_{H}^{G}f$ or again by the same symbol $f$ in case of no danger of misunderstanding. Then,

the inducing up $Ind_{H}^{G}f$ of $f$ onto $G$ is again positive definite.
In the case where $G$ is a topological group, the function $Ind_{H}^{G}f$ is usually not continuous even if $f$ is

continuous on $H$ with respect to the relative topology. Let $G’$ be a compact subgroup of $G$ and take

a centralization $F^{G’}$ of $F=Ind_{H}^{G}f$ . Since $F$ is zero outside of $H$ , the value of centralization $F^{G’}(g)$

is $\neq 0$ only for elements $g$ which are conjugate under $G_{N}$ to some $h\in H$ , and moreover, for $h\in H$ ,
$F^{G’}(h)= \int_{G},$ $f(g’hg’)-1d\mu_{G’}(g’)$ , where $f(g’hg’)-1=0$ if $g’hg’-1\not\in H$ . We can hope that $F^{G’}$ is
continuous on $G’$ .

We study limits of $F^{G_{N}}$ for increasing sequences $G_{N}\nearrow G$ of compact subgroups of $G$ , hoping that

the limits give us positive definite functions which are continuous with respect to the inductive limit

topology $\tau_{ind}=\lim_{Narrow\infty^{\tau_{G_{N}}}}$ .
Let us give a remark on the case where $G$ is discrete. Take a unitary representation $\pi$ of a subgroup

$H$ , and consider an induced representation $\rho=Ind_{H}^{G}\pi$ . For a non-zero vector $v$ in the representation
space of $\pi$ , consider a positive definite function on $H$ associated to $\pi$ as $f_{\pi}(h)=\langle\pi(h)v, v\rangle(h\in H)$ .

Proposition 5. Assume $G$ be discrete. The inducing up $F=Ind_{H}^{G}f_{\pi}$ of a positive definite
function $f_{\pi}$ on $H$ associated to $\pi$ is again a positive definite function on $G$ associated to $\rho=Ind_{H}^{G}\pi$ .

7.2.2. Centralizations of $F=Ind_{H}^{G}f_{\pi}$ and combinatorial calculations.
Let $G_{N}\nearrow G$ be an increasing sequence of compact subgroups going up to $G$ , then

$F^{G_{N}}(h)= \int_{G_{N}}f_{\pi}(g’hg’)-1d\mu_{G_{N}}(g’)$ , (33)

where $f_{\pi}(g’hg’)-1$ $=0$ if $g’hg’-1\not\in H$ . The condition $g’hg’-1\in H$ for $g’\in G_{N}$ , is translated into

certain combinatorial conditions, and to get the limit as $Narrow\infty$ , we have to calculate asymtotic

behavior of several ratios of combinatorial numbers.
The details in the case of $G=\mathfrak{S}_{\infty}$ and $\mathfrak{S}_{\infty}(T)$ with $T$ finite are given in the papers cited above.
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8 The second part of the proof
The second part of our proof contains also two ingredients.

8.1. The first one is to generalize Thoma’s criterion, Satz 1 in [Th2], for that a positive definite

class function is extremal or indecomposable.

Theorem 6. Let $T$ be a compact group, and $f$ a continuous positive definite class function on
$G=\mathfrak{S}_{\infty}(T)$ normalized as $f(e)=1$ . Then $f$ is extremal (or indecomposable), if and only if it has

the following properties which are mutually equivalent:

(FTP) [Factorizability Property] For any $g=(d, \sigma)\in G$ , let $g=\xi_{q_{1}}\xi_{q_{2}}\cdots\xi_{q_{r}}g_{1}g_{2}\cdots g_{m},$ $\xi_{q}=$

$(t_{q}, (q)),$ $g_{j}=(d_{j}, \sigma_{j})$ , be a standard decomposition. Then, $f(g)= \prod_{1\leq k\leq r}f(\xi_{q_{k}})\cross\prod_{1\leq i\leq m}f(g_{j})$ .

(FTP’) For any two elements $g,g’$ with disjoint supports, $f(gg’)=f(g)f(g’)$ .

8.2. The second ingredient is to determine the range of parameters for extremal continuous positive

definite class functions $f$ . Since $f$ is factorizable, $f(g)$ is written as $f(g)= \prod_{1\leq k\leq r}f(\xi_{q_{k}})\prod_{1\leq j\leq m}f(g_{j})$

for $g=\xi_{q_{1}}\cdots\xi_{q_{m}}g_{1}\cdots g_{m}$ . Then, we take a kind of Fourier transform of $f$ on $G=D_{\infty}(T)\rangle\triangleleft \mathfrak{S}_{\infty}$

with respect to the subgroup $D_{\infty}(T)$ , and get a positive definite class function on $6_{\infty}$ . Then for this

we appeal to Korollar 1 to Satz 2 in [Th2]. Thus actually we find that the parameter for $f$ is given as

$A=((\alpha_{\zeta,\epsilon})_{((,\epsilon)\in\hat{T}\cross\{0,1\}}, \mu)$ in Theorem 2, and its range is given by (17) as asserted in Theorem 2.
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