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Abstract

It is well-known that the Euler constant v is taken for the constant term of the
Laurent expansion at s = 1 of the Riemann zeta function. Similarly, for the Selberg
zeta function of a nonuniform lattice I' of a rank one symmetric space, an analogue
of the Euler constant which we call the Euler-Selberg constant can be defined. We
establish a certain expression of the Euler-Selberg constant which is similar to the one
~ possesses as the sum over the hyperbolic conjugacy classes of T'. As an application,
we give a numerical computation of the Euler-Selberg constant when I' = SL,(Z).

Introduction

Let G be a connected non-compact semisimple Lie group with finite center, K a maximal
compact subgroup of G, and T a discrete subgroup of G such that I'\G/K is not necessarily
compact but its volume is finite. We denote by (r (a shifted ratio of the Selberg zeta function
7, see (1.1)) the function defined by the Euler product over the primitive hyperbolic classes
of T as follows;

G = JI a-NE™ Res > 2po,
5€Prim(T)

where Prim(T') denotes a set of primitive hyperbolic conjugacy classes of I, N(§) is the norm
of 8, and 2pp is an explicitly determined constant depending only on the structure of G/K.
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It is known that (r(s) has a simple pole at s = 2p,. Hence the Laurent expansion of (p(s)

around s = 2p, is written in the form

+r+ )W (s — 2p0)™. (0.1)

n=1

(rle) = s —2po
We call yr the Euler-Selberg constant (of the second kind).
Recall the Riemann zeta function ((s);

((s) = H (1-p~)! Res > 1.

p;prime
It is well-known that ((s) has a simple pole at s = 1, so its Laurent expansion at s =1 is
written as

1 - .
((s)=—7t7+ > AW (s =1)m,
n=1

where the coefficient v is known as the Euler constant

, 1
7:3};;20(2;—10“) =0.57721....

n<zx

In the previous paper [HIKW], we establish certain interesting expressions not only of
~r but of the higher coefficients 71(,")’5 for the cases of the compact Riemann surfaces. The
aim of the present paper is to generalize the result of [HIKW] to non-compact Riemannian

locally symmetric spaces (see Theorem 1.1).

1 Preliminaries

Let G be a connected non-compact semisimple Lie group with finite center, and K a maximal
compact subgroup of G. We put r = dim (G/K). We denote by g, & the Lie algebras of G,
K respectively and g = €+ p a Cartan decomposition with respect to the Cartan involution
6. Let a, be a maximal abelian subspace of p. Throughout this paper we assume that
rank(G/K) = 1, that is, dima, = 1. We extend a, to a f-stable maximal abelian subalgebra
a of g, so that a = a, + ag, where a, =anp and ag=anNt. Weput A=expa, Ay =expay
and Ay = exp a.

We denote by g€, a® the complexification of g, a respectively. Let ® be the set of roots of
(g%, a®), ®* the set of positive roots in ®, P, = {a € ®*|a Z0 on a,}, and P_ = &+ — P,.
We put p =1/2 ZaEP+ a. For h € A and linear form X on a, we denote by £, the character
of a given by é\(h) = exp A(log h). Let ¥ be the set of restrictions to a, of the elements of
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P,. Then the set ¥ is either of the form {8} or {8,28} with some element § € X. We fix
an element Hy € a, such that 8(Ho) = 1, and put po = p(Ho).

Let I be a discrete subgroup of G such that I'\G/K is not necessarily compact but has
a finite volume. We denote by C(T') a complete set of representatives of I'-conjugacy classes
of semisimple elements in T, Prim(T) a set of primitive hyperbolic conjugacy classes of T,
and Z(T) a center of I'. For v € C(T'), we denote by &, is the element of Prim(T') such that
v = &2, with some integer j > 1, h(y) the element of A which is conjugate to v, and hyp(7),
he(v) the elements of A,, Ae respectively such that h(y) = hp(7)he(7). Let N(y) be a norm
of v given by N(v) = exp (B(log (hy(7)))), and D(7) the function defined by

D(7) =N [T 1= &alh())7'}
aePy
We assume that ' has no elements of finite order, other than those in Z(T'). Let d be the
number of equivalence classes of -cuspidal minimal parabolic subgroups of G, and M(s) the
scattering matrix with the determinant W¥(s). We denote by x(s) the Plancherel measure of
G/K. Let ), be the eigenvalue of the Laplacian on I'\G// K such that 0 = Ag < Ay <Ay <.,
and n; the multiplicity of ;.
The Selberg zeta function Zr(s) of I is defined by

Zes)= [I TJQ -&h@) N Re s > 2po, (1.1)

§€Prim(I") AeL

where L is the semi-lattice of linear forms on a given by L = {Zizl m;a;|la; € Py,m; € ZZO}v

my is the number of distinct t-tuples (m,,...,m;) such that A = Zi:l m;a; € Lyand £ >0

is an integer (see [GW]). If G = SLy(R), L can be identified to Zyo, and « can be taken 1.
It is easy to see that the logarithmic derivative of Zp(s) is given by

A=k > legN(@)DG) NG Res>2p0.  (12)

v€C()-2(T)

This function is analytically continued to the whole complex plane as a meromorphic function

by

ZHs) g, {H(z‘<s —potiv;)) | H(i(s = po wj»}

Zr(s) s — po + w; s — po — 1;
i@ D)y T )
I H(i(s — po))
= 5ld- tf(M(O)))—'S—_pT_
~H(i(s —po+ k) | ~~, H((s—po+ar)
_d; s—potk +k=zl+16k s—pot+aq (13)
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Here the function H is defined in [GW]. This is an entire function and has the following
property; For any integer n > 1, there exists ¢, > 0 such that

|H(s)| < enls|™ if Ims>0
< cnls| ™" exp (e] Im s]) if Ims<0. (1.4)

The number v; is defined by the relation A; = p§ + v?, ri’s are the poles in the upper half
plane of u(s), di is the residue at s = ri, gx’s are the poles of ¥'(s)/¥(s), and b is the
residue at s = g. It is known that there exist positive integers N;, N; such that

deh‘kl_N’ <oo Zbquk[_N2 < 00. (1.5)

k>1 k>1

The number « is the integer such that, for any k > 0, ivol(I'\G)dkx is an integer multiple
of the Euler-Poincare characteristic F of '\G/K. We denote by e; the integer such that
ivol(P\G)dk = ex E. We choose H such that H(0) = 4«.

The following functional equation for Zr(s) is due to [GW];

(1 —s+p0)\" | (R
_g)= Il ~ s+ po) — s [ (e
Ze(2p0 = s) = Zn(s) (F(l +s— Po)) oo =) kI;Il St Po— Qk)

s—po s

exp [4mvol(F\G)[Z(F)] / p(it)dt + / J(t )dt]. (1.6)
0 PO

The function J(t) is given in [GW]. The contribution of J appears only in the case when

I'\G/K is not compact. It is known that J(¢) is a polynomial in the case G # SU(2n,1).

However, in the case G = SU(2n, 1), little is known about J. This may cause several com-

plicated problems. Throughout this paper, to avoid these technical difficulties, we exclude

the case G = SU(2n, 1) when T is a non-uniform lattice.

Because of (1.3), the point s = 2py is a simple pole of the logarithmic derivative of Zp(s).
Hence Z[(s)/Zr(s) can be expanded as

Zi(s) 4K
= -2 n
5_2p0+7r+§ 7 (s — 2po)

n=1

around s = 2po. We call the coefficient 41 the Euler-Selberg constant (of the first kind) and
~(n) the higher Euler-Selberg constant. The main result of the present paper is the following
expresswns of the (higher) Euler-Selberg constants of the first kind 4r and 7( m)g,
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Theorem 1.1. We have

Ar = 4k lim { Z log N(6,)D(v)™" — log :1:}, | (1.7)

T— 00
yeC(I)-2(T)
N(v)<z

&l(ﬂn) = (—n—l!)n4/£ lim { Z log N (8,)(log N(7))"D(y)™" = M} (1.8)

T—>00 n + 1
~eC(T)-Z(T)
N(v)<z

As a corollary of Theorem 1.1, we obtain the following expressions of the Euler-Selberg
constants of the second kind 4 defined in (0.1).

Corollary 1.2. We have
. log N((Sv)
= *C’Ji,fzz{ 2 Nppm T
~EC(T)=Z(T)
N(v)<z

where C is the residue at s = 2py of (r(s) defined in (0.1).

Proof. Let Fr be the function given by

Cl-‘(S)zl'i = FF(S)/ZF(.S). (19)

For instance, in the case G = SL,(R), Fr(s) coincides Zr(s + 1). Because the singularity at
s = 2po of 1/Zp(s) comes from that of (r(s), Fr(s) is holomorphic at s = 2ps. Observing
the coefficients of the Laurent expansions of the logarithmic derivatives of (1.9), it is easy
to see that

/ (1) 2 !
wr Fl(2p0) . o o (d F}. )
dh— = 77— — A (2 LY — (=2 )(2p0) —
KC Fr(2p0) L ﬁ( C Cz) ds Fp>( po) —Ar '
(2) (1) 3 9 v
W g ony Led By g
4K(3 C 3 C? + CB) - 2(d82 FF)(2PO) BRI (1.10)
By Theorem 1.1 and
FlL(s _
FFES; =4s Y logN(&,)(D(y)"t = N(7)™)N(y)**™* Res > 2po,
g ~+EC(D)-Z(T)
we obtain the desired result. 0

Remark 1.1. Using the relations (1.10), in principle similar expressions of 71&")’5 can be
obtained inductively.
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Example 1.1. The case G = SLy(R), K = SO(2) (when T is co-compact, see [HIKW]):
In this case, 7 = 2, po = 1, Hyp(T') is the set of the hyperbolic conjugacy classes of T,

Z(T) = {1}, N(v) is the square of the larger eigenvalue of y. The Selberg zeta function Zr
is defined by

Zr(s) = H ﬁ(l - N(§)™ ™) Res > 1.

§ePrim(I') n=0
Then the following expression of the Euler-Selberg constant r is obtained in [HIKW];
. . log N(é,)
= }i}ngo{ Z N -1 —logz ;.
~v€Hyp(T)
N(v)<z
Since Fr(s) = Zr(s + 1) (see (1.9)), it is easy to see that

Zr(2)
Zi(1)

C =
Hence, by Colorally 1.2, we have

2@, log N(5,)
7F‘_Zf(1)x15‘30{ 2 W"l"gm}‘

v€Hyp(T")
N(v)<z

Remark 1.2. When G = SL2(R), several studies related to 4r and ﬁl(f‘) have been made as
follows;

1) the power sums of ),’s: (see [HIKW))

When T is a co-compact torsion free discrete subgroup of SL;(R), the values at the

integer points of {A(s) = Z;’il n;A;° are expressed using 4r and SII(«")’S. For instance,

(a(2) = 250 — 38 +2(g — 1)¢(2) - 3,

where ¢ is the genus of the compact Riemann surface '\G/K.

2) a relation with the Arakelov geometry:

We denote by Xo(N) the modular curve associated to the congruence subgroup I'g(N),
and Xo(N) the minimal regular model of Xo(N). Let wy be the relative dualizing sheaf of
Xo(N) equipped with the Arakelov metric, and w?% the arithmetic self-intersection number
of wy. According to [AU], when N is square-free and gcd(N,6) = 1, w¥ is bounded as

8m(gn — 1) . 3 p+1
2
Wy S —W’)’FO(N) +gN 210gN+ p— 1 logp +0(gN log N) as N — 00,

p;prime
pIN

where gy is the genus of X,(NV).
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Remark 1.3. (numerical computations) When I' = SLy(Z), by the relation between
hyperbolic conjugacy classes of SLy(Z) and equivalence classes of indefinite binary quadratic
forms (see, e.g. [Sar]), ¥s1,(z) can be written as

=g (S % e e ower),

uu?|t?—4
d(t,u)=0,1mod4

where

e(t) = (t+v —4) = (t+u\/d(t u)),
go(t,u) = min{%(to + ug d(t,u)) l (§(t0 + ug d(t,u)))k =¢(t) for some k > 1},

and h(d) is the class number of the binary quadratic form with the determinant d. Actually
calculating

T
- Z‘ 3 h(d(t,u))w —2logT

2 _
t= usu? [t —4 E(t) 1

d(t u)=0,1mod4

for T < 100,000 by computer (the algorithm of calculating h(d) is due to [Wadal), the
following data appears.

T (T)

100 -2.681 ... 1,000 -2.7124... 10,000 -2.71538 ...
200 -2.697 ... 2,000 -2.7137... 20,000 -2.71546 ...
300 -2.703 ... 3,000 -2.7141 ... 30,000 -2.71552...
400 -2.704 ... 4,000 -2.7146 ... 40,000 -2.71551 ...
500 -2.711... 5,000 -2.7149 ... 50,000 -2.71556 ...
600 -2.711... 6,000 -2.7152... 60,000 -2.71551 ...
700 -2.713 ... 7,000 -2.7150 ... 70,000 -2.71554 ...
800 -2.710... 8,000 -2.7152... 80,000 -2.71557 ...
900 -2.712... 9,000 -2.7157 ... 90,000 -2.71558 ...

100,000 -2.71555 ...

According to the data above, we conclude that

Ysta@ = —2.715....

Example 1.2. The case G = SLy(C), K = SU(2): In this case, r = 3, po = 1, C(T) is
the set of the hyperbolic or loxodromic conjugacy classes of I', Z(T') = {1}, N(y) = la(y)?,
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where a(7) is the eigenvalue of v such that |a(vy)| > 1, m() is the order of the torsion of the
centralizer of 4. The Selberg zeta function Zr is defined as

zs = [ TI @-a)*a "NE)™) Res > 2.
sePrim(I) (mo’::lsrln(é))

Then the Euler-Selberg constant is given as
- . log N(4,)
Ar = lim —logz ;.
' x—m{ 2 a1

veC(I)-{1}
N(v)<=z

2 The proof of Theorem 1.1

2.1 Some Lemmas

We prepare some lemmas. First, related to the prime geodesic theorem, we recall the fol-
lowing estimate (see, for example [DeG], [GW]);

2p

pla)= Y logN(s,) = ”; + 0% as z — oo (2.1)
+€C(0)-Z(r) po
Nz
Based on this fact, we show the following lemma.
Lemma 2.1. For anyn >0, m > 1, we have
l n+1
Z log N(6,)(log N(7))"D(y)~" = (log x)l + A, +0(z%) as z—o00, (2:2)
veC(T)-2Z(T) n+
N(v)<z
z™ '
Y logN(6,)D(y)'N(y)™ = —+ O(z™%) as z— oo, (2.3)
~yeC(I)-2Z()
N(v)<«z

where 6,8’ > 0 and A, > 0 are some constants.

Proof. We first study

Ualz) =2 ) log N(8,)(log N(7))"N(y)~*°,
~yeC(D)-Z(T)
Nz

n(@)= 3 log N(6,)N(y) ™.
~€C(T)-2Z(T)
N{v)<z
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We can write ¥, (z) and ¢,,(z) as the Stieltjes integral;

bulz) = / “(log )t d(t),  mla) = / Cyrotm (1),

where 7 = min{N(y)}y € C(T') — Z(T')}.
Calculating the right hand side of each expression using (2.1), we obtain

Yo(z) = +C,+ 0% as z— oo,

(log I)n-}-l
+1
',Em

Pm(T) = —+ O(a:m”‘sl) as T — 00,
m

where 6,8 > 0 and C,, > 0 are some constants.
Now we consider the difference between N ()72 and D(y)™;

IN(3)7% = D(y)7!| =N() ™1 = J] 1= &(h()) 7]

SN2 () 1))/ II =&)Y
\EL! a€Py

<CN(y)72°7s,

where L' is some subset of L, and C,& > 0 are constants. Hence it is easy to see that

> log N(4,)(log N(7))"D(7)™" = ()

> log N(8)D(7)'N(y)™ = ¥m(2)
+eC()-Z(D)
N(vy)<«x

=0(1) as z— oo,

=0(™ ") as z — 0.

Thus we obtain the desired estimates. O
We also need to have a behavior of Zh(s)/Zr(s) in the strip {s € Clpo < Res < 2po}.

Lemma 2.2. Assume that |Ims| is sufficiently large and Res > po + & for some fized
constant § such that 0 < § < py. Then we have

T ]

Remark 2.1. In the case of a compact Riemann surface, we have a sharper estimate. See

Zr(s)
[Hej], Chap2, Prop 6.7.
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Proof. We put s = o + T and assume o > p,. We estimate each term of the expression
(1.3) of Zp(s)/Zr(s).
First we estimate the term

Son{Hllopmt i) Bl opo— )},

s — po + 1 s — po — 1w

J=0

We divide this sum into the two parts;
>+
ly;l<2T  yj|>2T

We denote by S;(T'), So(T) the corresponding sum respectively. Using the property (1.4) of
H, we have

SUT) <D mjen{l(o = po) + (T + v)I"™ ) + [(0 = po) +i(T — vj)|~"+1)}
lv;l<2T

< Z nj{CT_(mH) +C'(o - po)'(m‘*'l)}.
lvjl<2T
On account of the Weyl law, we have
Z nj=0(T") as T — oo. (2.4)
|VJ|<T

Hence
SUT)Y=0(T") as T — oo.

Similarly, we have S2(T) = O(1).

On the other hand, using (1.4), it is easy to see that the other terms are dominated by
S1(T). Thus we have |Z{(s)/Zr(s)| = O(T") as T tends to infinity.

For o > 2py, it is clear that the series of the right hand side of (1.2) converges absolutely.
Hence we have

Zi(s)| _Jo@) if a>2p+4
Zr(s)|  |O(T") if po+8<o<200+3
Thus the desired conclusion follows from Landau [Lan], Satz 405. (|

We recall the following formula. See, for example, [EMOT].
Lemma 2.3. Ify >0 and k > 0, then we have

c+1 1
1 +T (log y)"c (y>1)

: Yy’ i
— lim ——ds =< k!
2mi Too Jo_yp F¥! 0 0<y<1).

—100—
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The following formula can be proved easily by induction.

Lemma 2.4. For anyn > 0, M > 1, we have

1
sttl(s+1).. (s+M)

Vs~ + Zwk

I|M+

where

if 1<1<n,
v = Z kl kn +1
M' if l=n+1,
_ (=
k= B(M - Bk

2.2 The proof of the case n =0
We put N = max(r, Ny, N2) + 1, where Ny and N; are given in (1.5).

We calculate the following integral in two ways.
1 HT 71 (s + 2po) z°

I(Ar) = — d
(r) 27rz:lll-r>rolo it Zr(s+2po)s(s+1)...(s+ N) ®

where ¢ > 0 is a constant.
First we calculate I(jr) by using the series expression (1.2) of Zp(s)/Zr(s).

c+1T T —1\s
=t Y togNG)P) o tim [ I

veC(T)-Z(T)
1 c+iT N 1 (xN(fy)_l)s
=4k Y logN(6,)D(y)™ 5= lim ' ' ds
+€C()-Z(T) 2mi Tooo Jo_ip &= KN — k)l s+k

N : c+iT -1
~ 1 gy T ENM)T)
= dn Z k(N — k)! Z log N(4,)D() 2me Th-?go eiT s+ k

k=0 veC(T)-2Z(T)

ds.

By Lemma 2.3, we have

N
1
I(3p) = 4 R log N(6.)D(7) I N(%)*.
(3r) ﬂ; RN = k)!w WEC(%:_Z(F) og N(8,)D(v)""N(v)
N{y)<z

—101—
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Using Lemma 2.1, we obtain

N

. 1 1

I(’YI‘) = ;l\ff:(logx + A()) + 4k kg mz + 0(1) as I — OQ. (25)
. =1

On the other hand, we use the residue theorem to calculate I(qr) by considering the
integral along the following path Cr .
A

- : oT
' —CRr T
)
—-R yTP° e
)
aT

Observing (1.3), the poles and their residues of Z[(s + 2po)/Zr(s 4 2po) are as follows;

poles residues
s = —poxy; 4Kkn,;
s=0 4k
$= —po 2k(d — tr(M(0)))
s = —2po 4k — 4eoE
s=—po—k 4kd
s = —po+irg derE
5= —po+ gk 4Kby.
We calculate the residue of the integrand in I(4r) at the poles above.
Since s = —pp % 1v; are simple poles, it is immediate to see that
Res Zr(s + 2po) z ds
s==poxiv; Zr(s +2po) s(s+1)...(s+ N)
porokivs
— (—po £ w;)(—potiv; +1)...(—po Liv;+ N)
Using (2.4), the sum of the residues at s = —pg £ iv; converges absolutely. In fact, we have

VA 2 s -
r(s + 2p0) - ds 23 o(l) as z — oo.

R R
|§T(3=—p§-sl-iu1 + s:—pgiiyj ZF(S + 2p0) S(S + 1) PP (8 + N)

(2.6)

—102—
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Next we calculate the residue at s = 0 (notice that s = 0 is a double pole).

Zr (s + 2po) z®
Zr(s+2pg) s(s+1)...(s+ N)

(4

] L
KN —k)ls+k

M=

H—l—’yp-l—fy( )s-l—...)(l—l-(logx)s—l—...)(

==
il

0

© N 1
+Z zktN k)lkl+1)>

=0 k=1

w | -

_(—+’yr+’y( )s+...)(1+(10g:c)5+...)<

N
1 1
=4 -2 - ~ -1
=4ks +(4/€kg=1———k!(N_k)!k+%LQ%lJiﬂt)5

Thus the residue at s = 0 is given by

4KZk'N Bl +4f<clog:v At (2.7)

The contribution of the other poles are very small as we can show in the following
argument. '

Because of the existence of the factor 1/s(s + 1)...(s + N), some of those poles may
become double poles. If s = —k is a double pole, then

Zi(s + 2po) z® _
Res =L = O(z7*1 — 00,
=k Zr(s+2pg) s(s+1)...(s + N) (27 loga) as w00
because the Talor expansion of z° at s = —k is
z® = (1+(10ga:)(s+k)+ (log:c) (s+k)?+...).

Since the number of the double poles is finite, the sum of the residues at the double poles
tends to zero as  — oo.
On the other hand, since the number of the simple poles tends to infinite as T', R — oo,

it remains to verify the convergence of the infinite sums. We estimate the sum of residues
at s = —py — k.

Z (s + 2po) z® ‘
s——po kZF S+2p0) 3(3+1) (S+N)

k< R—po
Ardz—ro—k ‘
= < Czx=? k- (N+1),
ks;po (—po —k)(—po —k+1)...(—po—k+ N) k;R;po
Since the sum ), g, k~(N+1) converges as R — oo, the sum of residues at s = —po — k
tends to zero as ¢ — oo. Using (1.5), the sums of the residues at s = —po + 17k and
s = —po + qx tend to zero as r — 00.

—103—
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Therefore we obtain
1 Zt(s + 2p0) T’

, d
2m Jopp Zr(s+2po)s(s+1)...(s+ N) °
1 1 -
:4K;m']g+4ﬁlog1+’)’[‘+0(l) as I — OO. (28)

We estimate the integral along Crr. When we take a positive constant € such that
€ < po, we divide this integral into the following eight parts.

Zi(s + 200) -
onr Zr(s ¥ 200) s(s + 1) (s + V)

c+zT —po+s+1T —po—e+iT —R+:T
c— —po+e+:T —po—e+1iT

R—-zT —po—e—lT —po+e—:T c—1iT A 2 s
+/ +/ +/ n / r(s + 2po) z .
~R4iT —R—iT —po—e—iT —pote—iT Zr(s +2po) s(s+1)...(s+ N)

We denote by I4,..., I3 respectively the integrals appearing the right hand side. Since
I(Ar) = 1/2milim7_0 11, it is enough to estimate I,. .., Is.

ds

Estimate of I5: By the functional equation (1.6), we have

—-R—T 1] ! I
70 (— (1 + po — (1 — pg +
Is = / {— F( S) +4/~cd( ( Po s) — (1 Po S))
R+iT

_ Zr(—s) Fl4+po—s) T(1—po+s)
I
1 1
+ ) 4nb - + 4rvol(T\G)[Z +
Db = e mg) ARl T\GZD(s + o)
¥'(s — po) x°
- V(s —po) et 2/10)}8(5 +1)...(s+ N)ds'
Since, by (1.2),
, )
?(g : Z'z) =4k Y log N(8,)D(7)™'N(7)*~F < oo,
r(R+:) ~eC(T)-2Z(T)
we have
—R—iT
Zr(—s) z? T,R—+oc0
- ds| — 0.
/—R+iT Zr(—s)s(s+1)...(s+ N) s
We recall the following estimates from [Gan] and [GW],
'(s)]| _ | .
10 # 18 — O s r ,
i(s) | = Ollos o)) |u(is)| = O(ls[™™)
¥'(s ,
\p((s)) O((log |s])*), |J(s)| = O(Is|¥') as |s| = oo, (2.9)
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where k, k' < r. Hence it is easy to see that the other terms of I5 tends to zero as T, R — oc.
Thus we obtain

T,R— o0
—

Iy 0. (2.10)

Estimate of I, and Iz: By Lemma 2.2, we have

—pote e t
L] < / O(T”“""“O*%o*)) T]”’;Hdt - O(T"(N“)) as T — oo (2.11)

for a fixed § < €. Similarly we have
I =%0. (2.12)
Estimate of I, and I: Using the functional equation (1.6), we have

”:i[qﬁﬂ () (Bt =2) 0=t o)

po—etiT & Zr(—3) I'(1+po—3s) T(1—po+s)
! ) 1 , |
+ k§::14f€bk(5 —po—qr  po—S— qk) + 4kvol(T\G)[Z(D)]p(i(s + po))
¥'(s = po) 78
_4mm _J(s+2po)}s(s+ 1)...(3-|—N)d5'

By Lemma 2.2 and (2.9), it is easy to verify that

L, 0. (2.13)
Similarly |
I 0. (2.14)
Estimate of I3 and I7: We stud?/ the following contour C%.
- 4T
e
—Po T4 FPoteE
—2p0 —Po
\
> —iT
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Using the same argument to obtain (2.6), the sum of residues at the poles inside this contour

converges to zero as £ — co. Then we have
—pot+e+iT —po—e—tT rz1 s
L+ 1 + / +/ Zt(s + 2p0) i ds =o(l) as x — oo.
potemiT  Jopg—erir Zr(s+2p0)s(s+1)...(s+ N)

Let Iy, I1o be the third and the fourth integrals of the left hand side of the above respectively.
In order to estimate I3 and I7, it is enough to estimate Iy and Ijo.
When we take a sufficiently large number T'(< T), Iy is written as

b [ [ [
A r Zr(s+2po)s(s+1)...(s+ N)

By Lemma 2.2, the first and the third integrals above are bounded by

T
O(t")
T!

x-P

N dt 2% 0(z~™*) as z — .

Also it is clear to see that the second integral turns to be O(z=#°*¢). Hence it follows that

L, =3 O(z~"*%) as z — oo. (2.15)
By the functional equation (1.6), we see that

Iy — /—po—s—iT{ Zh(—s) 4 4x d(F'(l +po—3s) T'(1—po+ s))

po—e+iT Zr(-—s) I'(14po—35) (1 = po+s)
1 1 .
+ ;4"1”‘ T g T elC\DZD((s + po)
— 4k ¥'(s — po) x®

T —p) 0 ””0)}3(3 e
The argument similar to (2.15) and the estimates (2.9) yield
Lo 2% O(z™77°) as = — oo. (2.16)
Therefore we have
L+1, 2% 0(l) as z— .

Combining (2.5), (2.8) and the estimates of I;’s, we obtain

r = 4k Ao = 4K lim { Z log N(6,)D(v)™" — log x}

00
~yeCc{)-Z(T)
N(y)<z
This completes the proof of the case n = 0. O
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2.3 The casen >1

We want to obtain the expression (1.8) of ’yl(wn) by calculating the following integral in two
ways (similar to the proof of the case n = 0, one of these is to use the series expression of
Z4(s)/Zr(s), another is to use the residue theorem).

1 c+iT A (3 + 2p0) 8

— i
9 Tosoo et Zr(s + 2po) s

However, in the case 1 < n < N, we have several difficulties about the convergence of the
sum of the residues and the integral along Crr. Hence, to assure the convergence of them,
we need to study the following integrals.

c+iT 71 s
ey .- Lo Zr(s + 2po) v ds for 1<n<N
JOr) = 271 Tl—r>rolo e Zr(s + 2po) 5"+1(s +1)...(s+ N —n) solor A=m ’
( ) = — lim T Zh(s + 2p0) @ s for n> N.
271 T—oo c—iT ZF(S + 2p ) sntl N

The same results (1.8) can be established by both calculations. Since these calculations are

quite similar to each other, we give only the calculation of J (¥ (")).
Using (1.2), we have

1 ad (N~
J(EMY = 4 log N(8.)D(~)"1— 1i ds
(r) nn,ec(rz);Z(F) og N (&,)D(%)" 978 Tosoo it S"TH(s+1)...(s+ N —n)
1 ciT  ntl vy
— —1———- !
=4k Z log N (8,)D () 5 Jim . {Z Z s k} (v)77)ds.
~+eC(T)-2Z(T) o =

By Lemma 2.3, we obtain

Unp— - - n—
7p>~4n§: ol Y log N(8,)D(y)™*(log (=N (7))
'eC(F)—Z(F)
N(v)<=z

N-n
+ 4k Z wyz”* Z log N(J,Y)D(fy)_lN('y)k.
k=1 +E0(T)-Z(T)

N{H)<z

The binomial theorem shows

—

n—

tog a3y~ = 3= (") (1) log N ) g

0

3
il
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Hence we have

I = an Yo S Ll ag ey ST log N (8, )0 NG5, D)

!
o ez mi(n +EC(T)=2(T)
N(v)<z
N-n
+4k Y wez™ Y log N(8,)D(y)"'N(7)~.
k=1 YEC(0)-Z(T)

N(v)<z

By Lemma 2.1, we conclude

n n 1 o
J(’Y(n)) _4f€Z nv" 1 (logx)“ l+1+4I€ZZ (=1)"0n-i11 (lo gm)""l*mAm

— ( + ! IOmom'n—l—m)'

N-n
+ 4k kz—: % +o0(l) as z — oo. (2.17)

W consider again the same contour Cg 1 as we used before. Using a similar argument in
the proof of the case n = 0, all residues at the poles, except at s = 0, converge to zero as
¢ — 00. Thus it is enough to calculate only the residue at s = 0.

We study the Laurent expansion around s = 0. The Laurent expansion of 1/s"*!(s +
1)...(s+ N —n) is written by

o

1 _ r 1
sttli(s+1)...(s+ N —n) - z=—2(n:+1) UIS

where
v_| if —(n+1)<i<-1
" N-n
Y DR, i 120
k=1

(see, Lemma 2.4 for the definition of vy and wy). Hence the Laurent expansion of the
integrand of J (ﬁl(,”)) is written as’

Zi(s + 2p0) -
Zr(s+2po) s**(s+1)...(s+ N —n)

_ (i ;?l(qm—l)sm_1> ( -oo (10§!.’E)is,') (i v;_(n+1)81_(n+1))

m=0 =0 =0
_ Z ~(m-1) (10g:£) o] SUAm+i)—(n+2)
2! I=(nt1)
I,m,1=0
N s (e (log 2) T i~(n+2)
-;{;mz_:o z-—l— )vz (n+1)} .

—108—



The Euler-Selberg constants for nonuniform lattices

It follows that the residue at s = 0 is calculated as

Res Zr(s + 2po) z°
s=0 ZF(S + 2po) s"“(s ¥1)...(s+N—n)
- —(n+1
=0 m=0 —1 m+1)
n n—Il+1 1
~ (m 1 (log x) ! ~ (_1) '
_Z Z v +9r v
— y Vl=(n+1) r 0
=0 m=0 —1 m+1)
A [—m n l+1
(m) (logw ' 1) 10ga: ~( 1) /
= ______U +5
ZZ — 1 — | l=(nt1) Z _ (n+1)
{=0 m=0 Tl ! ) n l+ 1
n ot n—Il-m n—I+1 N-—
- ~(m) (log z) ' (10g ) , " wy

Therefore we have

1 Zt(s + 2po) z®

- ds
273 Jop o Zr(s +2po) st (s +1)... (s + N = n)
n =l n I-m n—I+1
= ) ’()n_[ 1+ 4k T Un-I41
;;F (n~l m)! " ;(n—bi—l)!
N-n w
+4k —kk— +o(l) as z — oo. (2.18)
k=1

Using a similar argument as we made before, the estimate of the integral along Crr
excluding the line Re s = c tends to zero as R,T — co and z — oo.
From (2.17) and the result above, we have

n n—

l
( 1 Un—I+1 n—Il—m
ms m,(n__l_ s (log )" A
=0 m=0
S5 (gt o) o
n_ —
=0 m=0

Thus we obtain the following equality recursively.

50 = (= 1) Y yea
n

0, lim{ S log N(6,)(log N(6,))" D() ™ ~

o)

n! T—00 n + 1
~yeC(I)-2Z(T)
N(v)<ez
This completes the proof of Theorem 1.1. d
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