On change of polarization

Hisayosi Matumoto
Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Tokyo
153-8914, JAPAN

e-mail: hisayosi@ms.u-tokyo.ac.jp

We consider here the following setting.

Let G be a real reductive linear Lie group which is contained in the complexification $G_{\mathbb{C}}$. We fix a maximal compact subgroup K of G and let θ be the corresponding Cartan involution. We denote by \mathfrak{g}_0 (resp. \mathfrak{k}_0) the Lie algebra of G (resp. K) and denote by \mathfrak{g} (resp. \mathfrak{k}) its complexification. We denote also by the same letter θ the complexified Cartan involution on \mathfrak{g} . We denote by σ he complex conjugation on \mathfrak{g} with respect to \mathfrak{g}_0 .

Definition 1. Assume that a parabolic subalgebra \mathfrak{q} has a Levi decomposition $\mathfrak{q}=\mathfrak{l}+\mathfrak{u}$ such that \mathfrak{l} is stable under θ and σ . Such a Levi decomposition is called an orderly Levi decomposition.

A θ -stable or σ -stable parabolic subalgebra has a unique orderly Levi decomposition. In fact, if \mathfrak{q} is θ (resp. σ)-stable, then $\mathfrak{l}=\mathfrak{q}\cap\sigma(\mathfrak{q})$ (resp. $\mathfrak{l}=\mathfrak{q}\cap\theta(\mathfrak{q})$).

Let $\mathfrak q$ be a parabolic subalgebra of $\mathfrak g$ with an orderly Levi decomposition $\mathfrak q=\mathfrak l+\mathfrak u$. We fix a θ and σ -stable Cartan subalgebra $\mathfrak h$ of $\mathfrak l$ and a Weyl group invariant non-degenerate bilinear form $\langle \ , \ \rangle$. Let L be the corresponding Levi subgroup in G to $\mathfrak l$.

We denote by ${}^u\mathcal{R}_{\mathfrak{q},L\cap K}^{\mathfrak{g},K}$ the right adjoint functor of the forgetful functor of the category of (\mathfrak{g},K) -modules to the category of $(\mathfrak{q},L\cap K)$ -modules. Introducing trivial \mathfrak{u} -action, we regard an $(\mathfrak{l},L\cap K)$ -module as a $(\mathfrak{q},L\cap K)$ -module. So, we also regard ${}^u\mathcal{R}_{\mathfrak{q},L\cap K}^{\mathfrak{g},K}$ as a functor of the category of $(\mathfrak{l},L\cap K)$ -modules to the category of (\mathfrak{g},K) -modules. We denote by $({}^u\mathcal{R}_{\mathfrak{q},L\cap K}^{\mathfrak{g},K})^i$ the i-th right derived functor. (See [Knapp-Vogan] p671)

Let V be a finite dimensional semisimple 1-module. We denote by $\delta(V)$ a one-dimensional representation of 1 defined by $\delta(V)(X) = \frac{1}{2} \operatorname{tr}(X|_V)$.

We consider two extreme cases. Let Z be a Harish-Chandra ($\mathfrak{l}, L \cap K$)-module with the infinitesimal character $\lambda + \delta(\mathfrak{n})$.

(1) (Hyperbolic case) If \mathfrak{q} is stable under the complex conjugation of \mathfrak{g} with respect to G, there is a parabolic subgroup Q = LU whose complexified Lie algebra is \mathfrak{q} and whose nilradical is U. In this case, we have $({}^{\mathfrak{g}}\mathcal{R}^{K}_{\mathfrak{q},L\cap K})^i(Z) = 0$ for all i > 0. In fact, $({}^{\mathfrak{g}}\mathcal{R}^{K}_{\mathfrak{q},L\cap K})^0(Z)$ is nothing but the unnormalized parabolic induction ${}^{\mathfrak{g}}\operatorname{Ind}_{G}^G(Z)$.

We clarify the definition of the parabolic induction. ${}^{u}\operatorname{Ind}_{Q}^{G}(Z)$ (or we also write ${}^{u}\operatorname{Ind}(Q \uparrow G; Z)$) is the K-finite part of

$$\{f \in C^{\infty}(G) \otimes H \mid f(g\ell n) = \pi(\ell^{-1})f(g) \quad (g \in G, \ell \in L, n \in U)\}.$$

Here, (π, H) is any Hilbert globalization of Z. If Z is unitarizable, so is ${}^{u}\operatorname{Ind}(Q \uparrow G; Z \otimes \mathbb{C}_{\delta(\mathfrak{n})})$ (unitary induction).

(2) (Elliptic case) Assume \mathfrak{q} is θ -stable and put $S = \dim(\mathfrak{u} \cap \mathfrak{k})$. In this case, ${}^{\mathfrak{u}}\mathcal{R}^{\mathfrak{g},K}_{\mathfrak{q},L\cap K})^S(Z)$ is essentially "a usual cohomological induction". We stress that usually the chomological induction in the elliptic case is normalized by the $2\delta(\mathfrak{u})$ -shift of the parameter (cf. [Vogan(green)], [Knapp-Vogan] Chapter V).

We call Z weakly good (or λ is in the weakly good range), if $\operatorname{Re}\langle\lambda,\alpha\rangle\geqslant 0$ holds for each root α of $\mathfrak h$ in $\mathfrak u$. We call Z integrally good (resp. weakly integrally good), if $\langle\lambda,\alpha\rangle>0$ (resp. $\langle\lambda,\alpha\rangle\geqslant 0$) holds for each root α of $\mathfrak h$ in $\mathfrak u$ such that $2\frac{\langle\lambda,\alpha\rangle}{\langle\alpha,\alpha\rangle}\in\mathbb Z$.

Theorem 2. ([Vogan 1988] Theorem 2.6)

- (1) If Z is weakly integrally good, then $({}^{n}\mathcal{R}_{\mathfrak{q},L\cap K}^{\mathfrak{g},K})^{i}=0$ for $i\neq S$.
- (2) If Z is irreducible and weakly integrally good, $({}^{n}\mathcal{R}_{\mathfrak{q},L\cap K}^{\mathfrak{g},K})^{S}(Z)$ is irreducible or zero.
- (3) If Z is irreducible and integrally good, $\binom{n}{\mathfrak{R}_{\mathfrak{q},L\cap K}^{\mathfrak{g},K}}^{\mathfrak{g},K}$ is irreducible.
- (4) , If Z is unitarizable and weakly good, $({}^n\mathcal{R}^{\mathfrak{g},K}_{\mathfrak{q},L\cap K})^S(Z)$ is unitarizable.

Definition 3. A pair $(\mathfrak{p},\mathfrak{q})$ is called a $\sigma\theta$ pair of parabolic subalgebras, if it satisfies the following conditions (S1-2)

- (S1) \mathfrak{q} (resp. \mathfrak{p}) is a θ -stable (resp. σ -stable) parabolic subalgebra of \mathfrak{q} .
- (S2) There exists a θ and σ -stable Cartan subalgebra \mathfrak{h} of \mathfrak{g} such that $\mathfrak{h} \subseteq \mathfrak{p} \cap \mathfrak{q}$.

Hereafter, we fix a $\sigma\theta$ pair $(\mathfrak{p},\mathfrak{q})$. Let \mathfrak{h} be any θ and σ -stable Cartan subalgebra of \mathfrak{g} contained in $\mathfrak{p} \cap \mathfrak{q}$. For $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$, we denote by \mathfrak{g}_{α} (resp. s_{α}) the root space (resp. the

reflection) corresponding to α . Since \mathfrak{h} is θ -stable, θ and σ induce actions on $\Delta(\mathfrak{g}, \mathfrak{h})$. We easily see $\theta \alpha = -\sigma \alpha$ for any $\alpha \in \Delta(\mathfrak{g}, \mathfrak{h})$.

For a subspace U in \mathfrak{g} , we denote by $\Delta(U)$ the set of roots in $\Delta(\mathfrak{g}, \mathfrak{h})$ whose root space is contained in U. We put

$$\mathfrak{m}=\mathfrak{h}+\sum_{\alpha\in\Delta(\mathfrak{p})\cap(-\Delta(\mathfrak{p}))}\mathfrak{g}_{\alpha},\ \ \mathfrak{n}=\sum_{\alpha\in\Delta(\mathfrak{p})-\Delta(\mathfrak{m})}\mathfrak{g}_{\alpha},\ \ \bar{\mathfrak{n}}=\sum_{\alpha\in\Delta(\mathfrak{n})}\mathfrak{g}_{-\alpha},$$

$$\mathfrak{l}=\mathfrak{h}+\sum_{\alpha\in\Delta(\mathfrak{q})\cap(-\Delta(\mathfrak{q}))}\mathfrak{g}_{\alpha},\ \ \mathfrak{u}=\sum_{\alpha\in\Delta(\mathfrak{q})-\Delta(\mathfrak{l})}\mathfrak{g}_{\alpha},\ \ \bar{\mathfrak{u}}=\sum_{\alpha\in\Delta(\mathfrak{u})}\mathfrak{g}_{-\alpha}.$$

We immediately see $\mathfrak{q}=\mathfrak{l}+\mathfrak{u}$ (resp. $\mathfrak{p}=\mathfrak{m}+\mathfrak{n}$) is an orderly Levi decomposition of \mathfrak{q} (resp. \mathfrak{p}) and the nilradical satisfies $\sigma(\mathfrak{u})=\bar{\mathfrak{u}}$ (resp. $\theta(\mathfrak{n})=\bar{\mathfrak{n}}$). Moreover, $\bar{\mathfrak{u}}$ (resp. $\bar{\mathfrak{n}}$) is the opposite nilradical to \mathfrak{u} (resp. \mathfrak{n}).

We denote by $L_{\mathbb{C}}$, $P_{\mathbb{C}}$, and $M_{\mathbb{C}}$ the analytic subgroups of $G_{\mathbb{C}}$ with respect to \mathfrak{l} , \mathfrak{p} , and \mathfrak{m} , respectively. We put $L = L_{\mathbb{C}} \cap G$, $P = P_{\mathbb{C}} \cap G$, $M = M_{\mathbb{C}} \cap G$.

We easily have:

Proposition 4. Under the above setting, we have the followings.

- (S3) In \mathfrak{p} is a parabolic subalgebra of I and $L\cap P$ is a parabolic subgroup of L.
- (S4) $\mathfrak{m} \cap \mathfrak{q}$ is a parabolic subalgebra of \mathfrak{m} .
- (S5) $\mathfrak{l} \cap \mathfrak{m}$ is a θ and σ -stable Levi subalgebra of the both $\mathfrak{l} \cap \mathfrak{p}$ and $\mathfrak{m} \cap \mathfrak{q}$.

The followings is the main subject of my talk.

Conjecture 5. Let Z be a Harish-Chandra $(\mathfrak{l} \cap \mathfrak{m}, L \cap M \cap K)$ -module with an infinitesimal character $\lambda \in \mathfrak{h}^*$. assume $\langle \lambda - \delta(\mathfrak{u} \cap \mathfrak{m}) - \delta(\mathfrak{n}), \alpha \rangle \geqslant 0$ for all $\alpha \in \Delta(\mathfrak{u})$ such that $2\frac{\langle \lambda - \delta(\mathfrak{u} \cap \mathfrak{m}) - \delta(\mathfrak{n}), \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

Then, we have

$$(*) \qquad {^{u}\mathsf{Ind}}_{P}^{G}(({^{u}\mathcal{R}^{\mathfrak{m},M\cap K}_{\mathfrak{q}\cap\mathfrak{m},L\cap M\cap K}})^{\dim\mathfrak{u}\cap\mathfrak{m}\cap\mathfrak{k}}(Z)) \cong ({^{u}\mathcal{R}^{\mathfrak{g},K}_{\mathfrak{q},L\cap K}})^{\dim\mathfrak{u}\cap\mathfrak{k}}({^{u}\mathsf{Ind}}_{P\cap L}^{L}(Z\otimes\mathbb{C}_{2\delta(\mathfrak{u}\cap\bar{\mathfrak{n}})}))$$

The above conjecture can be regard as a generalization of the transfer thorem ([Knapp-Vogan 1995] Theorem 11.87, [Schmid 1988] p361) for standard modules.

For a Harish-Chandra (\mathfrak{g}, K) -module V, we denote by [V] the distribution character of V. In [Matumoto 2002], we proved the following weaker version.

Theorem 6. Let Z be a Harish-Chandra $(\mathfrak{l} \cap \mathfrak{m}, L \cap M \cap K)$ -module with an infinitesi- $\mathit{mal\ character}\ \lambda\in \mathfrak{h}^*.\ \mathit{Assume}\ \langle \lambda-\delta(\mathfrak{u}\cap\mathfrak{m})-\delta(\mathfrak{n}),\alpha\rangle\,\geqslant\,0\ \mathit{for\ all}\ \alpha\,\in\,\Delta(\mathfrak{u})\ \mathit{such\ that}$ $2\frac{\langle \lambda - \delta(\mathfrak{u} \cap \mathfrak{m}) - \delta(\mathfrak{n}), \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$. Then, we have

$$(**) \qquad [^{u}\mathsf{Ind}_{P}^{G}((^{u}\mathcal{R}^{\mathfrak{m},M\cap K}_{\mathfrak{q}\cap\mathfrak{m},L\cap M\cap K})^{\dim\mathfrak{u}\cap\mathfrak{m}\cap\mathfrak{k}}(Z))] = [(^{u}\mathcal{R}^{\mathfrak{g},K}_{\mathfrak{q},L\cap K})^{\dim\mathfrak{u}\cap\mathfrak{k}}(^{u}\mathsf{Ind}_{P\cap L}^{L}(Z\otimes\mathbb{C}_{2\delta(\mathfrak{u}\cap\bar{\mathfrak{n}})})].$$

Another weaker version of the conjecture is: Theorem 7. Let Z be a Harish-Chandra $(\mathfrak{l} \cap \mathfrak{m}, L \cap M \cap K)$ -module with an infinitesimal character $\lambda \in \mathfrak{h}^*$ which is cohomologically induced from a finite-dimensional representation. Assume $\langle \lambda - \delta(\mathfrak{u} \cap \mathfrak{m}) - \stackrel{\wedge}{\delta(\mathfrak{n})}, \alpha \rangle \geqslant 0$ for all $\alpha \in \Delta(\mathfrak{u})$ such that $2 \frac{\langle \lambda - \delta(\mathfrak{u} \cap \mathfrak{m}) - \delta(\mathfrak{n}), \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$. Then Conjecture 5 holds for Z.

The main ingredients of the proof of Theorem 7 are:

- The resolution of finite dimensional irreducible representation by standard module. ([Johnson 1984])
- The dimension of the space of intertwing operators between "adjacent standard (2)representations" is at most one.

References

[Knapp-Vogan 1995] A. W. Knapp, "Cohomological Induction and Unitary Representations" Princeton Mathematical series 45, Princeton University Press, Lawrenceville, New Jersey, 1995.

[Johnson 1984] Joseph, F. Johnson, Lie algebra cohomology and the resolution of certain Harish-Chndra modules, Math. Ann. 267 (1984), 377-393.

[Matumoto 2002] Hisayosi Matumoto, On the representations of Sp(p,q) and $SO^*(2n)$ unitarily induced from derived functor modules, preprint, UTMS 2002-12, arXive: math.RT/0203107.

[Schmid 1988] W. Schmid, Geometric constructions of representations, Adv. Stud. in Pure Math. vol. 14, Kinokuniya Book Store, 349-368, 1988.

[Vogan (green)] D. A. Vogan Jr., "Representations of Real reductive Lie Groups", Progress in Mathematics, Birkhäuser, 1982.

[Vogan 1988] D. A. Vogan Jr., Irreducibilities of discrete series representations for semisimple symmetric spaces, Adv. Stud. in Pure Math. vol. 14, Kinokuniya Book Store, 1988, 381-417.