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0 Introduction

The authors have been interested in explicit formulae for certain spherical
functions on real semisimple Lie groups of split rank 2. Because our problems
have been to consider the case of representations with non-trivial minimal
K-types, the explicit realization of the irreducible finite dimensional repre-
sentation of K was crucial in computation. Unfortunately this problem is by
no means easy except for U(2) and SU(2), though we have Gelfand-Tsetlin
basis for K of type A or BD, and for general case the canonical basis or/and
crystal basis. Even if these basis makes some problem effectively computable,
the real computation is still difficult.

Around mid 80’s, Gelfand and Zelvinsky found a relation between the
Gelfand-Tsetlin basis and the canonical basis in the representation spaces of
gl;. Though the canonical basis is investigated by Kashiwara and Lustzig
for general quantum groups of classical type, the relation of them with the
Gelfand-Tsetlin basis is not known except for this special case, i.e. gl;-case.

We utilize this result to formulate Theorem 1 in §2, which gives the
explicit formulae for the projectors from the tensor product V ® V(10,0 of
an irreducible representation V of gl; and the standard represenation, to its
irreducible components. Once one can find the ’right formulae’, the proof is
given by direct computation.

In §3, we also give the explicit projectors from V®@V|z0,0) to its (generically
6) irreducible components (Theorem 2 in §3).

Our result in this paper is just simple computation, but it might have
application for investigation of spherical functions with non-trivial K-types,



and also it might contain some suggestion for general investigation of canon-
ical Clebsch-Gordan coefficients.

Notations For a Gelfand-Tsetlin pattern (which simply we may call G-
pattern)

ms M3 M3 M33
M= m; = M2 Ma2
m, My
of degree 3, we define
113 123 133 myz + t13, Moz + 123, Ma3 + i33
M 112 122 = myg + 112, M2 + 122
211 mu + i

If the vector (413, i3, i33) is zero, we omit the top row in the left hand side
of the above defining equality. So the left hand side is written as

112 022
M ; .
11

A convenient symbol is M[k], which is defined by

M( ’“’0"“).

This means that it causes a ’twist’ of weight k at the second row m; in M.
If any of the above shifts M’ of M violates the conditions of Gelfand-
Tsetlin pattern, i.e. if either

! ! / / !
Mis 2 My 2 Mgy > Mgy 2 Mg
or
! > m/ > /
Mg Z My Z My

is not satisfied, then the corresponding vectors f(M), f'(M) in the canonical
basis should be zero.

Functions in M. We set
0(M) = mqg + may — My — Mas.

Let x+(M), x—(M) be the characteric functions of the sets {M|é(M) >
0}, {M|6(M) < 0} respectively. More generally we introduce functions

XY (M) by

; 1, §(M)>i; i 1, §(M)< —3
XQ(M):{ 0, 5EM§;. X(-)(M):{ 0, 551\4)2—@



Then we have x+(M) = X(f)(M) and x_(M) = x(_')(]\/_l)
We introduce ’piecewise-linear’ functions Cy(M), Cy (M), Co(M), by
_ mjy; — Mmoo, lf (S(M) Z 0, = _ Moz — M2, lf (S(M) Z 0,
M) = { myg —mas, if (M) <0. Gi(M) = miz —mu, if §(M) <0.

and )
Co(M) = CL(M)Cy(M).
Another expression of C;(M) and C,(M) is

Cl(M) = Min{mn—m22, m12—m23}7 CI(M) = Min{m23-—m22,m12—m11}.

1 The result of Gelfand-Zelevinsky

There is nice basis in the representations spaces of quantum groups: Kashi-
wara called that ’crystal basis’, Lustzig ’canonical basis’. These are devel-
opped in ’90’s.

However, around ’85, Gelfand and Zelvinsky already investigated the case
of (the classical Lie algebra) gl; in a very precise manner.

Firstly we recall the definition of the canonical basis in the sense of
Gelfand and Zelvinsky. In the begining let us consider the case of the Lie
algebra gl,,.

Definition A weigtht is an integral vector v = (71, -+ ,vn) € Z™ of
length n. A weight « is dominant if v > vy > -+ > 7n.

As is well-known, any irreducible representation of finite dimension V' of
gl,, splits into weight subspaces:

V=8a,V(v).

Here

V)‘(f)/,y) = {'U € VIE,‘,"U = ;v fOI‘ all l} 75 {0}

And there is the (unique) dominant weight A s.t. A > v in the lexigographical
order. Therefore the representation V' is labelled by A, i.e. V =V,.

Now for another dominant weight v, we set
W={ve \/,\(7)|EZ§;'1"+‘+IU =0, forl<:<n-1}.

Definition A basis B in V) is called proper if each of subspace V)(7,v)
(for all possible v, v) is spanned by its subset, i.e.

Wi(y,v) =< BN Vi(y,v) >.



Theorem (Gelfand-Zelvinsky)

(i) Fach irreducible finite dimensional representation of gl, has a proper
basis.

(ii) In each irreducible finite dimensional representation of gl;, there is only
one proper basis up to scalar multiple. And this basis is called canonical.

Up to this point, the notion of the canonical basis has the ambiguity of
scalar multiple. Gelfand and Zelvinsky normalized this scalar factor somehow
to get the following formulae.

Let E;; (1 < 4,5 < 3) be the matrix unit of size 3 with 1 at the (1,7)-entry
and 0 at other entries. If i # 7, it is a generator of the root space of some root
in gl, with respect to the Cartan subalgebra consisting of diagonal matrices.
If |i — j| = 1, Ey; is a root vector of a simple root. There are 4 such simple
root vectors Eig, E3;, E23 and FEs,.

Proposition 1 (Gelfand-Zelevinsky) The action of simple root vectors on
the canonical basis is given as follows.

Enf(M) = (m12 . mu (
+(mog — Ma2) X+(

(°° )
Ezlf(M)Z (m11—m22 ( (
(

M)F(M () [-1])5
‘i)()

M (%) [-10);
')
+(maz — mag — S(M))x—(M)f (M (7 ) [-1]);
Esf(M) = (mgy —mas)f (M °y
+(m22 — 33 +5(M))X+(M (M( °o! ) ‘1])-

“v!ov,_.

+(myp — mas)X

Eyf(M) = (miz—mi2)f (

Remark We have
Ma3 — Mag = My — My — 5(M), and myp — Moz = My — Moy + 5(M)

hin the formulae of E,; and FE;.

Remark The formulae is the above proposition seems to be well-know among
the specialist of quantum groups and canonical basis.

2  Tensor products with the standard repre-
sentation

Generically the tensor product Ving ®V{1,0,0) has three irreducible components:
Vm3+(1’070), Vm3+(0’1’0) and Vm3+(0,0,l)' If either ms + (0, 1, O) or ms + (O, 0, 1)



is not dominant, the corresponding irreducible component does not occur.
Thus for the dimension of the intertwing spaces, we have

dimec Hom(Vimng ® V(10,0 Ving+(1,00)) =
dimc Hom(Ving ® V(1,00), Ving+(0,1,0))

1,
1,
dimc Hom(Ving ® V(1,005 Vms+(0,0,1)) L.

<
<

Let P(1,0,0) be a non-zero generator of the first space, which is unique up to
scalar multiple. And let Pg1,0) or Pop,1) also be the generator of the second
or the third space respectively, if either space is non-zero. Qur purpose in
this section is to give explicit expression of these projectors P10, P(0,1,0)
and Pgo,1) in terms of canonical basis.

2.1 The projectors for Vi,; ® V(10,0

Let Vin, be the representation of gl; with canonical basis {f(M)}, and let
Vi1,0,0) be the standard representation. To denote the canonical basis of the
standard representation V{; ), we supress the letter ’f’ before G-patterns.

Theorem 1 Let {f'(M)} be the canonical basis of the target representation.
(i) The projector P1,0,0) : Vins ® V(1,00) = Vins+(1,00) 1S given as follows:
(ma) Paooy (FO0© (1)) = 7 (M ()

0 o (005 (5 )) = (0 () o0 (u (3).
P 1800 () - 1 o ().

(ii) The projector P 1,0) : Vins ® V(1,00) = Vins+(0,1,0) is given as follows:

(ii-a) Po,1,0) (f(M) ® ( 11(1)00 ))

e (1 (4 )) st (o ().

(ii-b) Po,1,0) (f(M) ® ( o ))

= —(mis =) (M (%)) + cxons (i (%))
)

(iic) Posoy (FON © ()



010

= (maz =)’ (M (%)) s OGNS (M (5))-
Here D(M) = —my3 + myz — 6(M).

(iii) The projector Po,1) : Vims @ Vi100) = Vs +(0,0,1) 18 given as follows:

(iii-a) Plo0.1) (f(M ) ® ( z ))
—(m13 - m12)(m22 - m33)fl (M ( Oljol )) + E(M)fl (M ( 00(:11 >) |
(iii-b) Proon) ( (M) ® ( ))
—(my3 — myz)(ma2 — ma3) f’ (M ( 012"1 )) + F(M)f’ (M ( 00211 ))
— x-(M)Co(M ( (o“i;))
(ii-c) Po,0,1) (f(M ( ))
= (myy — maz + 1)(may — ma3) f’ (M ( 00201 )) — Co(M)f' (M ( (—)—El] )) )

Here

E(M) = Ci(M)(mis —mas + 1~ Ci(M)),
F(M) = —Cy(M)— x—(M){(mz — m1z)(ma — mg3) — (m1z — maz + 1)6(M)}.

Remark As we can see in the next subsection, in order to prove Theo-
rem 1, it suffices to show that any of three projector given above is a gls-
homomorphism. But the actual method to find these formula is to use the
relation between the canonical basis with the Gelfand-Tsetlin basis found by
Gelfand-Zelvinsky [?]. To write this computation seems to take more space
than the proof below.

2.2 Proof of Theorem 1

The proof is direct compuation to check that either of three projectors is a
gl;-modules. The action of the Cartan subgroup is diagonal. Therefore the
essential computation is those of simple root vetors E; 11, Eiy1:-



2.3 The symmetric tensor product V(; ) of the stan-
dard representation V(; )

If we apply Theorem 1 for the special case Vi, = V{1,00), we have only two
irreducible constituents V(2,0,0) and V{1,1,0) which occur with multiplicities one:

Vi1,00) ® Vi1,0,0) = V(2,00 D Vi1,1,0)-

The first factor V{,0,0) is the symmetric tensor product of V(j0,0), and the
second the anti-symmetric tensor product. Here we write the correspondence
between canonical basis of V{;,00) and V(300 explicitly.

Lemma 2 Via identification V(300) with Sym2(V(1,0,0)) wich is unique up to
a scalar multiple, we have identifications :

AN N AN TN N
MN HN
Oog ;—og
N N e e N
Il
AANN NN =N N
o;g
~—
029
—
ch
~—

Remark. Similarly to the case of the standard representation, to denote the
canonical basis of Vjz,0,0) we do not write the letter ’f’ before its G-pattern.

3 Tensor product with V()

In this section, we want to have the irreducible decomposition of the ten-
sor product Vi, ® V(20,00 and an explicit formula of the projectors to its
irreducible components. Generically this tensor product has six irreducible
components Vingye.4e; (1 < 2,5 < 3). Here e; is the unit vector with unity
at the i-th entry and zero at the remaining entries. Each component occurs
with multiplicity one, if the weight vector ms + e; + e; is dominant.



3.1 The projectors for Vi, @ V(20,0

In this subsection, we give an explicit formula for the projectors from the
tencor product Vi, ® V(200) to its six irreducible components in terms of
canonical basis. The proof of this is given in the next subsection. Let { f(M)}
and {f'(M)} be the canonical basis of the representation Vi, and of the
target representation, respectively. Similarly for the standard representation,
we suppress the letter 'f’ before G-patterns to denote the canonical basis of
Vi2,0,0)-

Formula 1: The projector P30y : Vi, @ V(2,00) = Vins +(2,0,0)-

! (5000 () =1 (3 ()
2 Paso (00 © (7)) = (4 (%)) + -0 (v (5F))
o B (1000 (1)) = ().
(100 () =1 (1 (5 )60+ €100} (u ()
Ko (v (5)).
®

6. P(2,0,0)

s oo (100 (75 )) =1 (u (5 )) wocion ( ()
(o (3)) = (o (%))

Formula 2: The projector P10 : Vi, @ V(2,00) = Vins+(1,1,0)-

(2°Z°O )) = (myp—mas) f' (M( 10200 )>+Cl( Ix+(M )f’( ( oY ))

2. Pu,10) (f(M) ® ( 21200 )) = %(2m12 — my3 — mag) f' (M ( 11:00 )) +

—_
Pa)
=
N
=
=
~—r
&

) = Lo — g = man) (3 ()
+M(HmM+MMH((“W>
)=

)
)
b Puo (700 (%5 3 ~(ms = ma (41 (%))

+{Cu(M ) X=(M)(mys ~mu)} (M (55 ) )+ nx-()f (M (%))

f
3. Puro) (f (
1



5. Faan (1006 (%)) =~ = miyy (1 ()
451G (M) = (mag = maz) = S (D} £ (M ().

6. Pu) (f(M) ® ( 22:"0 )) = —(mi3z — my2) f’ (M ( lz:oo ))
+x+(M)D(M) ' (M ( )),

Formula 3: The projector P0,1): Vin, ® V(2,00) = Vins+(1,0.1)-

1. Puo, (f(M) ® ( 2oZoo )) = (myy —maz +1)(my —mg3) f’ (M( 1oZo1 ))
-ciony ()
2. Paoy (f(M) ® ( 21200 )) = %(m22—m33)(2m12—m13—m33+1)f’ (M( ’1201 ))
45 AF(M) = Co(M) + X (M) (s — mss)(msz — s + D} £ (M (4)) =
CxMx-(M)f (M (52)).

3. Puo, (f(M) ® ( 21j00 )) = %(mn—m33)(2m12——m13—m33+1)f' (M( 11(:01 ))
43 (B = o p (M ().

4. Puon (f(M) ® ( )) = — (13 — maz)(maz — mas) f' (M ( ))
+ {F(M) - X(_l)(M)(mls — myq)(mgg — m33)} f (M ( ‘121l ))
{0 + X0 Fn 5 (M ()
e (v (456 ))

5. Puon (f(M) ® ( 22(1)00 )) = —(my3 — my2)(mgy — ma3) f’ (M ( l2(:01 ))
+% {E(M) + F(M) — x_(M)(m3 — my2)(mas — ma3)} f' (M ( )

2x-() {BO) - Can} £ (w1 ().

6. P(I'O’l) (f(M) ® ( 22200 )) = —(miz — miz2)(ma2 — mas) f’ (M ( 1{01 ))
+EM)f (M ().

Formula 4: The projector Pg20): Vin, ® V(2,00) = Vins+(0,2,0)



Co (m12 m23)(m12 m23—1)

{(mn mas) X'y (M) + (maz — mas — 2)x+( M)}
& = ( ) {C2(M) = 1} (M).

Poag (FOn e () = Sheas (M (5 ) 1=i]) with

e (5009 (%)) =Saer (4 (3 ) ) vt

(&1

Co = —(m12 - mza)(mls - m12)7
a = Ci(M){(mi2—mas —1) — x4(M) (13 — mu2)},
¢ = Ci(M){Ci(M) =1} x4(M).

Poag (F0n @ () = Shoas (M (Y ) [=4]) with

Co -(mu - m23)(m13 - m12),

o

el X+ (M)D(M)(my5 — mas — 1) = x4 (M) {C1(M) + 1} (my5 — mua),
¢ = Cu(M)D(M)XY (M).

- P20 (f (M) ® ( Ed )) =2 f (M ( " ) [—i]) with

Co = (m13 - m12)(m13 — M2 — 1)>
G = —QCl(M)(mls - m12)7
Cy = CI(M) {CI(M)—l}

. P2, (f(M) ® ( 22(:00 )) = Z?:o cf' (M( Ozjoo ) [—z]) with

Co — (m13 - m12)(m13 — My — 1)7
a = —(mz—my) [xi(M){D(M) + 1} + C1(M)],
e, = x4(M)C{(M)D(M).

ooy (100 (50)) = Sigar (M (%) [=i]) with

C = (m13_m12)(m13‘_m12_1)
e = (s —mu) [ (M)D(M) +xP (M) (D(M) + 23
e = xXP(M)DM){D(M)+1}.



Formula 5: The projector Po1,1) : Vi, ® V(2,00) = Vins+(0.1,1)-

1. Pown ( F(M)® ( )) =32 ef” (M ( ) [~i]) with

co = (miz — ma3)(myz — mas + 1)(ma2 — ma3),
G = X+(M)01(M)(m12 — Mm33 + 1)(m22 - m33) - (m12 — Ma3 — 1)02(M)a
¢ = —x+(M)Co(M){Ci(M) —1}.

200 011

2. P ( f(M)@( )) =2 eif” (M( )[—i]) with

1

o = —5(2mug = mas — iss +2)(mya = maz)(maz = maa).

¢ = %(mn — my3)F(M) — %(mls — my2)(maz — maz)C1 (M) {1 — x-(M)}
45 mis = maz + )Co(M) + 5(msa = mza + 1)Cs(M) (maz = ms),

e = —C(M){C:(M)—1}.

3. Pouy (FM) @ (%)) = Shoes (M (") (=il) with

c = —‘;‘(lez — My3 — Ma3 + 2)(m13 — Mmi2) (Mo — Ma3),
= %(mIZ —ma3) E(M) + %(mm —myz + 1)Co(M)
+%X+(M)(m22 — maz) [~ {C1(M) + 1} (m13 — myz) + D(M)(m1z — mas + 1)]

o = %M(M)CZ(M) {mas — mas + 2 — Cy(M) = D(M)} .

011

4. Ppoa, (f(M) ® ( 22}0 )) = Z?:o e f” (M ( 20 [- z])) with
C = (m13 - mlz)(mls — M2 — 1)(m22 - msa),
c = —(mz—mu) [F(M)+ (m22 — ma3) {C1(M) + x-(M)}],
¢ = {Ci(M) =1+ x_(M)} F(M) + x-(M)(m13 — m1z + 1)Co(M),
ez = —x-(M)Co(M){C:i(M)—1}.



5. Poay (FO0) @ (50)) = Shoes” (M (%) [=i]) with

Co

5]

C2

6. P(011)

Co
C1

C2

(m13 - m12)(m13 — My — 1)(m22 - m33)7
_%(mw - m12) [F(M) + E(M) + (m22 - m33) {Cl(M) + 1}]

_%(mw — m12) D(M) {1 = x_(M)} (g — mas),

SOUM)E(M) + S0(M) {1 — D(M) = x-(M)S(M)}.

(m13 m12)(m13 Mz — 1)(m22—m33),
—(maz — maz) [E(M) 4+ x+(M) {D(M) + 1} (m22 — ma3)]
X+(M)D(M)E(M).

(rone (% )) Sipaf (M (%) [-i]) with

Formula 6: The projector Poo2) : Vin, ® Vi2,00) = Vins+(00,2)-

L. Poon (F(M)® (% )) =Sioas (m (% ) [=i1) with

Co
1

C2

[T

(m12 — ma3 + 1)(m12 - m33)(m22 - mas)(m22 — M3z — 1)a
——2(m12 - m33)(m22 - in33)C2(M),
Cy(M) {Cy(M) = 1} {Cy(M) — 1}.

2. Poon (fM) @ (%)) = Shoes” (M (%) (—i]) with

Co

51

C2

C3

—(muz — miz)(mag — maz + 1)(maz — mas)(maz — mas — 1),

(a2 — ma3) {(mlz — maz) F(M) + (maz — m12)Cs (M ( 01}1 ))} ,
—FOM)C, (M (% )) - (M)@( )(m12 = mag — 1)(maz —mas + 1),
X—(M)Co(M) {C1(M) — 1} {C (M) — 1}

3. Poon (FM) @ (7)) = Shoaf (M( ) [~1]) with

Co
1

(5)

[ .

—(m12 — M33 + 1)(m13 - mu)(mzz - mss)(mzz — 33 — 1).7 .
(mag — mas) [(m13 —ma3)E(M) + (m13 — mi2) {C1(M) + 1} C1(M)] ,
—E(M)Cy(M) {Cy(M) —1}.



-~
P
©
=

)

(6]

[T T

C2

Cy =

Cy =

on (0D @ () = Siges” (M (%) [-4]) with

(m13 — maz)(mis — maz — 1)(mgz — ma3)(maz — mas — 1),
—(maz — maa)(maz — Ma3) {F(M) + F (M ( i ))} :
X—(M)Co(M)(my3 — mag + 1)(maz — mss + 1)
+x O (M) {C1(M) + 1} {C1 (M) + 1} (m13 — ma2)(maz — ma3)
+F(M)F (M ( %)),
—Co(M) { x ‘”<M>F<M>+x (M)F (M(‘l;i% N}

U (M)Co(M) {C1(M) = 1} {Cy(M) — 1}

5. Poo2) (f(M) ® ( 22(:"0 )) = E?:o cif” (M ( 02(:"2 ) [—’]) with

8
i n

(&)

C2

C3

6. P2

Co
15

C2

(m13 - m12)(m13 — My — 1)(m22 - m33)(m22 — M33 — 1),

—(m3 — myg)(mag — m33) {F (M ( 01?01 )) + E(M)} )

E(M)F (M ( 00[;11 )) + x—(M)(myz — myz)(mae2 — mas) {C1(M) + 1} Cy(M),
~X-(M)E(M)Cy(M) {C1(M) — 1} .

(m13 m12)(m13 mig — 1)(m22 m33)(m22 ms3 — 1)
—2(m13 myz)(may — Ma3) {E M) - Cy(M )}
M) {Cy(M) — 1} {ms — mgs — C1(M)}.

( ( )) =il (M ( ki ) [—z']) with



