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CANONICAL REPRESENTATIONS AND
BEREZIN KERNELS*

G. van Dijk

The theory of so-called canonical representations is about to become a
very interesting part of representation theory because it combines so many
areas of mathematics: complex analysis, theory of Jordan algebras, har-
mouic analysis on symmetric spaces, etc. The terminology originates from a
paper on SL(2,R), where R is a ring of functions, by Vershik, Gel'fand and
Graev [39]. Bul actually these representations were introduced by Berezin,
around 1975. Our lecture presents an introduction to canonical representa-
tions, where we restrict as far as the group is concerned to ¢ = SU(1,n). At
certain points in the exposition we give an outlook to the general context.
Among the main recent contributors to the subject are (in alphabetical or-
der): Arazy, van Dijk, Englis, Hille, Molchanov, Neretin, Olafsson, Orsted,
Pasquale, Peetre, Upmeier, Unterberger, Zhang (see References).

1  Outline of the exposition

We will discuss the following items:
I. Definition of the canonical representation 7. A a real number
2. Asymptotic behaviour for A = o
3. Spectral decomposition of

4. Connection with tensor products and restrictions of holomorphic and
anti-holomorphic representations

*Notes based on a lecture in Tabarka (Tunesia) 1999
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2 Definition of m,

Let G = SU(1,n) be the group of (n + 1) x (n + 1) complex matrices of
determinant 1, which leaves the following Hermitian form invariant

[0, y] = Yoo — Tyv1 — o — Y- (2.1)

Let A" = S(U(1) x U(n)) be the standard maximal compact subgroup of &
and set X = G/K. X has several realizations; a bounded realization is given
by

B={yeC": |yl = lnl + ...+l <1} (2.2)

. : b .
The group G acts transitively on B: let ¢ € G, g = (? d) with a :
Ix1,b: 1 xn, c: nx1,d: nxn matrices, then

dy + ¢

R (2.3)

where (b,y) = byy; +...b,y,. Observe that A is the stabilizer of z = 0. A
G-invariant measure on B is given by

duly) = (1 — lyl?)" 0+ dy. (2.4)
Define for A € R:

¥alg) = (1= lyll*)’ (2.5)
ify=g¢-0.

The function vy is left and right A'-invariant and thus gives in a standard
way rise to a G-invariant kernel on X x X by

P (U 7 Y I 10 R o
our's) = (L) B 29

if 2= ¢,-0, y = ¢g-0, which is called the Berezin kernel of X. It is not difficult

to see that B) is a positive-definite kernel for A > 0, which means that for
every finite set of complex numbers py, ..., uy and points z1,...,zy € B the
expression ’

N
> i Balz, z) (2.7)
V]

101



1s positive. There are several ways to associate to a G-invariant positive-
definite kernel on X x X a unitary representation of G. The following method
is appropriate. Let V be the complex linear space of all functions f of the
form

f(z) = Z w; Ba(z,z;) (finite sum). : (2.8)
If g(z).: >, ¥ Ba(z,y;), we define a scalar product by

(fl9) = X i) Baly;,=)- (29)

This is really an inner product. Set H, for the Hilbert space completion of
V with respect to this inner product and let G act by

() f(z) = flg™" - 2). (2.10)

The representation 7y is unitary and is called a canonical representation of
G. The kernel B) or the function ) is called the reproducing kernel of 7.

3 Asymptotic behaviour of 7, for A - oo

The function

Q(z) = (1= l=I)~" (3.1)
gives a parametrization of the K orbits on B (spheres), which is suitable for
our purposes. Observe that ¥y(z) = Q(z)™*. We will consider the distribu-
tion

.w+£Qm”ﬂawm (f € D(B)) (32)

for A = oo. In order to get some finite answer, let T\ be the normalized
distribution

(A
o F(()\ )— ") Q)™ (3:3)
Then one has | !
(T, ) = 1(0) + 75 AF(0) + O(55) (3.4)
for A — oo, where A is the G-invariant Laplace operator of B:
A =4(1—|z||*) i (8k1 — 2x21) —al_ (3.5)
v, s ' 02,07
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So Ty — 4§, or 7 tends to the regular representation of ¢ on L*(B,du). In
terms of “Berezin quantization” this implies, putting A = +, with & Planck’s
constant, that the correspondence principle holds [2].

4 Spectral decomposition of )

In order to decompose ) into irreducible unitary representations, we expand
1y into zonal spherical functions of positive type. This is an equivalent
setting. For A > p (p = n) this is easily done, since then ¥, belongs to

LYG)n L¥G).
The formula reads as follows:
1 e du ,
() — N 4.
ho) = 5oz | s enle) (4.1)
with i
ax(p) = / a(9) p-iulg) dg- (4.2)
Ja

Furthermore, K" a constant depending on the normalization of measures and

['(s)

c(s) = I,‘(rz)?”"’m-

(4.3)

If A is the subgroup of G consisting of the matrices:

cosht -0 sinh ¢
ay = 0 Iy 0 | (4‘4)
sinh ¢ 0 cosht

one has the decomposition: G = KA K or D = KA, -0 (the plus sign
means ¢ > 0), and
Wa(ay) = cosh t™. (4.5)

The spherical function ¢_;, has an explicit form:

o_iu(a) = F(W; n, _W2+ n;n; —sinh?®t), (4.6)
and 27 inh 2t
dg = =T (sinh )2 22220 dkdtdk. (4.7)
['(n) 2
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We thus get to compute (setting « = sinh®1):

,n.'n o [Iu —+— n —Ilj, + n
_ F ) iny—a).
ax(p) () /U ( 5 5 r)
.,r“_l( | + :l‘)_’\ dx. (4-8)

By [18], 20.2 (9) this is equal to

n

DX+ 252 DX 4 ==y
[(A)? '

ay(p)=m (4.9)

The theory, developed so far for SU(1,n), has been extended to all Hermatian
symmetric spaces. The decomposition of ¢y has been obtained by Berezin
for the classical spaces and by Upmeier and Unterberger [37] for all spaces,
but only for “large™ A (as by us, up to now).

We now consider the case 0 < A < p, where ¥, still is a positive-definite
function. By analytic continuation in A we have obtained, applying the Paley
Wiener theorem for D = G/ I, see [8]:

(. ) = 2m > (M) (e ) +

l,5;>0

o |t o (4.10)

with
s\ =p—23—20, 1 =0,1,2,... (4.11)

and
iy = 2 A, (412

['(n) (p—=2x=20+ 1)1

So we pick up finitely many complementary series representations. The case
SU(p.q) has recently been treated by Hille (thesis) [24]. How to proceed
for a general Hermitian symmetric space is an open problem. For reference
we give the list of irreducible Hermitian symmetric spaces below in Table 1,
upper part.
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5 Tensor products and restrictions of holo-
morphic and anti-holomorphic representa-
tions

There is a very nice application of canonical representations: their reproduc-
ing kernel can be identified with the reproducing kernel of tensor products
of holomorphic and anti-holomorphic representations (note: not of two holo-
morphic representations)

The space L*(G/K,I)

Denote by \; (I an integer) the character of I\ given by

(a0 ! .
X1 - <0 d>—>a (51)

where |a] =1, d € U(n), adetd = 1.
Let p; = Indg+¢ \; and V; the space of p;.
So fe Vit
(i) f : G — C is measurable,
(i) f(gk) = xi(k=") f(9),
(i) 171 = [y | F(0) du(g) < oo, where 3 = gIK.
Here du(g) is the invariant measure on G /K =~ B. Instead of V; one also
uses the notation L*(G/K,l). G acts (via p;) by left translations.
We shall identify V; with a space of functions on the unit ball B in C".
Therefore, define
Af(g) =d f(9) (5.2)
o PP )
for f e L*(G/N,l), g = ((: d

Af is defined on B and one has

I = /
JB

Let H; denote the Hilbert space of all measurable functions ¢ on B such that

[ e (1= 1Y dut) < . (5.4)
J B -

>. Then Af(gk) = Af(g) for all £ € K. So

AP (L= 110 du(2). (5.3)

H; is a G-space; (¢ acts unitarily in H; by oy, given by

a(g)e(z) = (g™ =) ((b,z) +a)” (5.5)

105



a b
c d

A'is a unitary intertwining operator between p; and o;.

if g7' =

The holomorphic discrete series; Fock spaces
For A € R consider the Fock space F) of holomorphic functions on B
satisfying

LI = [ AP (0 = =1 du) < oo (56)

This space 1s non-trivial for A > p (p = n), since F) contains the function
which is identically 1 in this case. One has

n
m

HI”%«: 2(/\_1)(/\—7))

(5.7)

Moreover, Fy is a closed subspace of L*( B, du, ), hence a Hilbert space, where
dpa(z) = (1 = [|2]*)* dp(=). (5.8)
It also has a reproducing kernel, namely

Ex(zw) = (A=1)---(A—=n) [ = (w, )]

ﬂ-'n,

(5.9)

)

It is also a unitary module for the action of the universal covering group G
of G for integer A (A > p) it is even a G-module: a holomorphic discrete
series representation of scalar type. The group G acts by

d-z4+c¢

™ (9)f(z) = f(m

) (b, ) +a)™", (5.10)

a b . . . . .

gt = ( d>' Ty 1s an irreducible unitary representation.

c

Let us denote by F the space of complex conjugates of elements in F).

It consists of anti-holomorphic functions and gives rise to an obvious unitary
action 7, of GG as well. So

d z4+c¢ ——on

TA(9)f(z) = f(m) ((b,2) + a) (5.11)
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For A € N (A > p) we get part of the anti-holomorphic discrete series of
scalar type.

Tensor products

Consider the Hilbert space tensor product

Fri,Fy (5.12)

with A > p. It consists of functions F' € L*(B x B,du, ¢ duy) such that
F(z,w) is holomorphic in z and anti-holomorphic in w. The group G acts
diagonally. It turns out that we actually have a G-action, which for integer
A is given by

g0 F(zow) = Flgg" = g7 - w).(a+ (0,2) @ ¥ (hw)) © (5.03)

o b
116901 = (C(L d)'

Let A, denote the linear map F, VD9 Fy = Ho = L*(B,du) given by
F(z,w) — F(z,2) (1 —|z||))* (5.14)

One has (see [6]):

o Ay is a bounded, ||A\||* < 1/cy, where ¢y = ||1]3.

o A, is an intertwining operator: it intertwines the G-actions (5.13) on
Fr&uF )\ and op on Ho,

e A, has trivial kernel and dense image,

The adjoint of 4,. The Berezin kernel
One can easily determine an explicit expression for A5 and then for A, 43,
which maps L*(B,du) in itself.

One gets:
AVAf(2) =
/B Ba(z19) Ba(y, 2) () dina(y) (1 — (122 (5.15)

So Ay A} is a kernel operator with kernel

(1= J=11") (1 = vl }
1= (z9)][1 = (v, 2)] )

By(z,y) = ¢i? { (5.16)

107



This is again the Berezin kernel (up to a factor); it is G-invariant, positive-
definite, and defines a bounded Hermitian form on L?(G/K) for A > p.

Restrictions

Consider the group H = SO¢(1,n) inside G = SU(1,n). It has a special
property: SOg(1,n)-0 = B(R"), the real unit ball, which is a fully restrictive
submanifold of B. This means the following: if f is an entire holomorphic
function on B and f(z) = 0 on B(R"), then f is identically zero. Completely
similar to the above one can restrict f € Fy to the real ball:

F(z) = fla) (L= |lef*)M2 (5.17)

Call this map A, again. Clearly A, is one-to-one.
Consider Ay as a map F\ — D'(B(R")) ~ D'(H/H N K), the space
of distributions on B(R™) or H/H N K. A, is an intertwining operator
for the H-actions, at least for A € 2N, A > p. It is easy to determine
A} : D(B(R™)) — F) and then A, A}, which is again a kernel operator, with
kernel N o
(L el (1 — )

! (1= (2,9)

This kernel is H-invariant and positive-definite for A > 0, and is thus given by
a positive-definite bi- A'N H-invariant function ;. One gets 1\ (a;) = cosh ¢~*
(up to a constant). One may call this the Berezin kernel for H = SOy(1,n).
The function ¢ is clearly in L'(H) for A > p. Since Ay A} can be seen as
a convolution operator on H: A Al¢ = ¢ * 1y, ¢ right A’ N H-invariant, it
is clear that 4,43 is a bounded map from L*(B(R™)) into itself. Then it is
obvious that 4,(F)) C L?*(B(R")) and that A, is bounded for A > p; indeed

(AN, @) P = [, ARl < IS 1Sl
= IR (AnAle le) < AR LA AL el (5.19)

(f € Fy, ¢ € D(B(R")).

This observation is due to B. Orsted (unpublished).

In order to decompose the restriction of 7, (A € 2N, A > p) to H =
SOp(1,n), it is suflicient to decompose . This is done in [8], even for all
A>0.

Observe that the tensor product case can be regarded as a similar restric-
tion problem, namely from G x G to the diagonal {(¢,¢): ¢ € G} ~ G. It
leads to the fully restrictive submanifold B in B x B (diagonally embedded).

(5.18)
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This construction can be generalized to compactly causal symmetric pairs
(see Table 1; g is the Lie algebra of G, b is the Lie algebra of the subgroup H
where we restrict our holomorphic representation of G to). These pairs are
studied by several people from a different point of view. The ¢-dual of G also
has a meaning: it can be used for an alternative introduction of the Berezin
kernel (see [9],]24, section 3.4]). So it is quite surprising that Table 1 has such
an impact on our theory of canonical representations. The decomposition of
the canonical representation (for A large) for the subgroups H of Table 1
has recently been given by Neretin [30] for almost all classical groups and by
van Dijk [6] for all tube type cases (by a different method). Here the case of
small A 1s a very interesting open problem too. The upper part of Table 1
has already been discussed in section 4.

Table 1: Irreducible compactly causal pairs

g g b
compactly causal | non-compactly causal
su(p, q) &b su(p, ) sl(p + ¢; C) su(p, q)
50%(2n) & s0*(2n) s0(2n;C) 50%(2n)
s50(2,n) & s0(2,n) s50(2 +n;C) 50(2,n)
sp(n,R) & sp(n, R) sp(n,C) sp(n,R)
€6(~14) D €6(—14) €s €6(—14)
€7(—25) D €7(_25) €7 €7(-25)
su(p, q) slip+¢;R) 50(p,q)
su(n,n) su(n,n) sl(n;C) 4 R
su(2p, 2q) su*(2(p + q)) sp(p, q)
50%(2n) so(n.n) so(n; C)
50%(4n) 50%(4n) su*(2n) & R
s0(2,p+q) so(p+1,g+1) so(p, 1) x s0(1,q)
sp(n,R) sp(n,R) sl(n;R) B R
sp(2n,R) sp(n,n) sp(n,C)
€5(—14) €6(6) sp(2,2)
€6(—14) €6(—26) fa(=20)
€7(—25) ' €7(—25) es(—26) D R
€7(-25) €7(7) 5U*(8)

(Faraut and Olafsson [20]).

109



6 Some notes

Here are some notes and remarks.

e Canonical representations have been introduced for classical Hermitian
symunetric spaces by Berezin [2,3,4.5] and later, in a different context, by
Vershik, Gel'fand and Graev for SL(2,R) [39,40].

e A more conceptual treatiment for Hermitian symmetric spaces in the
context of Jordan algebras has recently been given by Upmeier and Unter-
berger (1994) [37].

e An extension to hyperbolic spaces, also for small values of the param-
eters, and for line bundles over these spaces, is due to Hille and van Dijk
(1995,1996) [8. 23]. For G = SU(p, ¢) see Hille’s thesis [24].

e Canonical representations for para-Hermitian spaces were proposed and
introduced by Molchanov (1996). He follows the alternative introduction,
mentioned above [26].

o A thorough treatment of the rank one para-Hermitian symmetric space

SL(n,R)/GL(n—1,R) is due to van Dijk and Molchanov (1998, 1999) [6,11].
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