CANONICAL REPRESENTATIONS AND BEREZIN KERNELS*

G. van Dijk

The theory of so-called canonical representations is about to become a very interesting part of representation theory because it combines so many areas of mathematics: complex analysis, theory of Jordan algebras, harmonic analysis on symmetric spaces, etc. The terminology originates from a paper on $SL(2,\mathbf{R})$, where \mathbf{R} is a ring of functions, by Vershik, Gel'fand and Graev [39]. But actually these representations were introduced by Berezin, around 1975. Our lecture presents an introduction to canonical representations, where we restrict as far as the group is concerned to G = SU(1,n). At certain points in the exposition we give an outlook to the general context. Among the main recent contributors to the subject are (in alphabetical order): Arazy, van Dijk, Engliš, Hille, Molchanov, Neretin, Olafsson, Ørsted, Pasquale, Peetre, Upmeier, Unterberger, Zhang (see References).

1 Outline of the exposition

We will discuss the following items:

- 1. Definition of the canonical representation π_{λ} , λ a real number
- 2. Asymptotic behaviour for $\lambda \to \infty$
- 3. Spectral decomposition of π_{λ}
- 4. Connection with tensor products and restrictions of holomorphic and anti-holomorphic representations

^{*}Notes based on a lecture in Tabarka (Tunesia) 1999

2 Definition of π_{λ}

Let $G = \mathrm{SU}(1,n)$ be the group of $(n+1) \times (n+1)$ complex matrices of determinant 1, which leaves the following Hermitian form invariant

$$[x,y] = \overline{y}_0 x_0 - \overline{y}_1 x_1 - \ldots - \overline{y}_n x_n. \tag{2.1}$$

Let $K = S(U(1) \times U(n))$ be the standard maximal compact subgroup of G and set X = G/K. X has several realizations; a bounded realization is given by

$$B = \{ y \in \mathbf{C}^n : ||y||^2 = |y_1|^2 + \ldots + |y_n|^2 < 1 \}.$$
 (2.2)

The group G acts transitively on B: let $g \in G$, $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a : 1 \times 1$, $b : 1 \times n$, $c : n \times 1$, $d : n \times n$ matrices, then

$$g \cdot y = \frac{dy + c}{\langle b, y \rangle + a} \tag{2.3}$$

where $\langle b, y \rangle = b_1 y_1 + \dots b_n y_n$. Observe that K is the stabilizer of z = 0. A G-invariant measure on B is given by

$$d\mu(y) = (1 - ||y||^2)^{-(n+1)} dy.$$
(2.4)

Define for $\lambda \in \mathbf{R}$:

$$\psi_{\lambda}(g) = (1 - ||y||^2)^{\lambda} \tag{2.5}$$

if $y = g \cdot 0$.

The function ψ_{λ} is left and right K-invariant and thus gives in a standard way rise to a G-invariant kernel on $X \times X$ by

$$\psi_{\lambda}(g_1^{-1}g_2) = \left\{ \frac{(1 - \|y\|^2)(1 - \|z\|^2)}{[1 - (y|z)][1 - (z|y)]} \right\}^{\lambda} = B_{\lambda}(y, z)$$
 (2.6)

if $z = g_1 \cdot 0$, $y = g_2 \cdot 0$, which is called the *Berezin* kernel of X. It is not difficult to see that B_{λ} is a positive-definite kernel for $\lambda \geq 0$, which means that for every finite set of complex numbers μ_1, \ldots, μ_N and points $z_1, \ldots, z_N \in B$ the expression

$$\sum_{i,j}^{N} \mu_i \, \overline{\mu}_j \, B_{\lambda}(z_j, z_i) \tag{2.7}$$

is positive. There are several ways to associate to a G-invariant positive-definite kernel on $X \times X$ a unitary representation of G. The following method is appropriate. Let V be the complex linear space of all functions f of the form

$$f(z) = \sum_{i} \mu_{i} B_{\lambda}(z, z_{i}) \quad \text{(finite sum)}. \tag{2.8}$$

If $g(z) = \sum_{i} \nu_{i} B_{\lambda}(z, y_{i})$, we define a scalar product by

$$(f|g) = \sum_{i,j} \mu_i \overline{\nu}_j B_{\lambda}(y_j, z_i). \tag{2.9}$$

This is really an inner product. Set \mathcal{H}_{λ} for the Hilbert space completion of V with respect to this inner product and let G act by

$$\pi_{\lambda}(g)f(z) = f(g^{-1} \cdot z). \tag{2.10}$$

The representation π_{λ} is unitary and is called a *canonical* representation of G. The kernel B_{λ} or the function ψ_{λ} is called the reproducing kernel of π_{λ} .

3 Asymptotic behaviour of π_{λ} for $\lambda \to \infty$

The function

$$Q(z) = (1 - ||z||^2)^{-1}$$
(3.1)

gives a parametrization of the K orbits on B (spheres), which is suitable for our purposes. Observe that $\psi_{\lambda}(z) = Q(z)^{-\lambda}$. We will consider the distribution

$$f \to \int_B Q(z)^{-\lambda} f(z) d\mu(z) \quad (f \in \mathcal{D}(B))$$
 (3.2)

for $\lambda \to \infty$. In order to get some finite answer, let T_{λ} be the normalized distribution

$$\frac{\Gamma(\lambda)}{\pi^n \Gamma(\lambda - n)} Q(z)^{-\lambda}.$$
 (3.3)

Then one has

$$\langle T_{\lambda}, f \rangle = f(0) + \frac{1}{4\lambda} \Delta f(0) + \mathcal{O}(\frac{1}{\lambda^2})$$
 (3.4)

for $\lambda \to \infty$, where Δ is the G-invariant Laplace operator of B:

$$\Delta = 4(1 - ||z||^2) \sum_{k,l}^{n} (\delta_{kl} - z_k \overline{z}_l) \frac{\partial^2}{\partial z_k \partial \overline{z}_l}.$$
 (3.5)

So $T_{\lambda} \to \delta$, or π_{λ} tends to the regular representation of G on $L^{2}(B, d\mu)$. In terms of "Berezin quantization" this implies, putting $\lambda = \frac{1}{h}$, with h Planck's constant, that the correspondence principle holds [2].

4 Spectral decomposition of π_{λ}

In order to decompose π_{λ} into irreducible unitary representations, we expand ψ_{λ} into zonal spherical functions of positive type. This is an equivalent setting. For $\lambda > \rho$ ($\rho = n$) this is easily done, since then ψ_{λ} belongs to $L^1(G) \cap L^2(G)$.

The formula reads as follows:

$$\psi_{\lambda}(g) = \frac{1}{2\pi K} \int_0^\infty a_{\lambda}(\mu) \,\varphi_{i\mu}(g) \,\frac{d\mu}{|c(i\mu)|^2} \tag{4.1}$$

with

$$a_{\lambda}(\mu) = \int_{G} \psi_{\lambda}(g) \, \varphi_{-i\mu}(g) \, dg. \tag{4.2}$$

Furthermore, K a constant depending on the normalization of measures and

$$c(s) = \Gamma(n)2^{n-s} \frac{\Gamma(s)}{\Gamma((s+n)/2)^2}.$$
(4.3)

If A is the subgroup of G consisting of the matrices:

$$a_t = \begin{pmatrix} \cosh t & 0 & \sinh t \\ 0 & I_{n-1} & 0 \\ \sinh t & 0 & \cosh t \end{pmatrix} \tag{4.4}$$

one has the decomposition: $G = KA_+K$ or $D = KA_+ \cdot 0$ (the plus sign means $t \geq 0$), and

$$\psi_{\lambda}(a_t) = \cosh t^{-2\lambda}. \tag{4.5}$$

The spherical function $\varphi_{-i\mu}$ has an explicit form:

$$\varphi_{-i\mu}(a_t) = F(\frac{i\mu + n}{2}, \frac{-i\mu + n}{2}; n; -\sinh^2 t),$$
(4.6)

and

$$dg = \frac{2\pi^n}{\Gamma(n)} \left(\sinh t\right)^{2n-2} \left(\frac{\sinh 2t}{2}\right) dk dt dk'. \tag{4.7}$$

We thus get to compute (setting $x = \sinh^2 t$):

$$a_{\lambda}(\mu) = \frac{\pi^{n}}{\Gamma(n)} \int_{0}^{\infty} F(\frac{i\mu + n}{2}, \frac{-i\mu + n}{2}; n; -x).$$

$$x^{n-1} (1+x)^{-\lambda} dx. \tag{4.8}$$

By [18], 20.2 (9) this is equal to

$$a_{\lambda}(\mu) = \pi^{n} \frac{\Gamma(\lambda + \frac{i\mu - n}{2}) \Gamma(\lambda + \frac{-i\mu - n}{2})}{\Gamma(\lambda)^{2}}.$$
 (4.9)

The theory, developed so far for SU(1,n), has been extended to all Hermitian symmetric spaces. The decomposition of ψ_{λ} has been obtained by Berezin for the classical spaces and by Upmeier and Unterberger [37] for all spaces, but only for "large" λ (as by us, up to now).

We now consider the case $0 < \lambda \le \rho$, where ψ_{λ} still is a positive-definite function. By analytic continuation in λ we have obtained, applying the Paley Wiener theorem for D = G/K, see [8]:

$$(\psi_{\lambda}, f) = 2\pi \sum_{l, s_{l} > 0} r_{l}(\lambda) (\varphi_{s_{l}}, f) + \frac{1}{2\pi K} \int_{0}^{\infty} a_{\lambda}(i\mu) (\varphi_{-i\mu}, f) \frac{d\mu}{|c(i\mu)|^{2}}$$
(4.10)

with

$$s_l(\lambda) = \rho - 2\lambda - 2l, \ l = 0, 1, 2, \dots$$
 (4.11)

and

$$r_l(\lambda) = \frac{2^{2\lambda + 2l - 2\rho} \pi^{n-1}}{\Gamma(n)} \frac{\left(\frac{-2\lambda - 2l + 2}{2}\right)_l (1 - \lambda - l)_l}{(\rho - 2\lambda - 2l + 1)_l l!}.$$
 (4.12)

So we pick up finitely many complementary series representations. The case SU(p,q) has recently been treated by Hille (thesis) [24]. How to proceed for a general Hermitian symmetric space is an open problem. For reference we give the list of irreducible Hermitian symmetric spaces below in Table 1, upper part.

5 Tensor products and restrictions of holomorphic and anti-holomorphic representations

There is a very nice application of canonical representations: their reproducing kernel can be identified with the reproducing kernel of tensor products of holomorphic and anti-holomorphic representations (note: not of two holomorphic representations)

The space $L^2(G/K, l)$

Denote by χ_l (l an integer) the character of K given by

$$\chi_l : \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \to a^l$$
(5.1)

where |a| = 1, $d \in U(n)$, $a \det d = 1$.

Let $\rho_l = \operatorname{Ind}_{K \uparrow G} \chi_l$ and V_l the space of ρ_l .

So $f \in V_l$ if

- (i) $f: G \to \mathbf{C}$ is measurable,
- (ii) $f(gk) = \chi_l(k^{-1})f(g)$,
- (ii) $||f||^2 = \int_{G/K} |f(g)|^2 d\mu(\overline{g}) < \infty$, where $\overline{g} = gK$.

Here $d\mu(\overline{g})$ is the invariant measure on $G/K \simeq B$. Instead of V_l one also uses the notation $L^2(G/K, l)$. G acts (via ρ_l) by left translations.

We shall identify V_l with a space of functions on the unit ball B in \mathbb{C}^n . Therefore, define

$$Af(g) = a^l f(g) (5.2)$$

for $f \in L^2(G/K, l)$, $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then Af(gk) = Af(g) for all $k \in K$. So Af is defined on B and one has

$$||f||^2 = \int_B |Af(z)|^2 (1 - ||z||^2)^l d\mu(z).$$
 (5.3)

Let \mathcal{H}_l denote the Hilbert space of all measurable functions φ on B such that

$$\int_{B} |\varphi(z)|^{2} (1 - ||z||^{2})^{l} d\mu(z) < \infty.$$
 (5.4)

 \mathcal{H}_l is a G-space; G acts unitarily in \mathcal{H}_l by σ_l , given by

$$\sigma_l(g)\varphi(z) = \varphi(g^{-1} \cdot z) \left(\langle b, z \rangle + a \right)^{-l} \tag{5.5}$$

if
$$g^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

A is a unitary intertwining operator between ρ_l and σ_l .

The holomorphic discrete series; Fock spaces

For $\lambda \in \mathbf{R}$ consider the Fock space \mathcal{F}_{λ} of holomorphic functions on B satisfying

$$||f||_{\lambda}^{2} := \int_{B} |f(z)|^{2} (1 - ||z||^{2})^{\lambda} d\mu(z) < \infty.$$
 (5.6)

This space is non-trivial for $\lambda > \rho$ ($\rho = n$), since \mathcal{F}_{λ} contains the function which is identically 1 in this case. One has

$$||1||_{\lambda}^{2} = \frac{\pi^{n}}{2(\lambda - 1)\cdots(\lambda - n)}.$$
 (5.7)

Moreover, \mathcal{F}_{λ} is a closed subspace of $L^{2}(B, d\mu_{\lambda})$, hence a Hilbert space, where

$$d\mu_{\lambda}(z) = (1 - ||z||^2)^{\lambda} d\mu(z). \tag{5.8}$$

It also has a reproducing kernel, namely

$$E_{\lambda}(z,w) = \frac{(\lambda-1)\cdots(\lambda-n)}{\pi^n} \left[1 - (w,z)\right]^{-\lambda}.$$
 (5.9)

It is also a unitary module for the action of the universal covering group \widetilde{G} of G; for integer λ ($\lambda > \rho$) it is even a G-module: a holomorphic discrete series representation of scalar type. The group G acts by

$$\tau_{\lambda}(g)f(z) = f(\frac{d \cdot z + c}{\langle b, z \rangle + a})(\langle b, z \rangle + a)^{-\lambda}, \tag{5.10}$$

 $g^{-1}=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. au_{λ} is an irreducible unitary representation.

Let us denote by $\overline{\mathcal{F}}_{\lambda}$ the space of complex conjugates of elements in \mathcal{F}_{λ} . It consists of anti-holomorphic functions and gives rise to an obvious unitary action $\overline{\tau}_{\lambda}$ of \widetilde{G} as well. So

$$\overline{\tau}_{\lambda}(g)f(z) = f(\frac{d \cdot z + c}{\langle b, z \rangle + a}) \overline{(\langle b, z \rangle + a)}^{-\lambda}$$
 (5.11)

if
$$g^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $f \in \overline{\mathcal{F}}_{\lambda}$, $\lambda \in \mathbf{Z}$.

For $\lambda \in \mathbf{N}$ ($\lambda > \rho$) we get part of the anti-holomorphic discrete series of scalar type.

Tensor products

Consider the Hilbert space tensor product

$$\mathcal{F}_{\lambda} \widehat{\otimes}_{2} \overline{\mathcal{F}}_{\lambda} \tag{5.12}$$

with $\lambda > \rho$. It consists of functions $F \in L^2(B \times B, d\mu_{\lambda} \otimes d\mu_{\lambda})$ such that F(z, w) is holomorphic in z and anti-holomorphic in w. The group \widetilde{G} acts diagonally. It turns out that we actually have a G-action, which for integer λ is given by

$$g_0 \cdot F(z, w) = F(g_0^{-1} \cdot z, g_0^{-1} \cdot w) \cdot (a + \langle b, z \rangle)^{-\lambda} \overline{(a + \langle b, w \rangle)}^{-\lambda}$$
 (5.13)

if
$$g_0^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Let A_{λ} denote the linear map $\mathcal{F}_{\lambda} \widehat{\otimes}_{2} \overline{\mathcal{F}}_{\lambda} \to \mathcal{H}_{0} = L^{2}(B, d\mu)$ given by

$$F(z, w) \to F(z, z) (1 - ||z||^2)^{\lambda}$$
 (5.14)

One has (see [6]):

- A_{λ} is a bounded, $||A_{\lambda}||^2 \leq 1/c_{\lambda}$, where $c_{\lambda} = ||1||_{\lambda}^2$.
- A_{λ} is an intertwining operator: it intertwines the G-actions (5.13) on $\mathcal{F}_{\lambda} \widehat{\otimes}_2 \overline{\mathcal{F}}_{\lambda}$ and σ_0 on \mathcal{H}_0 ,
 - A_{λ} has trivial kernel and dense image,

The adjoint of A_{λ} . The Berezin kernel

One can easily determine an explicit expression for A_{λ}^* and then for $A_{\lambda} A_{\lambda}^*$, which maps $L^2(B, d\mu)$ in itself.

One gets:

$$A_{\lambda} A_{\lambda}^{*} f(z) = \int_{B} E_{\lambda}(z, y) E_{\lambda}(y, z) f(y) d\mu_{\lambda}(y) (1 - ||z||^{2})^{\lambda}.$$
 (5.15)

So $A_{\lambda} A_{\lambda}^*$ is a kernel operator with kernel

$$B_{\lambda}(z,y) = c_{\lambda}^{-2} \left\{ \frac{(1 - \|z\|^2)(1 - \|y\|^2)}{[1 - (z,y)][1 - (y,z)]} \right\}^{\lambda}.$$
 (5.16)

This is again the Berezin kernel (up to a factor); it is G-invariant, positive-definite, and defines a bounded Hermitian form on $L^2(G/K)$ for $\lambda > \rho$.

Restrictions

Consider the group $H = SO_0(1, n)$ inside G = SU(1, n). It has a special property: $SO_0(1, n) \cdot 0 = B(\mathbf{R}^n)$, the real unit ball, which is a fully restrictive submanifold of B. This means the following: if f is an entire holomorphic function on B and f(x) = 0 on $B(\mathbf{R}^n)$, then f is identically zero. Completely similar to the above one can restrict $f \in \mathcal{F}_{\lambda}$ to the real ball:

$$f(z) \to f(x) (1 - ||x||^2)^{\lambda/2}.$$
 (5.17)

Call this map A_{λ} again. Clearly A_{λ} is one-to-one.

Consider A_{λ} as a map $\mathcal{F}_{\lambda} \to \mathcal{D}'(B(\mathbf{R}^n)) \simeq \mathcal{D}'(H/H \cap K)$, the space of distributions on $B(\mathbf{R}^n)$ or $H/H \cap K$. A_{λ} is an intertwining operator for the H-actions, at least for $\lambda \in 2\mathbf{N}, \lambda > \rho$. It is easy to determine $A_{\lambda}^* : \mathcal{D}(B(\mathbf{R}^n)) \to \mathcal{F}_{\lambda}$ and then $A_{\lambda}A_{\lambda}^*$, which is again a kernel operator, with kernel

$$c_{\lambda}^{-1} \frac{(1 - \|x\|^2)^{\lambda/2} (1 - \|y\|^2)^{\lambda/2}}{[1 - (x, y)]^{\lambda}}.$$
 (5.18)

This kernel is H-invariant and positive-definite for $\lambda \geq 0$, and is thus given by a positive-definite bi- $K \cap H$ -invariant function ψ_{λ} . One gets $\psi_{\lambda}(a_t) = \cosh t^{-\lambda}$ (up to a constant). One may call this the Berezin kernel for $H = SO_0(1, n)$. The function ψ_{λ} is clearly in $L^1(H)$ for $\lambda > \rho$. Since $A_{\lambda}A_{\lambda}^*$ can be seen as a convolution operator on H: $A_{\lambda}A_{\lambda}^*\varphi = \varphi * \psi_{\lambda}$, φ right $K \cap H$ -invariant, it is clear that $A_{\lambda}A_{\lambda}^*$ is a bounded map from $L^2(B(\mathbf{R}^n))$ into itself. Then it is obvious that $A_{\lambda}(\mathcal{F}_{\lambda}) \subset L^2(B(\mathbf{R}^n))$ and that A_{λ} is bounded for $\lambda > \rho$; indeed

$$|\langle A_{\lambda}f, \varphi \rangle|^{2} = |\langle f, A_{\lambda}^{*}\varphi \rangle|^{2} \le ||f||_{\lambda}^{2} ||A_{\lambda}^{*}\varphi||^{2}$$

$$= ||f||_{\lambda}^{2} (A_{\lambda}A_{\lambda}^{*}\varphi |\varphi) \le ||f||_{\lambda}^{2} ||A_{\lambda}A_{\lambda}^{*}|| ||\varphi||^{2}$$
(5.19)

 $(f \in \mathcal{F}_{\lambda}, \varphi \in \mathcal{D}(B(\mathbf{R}^n)).$

This observation is due to B. Ørsted (unpublished).

In order to decompose the restriction of τ_{λ} ($\lambda \in 2\mathbb{N}, \lambda > \rho$) to $H = SO_0(1, n)$, it is sufficient to decompose ψ_{λ} . This is done in [8], even for all $\lambda \geq 0$.

Observe that the tensor product case can be regarded as a similar restriction problem, namely from $G \times G$ to the diagonal $\{(g,g) : g \in G\} \simeq G$. It leads to the fully restrictive submanifold B in $B \times B$ (diagonally embedded).

This construction can be generalized to compactly causal symmetric pairs (see Table 1; \mathfrak{g} is the Lie algebra of G, \mathfrak{h} is the Lie algebra of the subgroup H where we restrict our holomorphic representation of G to). These pairs are studied by several people from a different point of view. The c-dual of G also has a meaning: it can be used for an alternative introduction of the Berezin kernel (see [9],[24, section 3.4]). So it is quite surprising that Table 1 has such an impact on our theory of canonical representations. The decomposition of the canonical representation (for λ large) for the subgroups H of Table 1 has recently been given by Neretin [30] for almost all classical groups and by van Dijk [6] for all tube type cases (by a different method). Here the case of small λ is a very interesting open problem too. The upper part of Table 1 has already been discussed in section 4.

Table 1: Irreducible compactly causal pairs

Table 1: Irreducible compactly causal pairs		
g	\mathfrak{g}^c	h
compactly causal	non-compactly causal	
$\mathfrak{su}(p,q) \oplus \mathfrak{su}(p,q)$	$\mathfrak{sl}(p+q;\mathbf{C})$	$\mathfrak{su}(p,q)$
$\mathfrak{so}^*(2n) \oplus \mathfrak{so}^*(2n)$	$\mathfrak{so}(2n;\mathbf{C})$	$\mathfrak{so}^*(2n)$
$\mathfrak{so}(2,n) \oplus \mathfrak{so}(2,n)$	$\mathfrak{so}(2+n;\mathbf{C})$	$\mathfrak{so}(2,n)$
$\mathfrak{sp}(n,\mathbf{R}) \oplus \mathfrak{sp}(\mathbf{n},\mathbf{R})$	$\mathfrak{sp}(n,{f C})$	$\mathfrak{sp}(n,\mathbf{R})$
$\mathfrak{e}_{6(-14)} \oplus \mathfrak{e}_{6(-14)}$	${f e}_6$	$\mathfrak{e}_{6(-14)}$
$\mathfrak{e}_{7(-25)} \oplus \mathfrak{e}_{7(-25)}$	\mathfrak{e}_7	$\mathfrak{e}_{7(-25)}$
$\mathfrak{su}(p,q)$	$\mathfrak{sl}(p+q;\mathbf{R})$	$\mathfrak{so}(p,q)$
$\mathfrak{su}(n,n)$	$\mathfrak{su}(n,n)$	$\mathfrak{sl}(n;\mathbf{C})\oplus\mathbf{R}$
$\mathfrak{su}(2p,2q)$	$\mathfrak{su}^*(2(p+q))$	$\mathfrak{sp}(p,q)$
$\mathfrak{so}^*(2n)$	$\mathfrak{so}(n,n)$	$\mathfrak{so}(n;\mathbf{C})$
$\mathfrak{so}^*(4n)$	$\mathfrak{so}^*(4n)$	$\mathfrak{su}^*(2n) \oplus \mathbf{R}$
$\mathfrak{so}(2, p+q)$	$\mathfrak{so}(p+1,q+1)$	$ig \mathfrak{so}(p,1) imes \mathfrak{so}(1,q) ig $
$\mathfrak{sp}(n,\mathbf{R})$	$\mathfrak{sp}(n,\mathbf{R})$	$\mathfrak{sl}(n;\mathbf{R})\oplus\mathbf{R}$
$\mathfrak{sp}(2n,\mathbf{R})$	$\mathfrak{sp}(n,n)$	$\mathfrak{sp}(n,\mathbf{C})$
$\mathfrak{e}_{6(-14)}$	$\mathfrak{e}_{6(6)}$	$\mathfrak{sp}(2,2)$
$\mathfrak{e}_{6(-14)}$	$\mathfrak{e}_{6(-26)}$	f ₄₍₋₂₀₎
$\mathfrak{e}_{7(-25)}$	$\mathfrak{e}_{7(-25)}$	${\mathfrak e}_{6(-26)} \oplus {f R}$
$\mathfrak{e}_{7(-25)}$	$\mathfrak{e}_{7(7)}$	su* (8)

(Faraut and Olafsson [20]).

6 Some notes

Here are some notes and remarks.

- Canonical representations have been introduced for classical Hermitian symmetric spaces by Berezin [2,3,4,5] and later, in a different context, by Vershik, Gel'fand and Graev for SL(2, **R**) [39,40].
- A more conceptual treatment for Hermitian symmetric spaces in the context of Jordan algebras has recently been given by Upmeier and Unterberger (1994) [37].
- An extension to hyperbolic spaces, also for small values of the parameters, and for line bundles over these spaces, is due to Hille and van Dijk (1995,1996) [8, 23]. For G = SU(p, q) see Hille's thesis [24].
- Canonical representations for para-Hermitian spaces were proposed and introduced by Molchanov (1996). He follows the alternative introduction, mentioned above [26].
- A thorough treatment of the rank one para-Hermitian symmetric space $SL(n, \mathbf{R})/GL(n-1, \mathbf{R})$ is due to van Dijk and Molchanov (1998, 1999) [6,11].

References

- [1] J. Arazy and B. Ørsted, Asymptotic expansions of Berezin forms. Preprint 1999.
- [2] F.A. Berezin, Quantization. *Math. USSR Izv.* 8, 1974, pp. 1109–1165.
- [3] F.A. Berezin, Quantization in complex symmetric space. *Math. USSR Izv.* 9, 1975, pp. 341–379.
- [4] F.A. Berezin, Connection between co- and contravariant symbols of operators on the classical complex symmetric spaces. *Dokl. Akad. Nauk. USSR 241*, 1978, pp. 15–17. (In Russian; English translation in Soviet Math. Dokl. 19, 1978, pp. 786–789).
- [5] F.A. Berezin and F.I. Karpelevic, Zonal spherical functions and Laplace operators on some symmetric spaces. *Dokl. Akad. Nauk USSR (N.S.)* 118, 1958, pp. 9–12 (In Russian).
- [6] G. van Dijk, Berezin kernels on tube domains. Report W97-07, University of Leiden, 1997; extended version 1999.

- [7] G. van Dijk, Canonical representations associated to hyperbolic spaces II. Report W98-01, University of Leiden, 1998. (To appear in Indag. Math.).
- [8] G. van Dijk and S.C. Hille, Canonical representations related to hyperbolic spaces. J. Funct. Anal. 147, 1997, pp. 109–139.
- [9] G. van Dijk and S.C. Hille, Maximal degenerate representations, Berezin kernels and canonical representations. In Lie Groups and Lie Algebras, Their Representations, Generalizations and Applications. Kluwer Academic, Dordrecht, 1997.
- [10] G. van Dijk and V.F. Molchanov, Tensor products of maximal degenerate series representations of the group SL(n, **R**). J. Math. Pures Appl. 78, 1999, pp. 99–119.
- [11] G. van Dijk and V.F. Molchanov, The Berezin form for rank one para-Hermitian symmetric spaces. J. Math. Pures Appl. 77, 1998, pp. 747–799.
- [12] G. van Dijk and A.A. Pasquale, Canonical representations of Sp(1,n) associated with representations of Sp(1). To appear in Comm. Math. Phys. 1999.
- [13] M. Engliš, Functions invariant under the Berezin transform. J. Funct. Anal. 121, 1994, pp. 223–254.
- [14] M. Engliš, Asymptotics of the Berezin transform and quantization on planar domains. *Duke Math. J.* 79, 1995, pp. 57–76.
- [15] M. Engliš and J. Peetre, On the correspondence principle for the quantized annulus. *Math. Scand.* 78, 1996, pp. 183–206.
- [16] M. Engliš, Berezin quantization and reproducing kernels on complex domains. *Trans. Amer. Math. Soc.* 348, 1996, pp. 411–479.
- [17] M. Engliš, Invariant operators and the Berezin transform on Cartan domains. *Math. Nachr.* 195, 1998, 61–75.
- [18] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of integral transforms, vol. II. McGraw-Hill, New York, 1954.

- [19] J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains. J. Funct. Anal. 88, 1990, pp. 64-89.
- [20] J. Faraut and A. Koranyi, Aanlysis on symmetric cones. Oxford University Press, 1994.
- [21] J. Faraut and G. Olafsson, Causal semisimple symmetric spaces, the geometry and harmonic analysis. In: *Hofmann, Lawson and Vinberg, eds., Semigroups in Algebra, Geometry and Analysis.* De Gruyter, Berlin, 1995.
- [22] L.I. Grosheva, Representations on distributions on the Lobachevsky plane concentrated at the boundary. *Tambov University Reports* 3(1), 1998, pp. 46-49.
- [23] S.C. Hille, Decomposition of tensor products of scalar unitary holomorphic and anti-holomorphic representations of the universal covering group of SU(1,n). Report W98-12, University of Leiden, 1998.
- [24] S.C. Hille, Thesis, Leiden University, 1999.
- [25] P.E.T. Jorgensen and G. Olafsson, Unitary representations of Lie groups with reflection symmetry. *J. Funct. Anal.* 158, 1998, pp. 26–88.
- [26] V.F. Molchanov, Quantization on para-Hermitian symmetric spaces. Adv. in Math. Sci., AMS Transl. Ser. 2, 175, 1996, pp. 81-96.
- [27] Yu. A. Neretin and G.I. Ol'shanskii, Boundary values of holomorphic functions, singular unitary representations of the group O(p,q) and their limits as q → ∞. Zap. Nauchn. Semin., POMIRAN, 233, 1995, pp. 9-91 (Russian). Engl. transl.: J. Math. Sci. 1996.
- [28] Yu. A. Neretin, Boundary values of holomorphic functions and some special problems for unitary representations. In: J. Hilgert, J.D. Lawson, K.-H. Neeb and E.B. Vinberg, eds., *Positivity in Lie Theory: Open Problems*, De Gruyter Expos. Math 26, pp. 221–248. De Gruyter, Berlin, 1998.
- [29] Yu. A. Neretin, Pseudoriemannian symmetric spaces: one-type realizations and open embeddings to grassmannians. Preprint 1999.

- [30] Yu. A. Neretin, Matrix analogs of the integral $\int_0^\infty \frac{x^{\alpha-1} dx}{(1+x)^{\rho}} = B(\alpha, \rho \alpha)$ and Plancherel formula for Berezin kernel representations. Preprint 1999.
- [31] G. Olafsson and B. Ørsted, Bargmann transform for symmetric spaces. Preprint 1999.
- [32] B. Ørsted and G. Zhang, Weyl quantization and tensor products of Fock and Bergman spaces. *Indiana Math. J.* 43, 1994, pp. 551–583.
- [33] B. Ørsted and G. Zhang, L^2 -versions of the Howe correspondence I. Math. Scand. 80, 1997, pp. 115–160.
- [34] B. Ørsted and G. Zhang, Tensor products of analytic continuations of holomorphic discrete series. Can. J. Math. 49, 1997, pp. 1224–1241.
- [35] J. Peetre, The Berezin transform and Ha-plitz operators. J. Operator Theory 24, 1990, pp. 165–186.
- [36] J. Repka, Tensor products of holomorphic discrete series representations. Can, J. Math. 31, 1979, pp. 836–844.
- [37] A. Unterberger and H. Upmeier, Berezin transform and invariant differential operators. Comm. Math. Phys. 164, 1994, pp. 563–598.
- [38] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics. CBMS-AMS Reg. Conf. Ser. in Math. 67, 1987.
- [39] A.M. Vershik, I.M. Gel'fand and M.I. Graev, Representations of the group SL(2,**R**) where **R** is a ring of functions. *Uspekhi Mat. Nauk, 28* (5),1973, pp. 83–128. English transl.: Russian Math. Surv. 28 (5), 1973, 1973.
- [40] A.M. Vershik, I.M. Gel'fand and M.I. Graev, Representations of the group $SL(2,\mathbf{R})$ where \mathbf{R} is a ring of functions. In: Representation Theory, London Math. Soc. Lecture Notes 69, Cambridge Univ. Press, 1982.
- [41] G. Zhang, Berezin transform on line bundles over bounded symmetric domains. Preprint 1998.

Address of the author:

G. van Dijk
Mathematical Institute
University of Leiden
P.O Box 9512
2300 RA Leiden
The Netherlands

e-mail: dijk@math.leidenuniv.nl